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A systematic experimental investigation of the macroscopic flow properties of extremely pure He II in the
zero temperature limit is reported, covering the pressure range 0.3, P,24.8 bar. The flow is generated by
electrostatically driven oscillations of a thin, tightly stretched, circular, square-mesh nickel grid. With growing
amplitude of oscillation, the flow changes character at a first critical threshold from pure inviscid superflow
past a submerged body of hydrodynamically enhanced mass, to a flow regime that is believed to involve a
boundary layer composed of quantized vortex loops. Here the oscillatory motion of the grid acquires strongly
nonlinear features. These include double-valued(reentrant) resonance curves and a decrease in the resonant
frequency with increasing drive amplitude, but without any appreciable increase in damping. On further
increase of the drive level, a second critical threshold is attained: here, the resonant frequency reaches a stable
value, the response amplitude almost stops growing, but the linewidth increases. Finally, the flow acquires the
character of fully developed classical turbulence, characterized by a square-root dependence of flow velocity
on the driving force. Additional flow features attributable to the presence of remanent vorticity are observed
and discussed.
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I. INTRODUCTION

Ever since the discovery of superfluidity more than a half
century ago, the exotic flow properties of superfluid He II
have been subjected to intense investigation, leading to the
accumulation of a vast experimental database and a great
deal of theoretical knowledge(see, e.g., Refs.[1–3] and ref-
erences therein). Nevertheless the problems of He II flow,
together with complex flow properties of other quantum flu-
ids, are still far from being settled.

Some features of He II flow at finite temperature are
firmly established. In the limit of low velocity, He II flow is
very well described within the framework of the two-fluid
model originally proposed by Landau[4,5]. His description
assumes that the viscous normal fluid and inviscid superfluid
move in such a way that their velocity fields are independent.
One great achievement of this model was the prediction of
second sound, which involves a counteroscillation of these
two components. Landau’s predicted critical velocity for ro-
ton creation is seldom attained[6], however. Rather, in mac-
roscopic flow beyond a certain threshold, quantized vortices
appear in the liquid. The magnitude of this threshold depends
on the precise geometry of the flow in question, and the
generating mechanism can either be intrinsic[7,8], i.e.,
where the vortices are createdab initio in the superfluid, or
extrinsic, i.e., where growth occurs from preexisting(rema-
nent) vortices already present in the superfluid. Macroscopic
flow always seems[2] to be characterized by extrinsic vortex
creation. Quantized vortices couple together the originally
independent normal and superfluid velocity fields in a com-
plicated way, creating amutual frictionbetween them. Note
that here, and in what follows, we use the termmacroscopic
of flows that are large on the scale of atoms, and which are

not appreciably affected by adding/removing one or a few
quantized vortex loops or by a slight change in their topol-
ogy. This is in contradistinction to themicroscopicflows that
result from one or only a few individual vortex loops.

In the temperature range where He II contains an appre-
ciable proportion of normal fluid, say above about 1.2 K,
numerous investigators have observed that, on exceeding a
suitably defined Reynolds number, He II flow acquires an
increasingly classical character. For example:(i) the He II
surface within a bucket rotating with sufficient angular ve-
locity forms a nearly parabolic classical meniscus[9]; (ii )
flow of He II past a sphere displays both laminar and turbu-
lent drag[10–12]; (iii ) flow of He II past a sphere can also
exhibit a drag crisis[13]; (iv) the energy spectrum of turbu-
lent He II involves an inertial range[14] with a classical
Kolmogorov roll-off exponent of −5/3; and(v) the decay of
quantum turbulence in He II, whether generated by towing a
grid through a stationary sample[15–19], or by normal fluid/
superfluid counterflow, displays classical features[20].

Although such behavior is typically observed over a tem-
perature range within which the proportion of normal fluid to
superfluid changes widely, it is impossible to exclude the
possibility that this classical-like behavior is associated with
the presence of the viscous normal fluid. There is thus a clear
call to study the macroscopic properties of He II flow in the
zero temperature limit, where normal fluid is(almost) absent
and the flow of the superfluid can therefore be investigated in
its pure form. The task seems particularly topical in view of
experiments with a tiny sphere[10,11] and a very thin vi-
brating wire [21] displaying intriguing features attributable
to single vortices. The purpose of the present work is to
investigate how He II changes its properties from pure su-
perfluid (inviscid) potential flow to turbulence as the flow
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velocity increases. As we shall see, there is a clearly defined
intermediate stage between these two extremes where there
seems to be a boundary layer of quantized vortices that do
not produce viscous effects, but can exert a dynamical influ-
ence when the flow velocity changes. We infer that this evo-
lution is probably an inherent, temperature-independent,
property of He II in large scale flow.

Our tool is of macroscopically large dimensions—an
8 cm diameter oscillating grid, driven near its resonant fre-
quency in isotopically pure He II at low temperature. A pre-
liminary report of this work has already been published[22].
The present paper provides a more detailed account of our
experiments and is organized as follows: Sec. II describes
our experimental setup; in the central Sec. III we present our
experimental results; we discuss them in Sec. IV; and we
summarize and draw conclusions in Sec. V.

II. EXPERIMENTAL ARRANGEMENTS

The experiments were performed in an Oxford Instru-
ments Kelvinox 1003He/4He dilution refrigerator with a
cooling power exceeding 110mW at 100 mK and a base
temperature of,9.2 mK. The sample of istopically pure4He
(3He content below 10−13) was prepared using a thermal
counterflow technique[23]. No part of the gas-handling
system—neither the storage bottle, high pressure tubing,
valves, cold traps, nor bomb—had ever been exposed to
natural helium, thus avoiding any possibility of contamina-
tion [24]. Pressures up to the solidification pressure of 25 bar
could be maintained and measured by a high precision Texas
Instruments pressure gauge.

The experimental cell[6] is shown schematically in Fig.
1. It has a stainless steel body, with a stainless steel and
copper cap, and is of about 1.5 l capacity. Inside the cell
there are two metal film heaters and six resistance thermom-
eters, the principal one being a Lake Shore Cryogenics cali-
brated germanium diode.

The vibrating grid components consist of two plates sand-
wiching the high voltage grid withd=1 mm spacings be-
tween the grid and each plate. The plates are 1 mm thick
disks of gold plated copper, with 170,2 mm holes drilled in
a hexagonal pattern. The grid is in the form of a circular
membrane, 2R=8 cm in diameter, tightly stretched on a cir-

cular mild steel carrier. The membrane is cut from Mi-
cromesh 200 lines-per-inch electroformed nickel grid mate-
rial of density%G=8.902 g cm−3. The grid is of a mesh size
127 mm and of 70% effective transparency. It is shown in
electron micrographs and schematically in Fig. 2. Note that,
on a scale of 1–2mm, the grid is considerably rougher on
one side than on the other, as can be seen in the lower part of
the figure. A static potential, typically ofV0=500 volts, is
applied to the grid and an oscillatory driving potentialV1
=V10 cosvt sV10!V0d applied to the upper electrode pro-
vides a net driving force on the grid of the form

fd = «0«rpR2V0V1/d
2, s1d

where«0 and«r denote, respectively, the permitivity of free
space and the relative permitivity of liquid4He. The grid thus
represents an oscillating membrane under uniform tension
[27]. Approximating its motion as one dimensional, and as-
suming that the oscillation amplitude is uniform across its
area[22,27], it is easy to show that oscillations of amplitude
DD induce an oscillatory voltage of amplitude

V2 = V0DD/d s2d

on the lower electrode. The capacitanceCc>700 pF of the
connecting cable and the input capacitances of the measuring

FIG. 1. Schematic drawing showing the geometry of the experi-
mental cell.

