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Optimal behavior of viscoelastic flow at resonant frequencies
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The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed
with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using
the analytic expression for the velocity field and assuming isothermal conditions. The global entropy genera-
tion rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It
was found that resonant frequencies can be considered optimal in the sense that they maximize the power
transmitted to the pulsating flow at the expense of maximum dissipation.
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I. INTRODUCTION rate is used to evaluate the intrinsic irreversibilities associ-

There are several interesting phenomena where the exig\jﬁed_ Wit_h an oscillatory viscqelasti_c flovv_. Some interesting
tence of an oscillatory flow leads to the improvement of a@Pplications of thermodynamic optimization have been pro-
transport procesgl]. For instance, the axial dispersion of Poséd by Bejan in the context of pulsating flojid,12. In
contaminants within laminar oscillatory flows in capillary Particular, he has shown that in the respiratory system, the
tubes is considerably larger than that obtained by pure mgMinimization of the mechanical power requirements by the
lecular diffusion in the absence of floy2,3]. Likewise, thorax muscles during the inhaling and exhaling cycle corre-
Kurzweg[4,5] found that in a zero-mean oscillatory flow of sponds to the longest inhaling and exhaling strokes possible,
a Newtonian fluid in a duct, the effective thermal diffusivity while in ejaculation, the maximization of the mechanical
reaches a maximum for a given oscillation frequency. Thigpower transmitted to the ejected seminal fluid explains the
leads to an enhanced longitudinal heat transfer which inexistence of an optimal bursting time interval. It has to be
volves no net convective mass transfer. In turn, it has beepointed out that these works consider only the viscous dissi-
found [6-8] that the dynamic permeability of a viscoelastic pative behavior of fluids. However, most of biological fluids
fluid flowing in a tube can be substantially enhanced at spepresent a viscoelastic nature and improved calculations must
cific resonant oscillation frequencies. Under certain condialso reflect their elastic behavior. In fact, del Ribal. [7]
tions, an e_nha_mced flow rate can be _achieved. These Pheﬂo%eculated that the human heart beats abfitanumpump-
ena may find important applications in areas of technologicayy, frequency to produce a maximum flow through arteries
interest such as nuclear reactors, combustion processes, aé}gd veins according to the viscoelastic properties of the
oil recovery[9,10), as well as for the understanding of physi- 564, Recently, this resonant behavior was experimentally
ological flows such as those present in respiratory and circUspserved in a study of the dynamic response of a Maxwellian
Iatcl)ryhs_ystems{ll,la. . din the relation b hquid [17], where the enhancement at the frequencies pre-

N this paper, we are interested In the relation between t icted by the theory was proved. In turn, Tsiklauri and Be-

irreversible behavior of an oscillating flow and the optimal . o .
characteristics of the enhanced transport. In recent years,.rgsnev[ls’lg included the gffect of longitudinally oscillat-
ing tube walls and obtained the analogous enhanced

variety of systems have been analyzed and optimized usin ehavior. All these results have motivated exploration of the

the entropy generation minimization methptB—1§. This consequences of the enhancement of the dynamic response
method has become a useful tool for evaluating the intrinsic q y P

irreversibilities associated with a given process or device. B)%)Zfoanzosﬂtlatt;]rjg V|§c?eltz;\]st|c ﬂu'(:. undekr] dtlrtferetﬂ'_[ c?ndmons
determining the conditions under which the entropy genera:"~ 2] IS point, the question whether thaptimum

tion rate is minimized, the operating conditions can be opti—pumplng pehawqr 1S aI;so optimum or efficient frqm a ther-
mized by reducing the dissipation to a minimum consisten{mdyn"’1mlcal point of view can be formulated. This problem

with the physical constraints imposed on the system. In flui -an be addressed through the analysis of the entropy genera-

flow systems, friction is one of the main mechanisms respon-Ion rate[13,14. In this paper, we have focused our attention

sible for entropy generation; therefore, we must invest usefud” the analysis of the relationship between maximum perme-

work to push the fluid through the pipe against the irrevers—ablllty (and, therefore, maximum velocjtpf a zero-mean

