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A systematic experimental investigation of the macroscopic flow properties of extremely pure He Il in the
zero temperature limit is reported, covering the pressure range P<324.8 bar. The flow is generated by
electrostatically driven oscillations of a thin, tightly stretched, circular, square-mesh nickel grid. With growing
amplitude of oscillation, the flow changes character at a first critical threshold from pure inviscid superflow
past a submerged body of hydrodynamically enhanced mass, to a flow regime that is believed to involve a
boundary layer composed of quantized vortex loops. Here the oscillatory motion of the grid acquires strongly
nonlinear features. These include double-valgegntrant resonance curves and a decrease in the resonant
frequency with increasing drive amplitude, but without any appreciable increase in damping. On further
increase of the drive level, a second critical threshold is attained: here, the resonant frequency reaches a stable
value, the response amplitude almost stops growing, but the linewidth increases. Finally, the flow acquires the
character of fully developed classical turbulence, characterized by a square-root dependence of flow velocity
on the driving force. Additional flow features attributable to the presence of remanent vorticity are observed
and discussed.
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[. INTRODUCTION not appreciably affected by adding/removing one or a few
guantized vortex loops or by a slight change in their topol-
Ever since the discovery of superfluidity more than a halfogy. This is in contradistinction to thmicroscopicflows that
century ago, the exotic flow properties of superfluid He llresult from one or only a few individual vortex loops.
have been subjected to intense investigation, leading to the In the temperature range where He Il contains an appre-
accumulation of a vast experimental database and a greaiable proportion of normal fluid, say above about 1.2 K,
deal of theoretical knowledg@see, e.g., Ref§1-3] and ref- numerous investigators have observed that, on exceeding a
erences therejn Nevertheless the problems of He Il flow, suitably defined Reynolds number, He Il flow acquires an
together with complex flow properties of other quantum flu-increasingly classical character. For examgle:the He Il
ids, are still far from being settled. surface within a bucket rotating with sufficient angular ve-
Some features of He Il flow at finite temperature arelocity forms a nearly parabolic classical menisd@$; (i)
firmly established. In the limit of low velocity, He Il flow is flow of He Il past a sphere displays both laminar and turbu-
very well described within the framework of the two-fluid lent drag[10-12; (iii) flow of He Il past a sphere can also
model originally proposed by Landdd,5]. His description exhibit a drag crisig13]; (iv) the energy spectrum of turbu-
assumes that the viscous normal fluid and inviscid superfluitent He Il involves an inertial ranggl4] with a classical
move in such a way that their velocity fields are independentKolmogorov roll-off exponent of —5/3; ang/) the decay of
One great achievement of this model was the prediction ofjluantum turbulence in He Il, whether generated by towing a
second soundwhich involves a counteroscillation of these grid through a stationary sampl&5—-19, or by normal fluid/
two components. Landau’s predicted critical velocity for ro-superfluid counterflow, displays classical featui2g).
ton creation is seldom attainé¢@], however. Rather, in mac- Although such behavior is typically observed over a tem-
roscopic flow beyond a certain threshold, quantized vorticeperature range within which the proportion of normal fluid to
appear in the liquid. The magnitude of this threshold dependsuperfluid changes widely, it is impossible to exclude the
on the precise geometry of the flow in question, and thepossibility that this classical-like behavior is associated with
generating mechanism can either be intrin§ic8], i.e.,  the presence of the viscous normal fluid. There is thus a clear
where the vortices are creatad initio in the superfluid, or call to study the macroscopic properties of He Il flow in the
extrinsic, i.e., where growth occurs from preexistimgma-  zero temperature limit, where normal fluid(@mos) absent
neny vortices already present in the superfluid. Macroscopi@and the flow of the superfluid can therefore be investigated in
flow always seemp2] to be characterized by extrinsic vortex its pure form. The task seems particularly topical in view of
creation. Quantized vortices couple together the originallyexperiments with a tiny spherfd 0,11 and a very thin vi-
independent normal and superfluid velocity fields in a com-brating wire [21] displaying intriguing features attributable
plicated way, creating enutual frictionbetween them. Note to single vortices. The purpose of the present work is to
that here, and in what follows, we use the temacroscopic investigate how He Il changes its properties from pure su-
of flows that are large on the scale of atoms, and which argerfluid (inviscid) potential flow to turbulence as the flow
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FIG. 1. Schematic drawing showing the geometry of the experi-
mental cell.

velocity increases. As we shall see, there is a clearly defined
intermediate stage between these two extremes where there
seems to be a boundary layer of quantized vortices that do
not produce viscous effects, but can exert a dynamical influ-
ence when the flow velocity changes. We infer that this evo-
lution is probably an inherent, temperature-independent,
property of He Il in large scale flow.

Our tool is of macroscopically large dimensions—an
8 cm diameter oscillating grid, driven near its resonant fre-
quency in isotopically pure He Il at low temperature. A pre-
liminary report of this work has already been publisti2g].
The present paper provides a more detailed account of our
experiments and is organized as follows: Sec. Il describes
our experimental setup; in the central Sec. Il we present our
experimental results; we discuss them in Sec. IV; and we
summarize and draw conclusions in Sec. V.

FIG. 2. Electron micrographs of the gridample cut from the
me shegttogether with a schematic drawirigpper part of fig-
ure). The grid wires are not perfectly rectangular in cross section
(lower pary, and they are rougher on on their back surfaces than on

Il. EXPERIMENTAL ARRANGEMENTS their fronts(see right hand edge of vertical wjre

The experiments were performed in an Oxford Instru-cular mild steel carrier. The membrane is cut from Mi-
ments Kelvinox 100°He/*He dilution refrigerator with a cromesh 200 lines-per-inch electroformed nickel grid mate-
cooling power exceeding 110W at 100 mK and a base rial of densityp;=8.902 g cni®. The grid is of a mesh size
temperature 0&9.2 mK. The sample of istopically pufele 127 um and of 70% effective transparency. It is shown in
(®He content below 133 was prepared using a thermal electron micrographs and schematically in Fig. 2. Note that,
counterflow techniqug23]. No part of the gas-handling on a scale of 1-2um, the grid is considerably rougher on
system—neither the storage bottle, high pressure tubingine side than on the other, as can be seen in the lower part of
valves, cold traps, nor bomb—had ever been exposed tihe figure. A static potential, typically o¥,=500 volts, is
natural helium, thus avoiding any possibility of contamina-applied to the grid and an oscillatory driving potenti&]
tion [24]. Pressures up to the solidification pressure of 25 bafF Vo Ccoswt (V;90<V,) applied to the upper electrode pro-
could be maintained and measured by a high precision Texagdes a net driving force on the grid of the form
Instruments pressure gauge. _ 2 2