FIG. 2. Electron micrographs of the grid(sample cut from the
same sheet), together with a schematic drawing(upper part of fig-
ure). The grid wires are not perfectly rectangular in cross section
(lower part), and they are rougher on on their back surfaces than on
their fronts(see right hand edge of vertical wire).
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devices reduce the induced voltageV2 by a factor of
s1+Cc/Cd−1, whereC>47 pF is the capacitance between the
grid and the lower copper electrode. Subject to this reduction
factor [28], the response amplitudeuV2u provides a direct
measure of the amplitude and peak velocityuvgu= uvDDu of
the oscillating grid[29].

A Hewlett Packard HP3325B synthesizer/function genera-
tor is used to provide the drive voltage for the top electrode.
Its output spans the range from 0.001 Vpp to 10 Vpp; use of
a 273 step up transformer extends the range to 270 Vpp, thus
encompassing more than five orders of magnitude in total,
and allowing the flow to be probed over a correspondingly
wide dynamical range. A Brandenburg high voltage supply
provides the grid bias via anRCfilter to attenuate 50 Hz and
other noise. The signal picked up on the bottom electrode
can be monitored either with a Stanford Research SR-830
lock-in amplifier, or with an Agilent 54624A oscilloscope to
allow direct visualization of transient processes arising at the
higher drives. These devices are linked(see Fig. 3) via the
GPIB interface to a personal computer(PC) using the
LABVIEW 5.0 software package.

III. EXPERIMENTAL RESULTS ON FLOW DUE TO THE
OSCILLATING GRID

In this section, we describe our experimental observations
on the behavior of the grid oscillating in vacuum and com-
pare them with those in He II at various pressures. In each
case, the grid was driven by the same spatially uniform har-
monic driving potential in the vicinity of the resonant fre-
quency of its fundamental axisymmetric(0,1) mode[30]. As
we will see, the response amplitude as a function of fre-
quency can be highly non-Lorentzian. When we use terms
like at resonanceor resonant frequencyin such cases, we are
referring to the frequency of maximum response. The main
results are presented in Figs. 4 and 5, which we discuss in
detail below.

A. Resonant response of the grid in vacuum

The vacuum experiments were performed at low tempera-
ture using exactly the same setup as for He II. The cell was

alternately evacuated and flushed with dry nitrogen gas at
room temperature to ensure that it was completely free of
residual4He, which would have formed a creeping film and
altered the mass and resonant frequency of the grid. For low
and moderately high drive levels the resonant response is of
a Lorentzian form with a quality factorQ,104, as seen in
Fig. 4(a). The resonant frequency depends only very weakly
on the driving amplitude: a plot of frequency against the
square root of the drive yields a straight line, giving the
resonant frequency of the(0,1) oscillatory mode in vacuum
in the limit of zero amplitude asf0=s1117.20±0.05d Hz. For
high drive levels the resonant response versus drive becomes
visibly sublinear,(see Fig. 6), presumably due to approach-
ing the elastic limit of the grid material[32]. This phenom-
enon occurred gradually, and at higher response amplitude
than that for the onset of nonlinearity when driving the grid
in He II (see below).

FIG. 3. Schematic block diagram of the experiment, showing
the main components used for the measurements.

FIG. 4. (a) Resonance curves measured with the lock-in ampli-
fier at 5.05 bar for drive levels(in Vpp) of 0.001, 0.005, 0.01, 0.02,
0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, and 10. Each drive level is
represented by two separate curves recorded for frequency sweeps
in opposite directions. There is an intermediate range of driving
levels where hysteresis loops with two stable branches arise but,
otherwise, the two sweeps produce identical results. The superim-
posed(almost) Lorentzian resonances(smooth, gray-scale) repre-
sent the responses to 0.01, 0.05 and 0.1 Vpp drives in vacuum(up-
per frequency axis). (b) For clarity, a separate plot of the data for
the 0.2 Vpp drive is shown as an example of results recorded at
intermediate drive amplitude. The arrows indicate direction around
the hysteresis loop.
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B. “Regular” resonant response of the grid in He II

We refer to the resonant response of the grid as becoming
regular after violently shaking it by means of the highest

available drive<10 Vpp (without use of the transformer).
This procedure was applied every time the pressure in the
cell was altered, especially when the pressure was increased;
in its absence, the resonant frequency tended to be irrepro-
ducible. The regularization is believed(see below) to corre-
spond to remanent vortex lines being shaken off the grid, or
rearranged on it while still remaining attached. Following
this “cleaning” procedure, the behavior of the grid was found
to be stable on a time scale of days, in that its resonant
frequency f1 in the limit of low drive was reproducible
within typically ±0.1 Hz.

For the several pressures at which data were recorded
within the range 0.30øpø24.79 bar, the response of the
nearly-resonantly-driven grid was essentially unchanged.
The same interesting characteristic features were observed,
with only relatively weak quantitative dependences on pres-
sure. We therefore take as typical the data sets obtained at
p=5.05 bar(Fig. 4) andp=24.79 bar(Fig. 5), and use these
for a qualitative discussion of the results.

For low drives, the resonant response has the usual
Lorentzian line shape, with a qualityQ factor comparable to
that measured in vacuum: see the superimposed vacuum
resonances in Fig. 4. The resonant frequency shifts down
slightly with increasing drive amplitude, roughly in the man-
ner expected of a lightly damped linear oscillator(see Fig.
7). As the drive increases further, the grid amplitude reaches
a first critical threshold(typically 10–20 mVpp, correspond-
ing to a mean grid velocity of 0.08,vg

s1d,0.24 cm/s) [31].
Subsequently, the oscillation amplitude at resonance still
continues to rise in proportion to the drive(see Figs. 4–6),
the resonant frequency rather suddenly starts decreasing
much faster(see Fig. 7), and the resonance curves acquire
highly nonlinear features.