. . o . -~ oscillatory flow of a viscoelastic fluid in a rigid cylindrical
|ble_V|scous dissipation. In this work, the entropy generatlontube andythe entropy generation rate that gharaycterizes the

*Electronic address: ala@cie.unam.mx process. From the analytic expression for the velocity field,
'Electronic address: gid@cie.unam.mx shear stresses are determined, and the local and global en-
*Electronic address:  scg@cie.unam.mx tropy generation rate as a function of the oscillation fre-
*Electronic address: antonio@servidor.unam.mx quency are calculated. In this work, irreversibilities due to

heat flow phenomena are not considered.
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Il. THEORETICAL MODEL into account. Under these approximations, the dimensionless

We consider the flow of a Maxwell fluid in a rigid cylin- Ioca! entropy generation ratg* th_at c_haracterizes the irre-
drical tube of radius under an oscillatory pressure gradient Versible behavior of the system is given by

applied in the longitudinak direction. This problem was . 1 {ov*\2
solved analytically by del Riet al. [7] in the linear regime, S*(r*,t*)= —*( . ) , €)]
and the corresponding velocity fieldr,t) reads T\
1+iwt, Jo(Br) \ dP whereS* and the dimensionless temperature of the fltitd
V(r,t) =- 2 < "] (,33)>&' (1)  are normalized by37/Tya? and T, respectively,T, being
0

the mean dimensional fluid temperature. Notice ¥aand

where the no-slip condition has/been imposed at the wall of+ always are in phase, the temporal variation beingos
the cylinder, V(a)=0. Here B=\/(p/ 7tm)[(tnw)*~iwtn], 7 and cod(t*), respectively. In order to obtain the entropy

and p are the dynamic viscosity and mass density of thegeneration rate per unit length in the axial directi¢t ), St
fluid, t,, is the relaxation time for the Maxwell fluid, is the

cylindrical Bessel function of zeroth order, ad®/dx is the . o ,

general expression of the time-dependent pressure gradierflll’.ncn.on of onlyt*, *, anda. The correspondmg averaged
All physical properties of the fluid are considered cons’u’:mt.veIOC'ty over the tube cross section is

In order to obtain analytical results, in this work we chose a 2 (L

harmonic pressure gradient given by the real part of the ex- (V*)= —f V*(r*, t*)r*dr*, (4)
pressionP,e !, whereP, is the constant amplitude of the Ao

pressure gradient and is the angular frequency. With this \yhereA is the cross section area. We can now use E3)s.

?sisdu_mption, the dimensionless expression for the velocitynq(4) to characterize the resonant behavior of the system.
ield is

is integrated over the tube cross section. TH®,) is a

.
1+iw* Jy(V r* - Il. RESULTS
V*(r* t*)=- @ (1— O(\Oi—m )>e"t . (2
Jo(Vewm) In Fig. 1, the amplitudes of the averaged velocity and the

where V¥, o*, r* and t* have been normalized by, g!obal entropy generation rate are shown as a function of the
=(@/p)P, 1lt, a and lk, respectively. Here w dlmens[onless frequency for a Deborah numie0.01. For
=(wty)?-iwt, while a=a?p/ 5t,, is the Deborah number. comparison purposes, we have used the same valueasf

in the paper by del Riet al. [7]. It corresponds to a fluid
with a relaxation time of the order of seconds, a mass density
A. Entropy generation rate and viscosity of the same order of water, and a tube radius of

