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The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed
with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using
the analytic expression for the velocity field and assuming isothermal conditions. The global entropy genera-
tion rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It
was found that resonant frequencies can be considered optimal in the sense that they maximize the power
transmitted to the pulsating flow at the expense of maximum dissipation.
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I. INTRODUCTION

There are several interesting phenomena where the exis-
tence of an oscillatory flow leads to the improvement of a
transport process[1]. For instance, the axial dispersion of
contaminants within laminar oscillatory flows in capillary
tubes is considerably larger than that obtained by pure mo-
lecular diffusion in the absence of flow[2,3]. Likewise,
Kurzweg[4,5] found that in a zero-mean oscillatory flow of
a Newtonian fluid in a duct, the effective thermal diffusivity
reaches a maximum for a given oscillation frequency. This
leads to an enhanced longitudinal heat transfer which in-
volves no net convective mass transfer. In turn, it has been
found [6–8] that the dynamic permeability of a viscoelastic
fluid flowing in a tube can be substantially enhanced at spe-
cific resonant oscillation frequencies. Under certain condi-
tions, an enhanced flow rate can be achieved. These phenom-
ena may find important applications in areas of technological
interest such as nuclear reactors, combustion processes, and
oil recovery[9,10], as well as for the understanding of physi-
ological flows such as those present in respiratory and circu-
latory systems[11,12].

In this paper, we are interested in the relation between the
irreversible behavior of an oscillating flow and the optimal
characteristics of the enhanced transport. In recent years, a
variety of systems have been analyzed and optimized using
the entropy generation minimization method[13–16]. This
method has become a useful tool for evaluating the intrinsic
irreversibilities associated with a given process or device. By
determining the conditions under which the entropy genera-
tion rate is minimized, the operating conditions can be opti-
mized by reducing the dissipation to a minimum consistent
with the physical constraints imposed on the system. In fluid
flow systems, friction is one of the main mechanisms respon-
sible for entropy generation; therefore, we must invest useful
work to push the fluid through the pipe against the irrevers-
ible viscous dissipation. In this work, the entropy generation

rate is used to evaluate the intrinsic irreversibilities associ-
ated with an oscillatory viscoelastic flow. Some interesting
applications of thermodynamic optimization have been pro-
posed by Bejan in the context of pulsating flows[11,12]. In
particular, he has shown that in the respiratory system, the
minimization of the mechanical power requirements by the
thorax muscles during the inhaling and exhaling cycle corre-
sponds to the longest inhaling and exhaling strokes possible,
while in ejaculation, the maximization of the mechanical
power transmitted to the ejected seminal fluid explains the
existence of an optimal bursting time interval. It has to be
pointed out that these works consider only the viscous dissi-
pative behavior of fluids. However, most of biological fluids
present a viscoelastic nature and improved calculations must
also reflect their elastic behavior. In fact, del Ríoet al. [7]
speculated that the human heart beats at theoptimumpump-
ing frequency to produce a maximum flow through arteries
and veins according to the viscoelastic properties of the
blood. Recently, this resonant behavior was experimentally
observed in a study of the dynamic response of a Maxwellian
fluid [17], where the enhancement at the frequencies pre-
dicted by the theory was proved. In turn, Tsiklauri and Be-
resnev[18,19] included the effect of longitudinally oscillat-
ing tube walls and obtained the analogous enhanced
behavior. All these results have motivated exploration of the
consequences of the enhancement of the dynamic response
of an oscillating viscoelastic fluid under different conditions
[20–22]. At this point, the question whether thisoptimum
pumping behavior is also optimum or efficient from a ther-
modynamical point of view can be formulated. This problem
can be addressed through the analysis of the entropy genera-
tion rate[13,14]. In this paper, we have focused our attention
on the analysis of the relationship between maximum perme-
ability (and, therefore, maximum velocity) of a zero-mean
oscillatory flow of a viscoelastic fluid in a rigid cylindrical
tube and the entropy generation rate that characterizes the
process. From the analytic expression for the velocity field,
shear stresses are determined, and the local and global en-
tropy generation rate as a function of the oscillation fre-
quency are calculated. In this work, irreversibilities due to
heat flow phenomena are not considered.
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II. THEORETICAL MODEL

We consider the flow of a Maxwell fluid in a rigid cylin-
drical tube of radiusa under an oscillatory pressure gradient
applied in the longitudinalx direction. This problem was
solved analytically by del Ríoet al. [7] in the linear regime,
and the corresponding velocity fieldVsr ,td reads

Vsr,td = −
1 + ivtm

b2h
S1 −

J0sbrd
J0sbad

DdP

dx
, s1d

where the no-slip condition has been imposed at the wall of
the cylinder, Vsad=0. Here b=Îsr /htmdfstmvd2− ivtmg, h
and r are the dynamic viscosity and mass density of the
fluid, tm is the relaxation time for the Maxwell fluid,J0 is the
cylindrical Bessel function of zeroth order, anddP/dx is the
general expression of the time-dependent pressure gradient.
All physical properties of the fluid are considered constant.
In order to obtain analytical results, in this work we chose a
harmonic pressure gradient given by the real part of the ex-
pressionPxe

−ivt, wherePx is the constant amplitude of the
pressure gradient andv is the angular frequency. With this
assumption, the dimensionless expression for the velocity
field is

V * sr * , t * d = −
1 + iv*

aÃ
S1 −

J0sÎaÃr * d
J0sÎaÃd

De−it* , s2d

where V*, v*, r*, and t* have been normalized byV0
=sa2/hdPx, 1 /tm, a, and 1/v, respectively. Here,Ã
=svtmd2− ivtm while a=a2r /htm is the Deborah number.