To illustrate more clearly the hysteretic behavior observed
in the range of intermediate driving amplitude, the resonance
curve for a drive of 0.2 Vpp is replotted on its own as an
example in Fig. 4(b). As the driving frequency is gradually
reduced from 1093 Hz(in practice, incrementally, in steps of
typically 0.001 Hz), the system initially continues to display
a nearly Lorentzian stationary response. At the first thresh-

FIG. 5. Resonance curves measured with the lock-in amplifier at
24.79 bar for drive levels(in Vpp) of 0.003, 0.005, 0.01, 0.02, 0.03,
0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, and 10.0. Each drive level
is represented by two separate curves recorded for frequency
sweeps in opposite directions. There is an intermediate range of
driving levels where hysteresis loops with two stable branches arise
but, otherwise, the two sweeps produce identical results. The
dashed lines—guides to the eye—indicate the position of the first
critical threshold. Note that its vertical position is shifted down
slightly compared with Fig. 4. Otherwise, the behavior is very simi-
lar to that at 5.05 bar.

FIG. 6. Response amplitude of the grid versus the drive level at
resonance measured in vacuum(open symbols) and in He II atp
=5.05 bar(main figure). The positions of the first and the second
thresholds are indicated in order to emphasize that above the first
threshold the damping remains unchanged, provided the measure-
ments are recorded in sequence from high drive toward low drive.
The inset shows the drive dependence of the response amplitude of
the grid atp=15.5 bar, indicating regions of laminar and turbulent
flow regimes. The full lines indicate the linear and square-root
responses.

FIG. 7. The drive dependence of the resonance frequency mea-
sured at 10 bar using the lock-in amplifier.
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old, however, there is a distinct change in the local gradient
of the response-frequency characteristic: the response contin-
ues to rise with decreasing frequency, but more slowly than
before. This continues until at about 1087.7 Hz, just after
passing through a maximum, the response amplitude sud-
denly collapses down onto a lower stable branch. It then
decreases smoothly with further reduction in frequency. On
increasing the drive frequency again the system stays on the
lower branch until, at about 1088.8 Hz where the first thresh-
old is attained, a transition to the stable upper branch occurs.
These hysteretic loops are stable. One can circle them many
times, providing that the frequency is changed very slowly or
in small steps. They have mostly been measured at tempera-
tures around 50 mK, but are not appreciably affected by an
increase of temperature up to our maximum of 130 mK. It
appears, therefore, that they represent phenomena occurring
in the zero temperature limit of He II flow.

As a guide to the eye, Fig. 5 contains a pair of dashed
lines marking approximately the first critical threshold. This
threshold is clearly visible on all resonance curves(of which
we have measured about three times more than are shown at
this pressure, though for clarity not all are displayed) and
slightly decreases with increasing frequency. The same fea-
ture occurs at all pressures. As a quantitative measure of this
first threshold we have chosen the response amplitudeV1 in
mVpp at which the jump from the lower to the upper branch
occurs while slowly sweeping the frequency up under
0.1 Vpp drive. Table I contains these observed values for all
investigated pressures.

In Fig. 4 the resonance curves measured in vacuum are
superimposed on the data obtained for the same drive levels
in He II at p=5.05 bar. The low response parts of these two
sets of resonance curves are seen to coincide closely, pro-

vided that the frequency scale(upper axis) is shifted down
by about 30 Hz; the same procedure can be carried out for
data at any pressure. Above the first threshold, however, the
response in He II is drastically different from that in vacuum.

The downshift in frequency with increasing drive reaches
a maximum value of<2 Hz (see Fig. 7) at all pressures,
ceasing at a second critical threshold amplitude.190 mVpp.
Unlike the first critical threshold, the second threshold am-
plitude is almost pressure independent(see Table I).

With further increase in drive, the oscillation amplitude at
resonance initially remains almost constant, while the widths
of the resonance curves increase rapidly(see Figs. 4 and 5).
Only for drive levels exceeding by about an order of magni-
tude that needed to reach the second threshold does the am-
plitude at resonance grow again; this time approximately in
proportion to the square root of the drive, as shown in the
inset of Fig. 6. In this high drive regime the linewidth in-
creases rapidly while the resonant frequency decreases
gradually, qualitatively in the manner expected for growing
damping. Experiments in this regime involve a rather tedious
procedure. Driving the grid very hard results in considerable
heating of the cell. The measurements were done in such a
way that the high level drive was applied only briefly, for the
,5 s needed to obtain a stable signal and read out the data
point digitally from the oscilloscope; it then took about an
hour for the temperature of the cell to decrease back to its
previous level. The temperatures at which the upper part of
the drive dependence curve in Fig. 6 was measured are thus
poorly defined, and might have been significantly higher than
the nominal,50 mK where most of the measurements were
made.

There are thus two well-defined resonant frequencies that
have been observed at each investigated pressure: the reso-
nant frequencyf1 in the zero drive limit; and the resonant
frequency f2 at the second threshold, where the frequency
downshift with amplitude ceases. Their values are given in
Table I. Figure 8 plotsf1 as a function of He II density
(circles). The line represents a least-squares linear fit to these
data, also including the zero density resonant frequencyf0
measured in vacuum under the same conditions. It is evident
that, in the low drive limit, the resonant frequency decreases
linearly with density. The triangles show that the resonance
also varies with density in a similar manner near the second
critical threshold. Within our experimental accuracy, the ob-
served frequency shiftDf = f1− f2 does not depend on pres-
sure, as indicated in Fig. 9.

The response amplitude of the gridat resonanceis plotted
as a function of drive amplitude in Fig. 6. While increasing
the drive amplitude, the system seems to encounter a nucle-
ation problem when passing the first threshold: on some oc-
casions the response stopped growing with increasing drive
level (as indicated by several points at the level of the first
threshold), and jumped onto the usual response/drive curve
only later. With decreasing drive this feature was absent, and
the response remained always proportional to the drive level.
However, when measuring the drive dependence of the re-
sponse amplitude of the grid at afixed frequencynear the
resonance, hysteresis occurs in the part of the parameter
space where the resonance curves are multivalued. Further
away from the resonance, the drive dependence is nonlinear

TABLE I. Observed values characterizing He II flow due to the
oscillating grid at various pressures:f1 and f2 are, respectively, the
resonant frequencies in the limit of low drives,0.003 Vppd and for
the drive level needed to bring the system to the second threshold;
V1 stands for the peak amplitude response of the first andV2 of the
second threshold(for explanation, see text).

p
(bar)

f1

(Hz)
f2

(Hz)
V1

smVppd
V2

smVppd

0.30 1091.15 1088.88 19.9 189.1

2.20 1090.45 1088.39 19.3 189.1

3.50 1090.41 1088.10 19.5 188.0

5.05 1089.95 1087.87 17.1 188.2

5.50 1089.75 1087.75 19.9 190.7

10.0 1087.82 1085.78 19.5 190.6

10.09 1087.75 1085.79 17.5 189.0

12.05 1087.50 1085.55 16.3 192.2

14.00 1087.40 1085.29 16.0 191.2

15.50 1086.80 1085.06 24.1 188.5

15.55 1086.90 1085.01 10.5 190.8

18.00 1086.85 1084.60 8.90 192.5

19.95 1086.50 1084.28 10.1 188.4

24.79 1085.75 1083.57 9.70 193.2
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but single valued, as illustrated in Fig. 3 of our preliminary
report [22].

