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Similarity solutions of the shallow-water equation with a generalized resistance term are studied for open
channel flows when both inertial and gravity forces are negligible. The resulting model encompasses various
particular cases that appear, in addition to mathematical hydraulics, in diverse physical phenomena, such as
gravity currents, creeping flows of Newtonian and non-Newtonian fluids, thin films, and nonlinear Fokker-
Planck equations. Solutions of both source-type and dam-break problems are analyzed. Closed-form solutions
are discussed, when possible, along with a qualitative study of two phase-plane formulations based on two
different variable transformations.
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I. INTRODUCTION

Strongly nonlinear parabolic partial differential equations
arise in many problems of hydraulic engineering and hydrol-
ogy, such as flood propagation in channels and rivers[1–3],
groundwater flow [4], catchment and coastal hydrology
[5–7], as well as infiltration and subsurface hydrology
[8–12]. An investigation of this type of equation is also mo-
tivated by the multitude of physical problems having the
same mathematical structure; we mention, for example, the
applications of the porous-media equation to heat conduc-
tion, plasma physics, and non-Newtonian fluid mechanics
[13–16], rock-blasting models[17], and gravity currents
[18]. These equations also represent special forms of equa-
tions that govern many modern problems related to thin film
flows [19–21], whose applications encompass different fields
of engineering, biology, and chemistry[22–27]. Finally, in
the theory of stochastic processes, similar equations are in-
terpreted as nonlinear Fokker-Planck equations[28,29]; as
will be seen, in this context self-similar source-type solutions
represent important classes of distributions appearing in
modern physics(e.g., Lévy-type and Tsallis-type distribu-
tions [30,31]).

The aim of this paper is to discuss some similarity solu-
tions of a generalization of an equation that appears in math-
ematical hydraulics. Within the framework of the shallow-
water approximation and in case of negligible inertial terms,
the one-dimensional continuity and momentum equations for
open-channel flows with an impermeable bed in the case of
large cross sections are[1], respectively,
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cosu = sinu − j , s2d

wheret is time,x is the spatial coordinate along the channel,
h is the water level,u is the velocity averaged over the water
depth, sinu is the bed slope, andj (a function ofh andu) is
the friction slope, which accounts for the resistances to the
flow.

In hydraulics, most of the open-channel flows fall in the
dynamically rough regime andj is typically modeled using
the empirical Chezy law, which for large cross sections reads

j =
uuuu
C2h

=
u2

C2h
m, s3d

whereC is the Chezy coefficient andm= uuu /u [1]. The co-
efficientC in general depends on the cross-section shape and
on the roughness of the bed. For most practical applications
it is mainly a function ofh, so thatj ~h−b. In particular, for
large cross sectionsb is equal to 1 ifC is assumed to be
constant, whileb is equal to 4/3 ifC is modeled according
to the empirical Manning/Gauckler-Strickler formula
C~h1/6 [1].

The structure of Eq.(3) can then be extended to other
problems by generalizing the relation betweenj andu, as

j =
uuuua−1

kahb =
smuda

kahb m, s4d

wherea.0. As a result, Eqs.(1), (2), and(4) form a general
system that, depending on the values of the parameters
a and b, can represent very different physical processes.
We notice in passing that whena=0, i.e., j =mh−b , h does
not depend on time and Eq.(2) admits the exact solution
h=fsb+1dsmx+C1dg1/sb+1d, with C1 integration constant. It is
also interesting to notice that under uniform flow conditions
sh=constd, the relationship betweenh and q=uh, which is
known as the rating curve, is a power law given by the bal-*Electronic address: amilcare@duke.edu
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ance between gravityssinud and the resistance to flows jd,
i.e., h~qa/sa+bd.

In the case of unsteady flow, with the further assumptions
of negligible bed slope,u,0, an equation forh can be ob-
tained by introducing(4) in (2) and substituting the resulting
expression foru in (1), i.e.,

] h

] t
+ m

]

] x
Fkhsa+bd/aS−

] h

] x
mD1/aG = 0. s5d

The previous relation includes in itself some classical equa-
tions, such as the heat equationsa=−b=1d and the Bouss-
inesq or porous-media equationsa=1, b=0d [4]. In hydrau-
lics, whena=2 andb=1 or b=4/3, Eq.(4) corresponds to
Chezy’s law for very large cross sections. Viscous flows with
different rheology can be described withb=a+1 [26]. The
cases withb.−1, which are typical of hydraulics, may
show interesting effects such as fronts that propagate at finite
speed or fronts that remain stationary for a finite time before
beginning to move, i.e., waiting-time solutions[32]. More-
over, interpretinghsx,td and qsx,td as probability density
functions(PDFs) and probability currents[33], respectively,
Eq. (5) can be read as a nonlinear Fokker-Planck equation
for hsx,td.