The experimental cell6] is shown schematically in Fig. fa= o8, TRVoVY/, @

1. It has a stainless steel body, with a stainless steel andghereey ande, denote, respectively, the permitivity of free
copper cap, and is of about 1.5 | capacity. Inside the celspace and the relative permitivity of liquféie. The grid thus
there are two metal film heaters and six resistance thermontepresents an oscillating membrane under uniform tension
eters, the principal one being a Lake Shore Cryogenics cali27]. Approximating its motion as one dimensional, and as-
brated germanium diode. suming that the oscillation amplitude is uniform across its

The vibrating grid components consist of two plates sandarea[22,27, it is easy to show that oscillations of amplitude
wiching the high voltage grid wittd=1 mm spacings be- AD induce an oscillatory voltage of amplitude
tween the grid and each plate. The plates are 1 mm thick V= V.AD/d )
disks of gold plated copper, with 1702 mm holes drilled in 2770
a hexagonal pattern. The grid is in the form of a circularon the lower electrode. The capacitar@e= 700 pF of the
membrane, R=8 cm in diameter, tightly stretched on a cir- connecting cable and the input capacitances of the measuring
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FIG. 3. Schematic block diagram of the experiment, showing

the main components used for the measurements. 100

response amplitude (units of mVpp)

devices reduce the induced voltage by a factor of
(1+C./C)™%, whereC=47 pF is the capacitance between the
grid and the lower copper electrode. Subject to this reduction
factor [28], the response amplitud®/,| provides a direct
measure of the amplitude and peak velodity=|wAD| of
the oscillating grid[29].

A Hewlett Packard HP3325B synthesizer/function genera- 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

10 F

tor is used to provide the drive voltage for the top electrode. frequency (units of Hz)
Its output spans the range from 0.00},Mo 10V, use of
a 27x step up transformer extends the range to 270 ¥us FIG. 4. (8) Resonance curves measured with the lock-in ampli-

encompassing more than five orders of magnitude in totafjer at 5.05 bar for drive level§n V ;) of 0.001, 0.005, 0.01, 0.02,
and allowing the flow to be probed over a correspondingly0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, and 10. Each drive level is
wide dynamical range. A Brandenburg high voltage supplyepresented by two separate curves recorded for frequency sweeps
provides the grid bias via aRCfilter to attenuate 50 Hz and in opposite directions._ There is an intermediate range of (_Jlnvmg
other noise. The signal picked up on the bottom electroddeVvels where hysteresis loops with two stable branches arise l:_)ut,
can be monitored either with a Stanford Research SR-g83ptherwise, the two sweeps produce identical results. The superim-
lock-in amplifier, or with an Agilent 54624A oscilloscope to PoSed(@mos) Lorentzian resonancesmooth, gray-scajerepre-
allow direct visualization of transient processes arising at th§&"t the responses to 0.01, 0.05 and G, dfives in vacuurmup-
higher drives. These devices are link@e Fig. 3 via the per frequency axjs (b) For clarity, a separate plot of the data for

GPIB interface to a personal computéPC) using the the 0.2\, drive is shown as an example of results recorded at
P P 9 intermediate drive amplitude. The arrows indicate direction around
LABVIEW 5.0 software package.

the hysteresis loop.

Ill. EXPERIMENTAL RESULTS ON FLOW DUE TO THE

OSCILLATING GRID . .
alternately evacuated and flushed with dry nitrogen gas at

In this section, we describe our experimental observationsoom temperature to ensure that it was completely free of
on the behavior of the grid oscillating in vacuum and com-residual*He, which would have formed a creeping film and
pare them with those in He Il at various pressures. In eachltered the mass and resonant frequency of the grid. For low
case, the grid was driven by the same spatially uniform harand moderately high drive levels the resonant response is of
monic driving potential in the vicinity of the resonant fre- a Lorentzian form with a quality facta®~ 10%, as seen in
guency of its fundamental axisymmetie,1) mode[30]. As  Fig. 4@). The resonant frequency depends only very weakly
we will see, the response amplitude as a function of freon the driving amplitude: a plot of frequency against the
quency can be highly non-Lorentzian. When we use termsquare root of the drive yields a straight line, giving the
like at resonanceor resonant frequencin such cases, we are resonant frequency of th@,1) oscillatory mode in vacuum
referring to the frequency of maximum response. The mairn the limit of zero amplitude af=(1117.20+0.05Hz. For
results are presented in Figs. 4 and 5, which we discuss ihigh drive levels the resonant response versus drive becomes
detail below. visibly sublinear,(see Fig. 6, presumably due to approach-
ing the elastic limit of the grid materidB2]. This phenom-
enon occurred gradually, and at higher response amplitude

The vacuum experiments were performed at low temperathan that for the onset of nonlinearity when driving the grid
ture using exactly the same setup as for He Il. The cell wa# He Il (see belowy.

A. Resonant response of the grid in vacuum
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FIG. 5. Resonance curves measured with the lock-in amplifier at FIG. 7. The drive dependence of the resonance frequency mea-

24.79 bar for drive leveléin V) of 0.003, 0.005, 0.01, 0.02, 0,03, >Ured at 10 bar using the lock-in amplifier.

0.05, 0.1, 0.2,0.3,0.5, 1.0, 2.0, 3.0, 5.0, and 10.0. Each drive level . . .

is represented by two separate curves recorded for frequend@ailable drive=10 Vy, (without use of the transformpr
sweeps in opposite directions. There is an intermediate range ofhiS procedure was applied every time the pressure in the
driving levels where hysteresis loops with two stable branches aris_Eel_I was altered, especially when the pressure was mC_reased;
but, otherwise, the two sweeps produce identical results. Thé its absence, the resonant frequency tended to be irrepro-
dashed lines—guides to the eye—indicate the position of the firslucible. The regularization is believésee belowto corre-
critical threshold. Note that its vertical position is shifted down spond to remanent vortex lines being shaken off the grid, or
slightly compared with Fig. 4. Otherwise, the behavior is very simi-rearranged on it while still remaining attached. Following
lar to that at 5.05 bar. this “cleaning” procedure, the behavior of the grid was found
to be stable on a time scale of days, in that its resonant
frequency f; in the limit of low drive was reproducible

We refer to the resonant response of the grid as becomingithin typically £0.1 Hz.

regular after violently shaking it by means of the highest _F_or the several pressures at which data were recorded
within the range 0.36&p=<24.79 bar, the response of the

nearly-resonantly-driven grid was essentially unchanged.

The same interesting characteristic features were observed,
with only relatively weak quantitative dependences on pres-

sure. We therefore take as typical the data sets obtained at
p=5.05 bar(Fig. 4 andp=24.79 barFig. 5), and use these

] for a qualitative discussion of the results.

8 g i i i i For low drives, the resonant response has the usual

B. “Regular” resonant response of the grid in He Il
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g
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Lorentzian line shape, with a qualiy factor comparable to
that measured in vacuum: see the superimposed vacuum

S gv o [ A lrood resonances in Fig. 4. The resonant frequency shifts down
8 slightly with increasing drive amplitude, roughly in the man-
(g’ ] ner expected of a lightly damped linear oscillateee Fig.