C. Amplitude modulation phenomena

Our preliminary report contains a central figure(Fig. 2)
showing the resonance curves that correspond to various
drive levels measured at 10 bar using the memory oscillo-
scope. Direct visualization of the grid response in this way
has the advantage of allowing us to identify areas in the
parameter space where an unexpected amplitude modulation
of the response occurred. As displayed on the oscilloscope
(Fig. 10) the phenomenon looks similar to beats between
oscillations of comparable amplitude but slightly different
frequency, so we will refer to it as stablebeating. Based on
observations at several pressures, we can summarize their
main features.

(i) The modulation frequency is typically,1 Hz.
(ii ) Once established, the beatings are stable on a time

scale of at least hours.
(iii ) Small changes of frequency do not kill the beats, but

modify the upper and lower amplitude levels between which
the beating occurs; only with a larger change of the driving
frequency does the beating disappear

(iv) After changing the frequency, and then bringing it
back to its original value, the response is not always com-
pletely reproducible: e.g., the beating might reappear only
later or, sometimes, not at all.

(v) Beatings were not observed at oscillation amplitudes
below the first, or above the second, threshold; but they ap-
peared on both sides of the resonant frequency(see below).

(vi) Beatings were never observed while driving the grid
in vacuum.

(vii ) Deeper modulation occurred for the case of the vir-
gin grid (see Sec. III D below) than for the cleaned grid.

It seems that beatings can occur at any pressure, but only
within a certain defined range of the response amplitude. We
did not, however, succeed in establishing any fully repeat-
able pattern, or well-defined experimental conditions, for the
appearance of the phenomenon.

D. Virgin resonant response of the grid in He II

In this subsection we describe the response of the grid to
relatively low drives(up to 540 mVpp) when the experiment
was performed immediately after pressurizing the cell to the
desired pressure at millikelvin temperatures, that is,without
our having performed the “cleaning” procedure described
above.

As seen from Fig. 11, atp=3.5 bar, the linewidth mea-
sured at the low drive 54 mVpp was about 0.5 Hz as opposed
to the,0.2 Hz for a “cleaned” grid; the observed additional
downshift in the resonant frequency would appear to be at-
tributable to this increase in the effective damping of the
grid. Otherwise, the response in this range is similar to the
regular response obtained from a cleaned grid. However, as
indicated for three higher drive levels in Fig. 11, as the re-
sponse amplitude exceeds about 100 mVpp, the behavior
abruptly changes: a sudden onset of beating prevented a
smooth continuation of the frequency sweeps in each case.
The best and most direct way to visualize this phenomenon
was to use the memory oscilloscope. The very robust beating

FIG. 8. Resonant frequency as a function of He II density at low
drive levels (circles) and for the second critical threshold(tri-
angles). The straight line extrapolates through the zero density
(vacuum) resonant frequency off0=1117.2 Hz. The corresponding
pressures are marked on the upper abscissa. This shift of resonant
frequency with density is due to the change in the classical hydro-
dynamic effective mass(see text).

FIG. 9. Downshift in resonant frequency,f1− f2, between the
first and second critical thresholds plotted as a function of pressure.

FIG. 10. The response amplitude of the grid driven in He II near
its resonant frequency in a regime of steady beating, as obtained on
the screen of the memory oscilloscope. Note that on this time scale
it is the envelope of the oscillation amplitude that is seen, not the
individual oscillations.
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shown in Fig. 10 was obtained under these conditions. The
amplitude of the signal grows with time for about 0.45 s
roughly proportionally to Ît, until it reaches the level
126.3 mVpp. At this level the signal amplitude collapses
within about 0.2 s to a nearly zero level, and then the whole
cycle starts again. We have observed this pattern over a time
scale of about an hour, without noticing any appreciable
change in its characteristics. For the virgin grid, this structure
is reproducible: if one reduces the drive so as to obtain the
regular Lorentzian response, and then restores its level back
again, the beating pattern reappears.

IV. DISCUSSION

In this section, we aim to discuss the observed phenomena
in a physically motivated way in order to identify the key
features that an adequate theoretical analysis must be able to
encompass. One attempt at such an analysis, via consider-
ation of the dynamics of individual vortex loops, based on
the data published in our preliminary report[22], has already
been proposed[33], and we summarize its key features in
Sec. IV D below. First, however, we discuss possible connec-
tions to earlier experiments, discuss the classical behavior
seen at low amplitudes, and consider an empirical approach
to the intermediate amplitude results based on the concept of
an effective boundary layer.

A. Connection to earlier experiments

Reports of earlier experiments of a comparable kind are
relatively sparse. A growing shift in resonant frequency with
increasing drive was observed in the case of a vibrating
sphere in He II by Luzuriaga[12]. Although its origin might
be related to the effect observed here, it seems different in
character in that there was no definite threshold and the shift

did not show a tendency to saturation at high amplitude. The
situation was more complicated than here due to two-fluid
behavior of He II above 1 K, so it is difficult to identify the
connections, if any, between the observed phenomena.

Morishita and coauthors[21] carried out an interesting
experimental study of a thin vibrating wire in He II under
conditions comparable to ours. Although they were mainly
concerned with mean free path effects at higher tempera-
tures, the authors reported hysteresis below 70 mK that be-
came larger with increasing drive level. No satisfactory ex-
planation could be offered. The observed hysteresis was
qualitatively different from that reported here, in that it set in
gradually rather than abruptly on reaching a threshold; nor
did the frequency shift cease at a second threshold. In addi-
tion, given that their experiment involved a NbTi wire oscil-
lating in a magnetic field of order of its first critical fieldHc1,
it was impossible to exclude the possibility that some of the
observed hysteresis might have been connected with the su-
perconducting nature of the wire itself. Rather similar ef-
fects, most likely attributable to the nucleation of quantized
vortex lines both in He II[34] and in superfluid3He–B
[35–37], have been observed over the years in experiments
with vibrating wires.

We emphasize that the present study refers tomacro-
scopic flow and turbulence of the superfluid. Where influ-
enced by vorticity, the results reported represent an average
over a large ensemble of quantized vortices. It should there-
fore be reproducible, and independent of the positions/
configurations of individual vortex lines. We consider first
the behavior seen at relatively low velocities, which we as-
sume to be unaffected(or almost unaffected: see below) by
the presence of vortices.

B. Frequency shift at small amplitudes

The data of Figs. 4, 5, and 7 show that, for small drive
amplitudes, the resonant frequency is almost amplitude inde-
pendent, but shifted down by,30 Hz from its vacuum
value. We can account for this effect in terms of the classical
hydrodynamic effective mass.