In what follows we will analyze similarity solutions of
Eq. (5) and two possible phase-plane formalisms for their
study. Two special cases, the source-type solution and the
so-called dam-break problem, will be discussed in detail.

II. SIMILARITY SOLUTIONS

In this section we present a systematic approach to obtain
similarity solutions of Eq.(5) for the general casea.0 and
−`,b, +`. As the dimensional quantities governing the
space-time evolution ofh are t , x, andk, and assuming that
the boundary and initial conditions introduce only one addi-
tional parameterG, an appropriate class of units of measure-
ment may be used to define all the dimensional quantities
involved in the system, consisting of a characteristic scale
for h, Lh, a horizontal lengthLx, and a time scaleT. The
scaleLh has different interpretations depending on the physi-
cal meaning ofh; so, for example,Lh can be a characteristic
level in problems related to fluid flows, a characteristic scale
of the probability distribution when Eq.(5) is read as a non-
linear Fokker-Planck equation, or a temperature scale when
Eq. (5) is the heat equation. We notice that in the problems of
interest in the present work,Lh may always be considered to
be independent ofLx, even when both of them are lengths,
since their ratioLh/Lx does not appear explicitly in the gov-
erning parameters[34].

With these assumptions, the dimensions ofh and of the
governing parameters can be expressed as

fhg = Lh, ftg = T, fxg = Lx,

fkg = Lx
sa+1d/aLh

−sb+1d/aT−1, fGg = Lx
gLh

dTl. s6d

Noticing that t , k, and G are dimensionally independent
when x=sa+1dd+sb+1dgÞ0, a relation between two di-
mensionless variablesf=fsjd can be obtained[34], with

f =
h

Gsa+1d/xk−ag/xt−fag+lsa+1dg/x ,

j =
x

Gsb+1d/xkad/xtfad−lsb+1dg/x . s7d

Substituting Eq.(7) into Eq. (5) yields

ag + lsa + 1d
x

f +
ad − lsb + 1d

x
jf8

− mffsa+bd/as− f8md1/ag8 = 0, s8d

where primes denote derivatives with respect toj. In general,
the previous relation is not solvable in closed form, but it can
be reduced by the substitution[17]

X = j
s− f8md

f
, Y = j2ad − lsb + 1d

x

s− f8mdsa−1d/a

fsa+bd/a ,

s9d

which maintains the same signs of the original systemsj ,fd.
Inserting then Eq.(9) into Eq.(8), we obtain the autonomous
equation

dY

dX
=

Yf2X + smsa − 1dY + s1 − adXY+ msa + bdX2g
XfX + masY − aXY+ msa + b + 1dX2g

,

s10d

together with

ds=
dj

j
=

dX

X + masY − aXY+ msa + b + 1dX2 s11d

and

ds=
X dY

Yf2X + smsa − 1dY + s1 − adXY+ msa + bdX2g
,

s12d

where s=ln j and s=fag+lsa+1dg / fad−lsb+1dg, with
ad−lsb+1dÞ0.

Each solution of Eq.(10) represents a particular self-
similar current. The solutions of self-similar problems de-
fined by specific initial and boundary conditions are given by
one or more curves on the planesX,Yd; to determine which
integral curve corresponds to the given problem, it is neces-
sary to study the relation betweenY andX about the singular
points of the planesX,Yd and the approximate behavior of
fsjd about them. The complete solutionfsjd can then be
derived through one of the relations(9), once the function
relating Y and X and one of either Eq.(11) or Eq. (12) are
known.