[ L o Resonantresponsein J10 ]

Response Amplitude (units of mVpp)

7). As the drive increases further, the grid amplitude reaches
a first critical thresholdtypically 10—-20 m\, correspond-

ing to a mean grid velocity of 0.081);1)<0.24 cm/$ [31].
Subsequently, the oscillation amplitude at resonance still
continues to rise in proportion to the driyeee Figs. 4-6

FIG. 6. Response amplitude of the grid versus the drive level a[he resonant freq_uency rather suddenly starts decreqsmg
resonance measured in vacugapen symbolsand in He Il atp much faste_r(see Fig. 7, and the resonance curves acquire
=5.05 bar(main figure. The positions of the first and the second Nighly nonlinear features. _ _
thresholds are indicated in order to emphasize that above the first 10 illustrate more clearly the hysteretic behavior observed
threshold the damping remains unchanged, provided the measurté the range of intermediate driving amplitude, the resonance
ments are recorded in sequence from high drive toward low drivecurve for a drive of 0.2} is replotted on its own as an
The inset shows the drive dependence of the response amplitude @kample in Fig. ). As the driving frequency is gradually
the grid atp=15.5 bar, indicating regions of laminar and turbulent reduced from 1093 H@n practice, incrementally, in steps of
flow regimes. The full lines indicate the linear and square-roottypically 0.001 Hz, the system initially continues to display
responses. a nearly Lorentzian stationary response. At the first thresh-

Helium Il at P = 15.5 bar
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1 2l " MR A | PR SR Y | M PP S Y
1 10

Drive (units of mVpp)

100

056307-4



EXPERIMENTAL INVESTIGATION OF THE.. PHYSICAL REVIEW E 70, 056307(2004

TABLE I. Observed values characterizing He Il flow due to the vided that the frequency scalapper axi$ is shifted down
oscillating grid at various pressures:andf, are, respectively, the by about 30 Hz; the same procedure can be carried out for
resonant frequencies in the limit of low drive-0.003 ;) and for  data at any pressure. Above the first threshold, however, the
the drive level needed to bring the system to the second thresholdesponse in He Il is drastically different from that in vacuum.

V, stands for the peak amplitude response of the first\gnof the The downshift in frequency with increasing drive reaches
second thresholfor explanation, see text a maximum value of=2 Hz (see Fig. 7 at all pressures,
ceasing at a second critical threshold amplitedE90 m\,,
p fq fy Vi V, Unlike the first critical threshold, the second threshold am-
(ban (Hz) (Hz) (MVpp) (MVpp) plitude is almost pressure independésge Table)l
With further increase in drive, the oscillation amplitude at
0.30 1001.15 1088.88 19.9 189.1  resonance initially remains almost constant, while the widths
2.20 1090.45 1088.39 19.3 189.1  of the resonance curves increase rapidlge Figs. 4 and)5
3.50 1090.41 1088.10 19.5 188.0  Only for drive levels exceeding by about an order of magni-
505 1089.95 1087.87 171 188.2 tude that needed to reach the second threshold does the am-
550 1089.75 1087.75 199 190.7 plitude at resonance grow again; this time approximately in

proportion to the square root of the drive, as shown in the

10.0 1087.82 1085.78 19.5 1906 inset of Fig. 6. In this high drive regime the linewidth in-
10.09 1087.75 1085.79 17.5 189.0  creases rapidly while the resonant frequency decreases
12.05 1087.50 1085.55 16.3 192.2  gradually, qualitatively in the manner expected for growing
14.00 1087.40 1085.29 16.0 191.2  damping. Experiments in this regime involve a rather tedious
15.50 1086.80 1085.06 24.1 188.5  procedure. Driving the grid very hard results in considerable
15.55 1086.90 1085.01 105 1908 heating of the_ cell. The measurements were dqne in such a
18.00 1086.85 1084.60 8.90 1925 W&y that the high Ievgl drive was apphed only briefly, for the

~5 s needed to obtain a stable signal and read out the data
19.95 1086.50 1084.28 10.1 188.4

point digitally from the oscilloscope; it then took about an
24.79 1085.75 1083.57 9.70 193.2  hour for the temperature of the cell to decrease back to its
previous level. The temperatures at which the upper part of
old, however, there is a distinct change in the local gradienthe drive dependence curve in Fig. 6 was measured are thus
of the response-frequency characteristic: the response contipeorly defined, and might have been significantly higher than
ues to rise with decreasing frequency, but more slowly tharthe nominal~50 mK where most of the measurements were
before. This continues until at about 1087.7 Hz, just aftermade.
passing through a maximum, the response amplitude sud- There are thus two well-defined resonant frequencies that
denly collapses down onto a lower stable branch. It therhave been observed at each investigated pressure: the reso-
decreases smoothly with further reduction in frequency. Omant frequencyf, in the zero drive limit; and the resonant
increasing the drive frequency again the system stays on tHeequencyf, at the second threshold, where the frequency
lower branch until, at about 1088.8 Hz where the first threshdownshift with amplitude ceases. Their values are given in
old is attained, a transition to the stable upper branch occurdable I. Figure 8 plotsf; as a function of He Il density
These hysteretic loops are stable. One can circle them margircles. The line represents a least-squares linear fit to these
times, providing that the frequency is changed very slowly ordata, also including the zero density resonant frequeigcy
in small steps. They have mostly been measured at temperezeasured in vacuum under the same conditions. It is evident
tures around 50 mK, but are not appreciably affected by athat, in the low drive limit, the resonant frequency decreases
increase of temperature up to our maximum of 130 mK. Itlinearly with density. The triangles show that the resonance
appears, therefore, that they represent phenomena occurriatso varies with density in a similar manner near the second
in the zero temperature limit of He 1l flow. critical threshold. Within our experimental accuracy, the ob-
As a guide to the eye, Fig. 5 contains a pair of dashederved frequency shithf=f,-f, does not depend on pres-
lines marking approximately the first critical threshold. Thissure, as indicated in Fig. 9.
threshold is clearly visible on all resonance curgaswhich The response amplitude of the gatresonances plotted
we have measured about three times more than are shownasg a function of drive amplitude in Fig. 6. While increasing
this pressure, though for clarity not all are displayesd the drive amplitude, the system seems to encounter a nucle-
slightly decreases with increasing frequency. The same feation problem when passing the first threshold: on some oc-
ture occurs at all pressures. As a quantitative measure of thismsions the response stopped growing with increasing drive
first threshold we have chosen the response amplityda  level (as indicated by several points at the level of the first
mV,, at which the jump from the lower to the upper branchthreshold, and jumped onto the usual response/drive curve
occurs while slowly sweeping the frequency up underonly later. With decreasing drive this feature was absent, and
0.1V, drive. Table | contains these observed values for althe response remained always proportional to the drive level.
investigated pressures. However, when measuring the drive dependence of the re-
In Fig. 4 the resonance curves measured in vacuum argponse amplitude of the grid atfxed frequencynear the
superimposed on the data obtained for the same drive levetesonance, hysteresis occurs in the part of the parameter
in He Il at p=5.05 bar. The low response parts of these twaspace where the resonance curves are multivalued. Further
sets of resonance curves are seen to coincide closely, praway from the resonance, the drive dependence is nonlinear
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FIG. 10. The response amplitude of the grid driven in He Il near
its resonant frequency in a regime of steady beating, as obtained on
the screen of the memory oscilloscope. Note that on this time scale
it is the envelope of the oscillation amplitude that is seen, not the
individual oscillations.