We start by approximating the actual motion of the grid as
one dimensional, as in our preliminary report[22]. Although
simplified [38], this approach may nonetheless be expected
to provide useful insight into underlying physical processes
involved in the superflow under study. The one-dimensional
equation of motion for the grid oscillating in a vacuum then
takes the simple form of a driven linear oscillator

Mz̈+ Dż+ Kz= F0 cossvtd s3d

responding at the driving frequencyv=2pf. In vacuum the
damping coefficientD reflects the nuisance damping only
andM denotes the bare mass of the grid; the restoring term
Kz comes from the tension in the grid[27]. On sweeping the
drive frequency slowly through the resonant frequency, given
in the limit of low damping byf0>1/2pÎK /M, we expect
to obtain a Lorentzian curve of narrow linewidth.

Driving the grid in an ideal fluid(corresponding to pure
superfluid He II with no remanent vorticity), the effective
mass of the grid becomes hydrodynamically enhanced[39]

FIG. 11. Resonance curves measured at 3.5 bar using the
memory oscilloscope for drive levels(in Vpp) as indicated. Filled
symbols represent the regular grid behavior obtained with the
“cleaned” grid, while the virgin behavior is represented by resonant
curves composed of the open symbols. The upper three curves plot-
ted with open symbols are shown up to the drive amplitude at which
the onset of beating occurred(see text).
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by DM =bV%Hespd, which will result in a downshift of the
resonant frequency byDf, from f0 to f1spd. Here V is the
volume of the grid and the dimensionless factorb can be
evaluated as

b > %Ni/%Hespdff0
2/f1spd2 − 1g. s4d

Experimentally,Df ! f0, so, expanding and retaining only the
linear term, we expect a linear dependence ofDf on %Hespd,
which is tabulated in Ref.[40]. As shown in Fig. 8, this is
indeed the case: fitting this dependence leads to a value of
b=s3.01±0.05d. Taking into account the complex geometry
of the grid (see Fig. 2), it seems not inconsistent with the
facts thatb=0.5 for a sphere andb=1 for an infinitely long
cylinder. We do not know of calculations for a body of rect-
angular cross section—let alone for the actual cross section
of the grid—but, if we approximate a grid wire by an infinite
elliptic cylinder of axesa and b moving in the direction
along its short axisb, and if a/b=3, thenb=3 [39]. The
superimposed vacuum resonances in Fig. 4, like those in Fig.
2 of Ref.[22], show that no appreciable increase in damping
occurs in the limit of low drive: the He II just serves as a
mechanical vacuum[41] whose only physical effect is a
renormalization of the mass. The excess damping due to any
remanent vortex lines that may still be present[42], even in
the case of the cleaned grid, is evidently beyond our resolu-
tion. We shall return to a question of a possible frequency
shift due to these remanent vortex lines later.

Nonetheless, remanent vorticity provides the most likely
explanation of why the “cleaned” and “virgin” behaviors of
the grid are so different. Increasing the pressure in the cell
presumably leads to the generation/injection of quantized
vortices by the jet of superfluid entering the cell from the
filling capillary. They are likely to reconnect with each other
and with image vortices in walls and electrodes, leaving rem-
anent vorticity pinned to the grid or between the grid and the
surrounding electrodes. It is probably these vortices that
cause the additional downshift of resonant frequency in the
low drive limit and the appreciable broadening of the reso-
nance peak(see Fig. 11). We shall return to the “virgin” grid
behavior below. First we concentrate on the regular flow due
to a “cleaned” grid.

C. Amplitude-dependent frequency shift above the first
threshold: Macroscopic approach

With increasing response amplitude, the regular behavior
of the driven grid acquires highly nonlinear features, as we
have seen, and between the first and second thresholds the
resonant frequency shifts further down by about 2 Hz, inde-
pendently of the applied pressure(Figs. 8 and 9). Within our
simple model with negligibly low damping, the resonant fre-
quency,ÎK /M can be shifted downeitherby a decrease of
the spring constantK of the grid,or by a further enhance-
ment of the hydrodynamic effective mass[43] Meff=M
+DMspd. There is no obvious mechanism by which the pres-
ence of the liquid could change the effective spring constant.
We are therefore left with the conclusion that the additional
downshift of about 2 Hz observed above the first threshold
arises from afurther enhancement of the effective mass of

the grid, i.e., an enhancement additional to the classical hy-
drodynamic enhancement[39] discussed in the preceding
subsection.

Given the essential simplicity of the superfluid in the
T→0 limit, and the scarcity of excitations, we seem forced
to conclude that the increased effective mass is in some way
associated with quantized vortices. We speculate that, on ex-
ceeding the first threshold, a “boundary layer” of vortex
loops builds up on the grid, somehow increasing its inertia.
This would cause the resonant frequency to shift down with
increasing amplitude and the resonance curves to acquire the
strongly nonlinear features that are observed. Let us suppose
that, as occurs in classical viscous fluids, a boundary layer of
thicknessl is formed, enhancing the hydrodynamic effective
mass of the grid byDMg

l=Al%Hespd, whereA denotes the
surface area of the grid. Requiring that the downward shift of
the resonance frequency corresponds to those observed ex-
perimentally we have

lspd =
M + DMg

l

A%Hespd S f1
2

f2
2 − 1D . s5d

The values oflspd required to account for the maximum
frequency downshift are given in Table II. A statistical analy-
sis leads tol=s0.53±0.05d mm, although there seems to be a
slight tendency forlspd to decrease with increasing pressure.
Note that the boundary layer thickness is much smaller than
any linear dimension of the grid windows. At first sight,
therefore, it might be reasonable to approximate the behavior
in terms of a classical-like boundary layer covering the mov-
ing surface.

From the calculated thickness of the effective boundary
layer, we can formally calculate an effective kinematic vis-
cosity, requiringlspd=Î2neffspd /v and the dynamic viscos-
ity heffspd=%spdneffspd. These quantities are plotted versus
pressure in Fig. 12. These are the viscosities that would be
needed to produce a change in effective mass sufficient to
cause the observed frequency shift if the grid were oscillat-
ing in a hypothetical viscous fluid, not in a superfuid. Note in
passing that the calculated value of this effective kinematic
viscosity is three orders of magnitude below that of water,
and a factor of 20 below that of normal liquid He I just above
the lambda transition[46]. Extending the analogy, we may
also estimate the expected linewidth of the resonance peak
due to the drag of such a hypothetical viscous fluid. A
straightforward calculation[47], approximating the flow ve-
locity gradient in the fluid bykvgl /l, leads to a linewidth
,1 Hz. The strongly nonlinear curves corresponding to
drive levels slightly exceeding the first thresholddo not,
however, display any appreciable increase in damping, in the
sense that the response at maximum remains proportional to
the drive(see Fig. 6). This suggests that, until the response
amplitude reaches the second threshold, none of the vortex
loops that we suppose to comprise the boundary layer can
carry away any energy by leaving the grid. These ideas are
developed in more detail in Sec. IV D below, describing a
recently proposed theory[33] that effectively replaces the
concept of an effective kinematic viscosity.
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It is interesting to characterize the first threshold in terms
of a superfluid Reynolds number Res=RchUch/k, whereRch
and Uch stand, respectively, for a length scale and velocity
characteristic of the superflow in question, and
k=0.000 997 cm2/s denotes the quantum of circulation. To
estimate the critical value of Res

