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Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation
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We consider the delayed feedback control of a torsion-free unstable periodic orbit originated in a dynamical
system at a subcritical Hopf bifurcation. Close to the bifurcation point the problem is treated analytically using
the method of averaging. We discuss the necessity of employing an unstable degree of freedom in the feedback
loop as well as a nonlinear coupling between the controlled system and controller. To demonstrate our ana-
lytical approach the specific example of a nonlinear electronic circuit is taken as a model of a subcritical Hopf
bifurcation.
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Delayed feedback contrgDFC) [1] is a convenient tool doubling bifurcation in a model describing a delayed feed-
to stabilize unstable periodic orbitg PO’s) embedded in the back control of a class-B las¢t8].
strange attractors of chaotic systems. The method is refer- A topological limitation of the delayed feedback control
ence free; it makes use of a control signal obtained from thenethod has recently obtained much attention. It has been
difference between the current state of the system and theroven[14,19 that the method fails in the case of torsion-
state of the system delayed by one period of the unstablee periodic orbits or, more precisely, for unstable periodic
periodic orbit. The method allows us to treat the controlledorbits with an odd number of real positive Floquet expo-
system as a black box; no exact knowledge of either the forments. A similar limitation emerges in the simpler problem of
of the periodic orbit or the system equations is needed. Bwdaptive stabilization of unknown steady states of dynamical
giving only the period of the unstable orbit the system undeiystems[20]. To overcome this limitation one of u&.P)
control automatically settles on the desired periodic motionhas recently proposed to introduce an unstable degree of
and stability of this motion is maintained with only tiny per- freedom into the feedback lodg1]. It was shown that such
turbations. The delayed feedback control algorithm is espean unstable delayed feedback controllBDFC) can stabi-
cially superior for fast dynamical systems, since it does nolize an unstable periodic orbit of the Lorenz system. Unfor-
require any real-time computer processing. Successful implaunately an analytical treatment of this system is hardly pos-
mentation of this algorithm has been attained in quite diversgipble, and only numerical evidence has been presented in
experimental systems including electronic chaotic oscillatorRef. [21].
[2], mechanical penduluni8], laserg4], gas discharge sys-  In this paper we consider the problem of stabilizing an
tems[5], a current-driven ion acoustic instabilifg], a cha-  unstable periodic orbit that appears in a dynamical system
otic Taylor-Couette flow[7], chemical system$8], high-  close to a subcritical Hopf bifurcation. This is the simplest
power ferromagnetic resonan¢@], helicopter rotor blades situation giving rise to the topological limitation of the usual
[10], and a cardiac systefdl]. delayed feedback algorithm; an unstable periodic orbit

Despite a certain progress in experiment the theory obmerging from this bifurcation is torsion free and, therefore,
delayed feedback control is far from being completed. Thisequires the use of an unstable controller. However, close to
theory is rather intricate since it involves nonlinear delay-the bifurcation point the periodic orbit is only weakly un-
differential equations. Even linear stability analysis of thestable, and its stabilization is a relatively simple problem.
delayed feedback systems is difficult. The Floquet exponentshe most important advantage of this situation is that the
(FE’s) of periodic orbits controlled by the delayed feedbackproblem can be treated analytically by means of standard
method are usually computed numerically;12,13. Some  asymptotic methods developed in the theory of weakly non-
analytical estimation§14,15 have been obtained for the linear oscillators.
case of unstable periodic orbits originating from a period Nonlinear circuit as a model of a subcritical Hopf bifur-
doubling bifurcation. There are a few more examples whereation The problem of controlling an unstable periodic orbit
analytical asymptotic methods have been applied to timeat a subcritical Hopf bifurcation can be considered in a gen-
delay systems. The synergetic approafd6] and the eral way; however, for the clarity of presentation we restrict
multiple-scaling method17] were used to derive the normal ourselves to a specific example of dynamical system shown
form of the delay-induced Hopf bifurcation in the first-order in Fig. 1. The system represents a nonlinear circuit described
phase-locked loop system with time delay. The multiple-py
scaling method has also been applied close to the first period

LI=—IR-V-f(l), CV=1. (1)
*Electronic address: pyragas@pfi.lt Herel is the current and/ is the voltage on the capacittx.
URL: http://pyragas.pfi.lt The functionf(l) describes the voltage versus current char-
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FIG. 1. (@ Circuit modeling a subcritical Hopf bifurcatiorib) 00 02 04 06 0.8 1.0 01 00 01 02
Current vs voltage characteristic of the nonlinear elemgntAm- (© k @ Re A
plitude |A|, period 7, and Floquet exponent of the unstable limit
cycle as functions of the bifurcation parameterLines represent
analytical results obtained from the averaged equaBorDots are
the numerical results obtained from the exact equati@sThe
amplitude is defined as the maximum of theariable on the limit
cycle.