1087

1086

Resonant frequency (Hz)

1085

1084} ]
1083 . \ . . ) e (i) The modulation frequency is typically 1 Hz.
0145 0150 0155 0.160 0.165  0.170 (i) Once established, the beatings are stable on a time
Density (g cm3) scale of at least hours.

_ ) (iii) Small changes of frequency do not kill the beats, but
FIG. 8. Resonant frequency as a function of He Il density at lOWmodify the upper and lower amplitude levels between which

drive levels (circles and for the second critical thresholdri- the beating occurs; only with a larger change of the driving
angles. The straight line extrapolates through the zero denSityfrequency does the beating disappear

(vacuum resonant frequency d=1117.2 Hz. The corresponding (iv) After changing the frequency, and then bringing it
pressures are marked on the upper abscissa. This shift of reson%rglck to its original value. the res or,lse is not alwavs com-
frequency with density is due to the change in the classical hydro- g ’ P y

: . letely reproducible: e.g., the beating might reappear onl
dynamic effective masgsee (=X Ieater gr sgmetimes notg at all 9 me i g

) ) o o (v) Beatings were not observed at oscillation amplitudes
but single valued, as illustrated in Fig. 3 of our preliminary pajow the first, or above the second, threshold; but they ap-
report[22]. peared on both sides of the resonant frequeiseg below:.

(vi) Beatings were never observed while driving the grid
in vacuum.

(vii) Deeper modulation occurred for the case of the vir-

Our preliminary report contains a central figuifeig. 2)  gin grid (see Sec. lll D beloythan for the cleaned grid.
showing the resonance curves that correspond to various It seems that beatings can occur at any pressure, but only
drive levels measured at 10 bar using the memory oscillowithin a certain defined range of the response amplitude. We
scope. Direct visualization of the grid response in this waydid not, however, succeed in establishing any fully repeat-
has the advantage of allowing us to identify areas in theable pattern, or well-defined experimental conditions, for the
parameter space where an unexpected amplitude modulatiappearance of the phenomenon.
of the response occurred. As displayed on the oscilloscope
(Fig. 10 the phenomenon looks similar to beats between
oscillations of comparable amplitude but slightly different

C. Amplitude modulation phenomena

D. Virgin resonant response of the grid in He Il

frequency, so we will refer to it as stabeating Based on In this subsection we describe the response of the grid to
observations at several pressures, we can summarize thé@atively low drives(up to 540 m\,,) when the experiment
main features. was performed immediately after pressurizing the cell to the
desired pressure at millikelvin temperatures, thatishout
25 our having performed the “cleaning” procedure described
: above.
2.0:F IIQ i T II 1 i 3 As seen from Fig. 11, ap=3.5 bar, the linewidth mea-
- 3 sured at the low drive 54 my/was about 0.5 Hz as opposed

-
o
AR RA:

to the~0.2 Hz for a “cleaned” grid; the observed additional
[ downshift in the resonant frequency would appear to be at-
oF tributable to this increase in the effective damping of the
grid. Otherwise, the response in this range is similar to the
regular response obtained from a cleaned grid. However, as
. . . indicated for three higher drive levels in Fig. 11, as the re-
10 15 20 25 sponse amplitude exceeds about 100,m\the behavior
p (bar) abruptly changes: a sudden onset of beating prevented a
smooth continuation of the frequency sweeps in each case.
FIG. 9. Downshift in resonant frequencf;—f,, between the The best and most direct way to visualize this phenomenon
first and second critical thresholds plotted as a function of pressuravas to use the memory oscilloscope. The very robust beating

frequency shift (Hz)
& o

g
=
o
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] did not show a tendency to saturation at high amplitude. The
< a0 ] situation was more complicated than here due to two-fluid
3 behavior of He Il above 1 K, so it is difficult to identify the
3 connections, if any, between the observed phenomena.
1 Morishita and coauthor§21] carried out an interesting
coa ] experimental study of a thin vibrating wire in He Il under
] conditions comparable to ours. Although they were mainly
03 concerned with mean free path effects at higher tempera-
o ] tures, the authors reported hysteresis below 70 mK that be-
v v ] came larger with increasing drive level. No satisfactory ex-
¥005 § planation could be offered. The observed hysteresis was
i qualitatively different from that reported here, in that it set in
T ] gradually rather than abruptly on reaching a threshold; nor
1 L T L T s T L T L Lt did the frequency shift cease at a second threshold. In addi-
1083 1084 1085 1086 1087 1083 1089 1080 1091 1092 1098 g given that their experiment involved a NbTi wire oscil-
frequency (units of Hz) lating in @ magnetic field of order of its first critical fiekd,
1s
FIG. 11. Resonance curves measured at 3.5 bar using g was impossible to explude the possibility that some of the
memory oscilloscope for drive level@ V) as indicated. Filled observed hystere5|s might havg be_en connected V,V't,h the su-
symbols represent the regular grid behavior obtained with thd?€rconducting nature of the wire itself. Rather similar ef-
“cleaned” grid, while the virgin behavior is represented by resonanf€Cts, most likely attributable to the nucleation of quantized
curves composed of the open symbols. The upper three curves plofortex lines both in He 11[34] and in superfluid®He—B
ted with open symbols are shown up to the drive amplitude at whicdi35—-37, have been observed over the years in experiments
the onset of beating occurrédee text with vibrating wires.

We emphasize that the present study refersmiacro-
shown in Fig. 10 was obtained under these conditions. Th&copicflow an-d_turbulence of the superfluid. Where influ-
amplitude of the signal grows with time for about 0.45 s enced by vorticity, the results r(_aported represent an average
roughly proportionally to Jt., until it reaches the level OVera large enser_nble of qua}ntlzed vortices. It should.t.here—
126.3 m\j,,. At this level the signal amplitude collapses fore_be f_epf"d“c_'b'f—‘a and mdependent of the _posm_ons/
within about 0.2 s to a nearly zero level, and then the whold&onfigurations of individual vortex lines. We consider first
cycle starts again. We have observed this pattern over a timfg€ Pehavior seen at relatively low velocities, which we as-
scale of about an hour, without noticing any appreciable"sume to be unaffectg(cbr almost unaffected: see belply
change in its characteristics. For the virgin grid, this structurd® Presence of vortices.
is reproducible: if one reduces the drive so as to obtain the
regular Lorentzian response, and then restores its level back B. Frequency shift at small amplitudes
again, the beating pattern reappears.