An alternative phase-plane description of the problem,
similar to that of[25] (see also[26,35]), can be obtained by
choosing a different set of dimensionally independent quan-
tities and studying separately Eqs.(1) and (2). In particular,
using x, t, and k, which implies thatbÞ−1, dimensional
analysis leads to
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h = F uxusa+1d/a

kt
ZshdGa/sb+1d

, u =
x

t
Vshd, s13d

where

h =
uxux/sb+1d

Gkad/sb+1dtad/sb+1d−l . s14d

Z, V, andh are dimensionless variables;Z andh are always
positive, while V has the same sign ofxu. If x=0 and l
=ad / sb+1d , h is simply a parameter andZ and V are two
constants, determined by the boundary and initial conditions.
In the general case whereh is a variable dependent onx and
t, the expressions corresponding to the continuity and mo-
mentum equations can be obtained introducing Eq.(13) in
Eqs.(1) and (2), respectively, as

h
x

a

dV

dh
= 1 −

a + b + 2

a
V − S x

b + 1
V + l −

ad

b + 1
Dh

Z

dZ

dh
,

s15d

m8Sm8
V

Z
Da

+
a

b + 1
Sa + 1

a
+

x

b + 1

h

Z

dZ

dh
D = 0, s16d

wherem8= uVu /V, with mm8= uxu /x. Substituting Eq.(16) into
Eq. (15), one obtains

dV

dZ
=

NsZ,Vd
DsZ,Vd

,
dh

h
=

x

aDsZ,Vd
dZ s17d

where

NsZ,Vd = 1 −
a + b + 2

a
V − DsV,ZdF x

b + 1
V −

ad

b + 1
+ lG a

xZ

s18d

and

DsZ,Vd = − Z
x

a
Fm8Sm8

V

Z
Da s1 + bd2

xa
+

s1 + ads1 + bd
xa

G .

s19d

The solution of Eq.(17), usually numerical, employed in Eq.
(13) allows one to findZshd and thushsx,td.

Notice that the qualitative study of the equation in the
phase planesZ,Vd can be more complex than that of Eq.
(10). On the other hand, besides being more directly con-
nected to the physical variables of the physical problem, the
phase planesZ,Vd has the advantage of requiring only one
integration, instead of two, to go back to the original coordi-
nates.

In what follows the source-type and the dam-break prob-
lems will be analyzed. The values ofg , d, and l for the
source-type solutions lead to an expression of Eq.(8) solv-
able in closed form for anya and b. The dam-break prob-
lem, instead, has analytical solutions for particular values of
the parametersa and b. In the other cases, the phase-plane
analysis is useful to find the approximate behavior of the
solutions aboutj=0 andj= ±`.

III. SELF-SIMILAR SOURCE-TYPE SOLUTIONS

In this section we study the spreading of a finite volume
initially concentrated at a point, thus generalizing the classi-
cal solutions of the heat and the porous medium equations
[16,34,36], as well as the solutions for viscous fluids with
power-law rheology[26].

We assume that a given volume per unit width,G, is
initially released in the sectionx=0. With the further hypoth-
esis of symmetrical evolution with respect tox=0, the analy-
sis can be limited to the semi-planex.0 with m= +1. Since
the dimensions ofG are fGg=LxLh (i.e., g=d=1 andl=0),
Eq. (8) becomes

a

a + b + 2
sjfd8 = ffsa+bd/as− f8d1/ag8, s20d

where

f =
h

Gsa+1d/sa+b+2dsktd−a/sa+b+2d ,

j =
x

Gsb+1d/sa+b+2dsktda/sa+b+2d . s21d

Equation(20) is an exact differential that can be integrated
once to yield

a

a + b + 2
jf − fsa+bd/as− f8d1/a = C1, s22d

whereC1=0 for symmetry. Moreover, since the second term
of Eq. (22) is positive, the conditionb.−s2+ad must be
satisfied. With a second integration, an analytical solution for
bÞ−1 can be obtained as

f = SfC3sa + 1d − C2ja+1g
b + 1

a + 1
D1/sb+1d

, s23d

with C2=fa / sa+b+2dga. C3 is given by the condition of
constant volume, that for symmetry can be written as
e0

j0fsjddj=1/2, where, when b.−1, j0=fC3sa
+1d /C2g1/s1+ad is the position of the front, while, whenb,
−1, f decays with a power-law tail forj that tends tò sj0

→ +`d. In both of the cases the expression forC3 is

C3 = 3 GS1 +
1

1 + a
+

1

1 + b
D

2GS1 +
1

1 + a
DGS1 +

1

1 + b
D4

s1+ads1+bd/s2+a+bd

3Fs1 + bd−1/s1+bdS1 + a

C2
D−1/s1+adGs1+ads1+bd/s2+a+bd

,

s24d

whereGs·d is the Gamma function[37].
In the limiting case ofb=−1, the solution of Eq.(22)

reads
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f =
1

2

a1/s1+ad

GS 1

1 + a
DexpF− S a

a + 1
Da ja+1

a + 1
G s25d

and contains the Gaussian distribution fora=1 (heat
equation).