We now proceed to calculate the entropy generation raté.he _order of centimeters. With this value, v_iscoelastic l_Jehav-
Since the fluid is assumed to be a simple substance, malQ IS well established. In fact, the physical properties of
diffusion phenomena are disregarded. In addition, we conS€typyridinium chloride and sodium salicylate solution
sider that the main source of entropy generation is given byCPYClI/NaSal, 60/100[23,24 give an « value close to
frictional effects. However, it is assumed that the rise in tem:01. For simplicity, in all calculations presented here, the
perature in the fluid and walls due to this dissipative effect islimensionless temperature was takerras 1. Notice that
negligible so that temperature remains approximately conthe maximum values ofS*) are found at the resonant fre-
stant and irreversibilities due to heat transfer are not takeguencies wheréV*) is also maximum. This has important
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implications in terms of the useful work that is invested tois observed from zero frequency to the first minimum, but
move the fluid through the pipe: maximum velocity is ob- from that value the remaining local minima stay almost con-
tained at the expense of maximum dissipation. On the othestant and, in fact, they reach a limit value @§ — . It is
hand, from the relationship between wafkand velocityv, important to emphasize the fact that the lowest minimum of
namely,dW/dt=PAuv, it is clear that for a given pressure  the global entropy generation rate corresponds to a stationary
and cross-sectional are® maximum fluid velocity leads state, i.e., to the zero frequency. This result is in agreement
also to maximum power. Therefore, it follows that resonantwith Prigonine’s theorem, which states a minimum entropy
frequencies can be considered optimal in the sense that thegneration for stationary states provided that the Onsanger
maximize the power transmitted to the fluid through the pul-coefficients are constaf25].
sating flow.

An interpretation of this result in terms of Darcy’s law can
also be given. The phenomenological law for a frequency- IV. CONCLUSIONS
gzge:rz(\:l/e*r;t:rr_leKa(l:)II)mé) Igfi\\llvehﬁ%izlslf)cgfﬁ g g;ngﬁ)if;?_d In this paper, we have used the global entropy generation

meability [7]. Therefore, expressing the global entro en_rate to analyze a zero-mean oscillatory flow of a Maxwell
DIy L7 » €XP 9 9 TOPY 98Ny i at resonant conditions. It was found that the global en-
eration rate as the product of fluxes and generalized forc

[25], we get etTQD‘opy generation rate is maximized at the same frequencies at
' which the flow displays a resonant behavior. Under these
- 1 K(w*) ) conditions the average velocities are maximum and the
(S*)=- }‘] -VP= T |V P (5)  power transmitted to the fluid through the pulsating flow is
_ also maximum. Therefore, it is from the maximization of
where in order to satisfy the conditigs* ) =0, the dynamic power that pumping at resonant frequencies can be consid-

permeability must be a positive definite quantity. From Eq.ered optimal. However, from a thermodynamic point of view,
(5), it is then clear that maximum values ¢8*) will b ~ Maximum average velocities are reached through the maxi-

obtained at those frequencies at which Hi@s*) is maxi- mization of flow irreversibilities. Given the viscoelastic na-

mized. But from Darcy’s law these are precisely the frequen—ture of most biological fluids, this may help in the under-
cies that lead to maximum mean flux or average velocity. standing of some pulsating physiological proce¢3ekl, 13.

. . . 0 : . It w rv h lobal entr neration r re-
It is also interesting to observe in Fig. 1 that while maxi- t was observed that global entropy generation rate re

mum values ofV* ) decrease as higher resonant fre uenciemains the same at different resonant frequencies although the
9 q Thaximum values of velocity decrease at higher frequencies.

are reached, maximum values (8*) remain almost con- On the other hand, the existence of a lowest minimum value

stant. This is more clearly shown in Fig. 2 where maximagf (S*) is in agreement with Prigonine’s theorem of mini-
and minima of thg global entropy generat_lon rate are premm entropy production for stationary states.
sented as a function of the frequency. This result indicates

the importance of the first resonant frequency where the

h_igher mean velocity i; obtained. .The irreversibi!ities asso- ACKNOWLEDGMENTS
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