8
T

response amplitude (mVpp)
=

“

2002 |

The data of Figs. 4, 5, and 7 show that, for small drive
amplitudes, the resonant frequency is almost amplitude inde-
IV. DISCUSSION pendent, but shifted down by-30 Hz from its vacuum

In this section, we aim to discuss the observed phenomeq\?;g'ria\%eamg 2%22'{}33232': effect in terms of the classical

in a physically motivated way in order to identify the key o . .
features that an adequate theoretical analysis must be able to Wg_ start by a?proxlmatlng tr}e gctual motgn %ttr?e grr']d as
encompass. One attempt at such an analysis, via considd'€ dimensional, as in our prefiminary repfize]. oug
ation of the dynamics of individual vortex loops, based 0n5|mpllf|¢d [38], th|§ apprqach may nqnethele;s be expected
the data published in our preliminary repf2e], has already to provide useful insight into underlying physical processes

been proposed33], and we summarize its key features in involved in the superflow under study. The one-dimensional

Sec. IV D below. First, however, we discuss possible connecgduation of motion for the grid oscillating in a vacuum then

tions to earlier experiments, discuss the classical behavi(}f"lkes the simple form of a driven linear oscillator

seen at low amplitudes, and consider an empirical approach Mz + Dz + Kz=F, coq wt) (3)
to the intermediate amplitude results based on the concept of _ o
an effective boundary layer. responding at the driving frequeney=27f. In vacuum the

damping coefficientD reflects the nuisance damping only
andM denotes the bare mass of the grid; the restoring term
Kz comes from the tension in the grid7]. On sweeping the
Reports of earlier experiments of a comparable kind aralrive frequency slowly through the resonant frequency, given
relatively sparse. A growing shift in resonant frequency within the limit of low damping byf,=1/27/K/M, we expect
increasing drive was observed in the case of a vibratingo obtain a Lorentzian curve of narrow linewidth.
sphere in He Il by Luzuriagfl?2]. Although its origin might Driving the grid in an ideal fluidcorresponding to pure
be related to the effect observed here, it seems different isuperfluid He Il with no remanent vorticitythe effective
character in that there was no definite threshold and the shifhass of the grid becomes hydrodynamically enharjG&i

A. Connection to earlier experiments
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by AM=BVoeup), which will result in a downshift of the the grid, i.e., an enhancement additional to the classical hy-
resonant frequency byf, from f, to f;(p). HereV is the  drodynamic enhancemeri89] discussed in the preceding
volume of the grid and the dimensionless facfican be subsection.
evaluated as Given the essential simplicity of the superfluid in the
) 5 T—0 limit, and the scarcity of excitations, we seem forced
B = enileneP)fy/f1(p)* - 1]. (4 to conclude that the increased effective mass is in some way

ExperimentallyAf <f,, so, expanding and retaining only the associated with quantized vortices. We speculate that, on ex-

linear term, we expect a linear dependenceébbn g..(p), ceeding .the first threshqld, a “boundf_iry Iay(_ar" pf vortex
which is tabulated in Refl40]. As shown in Fig. 8, this is qups builds up on the grid, somehow Increasing its inertia.
indeed the case: fitting this dependence leads to a value J#"S WO.UId cause the resonant frequency to shift down_W|th
=(3.01+0.05. Taking into account the complex geometry increasing amplitude and the resonance curves to acquire the
of the grid (see Fig. 2, it seems not inconsistent with the strongly nonlinear features that are observed. Let us suppose
facts thatg=0.5 for é sphere ang=1 for an infinitely long that, as occurs in classical viscous fluids, a boundary layer of

cylinder. We do not know of calculations for a body of rect- thickness\ is formed, enhancing the hydrodynamic effective

H A
angular cross section—Ilet alone for the actual cross sectiof' @SS of the grid byAMg=Ahgy(p), whereA denotes the

of the grid—but, if we approximate a grid wire by an infinite surface area of the grid. Requiring that the downward shift of
elliptic cylinder of axesa and b moving in the direction the resonance frequency corresponds to those observed ex-

along its short axidh, and if a/b=3, then=3 [39]. The perimentally we have
superimposed vacuum resonances in Fig. 4, like those in Fig.

2 of Ref.[22], show that no appreciable increase in damping _M+AM) f2
. . N . )\(p) =— 49 >- (5)
occurs in the limit of low drive: the He Il just serves as a Ague(p) \ 2

mechanical vacuunj4l] whose only physical effect is a

renormalization of the mass. The excess damping due to any . \,aiues of\(p) required to account for the maximum

remanent vortex lines that.ma-y St'!l be prespt], even in frequency downshift are given in Table Il. A statistical analy-
the case of the cleaned grid, is evidently beyond our resoluéiS leads to=(0.53+0.05 um, although there seems to be a
tion. We shall return to a question of a possible frequency NOROAS

. . slight tendency foi (p) to decrease with increasing pressure.
shift due to these remanent vortex lines later. Note that the boundary | thick . h ller th
Nonetheless, remanent vorticity provides the most likely ote that Ihe boundary layer Ihickness 1S much smaler than

explanation of why the “cleaned” and “virgin” behaviors of any Ilnear_ dlmensmn of the grid wmdow_s. At first S|ght,_
the grid are so different. Increasing the pressure in the Ceﬁwerefore, it might be reasonable to approximate the behavior

presumably leads to the generation/injection of quantize(yq terms of a classical-like boundary layer covering the mov-

vortices by the jet of superfluid entering the cell from the "9 Surface.

filling capillary. They are likely to reconnect with each otherI From the c?lculat”ed th||ck|n(;,\ss of tf?e Fffeckt_lve botL_mdgry
and with image vortices in walls and electrodes, leaving rem:2Yel, We can formally caiculate an efiective kinematic vis-

anent vorticity pinned to the grid or between the grid and the®?S': requiring\(p) =\ 2ve(p)/ @ and the dynamic viscos-

surrounding electrodes. It is probably these vortices thaly 7ei(P)=2(p)ve(p). These quantities are plotted versus

cause the additional downshift of resonant frequency in th@réssure in Fig. 12. These are the viscosities that would be
low drive limit and the appreciable broadening of the reso-"€eded to produce a change in effective mass sufficient to
nance peaksee Fig. 11 We shall return to the “virgin” grid  cause the observed frequency shift if the grid were oscillat-

behavior below. First we concentrate on the regular flow dudd in @ hypothetical viscous fluid, not in a superfuid. Note in
to a “cleaned” grid. passing that the calculated value of this effective kinematic

viscosity is three orders of magnitude below that of water,
and a factor of 20 below that of normal liquid He | just above
the lambda transitiofi46]. Extending the analogy, we may
also estimate the expected linewidth of the resonance peak