The passage from solutions with fronts to solutions with-
out fronts asb decreases is shown in Fig. 1(a) for a fixed
value ofa. Figure 1(b) shows the role ofa: asa increases,
the resistances to the flow are higher and the velocity is
reduced. As a consequence, whena is higher the product
sfdsa+bd/as−f8d1/a, which is proportional to the volumetric
flux q=uh, is lower and thus the curves in Fig. 1(b) tend to
flatten.

When Eq.(5) is interpreted as a nonlinear Fokker-Planck
equation, the source-type solutions(23) and (25) represent
the transient evolution of the PDF of a process that starts
with probability equal to 1 from the same initial condition.
Accordingly, fora=1 and for different values of the param-
eter b , hsx,td corresponds to Tsallis-type distributions, that
appear in nonextensive statistical mechanics[28,30]. The
support forhsx,td is compact whenb.−1 [Eq. (23)], while
hsx,td has exponential tails forb=−1 [Eq. (25)] and power-
law tails for b,−1 [Eq. (23)]. In particular, with an appro-
priate rescaling,hsx,td is a Cauchy(or Lorentz) distribution
whenb=−2 and a Student’st distribution of degreev when
b=−sv+3d / sv+1d, with −3,b,−1.

In closing this section, we notice that solutions formally
equal to Eq.(23) and (25), but with different values of con-
stants and parameters, can be obtained whenever the left-
hand side of Eq.(8) is an exact differential, i.e., whenl
=asd−gd / sa+b+2d. In these cases the value of the integra-
tion constants is related to the nature of the parameterG,
which in general may also be time dependent.

IV. DAM-BREAK PROBLEM

The classical dam-break problem is the study of a flow in
plane geometry generated by the removal of a wall separat-
ing two pools of different depthh1 andh2 [3,38–40]. With-
out loss of generality, the dam may be assumed to be atx
=0.

In this problem the boundary conditions are formally de-
fined by two external parametersG and G*, which can be
chosen to be, for example,h1 andh2. The external parameter
G is thus a constant height scalesfGg=Lhd, so thatg andl
are zero, whiled=1. In general,h=hst ,x,k,G,G* d so that
dimensional analysis leads to a relationf=fsj ,P* d, where

f =
h

G
, j =

x

Gsb+1d/sa+1dsktda/sa+1d , P * =
G*

G
. s26d

P* is a parameter that does not enter explicitly in the equa-
tion, but defines only the boundary conditions of the similar-
ity process. Accordingly, for the dam-break problem, Eq.(8)
becomes

a

a + 1
jf8 = mffsa+bd/as− f8md1/ag8. s27d

Analytical solutions of Eq.(27) exist only for particular val-
ues of the parameters. In the other cases numerical proce-
dures are necessary to have quantitative results, while a
qualitative behavior of the solutions can be obtained by
studying the two phase planessX,Yd and sZ,Vd. In the fol-
lowing some analytical solutions for special values ofa and
b are presented along with the study of both phase planes for
the particular case of the Chezy lawsa=2, b=1d.

Again we notice that the results obtained for the dam
break can be extended to all the situations in whichs=0, i.e.,
l=−ag / sa+1d, since the structure of the equation describ-
ing the problem remains the same of Eq.(27). In these cases
the boundary and initial conditions may also depend on time
according to the dimensions ofG.

A. Analytical solutions

Analytical solutions of Eq.(27) can be obtained whenb
=−a, in which case

a

a + 1
jf8 = mfs− f8md1/ag8 = −

1

a
s− f8mds1−ad/af9.

s28d

Whena=−b=1, Eq.(5) is the well known heat equation and
the solution of Eq.(28) is given by f=C1erfsj2/4d+C2,
whereC1 andC2 are constants obtained imposing the value
of f whenj goes to ±̀ , and erfs·d is the error function[37],
i.e., the integral of the Gaussian distribution.