FIG. 2. (a) Real parts of leading Floquet exponents of the con-
trolled UPO as functions of the control gain fer=-0.01, \®
=0.005. Dotted and solid lines show the solutions of the character-
istic equationg10) and (11), respectively. Dots correspond to the
values of Floquet exponents obtained from the exact variational
equationg12). (b) Root loci of Eq.(11) ask varies from 0 too for
o ) . . the same parameter value as(@. Crosses and black dots denote
acteristicVy=f(l) of a nonlinear elemel placed in a series  the |ocation of the roots fok=0 andk=cc, respectively(c) and(d)
with the LC circuit. We assume that this element has a negasame diagrams as i@ and(b) but for e=—0.1 and\¢=0.05.
tive differential resistivity and for small can be approxi-
mated by the functiofi(l)=-al-bl3+O(I®) with positive pa- : )
rametersa andb. Using the dimensionless variables|/I, A=A(4e +|N)/8. (5)

andy=V/V,, wherelo=vp/3b, Vo=lop, andp=1\L/C, and  For £ <0, this equation has two steady-state solutidmd
normalizing the time to the characteristic peride VLC of  gnd|A|=2\=¢. The first represents a stable fixed point of the
the LC circuit, Egs.(1) are simplified to system at the originx,y)=(0,0), and the second corre-
sponds to an unstable limit cycle with the period2m, am-
plitude 2/-¢, and a real positive Floquet exponexft=-—«¢.
The only dimensionless parametsr(a—R)/p can be easily Fore >0 the limit cycle disappears, and the fixed point at the
controlled by varying the resistd®. The system(2) can be  origin becomes unstable. Thuss&t0 we have a subcritical
presented in the formi+x—(s+x%)x=0 similar to the well- Hopf bifurcation. As is seen from Fig.(®, the analytical
known van der Pol equation, with the only difference that theresults obtained from the averaged equat®nare in good
termx?x comes here with a negative sign. For smalthere  quantitative agreement with the numerical results determined
are many mathematically rigorous waigsg., method of av-  from the exact equation®) when the system is in the vicin-
eraging, multiscale expansion, and other asymptotic methty of the bifurcation point.
ods to obtain an approximate solution of this equation. Nonlinear delayed feedback controllédow we assume
Defining the complex amplituda(t) by that the currenk is an observable accessible in experiment.
. . ‘ , To stabilize the unstable limit cycle appearing o0 we
y=(Ae'+A*e™)/2, x=(IAe" -iA*e™)/2,  (3)  consider the following delayed feedback control algorithm:

X=-y+ex+xI3, y=X. (2

and inserting them in Eq$2) we get X=—y+ex+ X3 +wx, (6a)
- A A* : A . A* _

A=—(4e +|AP) - —(4e + |AP)e? - — e+ e y =X, 6b

g 4e +IA) - = (4e +|AP) 28 o2 y=x (6b)

(4) W= AW = k(X = X_)X. (60)

Close to the bifurcation poing=0, slow variations of the The termwx in Eq. (6a) is the control perturbation intro-
amplitudeA(t) can be determined by averaging Ed4) over  duced in the circuit as an additional voltage source. Equation
the period of the fast oscillations=2. This averaging is (6¢) describes an unstable delayed feedback controller with
equivalent to neglecting the terms containing fast oscillations.°> 0. Herew is a dynamical variable of the controller akd
(e*'t, e etc). Thus the averaged equation for the ampli-defines the feedback strength. We use the notatieax(t
tude reads —-7). Note that the perturbation does not change the solution
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of the free system corresponding to the UPO of peripd 08 .
since, forx=x,, Eq. (6c) is satisfied byw=0 and the pertur- 044 Fra-rr?
bationwx in Eq. (68 vanishes. x 0.0

Unlike the control algorithm considered in R§21] here 04 LI-A-LLY
we introduce nonlinear coupling terms—namely, the prod- 08l . A
uctswx and (x—x,)x in Egs.(6a) and(6c¢), respectively. The 0 50 ¢ 100 150
nonlinearity is a necessary ingredient of the DFC algorithm @)
when considering the stabilization of UPO’s close to the bi- 0.1

furcation point. It is easy to verify that any linear coupling ]
terms[e.g.,w in Eq. (6@ andx—x.in Eg.(6¢)] vanish due to 2 od
the averaging procedure and thus result in uncoupled aver-
aged equations for the slow dynamics of the controller and
the controlled system. To provide an interrelation between (b)
these two subsystems in the averaged equations we need &

d T T T T
0 50 t 100 150

nonlinear coupling in the original equations. = %057
For small values of the parameterand\°®, the averaged ;E,
equations for the closed-loop system are obtained by insert- + 0007
ing Egs.(3) in system(6) and neglecting the fast-oscillating
terms: * 0.05 . . . .
_ (© ¢ 100 150
A=A(4e +|A]?)/8 + Awi2, (7a)
FIG. 3. Dynamics ofa) currentx, (b) controller variablew, and
W= AW — k(2|A|2 _ AA*T —~AA* )4, (7b) (c) delayed feedback perturbatidtx—x,). Solid lines are the solu-

tions of the nonlinear systeii®) with initial conditionsx(t)=0 for
Using the ansatA(t)=r(t)e*?, from the imaginary part of —7<t<0, x(0)=0.5,y(0)=0, andw(0)=0. Dashed lines represent
Eq. (7a) it is easy to derive an equation for the phase, the solution of averaged equatiot® with initial conditionsr(t)
=0. It follows that the phase is independent of time, =0 for-7<t<0,r(0)=0.5, andw(0)=0. The values of parameters