With increasing response amplitude, the regular behaviodue to the drag of such a hypothetical viscous fluid. A
of the driven grid acquires highly nonlinear features, as westraightforward calculatiofd7], approximating the flow ve-
have seen, and between the first and second thresholds tleeity gradient in the fluid by(vy)/\, leads to a linewidth
resonant frequency shifts further down by about 2 Hz, inde~1 Hz. The strongly nonlinear curves corresponding to
pendently of the applied pressuiféigs. 8 and 9 Within our  drive levels slightly exceeding the first threshald not
simple model with negligibly low damping, the resonant fre- however, display any appreciable increase in damping, in the
guency~+yK/M can be shifted doweitherby a decrease of sense that the response at maximum remains proportional to
the spring constarK of the grid, or by a further enhance- the drive(see Fig. 6. This suggests that, until the response
ment of the hydrodynamic effective magd3] Mg=M amplitude reaches the second threshold, none of the vortex
+AM(p). There is no obvious mechanism by which the pres{oops that we suppose to comprise the boundary layer can
ence of the liquid could change the effective spring constantcarry away any energy by leaving the grid. These ideas are
We are therefore left with the conclusion that the additionaldeveloped in more detail in Sec. IV D below, describing a
downshift of about 2 Hz observed above the first thresholdecently proposed theorfB3] that effectively replaces the
arises from aurther enhancement of the effective mass of concept of an effective kinematic viscosity.

C. Amplitude-dependent frequency shift above the first
threshold: Macroscopic approach
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TABLE Il. Calculated values characterizing the macroscopic properties of the He Il flow due to oscillat-

ing grid (assuming its motion is one dimensiopat various pressures at low temperaturgandv, are the
estimated peak flow velocities corresponding to the first and second critical thresbglddenotes the

density[40] of He Il; B is the hydrodynamic enhancement faateee text, N denotes the required thickness

of the boundary layer; and. is the calculated value of the effective kinematic viscosity.

P U1 U2 OHe A Veff
(ban (cm/s (cm/y (g/cn?) B (um) (cmP/sx 10P)
0.30 0.302 2.87 0.1456 2.95 0.63 1.35
2.20 0.292 2.87 0.1488 2.97 0.56 1.07
3.50 0.295 2.85 0.1508 2.94 0.62 1.31
5.05 0.260 2.86 0.1529 2.95 0.55 1.04
5.50 0.302 2.89 0.1535 2.96 0.53 0.95
10.00 0.295 2.89 0.1589 3.07 0.52 0.93
10.09 0.265 2.87 0.1590 3.07 0.50 0.86
12.05 0.245 2.90 0.1611 3.06 0.49 0.83
14.00 0.242 2.90 0.1631 3.03 0.53 0.95
15.50 0.365 2.86 0.1646 3.07 0.43 0.64
15.55 0.158 2.89 0.1646 3.06 0.47 0.75
18.00 0.135 2.92 0.1668 3.02 0.55 1.03
19.95 0.152 2.86 0.1685 3.03 0.54 0.99
24.79 0.148 2.93 0.1723 3.04 0.52 0.91

It is interesting to characterize the first threshold in termgfor the 70% grid transparency, assuming that the grid motion
of a superfluid Reynolds number ReR U/ k, whereR,,  is one dimensionalsee columry, in Table II). If one also
and Ug, stand, respectively, for a length scale and velocitytakes into account that the vertical displacement profile of
characteristic of the superflow in question, andthe grid, when vibrating in its fundamental axisymmetric
«k=0.000 997 criVs denotes the quantum of circulation. To mode, is given in the radial direction by the zeroth order
estimate the critical value of Ressociated with the first Bessel functionly(2.4048/R), the peak flow velocityi.e.,
threshold, we believe it is natural to use the peak flow velocUy,) through its center is further enhanced by a faet@.3.
ity averaged over a grid window in the frame of reference ofAs a characteristic length scaléh we use the size of the
the grid. The observed values of the first critical amplitudeindividual bars composing the grid. The superfluid Reynolds
are given in Table | for all investigated pressures. We haveumber associated with the first threshold R UL,/ «, is
converted the peak value of tiyeid velocityto the peaklow  displayed in Fig. 13. Note that, although it decreases with
velocityby multiplying by a numerical factor1.43 to allow  increasing pressure, it is of order unity for all pressures, in

qualitative agreement with the famous Feynman criterion
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FIG. 13. The superfluid Reynolds number'sl%erresponding to
FIG. 12. Calculated values of the effective kinematic viscositythe first critical threshold, plotted versus the pressure. The “anoma-
(squaresand dynamic viscositycircles versus pressure. lous” triangular data point is discussed in the text.
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based on the value of self-induced velocity for a vortex loopcome nonlinear at the first threshold, however, the observed
of the size of the grid bar. highly nonlinear form of the measured resonance curves can
The experimental point plotted fgg=15.5 bar(the open  be accounted for: it would be necessary for the nonlinear part
triangle falls in a seemingly anomalous position. We areof the loop area to contribute 2500 um? per window of the
aware of only one experimental difference from the condi-grid at the second thresho[@3]. It follows that mass en-
tions under which the other data were recorded: the drivdvancement through this mechanism cannot be due to a single
dependence of the resonant response had just previoudlyop—it would simply be too long to respond adiabatically.
been measured up to the highest available drive amplitudetn fact, if one considers also the stability of these loops
This involved use of the transformer to boost the drivingagainst “ballooning out” below the second threshold, the
potential (by a factor of =27). This unusually high drive analysis[33] suggests a dense boundary layer constituted of
probably resulted in more efficient “cleaning” than the stan-small loops, with~10° per grid aperture, i.e., about 40
dard procedure of shaking the grid with the 1g,\irectly  loops altogether, each sizeel um or less.
available from the signal generator. This observation sup- Note in passing that, at higher temperature where there is
ports the idea that driving the grid at high amplitude causesn appreciable fraction of normal fluid, such a flow involving
a re-arrangement of remanent vorticity rather than its totah boundary layer of small vortex loops would be dissipative,

removal. and not only because the grid is moving through a normal
fluid of finite viscosity. On length scales comparable with the

D. Amplitude-dependent frequency shift above the first distance between the vortex loops constituting the boundary
threshold: Microscopic approach layer, the normal and superfluid velocity fields cannot be

fully matched and the resulting mutual friction will assure

The macroscopic approach aboye, baged on analogy Wi%ssipation of the flow energy. The interesting question of
the boundary layer theory for classical fluids, fails to explain;

i . . ust how such a process sets in remains open as a subject for
why the damping above the first threshold remains appmjfuture investigation.

ently unchanged. The main chall_enge for any microscopic 4 g tempting to suppose that the formation of this bound-
theory baseq on vortex dynam|cs(|;to explain the mecha—l ary layer is intrinsic to any superflow over a solid boundary.
nism that gives rise to the amplitude-dependent eﬁeCt'V%’erhaps employing the ideas of Kusmart#, the bound-
mass, andii) to show how this effect can occur without any ary Iaye} can grow from a “plasma” of half, vortex rings,
corresponding increase in damping. A possible approach tQy, . gh the critical velocities derived by Kusmartsev are
these problems has been proposed in B8], and we Now )01, jarger than those considered here. The difficulties as-

summarize briefly the main ideas. sociated with intrinsic vortex nucleation are well established