I associated with the first
threshold, we believe it is natural to use the peak flow veloc-
ity averaged over a grid window in the frame of reference of
the grid. The observed values of the first critical amplitude
are given in Table I for all investigated pressures. We have
converted the peak value of thegrid velocityto the peakflow
velocityby multiplying by a numerical factor<1.43 to allow

for the 70% grid transparency, assuming that the grid motion
is one dimensional(see columnv1 in Table II). If one also
takes into account that the vertical displacement profile of
the grid, when vibrating in its fundamental axisymmetric
mode, is given in the radial direction by the zeroth order
Bessel functionJ0s2.4048r /Rd, the peak flow velocity(i.e.,
Uch

I ) through its center is further enhanced by a factor<2.3.
As a characteristic length scaleRch

I we use the size of the
individual bars composing the grid. The superfluid Reynolds
number associated with the first threshold, Res

I =Rch
I Uch

I /k, is
displayed in Fig. 13. Note that, although it decreases with
increasing pressure, it is of order unity for all pressures, in
qualitative agreement with the famous Feynman criterion

TABLE II. Calculated values characterizing the macroscopic properties of the He II flow due to oscillat-
ing grid (assuming its motion is one dimensional) at various pressures at low temperature:v1 andv2 are the
estimated peak flow velocities corresponding to the first and second critical thresholds;%He denotes the
density[40] of He II; b is the hydrodynamic enhancement factor(see text); l denotes the required thickness
of the boundary layer; andneff is the calculated value of the effective kinematic viscosity.

p
(bar)

v1

(cm/s)
v2

(cm/s)
%He

sg/cm3d b
l

smmd
neff

scm2/s3105d

0.30 0.302 2.87 0.1456 2.95 0.63 1.35

2.20 0.292 2.87 0.1488 2.97 0.56 1.07

3.50 0.295 2.85 0.1508 2.94 0.62 1.31

5.05 0.260 2.86 0.1529 2.95 0.55 1.04

5.50 0.302 2.89 0.1535 2.96 0.53 0.95

10.00 0.295 2.89 0.1589 3.07 0.52 0.93

10.09 0.265 2.87 0.1590 3.07 0.50 0.86

12.05 0.245 2.90 0.1611 3.06 0.49 0.83

14.00 0.242 2.90 0.1631 3.03 0.53 0.95

15.50 0.365 2.86 0.1646 3.07 0.43 0.64

15.55 0.158 2.89 0.1646 3.06 0.47 0.75

18.00 0.135 2.92 0.1668 3.02 0.55 1.03

19.95 0.152 2.86 0.1685 3.03 0.54 0.99

24.79 0.148 2.93 0.1723 3.04 0.52 0.91

FIG. 12. Calculated values of the effective kinematic viscosity
(squares) and dynamic viscosity(circles) versus pressure.

FIG. 13. The superfluid Reynolds number Res
I corresponding to

the first critical threshold, plotted versus the pressure. The “anoma-
lous” triangular data point is discussed in the text.
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based on the value of self-induced velocity for a vortex loop
of the size of the grid bar.

The experimental point plotted forp=15.5 bar(the open
triangle) falls in a seemingly anomalous position. We are
aware of only one experimental difference from the condi-
tions under which the other data were recorded: the drive
dependence of the resonant response had just previously
been measured up to the highest available drive amplitudes.
This involved use of the transformer to boost the driving
potential (by a factor of .27). This unusually high drive
probably resulted in more efficient “cleaning” than the stan-
dard procedure of shaking the grid with the 10 Vpp directly
available from the signal generator. This observation sup-
ports the idea that driving the grid at high amplitude causes
a re-arrangement of remanent vorticity rather than its total
removal.

D. Amplitude-dependent frequency shift above the first
threshold: Microscopic approach

The macroscopic approach above, based on analogy with
the boundary layer theory for classical fluids, fails to explain
why the damping above the first threshold remains appar-
ently unchanged. The main challenge for any microscopic
theory based on vortex dynamics is(i) to explain the mecha-
nism that gives rise to the amplitude-dependent effective
mass, and(ii ) to show how this effect can occur without any
corresponding increase in damping. A possible approach to
these problems has been proposed in Ref.[33], and we now
summarize briefly the main ideas.

The character of the dynamical response of a vortex loop
attached to a grid oscillating at the drive frequencyv will
depend on whether it is significantly longer or shorter than
the minimum resonant length,<13 mm required by the
well-known dispersion relation

vskd = vS2p

,
D >

kk2

4p
lnS 1

ka0
D s6d

for a Kelvin wave[2], wherea0 is the vortex core parameter.
If the loop is shorter than,, it will respond adiabatically, in
that its position and configuration in the flow will always
correspond to equilibrium. For loops that are significantly
longer than,, on the other hand, Kelvin waves will be ex-
cited, leading to dissipation. Dissipation may thus occur ei-
ther through the transfer of energy via a Kelvin wave cascade
[17] to very high frequencies, at which there can be signifi-
cant phonon radiation, or through the loss of vortex rings as
the result of reconnections. It appears likely, therefore, that
these longer vortex loops(probably including some connect-
ing the grid to the neighboring electrodes) are being removed
during the “cleaning” procedure described above.

It can be shown[33] that, when a vortex loop is pinned by
both ends to the grid and responds adiabatically, it enhances
the effective mass of the grid by%He IIksdS/dvd, without
increasing the damping. HereSsvd is the area between the
loop and the neighboring walls. For small velocities,Ssvd is
probably a linear function of the flow velocityv, and the
overall effect is a constant, amplitude-independent, enhance-
ment of the effective mass of the grid. IfSsvd were to be-

come nonlinear at the first threshold, however, the observed
highly nonlinear form of the measured resonance curves can
be accounted for: it would be necessary for the nonlinear part
of the loop area to contribute,2500mm2 per window of the
grid at the second threshold[33]. It follows that mass en-
hancement through this mechanism cannot be due to a single
loop—it would simply be too long to respond adiabatically.
In fact, if one considers also the stability of these loops
against “ballooning out” below the second threshold, the
analysis[33] suggests a dense boundary layer constituted of
small loops, with,103 per grid aperture, i.e., about 108

loops altogether, each sized,1 mm or less.
Note in passing that, at higher temperature where there is

an appreciable fraction of normal fluid, such a flow involving
a boundary layer of small vortex loops would be dissipative,
and not only because the grid is moving through a normal
fluid of finite viscosity. On length scales comparable with the
distance between the vortex loops constituting the boundary
layer, the normal and superfluid velocity fields cannot be
fully matched and the resulting mutual friction will assure
dissipation of the flow energy. The interesting question of
just how such a process sets in remains open as a subject for
future investigation.