WhenaÞ1, integrating Eq.(28) once leads to

FIG. 1. Profiles of source-type solutions, Eq.(23), with (a) a
=2,−5/2øbø2 and(b) b=1,1/2øaø3.
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f8 = − mF1 − a

a
SC3 −

a2

a + 1

j2

2
DGa/s1−ad

, s29d

C3 being an integration constant. Whena.1, a / s1
−ad,0 andf8 tends to 0 forj= ±`; the constant sign off8
assures that the flow follows the same direction along the
entire x axis. When a,1, f8=0 for j= ±j0
= ±Î2sa+1dC3/a. In this situation the flow is undisturbed
upstream of −j0 and downstream of +j0 and the free surface
passes from the levelh1 to h2 in the interval limited by −j0
and +j0, maintaining at those points the same derivative
f8s±j0d=0, but having a discontinuity inf9s±j0d.

A second integration offers the general solution of Eq.
(28) as

f = C4 − mjSC3
1 − a

a
Da/s1−ad

3 2F1S1

2
,

a

1 − a
;
3

2
;

a2j2

2C3s1 + adD , s30d

where C3 and C4 are integration constants, which can be
obtained by imposing the value off at ±` or at ±j0 when,
respectively,a.1 anda,1; 2F1s· , · ; · ; ·d is the hypergeo-
metric function[37].

Figures 2(a) and 2(c) show different forms of the solution
for m= +1, i.e., for flow in thej direction.G is assumed to
be the levelh1 at −̀ , so thatf tends to 1 whenj either goes
to −`sa.1d or goes to −j0sa,1d, while f tends toh2/h1

whenj goes either to +̀sa.1d or to +j0sa,1d. Lowering
the downstream level from 1 to 0 gives different profiles
connecting smoothly the two levels; as already mentioned,
whena,1 the second derivative of the profile in ±j0 is not
continuous. Other self-similar profiles may be obtained by
imposingf=0 at a certainj, which physically correspond to
the case of a drain at a fixedj. Interestingly, in groundwater
hydraulics, when Darcy’s law is employedsa=1,b=0d, the
problem of a drain atj=0, i.e., fixed in the physical coordi-
natessx,td, is mathematically equivalent to the boundary-
layer problem studied by Blasius[38,41].

Since the structure of the phase planesX,Yd remains simi-
lar for other values ofa and b, it is useful to analyze the
phase plane in the caseb=−a, which can be obtained ex-
actly. In the plane of Fig. 2(b), wherea=3, the origin and the
point s−1,0d correspond toj=0, while sX,Yd=s0,1d is
reached whenj tends to ±̀ . WhenX,0, the lines connect-
ing the point(0, 1) to the origin are profiles fromf=1 at −̀
to different values off at j=0; for X.0, instead, the curves
from (0, 0) to (0, 1) correspond to free surfaces from a cer-
tain value atj=0 to f=h2/h1 for j= +`. Whenf=0 for j
= +`, the corresponding curve in the phase plane is that from
(0, 0) to a saddle at(2, 1)—not shown in the figure. The flow
from f=1 whenj=−` to f=0 atj=0 is represented by the
curve joining the points(0, 1) ands−1,0d in the planesX,Yd.

For a,1 the phase-plane structure changes[Fig. 2(d)].
When fs+j0d is positive, the position of the interfaces at
+j0sX.0d and −j0sX,0d moves to the points0, +`d in the
planesX,Yd. The pointfs+j0d=0 is located ats+` , +`d in
the planesX,Yd. Finally, the profile starting fromf=1 at j
=−j0 and reachingf=0 at j=0 is represented by the curve
starting froms−1,0d in the planesX,Yd.

A different class of analytical solutions can be obtained
solving in a closed form the equation defining the phase
plane. For the dam-break problem this corresponds to[see
Eq. (10)]

dY

dX
=

Yf2 + s1 − adY + msa + bdXg
Xf1 − aY + msa + b + 1dXg

. s31d

Following [42] (see also[15]), analytical solutions of Eq.
(31) can be found whenb=−s3+ad /2 andaÞ1 as

X2Y−1F1 +
1 − a

2
Y + m

a − 1

2
XGsa+1d/s1−ad

= const. s32d

When a.1, the phase planes(not shown) have similar be-
haviors to that analyzed in Fig. 2(b); in particular, whena
=−b=3, Eq. (32) describes exactly the phase plane of Fig.