The character' of thg dy_namlcal response of a vortex loo‘f4a and intrinsic critical velocities in microscopically small
attached to a grid oscillating at the drive frequeneywill channels are assumed to be80 m/s at low temperature.

depen_d on whether it is significantly longer or shorter thanHere, on the other hand, we have an open geometry, the grid
the”rllwlnlmurg_ resonant Ilen_gtkiz13 mm required by the g tace is very rough and substantial enhancement of flow
well-known dispersion refation around excrescences is possible. The nucleation problem,

2 «k2 1 discussed above in relation to the drive dependence of the
w(k) = w(—) =— n(—) (6)  response amplitude at resonance, is consistent with this pic-
¢/ Am ke ture.

for a Kelvin wave[2], wherea, is the vortex core parameter.  Another possibility is to suppose that the boundary layer
If the loop is shorter thai, it will respond adiabatically, in is essentially extrinsic, in that the generation of quantized
that its position and configuration in the flow will always vortex loops on the surface of the grid by macroscopic su-
correspond to equilibrium. For loops that are significantlyperflow around it probably involves growth from remanent
longer than¢, on the other hand, Kelvin waves will be ex- vortex lines[42] and may well be produced by the “clean-
cited, leading to dissipation. Dissipation may thus occur eiing” procedure that causes the “virgin” and “regular” behav-
ther through the transfer of energy via a Kelvin wave cascad®rs to differ.
[17] to very high frequencies, at which there can be signifi- At present, the available experimental data do not allow
cant phonon radiation, or through the loss of vortex rings as!s to resolve this interesting and fundamental issue. There is
the result of reconnections. It appears likely, therefore, tha@ clear call for more precise studies of the “cleaning” proce-
these longer vortex loopg®robably including some connect- dure, possibly involving grids with different geometry and
ing the grid to the neighboring electrodese being removed surface roughness.
during the “cleaning” procedure described above.

It can be showi33] that, when a vortex loop is pinned by
both ends to the grid and responds adiabatically, it enhances E. Onset of dissipation
the effective mass of the grid bgy. x(dS/dv), without As we have seen, a dissipative process sets in at a re-
increasing the damping. He®(v) is the area between the sponse level corresponding to the second critical threshold:
loop and the neighboring walls. For small velociti€) is  on increasing the drive further, the main result is an increase
probably a linear function of the flow velocity, and the in linewidth (see Figs. 4 and)5Under these flow conditions,
overall effect is a constant, amplitude-independent, enhanceéhe He Il is behaving in close analogy with a classical
ment of the effective mass of the grid. #v) were to be-  Navier-Stokes fluid, in that the flow is dissipative. Using the
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observed values of the response amplitude for the secortzkatings within the regular and cleaned regimes, we will as-
threshold from Table | we can conclude that it does not desume for now that they have a common origin. As already
pend appreciably on pressure, and reaches 190+2.mV mentioned above, we associate the difference between the

Let us now discuss the second, pressure-independeMirgin/regular behaviors with the presence/absence of rema-
threshold in terms of a superfluid Reynolds numbet' Re nent quantized vortices in significant numbers. The linewidth
:Rghugh/,(_ In the classical case, steady flow through a gridat Iow.dnve (virgin behawo]s is broader than that observed
generates turbulence that is nearly homogeneous arfither in vacuum orin He liregular behavigr and the reso-
isotropic—the turbulent wakes created at grid bars coalesc&%ﬂt frequency is shifted down relative to the latter. We infer
at some distance downstream. One usually characterizes sutfit the observed phenomena are a direct consequence of
a flow by a mesh Reynolds number, i.e., the mesh size of thguantum vortices adjacent to the grid, pinned in some ran-
grid plays the role of the characteristic distance. Below the om fashion.

second threshold, however, we are dealing with an oscillat We may therefore attempt to explain the observed beat-
) P ’ =aling ; ings on the assumption that, on reaching the critical response
ing (supeiflow of relatively small amplitudgup to the size

; . ., amplitude (126.3 m\,, in the particular case described
of a grid bay. Flow around the bar on ane side of a grid aborz/e the E)scillatoryp?notion of tﬂe grid almost stops within
aperture will thereforg be almost unaffected by flow aroun.da period of~0.2 s by generation of a vortex tangle. It means
the bar on the pther side of the aperture. Use of the mesh SiZRat the energy of the moving grid with peak velocity given
as a characteristic length scale therefore seems inapproprial; its critical response amplitude, of order 0,1, is trans-
We suggest that the relevant superfluid Reynolds numb&brmed to vortex line of total length-5 km. Assuming fur-
characterizing the onset of superfluid turbulence ather that the tangle spreads and decays away at a sufficiently
the second threshold be defined in the same way as wasigh rate, it corresponds to a steady heat input to the cell of
done above for the first threshold. Calculation of the peak=0.01-0.14W. Notwithstanding the linkage of the He I
velocity for the second threshold by the above procedurgample(via a complicated set of thermal links including the
results in Ug,=6.6+0.1 cm/s and assuminB,=R}, we  Kapitza resistangeto the mixing chamber of the dilution
arrive at R§z14. refrigerator, this would have led to appreciable warming of
The observed values of Ekeompare well with the critical the samplg30 to 50 mK in about 15 min, just considering
Re,=UD/x=20 (U is the transport velocity an® the di- heat capacity
ameter of the pipefound as a temperature-independent In practice, no appreciable increase of the cell tempera-
threshold in pipe flow of He Il at much higher temperaturesture was observed on the time scale of one hour while ob-
when the flow of the normal component was inhibited byserving the stable beating pattern. If the motion of the grid is
superleaks placed at both ends of the . This suggests approximated as one dimensiorjdl], then we are obliged
that, although the underlying physical mechanism leading tdo interpret the behavior of Fig. 10 in this way, but it is an
a transition to superfluid turbulence is not well understood, itapproach that evidently fails to provide a plausible explana-
probably remains unchanged even at temperatures abotien for the beating phenomenon.