It is tempting to suppose that the formation of this bound-
ary layer is intrinsic to any superflow over a solid boundary.
Perhaps, employing the ideas of Kusmartsev[44], the bound-
ary layer can grow from a “plasma” of half vortex rings,
although the critical velocities derived by Kusmartsev are
much larger than those considered here. The difficulties as-
sociated with intrinsic vortex nucleation are well established
[45] and intrinsic critical velocities in microscopically small
channels are assumed to be,30 m/s at low temperature.
Here, on the other hand, we have an open geometry, the grid
surface is very rough and substantial enhancement of flow
around excrescences is possible. The nucleation problem,
discussed above in relation to the drive dependence of the
response amplitude at resonance, is consistent with this pic-
ture.

Another possibility is to suppose that the boundary layer
is essentially extrinsic, in that the generation of quantized
vortex loops on the surface of the grid by macroscopic su-
perflow around it probably involves growth from remanent
vortex lines[42] and may well be produced by the “clean-
ing” procedure that causes the “virgin” and “regular” behav-
iors to differ.

At present, the available experimental data do not allow
us to resolve this interesting and fundamental issue. There is
a clear call for more precise studies of the “cleaning” proce-
dure, possibly involving grids with different geometry and
surface roughness.

E. Onset of dissipation

As we have seen, a dissipative process sets in at a re-
sponse level corresponding to the second critical threshold:
on increasing the drive further, the main result is an increase
in linewidth (see Figs. 4 and 5). Under these flow conditions,
the He II is behaving in close analogy with a classical
Navier-Stokes fluid, in that the flow is dissipative. Using the
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observed values of the response amplitude for the second
threshold from Table I we can conclude that it does not de-
pend appreciably on pressure, and reaches 190±2 mVpp.

Let us now discuss the second, pressure-independent
threshold in terms of a superfluid Reynolds number Res

II

=Rch
II Uch

II /k. In the classical case, steady flow through a grid
generates turbulence that is nearly homogeneous and
isotropic—the turbulent wakes created at grid bars coalesce
at some distance downstream. One usually characterizes such
a flow by a mesh Reynolds number, i.e., the mesh size of the
grid plays the role of the characteristic distance. Below the
second threshold, however, we are dealing with an oscillat-
ing (super)flow of relatively small amplitude(up to the size
of a grid bar). Flow around the bar on one side of a grid
aperture will therefore be almost unaffected by flow around
the bar on the other side of the aperture. Use of the mesh size
as a characteristic length scale therefore seems inappropriate.
We suggest that the relevant superfluid Reynolds number
characterizing the onset of superfluid turbulence at
the second threshold be defined in the same way as was
done above for the first threshold. Calculation of the peak
velocity for the second threshold by the above procedure
results in Uch

II =6.6±0.1 cm/s and assumingRch
II =Rch

I we
arrive at Res

II <14.
The observed values of Res

II compare well with the critical
Res=UD /k<20 (U is the transport velocity andD the di-
ameter of the pipe) found as a temperature-independent
threshold in pipe flow of He II at much higher temperatures
when the flow of the normal component was inhibited by
superleaks placed at both ends of the pipe[48]. This suggests
that, although the underlying physical mechanism leading to
a transition to superfluid turbulence is not well understood, it
probably remains unchanged even at temperatures above
1.4 K where there is an appreciable fraction of normal fluid.

Microscopic considerations based on the dynamic re-
sponse of individual vortex loops relevant to the onset of
dissipation can be found in[33]. To resolve this complicated
issue fully, however, further more work is needed, including
computer simulations on dynamic behavior of pinned vortex
loops subject to an oscillatory superflow.

The square-root behavior(see the inset in Fig. 6) of the
resonant response as a function of drive amplitude above the
second threshold is typical of classical turbulent drag scaling.
It is therefore most likely that this threshold marks the onset
of turbulence. The dissipation process might be analogous to
the evaporation of a packet of quantized vorticity[49]
proposed to explain turbulent behavior[50] of superfluid
3He-B.

F. Amplitude modulation “beating” phenomena

Let us consider possible origins of the beating phenomena
(see Fig. 10, and Fig. 2 of Ref.[22]) with properties summa-
rized above. We recall that, in the “regular” regime, they are
observed at the response amplitude between the first and sec-
ond thresholds on both sides of the resonant frequency. The
most pronounced beatings are observed(Fig. 10) above a
critical amplitude(Fig. 11) when probing the virgin behavior
of the grid. Given the similar appearance and time scales of

beatings within the regular and cleaned regimes, we will as-
sume for now that they have a common origin. As already
mentioned above, we associate the difference between the
virgin/regular behaviors with the presence/absence of rema-
nent quantized vortices in significant numbers. The linewidth
at low drive (virgin behavior) is broader than that observed
either in vacuum or in He II(regular behavior), and the reso-
nant frequency is shifted down relative to the latter. We infer
that the observed phenomena are a direct consequence of
quantum vortices adjacent to the grid, pinned in some ran-
dom fashion.

We may therefore attempt to explain the observed beat-
ings on the assumption that, on reaching the critical response
amplitude (126.3 mVpp in the particular case described
above) the oscillatory motion of the grid almost stops within
a period of,0.2 s by generation of a vortex tangle. It means
that the energy of the moving grid with peak velocity given
by its critical response amplitude, of order 0.01mJ, is trans-
formed to vortex line of total length,5 km. Assuming fur-
ther that the tangle spreads and decays away at a sufficiently
high rate, it corresponds to a steady heat input to the cell of
.0.01–0.1mW. Notwithstanding the linkage of the He II
sample(via a complicated set of thermal links including the
Kapitza resistance) to the mixing chamber of the dilution
refrigerator, this would have led to appreciable warming of
the sample(30 to 50 mK in about 15 min, just considering
heat capacity).

In practice, no appreciable increase of the cell tempera-
ture was observed on the time scale of one hour while ob-
serving the stable beating pattern. If the motion of the grid is
approximated as one dimensional[22], then we are obliged
to interpret the behavior of Fig. 10 in this way, but it is an
approach that evidently fails to provide a plausible explana-
tion for the beating phenomenon.