FIG. 2. Profiles and relative phase plane of
the dam-break problem whenb=−a [Eq. (30)];
(a),(b) a=3 and(c),(d) a=2/3.
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2(b). For a,1, the phase planes are similar to that of Fig.
2(d), with the only difference that now there is a saddle in
s2m ,1d, which corresponds to a free surface that goes tof
=0 whenj= +`.

When a=1 and b=−s3+ad /2=−2, Eq. (31) can be
solved with separation of variables and the solution, in im-
plicit form, is

Y exps− Yd = C1X
2exps− mXd, s33d

with C1 an integration constant. The behavior of the system
in this last particular situation is analogous to the cases when
a,1 [Fig. 2(d)].

B. Phase-plane analysis for Chezy’s law

Because of its frequent appearance in physical applica-
tions concerning diffusion problems, Eq.(31) has been stud-
ied in various contexts[15,17,42,43]. An extended qualita-
tive study of the nature of each singularity for different
parameter values can be found in[44] and references therein.
Here we will analyze the phase planesX,Yd for the dam-
break problem for the case in which the resistances follow
Chezy’s law(i.e., a=2 andb=1). The results of the phase
plane sX,Yd will be then compared to those obtained from
the planesZ,Vd.

In this case and withm=1, Eq.(31) and Eq.(11) are

dY

dX
=

Ys2 − Y + 3Xd
Xs1 − 2Y + 4Xd

s34d

and

dj

j
=

dX

Xs1 − 2Y + 4Xd
, s35d

with

X = j
s− f8d

f
, Y =

2

3
j2s− f8d1/2

f3/2 . s36d

A full representation of the numerical solutions of Eq.(34) is
shown in Fig. 3(a). From the analytical point of view, Eq.

(34) presents seven singular points. Only four of them will
be studied, since they are connected to specific problems of
practical interest.

The origin is an unstable node; the study of Eq.(34) lin-
earized about it leads toY,A0X

2, whereA0 is an arbitrary
parameter. Linearizing Eq.(35) aboutsX,Yd=s0,0d and in-
tegrating givesj,A1X, where A1 is another parameter. It
follows that, forj=0, X=Y=0. Substituting the previous re-
sults into Eq.(36), we obtain that, aboutj=0, f is approxi-
mately given byf=A2exps−j /A1d, whereA2 is the integra-
tion constant. As a result,f tends to the finite valueA2 asj
goes to zero.

The behavior of the system about the stable nodesX,Yd
=s0,2d can be studied by shifting the origin to this point and
proceedings as before. Linearizing then about the origin of
the new coordinate system, we getY,−6X+A3X

2/3+2 and
j,A4X

−1/3, with A3 andA4 arbitrary parameters. So, whenj
tends to −̀ and +̀ , X goes to zero from negative and posi-
tive values, respectively, whileY tends to 2. Furthermore,
from Eq. (36) it follows that f=A5expsA4

3/3j3d, which
means thatf tends to a finite value whenj goes to infinity.

Thus, the curves joining the two points(0, 2) and (0, 0)
in the planesX,Yd correspond to self-similar profiles from
j= ±` to j=0.

The point sX,Yd=s−1/4,0d is a saddle, about which
Y,9sX+1/4d /2, so that j,A6sX+1/4d4/5 and f
=A7expf4s−j /A6d5/4gsj /A6d1/4, whereA6,0 andA7.0 are
integration constants. The curve from(0, 2) to s−1/4,0d rep-
resents a self-similar flow going fromf=1 at j=−` to
f=0 at j=0.

The last point analyzed is the saddlesX,Yd=s+` , +`d in
the directionY/X=1. Its analysis is more complex than the
other points. To this regard, the substitutionX=1/x and Y
=1/y leads to an equation whose dominant terms are qua-
dratic in bothx and y. Following [45], the behavior of the
system about this point is found to bes7X−3Yd=A8X

21/2Y.
From Eq.(35) one obtainsj=X/ sA8X+1d and, with Eq.(36),
f=A9sA8j−1d. This point corresponds to a front in the co-
ordinatessf ,jd, where the depth of the currentf goes to
zero at a finite value ofj. Accordingly, the curve connecting

FIG. 3. Comparison of the two
planes sX,Yd and sZ,Vd, for
Chezy’s law sa=2,b=1d, in the
case of the dam-break problem.
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the origin of the planesX,Yd to s+` , +`d is a current from a
particular value off at j=0 to f=0 at j=1/A8.