1.4 K where there is an appreciable fraction of normal fluid. We point out that it may, however, be necessary to con-
Microscopic considerations based on the dynamic resider the dynamics of our oscillating grid in more detail. It
sponse of individual vortex loops relevant to the onset ofrepresents a nearly homogeneous oscillating membrane un-
dissipation can be found if83]. To resolve this complicated der uniform tension. The electrostatic driving force resulting
issue fully, however, further more work is needed, includingfrom applying the ac voltage to the upper electrode can be
computer simulations on dynamic behavior of pinned vortexassumed as nearly uniformly distributed over the entire grid
loops subject to an oscillatory superflow. area. Thus, as already pointed out in Sec. IV C driving the

The square-root behavigsee the inset in Fig.)6of the  grid at a frequency near its fundamental resonance should
resonant response as a function of drive amplitude above thesult in a particularly simple axially symmetric oscillation
second threshold is typical of classical turbulent drag scalingpattern, with a vertical displacement profile in the radial di-
It is therefore most likely that this threshold marks the onsetection given by the Bessel functialy(k;r), with the wave
of turbulence. The dissipation process might be analogous teector k, chosen in such a way that the displacement van-
the evaporation of a packet of quantized vortici9] ishes at the circumference of the grickR. This spatial dis-
proposed to explain turbulent behavifB0] of superfluid placement profile ought to be relevant when driving the grid
*He-B. in vacuum and in He Il for amplitudes below the first thresh-
old, i.e., up to response signal amplitudes not exceeding
~10 mV,, As the oscillation amplitude increases, the
threshold will first be reached initially in the middle of the

Let us consider possible origins of the beating phenomengrid [51], where quantum vortex loops will cause a local
(see Fig. 10, and Fig. 2 of RgR2]) with properties summa- enhancement of the effective mass per unit area. Conse-
rized above. We recall that, in the “regular” regime, they arequently, the spatial displacement profile will depart from that
observed at the response amplitude between the first and segiven by the Bessel functiody(k.r).
ond thresholds on both sides of the resonant frequency. The Assuming that the axial symmetry is maintained, the reso-
most pronounced beatings are obser¢Ed). 10 above a nant frequency of the stationary response curve ought gradu-
critical amplitude(Fig. 11) when probing the virgin behavior ally to shift down, in accord with the experiment. If the vor-
of the grid. Given the similar appearance and time scales dex loops composing the boundary layer do not leave the grid

F. Amplitude modulation “beating” phenomena
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carrying its energy away, there is no reason to expect angn a lower electrode that covers the entire grid area. For the
broadening of the peak at this stage: its width should remaisame response amplitude, therefore, the signal induced in the
at the nuisance dampin@e., vacuun level. (0,1 mode will be vastly greater than that in &d,2)-like

In reality the vortex loops will probably locally enhance mode. So what appea¢Big. 10) as a drastic reduction in the
the effective mass of the grid in a way that breaks the axiapscillatory amplitude may in reality correspond to a continu-
symmetry. The grid can therefore no longer be well approxipys transition to a0,2-like mode. At present we cannot
mated as an oscillating membrane of homogeneous areghcide which scenario is more likely; further experimental

density, but represents a rather complex nonline_ar oscil!atorwork' backed up by simulations and theoretical investiga-
system. A simple stationary response to a spatially uniform;,« is required to resolve the issue.

drive might no longer exist and, conceivably, this could show

up experimentally as beatings between two different ampli-

tude values. We may expect that, for any given configuration V. SUMMARY

of vortex loops, the beating pattern would be reasonably

stable in that small changes in the drive would only change We have reported a systematic experimental investigation
the average sizes of existing loops, but not their overall geoof the macroscopic flow of pure He Il in the limit of very low
metrical configuration. Consistent with this idea, there is a@emperature, using a vibrating grid as a probe. Our results
high degree of reproducibility of the response for a givenconfirm that for flow velocities below a threshold value, He
frequency and drive when the range of the frequency sweegds can indeed behave as an ideal fluid: its presence enhances
is sufficiently small. Faster and bigger changes in frequencyhe hydrodynamic mass of the oscillating body, without mak-
probably lead to a more drastic spatial rearrangement of thing a measurable contribution to the damping. After the in-
vortices that constitute the boundary layer. On bringing thgection of extra liquid through an increase of pressure at low
frequency back to its original value, following an excursiontemperature, however, the He dbescontribute additional

of this kind, a different spatial configuration might be pro- damping, observed as a downshift in resonance frequency
duced, leading either to a different beating pattern or to thend an increase of the linewidth, even in a limit of low driv-
disappearance of beating. This qualitative discussion of thang force. We attribute this effect to an increased level of
beatings described in Sec. lll C is consistent with the obserremanent vorticity engendered by the jet of He Il issuing
vations that beatings are never observed in vacuum, and onfyom the filling capillary as the cell is being pressurized. The
occur above the first threshold in He II. effect can be substantially reduced by violently shaking the

On increasing the amplitude further, the second thresholdrid—presumably causing remanent vorticity to be shaken
will eventually be reached in the central area of the grid.off or rearranged in some way—following which procedure
Note that the second threshold is ten times higher than théhe resonance frequency is found to have shifted up, with a
first one so, by this time, most of the grid area will be oscil-corresponding decrease of linewidth indistinguishable from
lating with an amplitude exceeding that of the first thresholdits vacuum value. The response then remains stable on a time
Thus its mass per unit area is already enhanced by the exiseale of at least days.
tence of the effective boundary layer. It would seem that, On increasing the flow velocity above the first threshold
when the second threshold is attained by the central part atharacterized by a flow velocity of a few mm/s or by a
the grid, an additional damping force will start to act locally, superfluid Reynolds number of order upitgn effective
in the central area of the grid; presumably it suffers a phasboundary layer comprised of quantized vortices enhances the
shift [47] (which for a viscous fluid would ber/4). Further  hydrodynamic effective mass of the grid but not the damping
increase in the the oscillation amplitude is no longer proporwhich, in the zero temperature limit, remains unchanged un-
tional to the drive but almost ceases due to the very rapidil the second thresholgtharacterized by a flow velocity of a
increase in damping. Only for much higher drives, when thdew cm/s or by the superfluid Reynolds numbet0-20 is
damping area becomes almost the size of the entire grigttained, which is where dissipation sets in. Intriguing effects
does a new regular pattern become established. This timsuch as pronounced beatings have been observed in this
the turbulent-like drag is characterized by a square-root derange of response amplitudes and, currently, these are only
pendence of the response on the drive amplitude. partly understood.

These considerations allow us to speculate about a pos- Further increase of the drive leads to a viscouslike dissi-
sible alternative scenario that might account for the beatingpative flow. It can perhaps be understood as He Il mimicking
(Fig. 10. Additional damping in the central area of the grid the boundary layer that arises in oscillatory viscous flow in a
will tend to flatten the displacement profile. The resultantclassical fluid: in the case of He Il this would involve an
force in the central area of the grid will become more andappropriate rearrangement of vortex loops in the vicinity of
more phase shifted. It is possible to envisage that, with @he solid boundary, analogous to the way in which a rotating
further increase in drive, this phase shift may grow until abucket of He Il at sufficient angular velocity imitates solid
transition occurs into a vibration regime where the middle ofbody rotation. For the highest achievable drives, the flow can
the grid and its outer annulus oscillate in opposite directionsbe characterized as developed superfluid turbulence. The ve-
mutually in antiphase, i.e., similarly as in tk@,2) oscilla- locity grows in proportion to the square root of the drive, i.e.,
tory mode. Due to energy conservation the oscillating amplithe quantized vorticity being generated leads to a turbulent
tude (or, rather, its mean-square value averaged over the emag dependence typical of classical viscous fluids.
tire grid area ought to stay roughly constant. However, our We are aware that there are a number of problems and
detection method consists of measuring the induced voltagenanswered questions, such as the universality of the ob-
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