We point out that it may, however, be necessary to con-
sider the dynamics of our oscillating grid in more detail. It
represents a nearly homogeneous oscillating membrane un-
der uniform tension. The electrostatic driving force resulting
from applying the ac voltage to the upper electrode can be
assumed as nearly uniformly distributed over the entire grid
area. Thus, as already pointed out in Sec. IV C driving the
grid at a frequency near its fundamental resonance should
result in a particularly simple axially symmetric oscillation
pattern, with a vertical displacement profile in the radial di-
rection given by the Bessel functionJ0skrrd, with the wave
vector kr chosen in such a way that the displacement van-
ishes at the circumference of the grid,r =R. This spatial dis-
placement profile ought to be relevant when driving the grid
in vacuum and in He II for amplitudes below the first thresh-
old, i.e., up to response signal amplitudes not exceeding
,10 mVpp. As the oscillation amplitude increases, the
threshold will first be reached initially in the middle of the
grid [51], where quantum vortex loops will cause a local
enhancement of the effective mass per unit area. Conse-
quently, the spatial displacement profile will depart from that
given by the Bessel functionJ0skrrd.

Assuming that the axial symmetry is maintained, the reso-
nant frequency of the stationary response curve ought gradu-
ally to shift down, in accord with the experiment. If the vor-
tex loops composing the boundary layer do not leave the grid
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carrying its energy away, there is no reason to expect any
broadening of the peak at this stage: its width should remain
at the nuisance damping(i.e., vacuum) level.

In reality the vortex loops will probably locally enhance
the effective mass of the grid in a way that breaks the axial
symmetry. The grid can therefore no longer be well approxi-
mated as an oscillating membrane of homogeneous areal
density, but represents a rather complex nonlinear oscillatory
system. A simple stationary response to a spatially uniform
drive might no longer exist and, conceivably, this could show
up experimentally as beatings between two different ampli-
tude values. We may expect that, for any given configuration
of vortex loops, the beating pattern would be reasonably
stable in that small changes in the drive would only change
the average sizes of existing loops, but not their overall geo-
metrical configuration. Consistent with this idea, there is a
high degree of reproducibility of the response for a given
frequency and drive when the range of the frequency sweeps
is sufficiently small. Faster and bigger changes in frequency
probably lead to a more drastic spatial rearrangement of the
vortices that constitute the boundary layer. On bringing the
frequency back to its original value, following an excursion
of this kind, a different spatial configuration might be pro-
duced, leading either to a different beating pattern or to the
disappearance of beating. This qualitative discussion of the
beatings described in Sec. III C is consistent with the obser-
vations that beatings are never observed in vacuum, and only
occur above the first threshold in He II.

On increasing the amplitude further, the second threshold
will eventually be reached in the central area of the grid.
Note that the second threshold is ten times higher than the
first one so, by this time, most of the grid area will be oscil-
lating with an amplitude exceeding that of the first threshold.
Thus its mass per unit area is already enhanced by the exis-
tence of the effective boundary layer. It would seem that,
when the second threshold is attained by the central part of
the grid, an additional damping force will start to act locally,
in the central area of the grid; presumably it suffers a phase
shift [47] (which for a viscous fluid would bep /4). Further
increase in the the oscillation amplitude is no longer propor-
tional to the drive but almost ceases due to the very rapid
increase in damping. Only for much higher drives, when the
damping area becomes almost the size of the entire grid,
does a new regular pattern become established. This time,
the turbulent-like drag is characterized by a square-root de-
pendence of the response on the drive amplitude.

These considerations allow us to speculate about a pos-
sible alternative scenario that might account for the beatings
(Fig. 10). Additional damping in the central area of the grid
will tend to flatten the displacement profile. The resultant
force in the central area of the grid will become more and
more phase shifted. It is possible to envisage that, with a
further increase in drive, this phase shift may grow until a
transition occurs into a vibration regime where the middle of
the grid and its outer annulus oscillate in opposite directions,
mutually in antiphase, i.e., similarly as in the(0,2) oscilla-
tory mode. Due to energy conservation the oscillating ampli-
tude(or, rather, its mean-square value averaged over the en-
tire grid area) ought to stay roughly constant. However, our
detection method consists of measuring the induced voltage

on a lower electrode that covers the entire grid area. For the
same response amplitude, therefore, the signal induced in the
(0,1) mode will be vastly greater than that in an(0,2)-like
mode. So what appears(Fig. 10) as a drastic reduction in the
oscillatory amplitude may in reality correspond to a continu-
ous transition to a(0,2)-like mode. At present we cannot
decide which scenario is more likely; further experimental
work, backed up by simulations and theoretical investiga-
tions, is required to resolve the issue.

V. SUMMARY

We have reported a systematic experimental investigation
of the macroscopic flow of pure He II in the limit of very low
temperature, using a vibrating grid as a probe. Our results
confirm that for flow velocities below a threshold value, He
II can indeed behave as an ideal fluid: its presence enhances
the hydrodynamic mass of the oscillating body, without mak-
ing a measurable contribution to the damping. After the in-
jection of extra liquid through an increase of pressure at low
temperature, however, the He IIdoescontribute additional
damping, observed as a downshift in resonance frequency
and an increase of the linewidth, even in a limit of low driv-
ing force. We attribute this effect to an increased level of
remanent vorticity engendered by the jet of He II issuing
from the filling capillary as the cell is being pressurized. The
effect can be substantially reduced by violently shaking the
grid—presumably causing remanent vorticity to be shaken
off or rearranged in some way—following which procedure
the resonance frequency is found to have shifted up, with a
corresponding decrease of linewidth indistinguishable from
its vacuum value. The response then remains stable on a time
scale of at least days.

On increasing the flow velocity above the first threshold
(characterized by a flow velocity of a few mm/s or by a
superfluid Reynolds number of order unity) an effective
boundary layer comprised of quantized vortices enhances the
hydrodynamic effective mass of the grid but not the damping
which, in the zero temperature limit, remains unchanged un-
til the second threshold(characterized by a flow velocity of a
few cm/s or by the superfluid Reynolds number,10–20d is
attained, which is where dissipation sets in. Intriguing effects
such as pronounced beatings have been observed in this
range of response amplitudes and, currently, these are only
partly understood.

Further increase of the drive leads to a viscouslike dissi-
pative flow. It can perhaps be understood as He II mimicking
the boundary layer that arises in oscillatory viscous flow in a
classical fluid: in the case of He II this would involve an
appropriate rearrangement of vortex loops in the vicinity of
the solid boundary, analogous to the way in which a rotating
bucket of He II at sufficient angular velocity imitates solid
body rotation. For the highest achievable drives, the flow can
be characterized as developed superfluid turbulence. The ve-
locity grows in proportion to the square root of the drive, i.e.,
the quantized vorticity being generated leads to a turbulent
drag dependence typical of classical viscous fluids.

We are aware that there are a number of problems and
unanswered questions, such as the universality of the ob-
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served phenomena, the intrinsic versus extrinsic origin of the
effective boundary layer, the pressure dependence of the first
threshold, and a more detailed characterization of the influ-
ence on flow of the remanent vorticity. There is also a clear
call to investigate how the observed phenomena change with
increasing temperature, and relevant experiments have al-
ready been started.

We hope that these results will stimulate further effort,
both experimental and theoretical, leading to a better under-
standing of the underlying physics of superflow and of
the nucleation of quantum and possibly even classical
turbulence.
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