It is instructive to compare the previous analysis in the
planesX,Yd with that obtained using the phase planesZ,Vd
defined by Eq.(17) [Fig. 3(b)]. With the parameters corre-
sponding to Chezy’s law, Eq.(17) is

dV

dZ
=

2Vf3Z2 + m8s2 − 3VdVg
3Zs2m8V2 + 3Z2d

. s37d

A qualitative study of the previous equation results more
complex than that of Eq.(34), since the degree of the domi-
nant terms of both numerator and denominator is higher;
moreover, given the presence ofm8, Eq. (37) has two differ-
ent formulations forV respectively higher and lower than
zero. This makes it more difficult to find conditions that may
be useful in the numerical integration of the equation. On the
other hand,Z andV are more directly related to the physical
variablesh andu and therefore their interpretation is some-
how easier. In particular,Z is always positive, while the sign
of V is equal to that ofh. Whenh goes tò , Z tends to zero
and vice versa, so that the curves going from the origin to the
point s+` ,0d correspond to profiles fromh= ±` to h=0.
The curve that in the semiplaneV,0 separates the curves
that reachs+` ,0d from those that go tos0,−`d is the profile
that, starting fromf=1 ath=−`, reaches 0 whenh=0 [25].
The points0,2/3d has a finite velocity whenh=0 and it thus
represents a front in the physical coordinates.

It should be noticed that, while in general the approach
using the phase planesZ,Vd is more complicated than the
one usingsX,Yd, in those cases where the degree of the
dominant terms is equal for both the phase planes, the analy-
sis in the planesZ,Vd may be more efficient. This is the case
of a=1, which finds applications in groundwater hydrology
and Newtonian viscous fluids[25,43]. On the other hand, for
the classic case of the heat equation the description with the
planesZ,Vd is not possible.

V. CONCLUSIONS

We have studied self-similar solutions of a nonlinear dif-
ferential equation obtained by generalizing the relation usu-
ally employed in hydraulics to model the resistances in open
channel flows. The resulting equation admits a wide range of
self-similar solutions, which, for certain values of the two
parametersa andb, include already known solutions. Figure
4 summarizes the relation between the particular physical
processes and the couples ofa and b for which analytical
solutions of the source-type and the dam-break problems
have been found.

Solutions of the source-type problem exist for values ofa
and b satisfying the conditionb.−s2+ad, that is for
couples of values in the region of the semiplanea.0 above
the lined reported in Fig. 4. Whenbø−1, the finite volume
of the concentrated source spreads immediately to infinite
distance with tails that decay exponentially, whenb=−1, and
algebraically, whenb,−1. The pointH reported in Fig. 4
corresponds to the heat equation, while the vertical segment
e corresponds to Student’st distributions of different degrees

of freedom; in particular the Cauchy(or Lorentz) distribution
is the solution of the source-type problem whena=1 and
b=−2 (point CL). Whenb.−1, fronts occur and the solu-
tion has compact support. In such a region, various couples
of the parameters can describe different problems, such as
the porous-media equation(point D in Fig. 4) [34], the mo-
tion of a finite volume of water following Chezy’s law(point
C in Fig. 4) or the Manning–Gauckler-Strickler law(point
MGS in Fig. 4), and the flows of non-Newtonian viscous
fluids (line a in Fig. 4) [26].

Similarly to the source-type solutions, also the dam-break
problem has solutions with an infinite celerity of the pertur-
bation whenbø−1, while fronts or interfaces arise for
b.−1. Analytical solutions of the problem have been found
for couples of values of the two parameters lying on the lines
b and c in Fig. 4 [see Eqs.(30), (32), and (33)]. When the
governing equation does not have exact solutions, the study
of the problem can be carried out qualitatively through the
phase-plane analysis employing some suitable variable trans-
formation. The approximate behavior of the system about
critical points is useful to determine the boundary conditions
for the numerical integration and to obtain an overall under-
standing of the families of self-similar solutions for different
parameter values.
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FIG. 4. Relation between different couples ofa andb and par-
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problems(see text for details).
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