A. Entropy generation rate

We now proceed to calculate the entropy generation rate.
Since the fluid is assumed to be a simple substance, mass
diffusion phenomena are disregarded. In addition, we con-
sider that the main source of entropy generation is given by
frictional effects. However, it is assumed that the rise in tem-
perature in the fluid and walls due to this dissipative effect is
negligible so that temperature remains approximately con-
stant and irreversibilities due to heat transfer are not taken

into account. Under these approximations, the dimensionless

local entropy generation rateṠ* that characterizes the irre-
versible behavior of the system is given by

Ṡ* sr * , t * d =
1

T*
S ]V*

]r *
D2

, s3d

whereṠ* and the dimensionless temperature of the fluidT*
are normalized byV0

2h /T0a
2 and T0, respectively,T0 being

the mean dimensional fluid temperature. Notice thatV* and

Ṡ* always are in phase, the temporal variation being cosst* d
and cos2st* d, respectively. In order to obtain the entropy
generation rate per unit length in the axial direction,kS* l, S*

is integrated over the tube cross section. Thus,kṠ* l is a
function of only t*, v*, and a. The corresponding averaged
velocity over the tube cross section is

kV * l =
2p

A
E

0

1

V * sr * , t * dr * dr * , s4d

whereA is the cross section area. We can now use Eqs.(3)
and (4) to characterize the resonant behavior of the system.

III. RESULTS

In Fig. 1, the amplitudes of the averaged velocity and the
global entropy generation rate are shown as a function of the
dimensionless frequency for a Deborah numbera=0.01. For
comparison purposes, we have used the same value ofa as
in the paper by del Ríoet al. [7]. It corresponds to a fluid
with a relaxation time of the order of seconds, a mass density
and viscosity of the same order of water, and a tube radius of
the order of centimeters. With this value, viscoelastic behav-
ior is well established. In fact, the physical properties of
cetylpyridinium chloride and sodium salicylate solution
(CPyCl/NaSal, 60/100) [23,24] give an a value close to
0.01. For simplicity, in all calculations presented here, the
dimensionless temperature was taken asT* =1. Notice that

the maximum values ofkṠ* l are found at the resonant fre-
quencies wherekV* l is also maximum. This has important

FIG. 1. The amplitudes of the
dimensionless velocity kV* l
(dashed line) and global entropy

generation ratekṠ* l (solid line) as
a function of the dimensionless
frequencyv* with a=0.01.
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implications in terms of the useful work that is invested to
move the fluid through the pipe: maximum velocity is ob-
tained at the expense of maximum dissipation. On the other
hand, from the relationship between workW and velocityv,
namely,dW/dt=PAv, it is clear that for a given pressureP
and cross-sectional areaA, maximum fluid velocity leads
also to maximum power. Therefore, it follows that resonant
frequencies can be considered optimal in the sense that they
maximize the power transmitted to the fluid through the pul-
sating flow.

An interpretation of this result in terms of Darcy’s law can
also be given. The phenomenological law for a frequency-
dependent mean flux(or average velocity) can be expressed
asJ=kV * l=−Ksv* d= P, whereKsv* d is the dynamic per-
meability [7]. Therefore, expressing the global entropy gen-
eration rate as the product of fluxes and generalized forces
[25], we get

kṠ* l = −
1

T
J · = P =

Ksv * d
T

u = Pu2 s5d

where in order to satisfy the conditionkṠ* lù0, the dynamic
permeability must be a positive definite quantity. From Eq.

(5), it is then clear that maximum values ofkṠ* l will be
obtained at those frequencies at which theKsv* d is maxi-
mized. But from Darcy’s law these are precisely the frequen-
cies that lead to maximum mean flux or average velocity.

It is also interesting to observe in Fig. 1 that while maxi-
mum values ofkV* l decrease as higher resonant frequencies

are reached, maximum values ofkṠ* l remain almost con-
stant. This is more clearly shown in Fig. 2 where maxima
and minima of the global entropy generation rate are pre-
sented as a function of the frequency. This result indicates
the importance of the first resonant frequency where the
higher mean velocity is obtained. The irreversibilities asso-
ciated with the production of the first peak velocity are ap-
proximately the same as those involved in the production of
the remaining peaks although maximum velocity values de-
crease the higher the frequency. A drastic rise in the minima

is observed from zero frequency to the first minimum, but
from that value the remaining local minima stay almost con-
stant and, in fact, they reach a limit value asv* →`. It is
important to emphasize the fact that the lowest minimum of
the global entropy generation rate corresponds to a stationary
state, i.e., to the zero frequency. This result is in agreement
with Prigonine’s theorem, which states a minimum entropy
generation for stationary states provided that the Onsanger
coefficients are constant[25].

IV. CONCLUSIONS

In this paper, we have used the global entropy generation
rate to analyze a zero-mean oscillatory flow of a Maxwell
fluid at resonant conditions. It was found that the global en-
tropy generation rate is maximized at the same frequencies at
which the flow displays a resonant behavior. Under these
conditions the average velocities are maximum and the
power transmitted to the fluid through the pulsating flow is
also maximum. Therefore, it is from the maximization of
power that pumping at resonant frequencies can be consid-
ered optimal. However, from a thermodynamic point of view,
maximum average velocities are reached through the maxi-
mization of flow irreversibilities. Given the viscoelastic na-
ture of most biological fluids, this may help in the under-
standing of some pulsating physiological processes[7,11,12].

It was observed that global entropy generation rate re-
mains the same at different resonant frequencies although the
maximum values of velocity decrease at higher frequencies.
On the other hand, the existence of a lowest minimum value

of kṠ* l is in agreement with Prigonine’s theorem of mini-
mum entropy production for stationary states.
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FIG. 2. Maximum (square) and minimum

(dot) values ofkṠ* l at different resonant frequen-
cies. The dashed lines show only the trend
behavior.
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