=const. For the slowly varying real amplitudé) and con- ~ €¢&=-0.1,A°=0.05,7=6.2871, anck=0 for t < andk=0.35 for

troller variablew(t) we obtain t=r
[ =r(4e +r2)/8 +rw/2, (8a) A= (\C= &)\ — eN®—ek(1-€) = 0. (12)
. For |\|7<1, it coincides with Eq(10) due to the approxi-
W=\ W kr(r—r,)/2. (8D)  matione™ ~1-\~. In Figs. 2a) and 2c) we compare the

This system can be even more simplified. Taking into acFE'S defined by Eq10) and(11) with the “exact” values of .
count thatr(t) is a slow variable the delay term can be the FE’s obtained numerically from the nonaveraged varia-

approximated by the first derivative,=r(t-n)~r(t)--. tonal equations

This approximation is valid fordr|/r<1. Then the time- S == 8y + [& + x3(1) X + Xo(t) Sw, (129
delay system8) transforms to a system of ordinary differ-
ential equations: &= o (12b)
r =r(4e +r?)/8 +rw/2, (9a) _
SW = \C8w — kxg(t) (X = 8X,), (120
w=\w-kmr/2. (9b)  derived from the original systert6). Here Sx=x—x(t) and

. , . — Oy=y-yo(t) are small deviations from the periodic orbit
The elgenvaluga of the fixed pqln.t(ro,wo);(Z\s—s,O) of [Xo(1), Yo ]1=[Xo(t+7),yo(t+7)], which satisfies the free sys-
this system satisfy the characteristic equation tem (2), and Sw=w.
N2=(A\°— g+ gkP)\ — eXC= 0. (10) _ For|e|r<1, a!l three above results are in good quantita-
tive agreemenfFig. 2@)]. Thus the leading FE’s of the con-
They correspond to two leading nonzero FE’s of the controlled UPO can be reliably obtained from the simple qua-
trolled UPO(the zero FE is defined by the equation for the dratic equatior{10). The stability conditions of this equation
phasep=0 derived above Note that the UPO satisfying the for e <0 are
time-delay systeni{6) has an infinite number of FE’s, and _
most of them are lost in this approximation. A more precise N> 0, k>ko= (A e)l(-e7). (13
characteristic equation for the FE’s can be derived from therhe first condition confirms the general statement that the
averaged equation®) without using the approximation for torsion-free UPO’s can be stabilized only with an unstable
the time-delay termi,. Linearization of Eqs(8) around the  controller. The second condition can be rewritten in the form
fixed point (ro,wWp)=(2V-¢,0) leads to the transcendental kr>1+\¢/\S, where\® is the eigenvalue of the free control-
equation ler and\=-¢ is the FE of the unstable limit cycle of the free
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system. The mechanism of stabilization is evident from Figthe results of linear analysis. Figure 3 shows the successful
2(b). For k=0, two real positive solutions of Eq10), A stabilization of the UPO close to the bifurcation point. After
=\*and\=\°, describe unstable eigenvalues of the free sysa transient process the controlled system approaches the pre-

tem and the free controller, respectively. With increasing yjously unstable orbit and the feedback perturbation van-

the eigenvalues approach each other on the real axis, anthes The envelopes of the transient are well described by
then collide and pass to the complex plane. ksk,, they

the averaged equatioii8). This confirms the validity of the

cross the imaginary axis and move symmetrically into the

left half-plane; i.e., both the system and the controller be_averaging procedure applied to the time-delay sys@m

come stable. An optimal value of the control gainkis, In co_nclusion, we have developed an analytical appr_oagh
=ky+2VAS/\S/ 7 since it provides the fastest convergence tofor the time-delayed feedback control of an unstable periodic
the stabilized UPO with the characteristic ratg,=—VAS\¢.  Orbit without torsion, which could not be stabilized by the
For |arge values ofg|7 the root locus diagram is more conventional delay technique. As an example we have con-
complicated; see Fig.(@). For|e|7~ 1 the approximation of sidered the specific model of a nonlinear electronic circuit at
the delay ternt , by the derivative is not valid; however, for a subcritical Hopf bifurcation. Nevertheless, the described
le|]<1 we can use the averaged Ef) as well as the tran- theoretical approach is valid for any dynamical system close
scendental characteristic HdJ). Figure Zc) shows that Eq.  to the bifurcation point and allows a complete analytical
(11) indeed yields good quantitative results, while EtD) is  treatment. We believe that these results are of general impor-
no longer valid. Now the eigenvalues due to the delay termance for optimizing the control technique and will stimulate

come into play. As a result, there appears a second stabilihe search for further modifications aiming at the improve-
thresholdk, such that the stabilization of the UPO becomesment of the control performance.

possible only in a finite interval of the control gain,
ko <k<k;. This work was supported by the Alexander von Humboldt
Direct integration of the nonlinear equatiof® confirms  Foundation.
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