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We consider the delayed feedback control of a torsion-free unstable periodic orbit originated in a dynamical
system at a subcritical Hopf bifurcation. Close to the bifurcation point the problem is treated analytically using
the method of averaging. We discuss the necessity of employing an unstable degree of freedom in the feedback
loop as well as a nonlinear coupling between the controlled system and controller. To demonstrate our ana-
lytical approach the specific example of a nonlinear electronic circuit is taken as a model of a subcritical Hopf
bifurcation.
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Delayed feedback control(DFC) [1] is a convenient tool
to stabilize unstable periodic orbits(UPO’s) embedded in the
strange attractors of chaotic systems. The method is refer-
ence free; it makes use of a control signal obtained from the
difference between the current state of the system and the
state of the system delayed by one period of the unstable
periodic orbit. The method allows us to treat the controlled
system as a black box; no exact knowledge of either the form
of the periodic orbit or the system equations is needed. By
giving only the period of the unstable orbit the system under
control automatically settles on the desired periodic motion,
and stability of this motion is maintained with only tiny per-
turbations. The delayed feedback control algorithm is espe-
cially superior for fast dynamical systems, since it does not
require any real-time computer processing. Successful imple-
mentation of this algorithm has been attained in quite diverse
experimental systems including electronic chaotic oscillators
[2], mechanical pendulums[3], lasers[4], gas discharge sys-
tems[5], a current-driven ion acoustic instability[6], a cha-
otic Taylor-Couette flow[7], chemical systems[8], high-
power ferromagnetic resonance[9], helicopter rotor blades
[10], and a cardiac system[11].

Despite a certain progress in experiment the theory of
delayed feedback control is far from being completed. This
theory is rather intricate since it involves nonlinear delay-
differential equations. Even linear stability analysis of the
delayed feedback systems is difficult. The Floquet exponents
(FE’s) of periodic orbits controlled by the delayed feedback
method are usually computed numerically[1,12,13]. Some
analytical estimations[14,15] have been obtained for the
case of unstable periodic orbits originating from a period
doubling bifurcation. There are a few more examples where
analytical asymptotic methods have been applied to time-
delay systems. The synergetic approach[16] and the
multiple-scaling method[17] were used to derive the normal
form of the delay-induced Hopf bifurcation in the first-order
phase-locked loop system with time delay. The multiple-
scaling method has also been applied close to the first period

doubling bifurcation in a model describing a delayed feed-
back control of a class-B laser[18].

A topological limitation of the delayed feedback control
method has recently obtained much attention. It has been
proven[14,19] that the method fails in the case of torsion-
free periodic orbits or, more precisely, for unstable periodic
orbits with an odd number of real positive Floquet expo-
nents. A similar limitation emerges in the simpler problem of
adaptive stabilization of unknown steady states of dynamical
systems[20]. To overcome this limitation one of us(K.P.)
has recently proposed to introduce an unstable degree of
freedom into the feedback loop[21]. It was shown that such
an unstable delayed feedback controller(UDFC) can stabi-
lize an unstable periodic orbit of the Lorenz system. Unfor-
tunately an analytical treatment of this system is hardly pos-
sible, and only numerical evidence has been presented in
Ref. [21].

In this paper we consider the problem of stabilizing an
unstable periodic orbit that appears in a dynamical system
close to a subcritical Hopf bifurcation. This is the simplest
situation giving rise to the topological limitation of the usual
delayed feedback algorithm; an unstable periodic orbit
emerging from this bifurcation is torsion free and, therefore,
requires the use of an unstable controller. However, close to
the bifurcation point the periodic orbit is only weakly un-
stable, and its stabilization is a relatively simple problem.
The most important advantage of this situation is that the
problem can be treated analytically by means of standard
asymptotic methods developed in the theory of weakly non-
linear oscillators.

Nonlinear circuit as a model of a subcritical Hopf bifur-
cation. The problem of controlling an unstable periodic orbit
at a subcritical Hopf bifurcation can be considered in a gen-
eral way; however, for the clarity of presentation we restrict
ourselves to a specific example of dynamical system shown
in Fig. 1. The system represents a nonlinear circuit described
by

Lİ = − IR − V − fsId, CV̇= I . s1d

HereI is the current andV is the voltage on the capacitorC.
The function fsId describes the voltage versus current char-
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acteristicVN= fsId of a nonlinear elementN placed in a series
with theLC circuit. We assume that this element has a nega-
tive differential resistivity and for smallI can be approxi-
mated by the functionfsId=−aI−bI3+OsI5d with positive pa-
rametersa andb. Using the dimensionless variablesx= I / I0
and y=V/V0, where I0=Îr /3b, V0= I0r, and r=ÎL /C, and
normalizing the time to the characteristic periodT=ÎLC of
the LC circuit, Eqs.(1) are simplified to

ẋ = − y + «x + x3/3, ẏ = x. s2d

The only dimensionless parameter«=sa−Rd /r can be easily
controlled by varying the resistorR. The system(2) can be
presented in the formẍ+x−s«+x2dẋ=0 similar to the well-
known van der Pol equation, with the only difference that the
termx2ẋ comes here with a negative sign. For small«, there
are many mathematically rigorous ways(e.g., method of av-
eraging, multiscale expansion, and other asymptotic meth-
ods) to obtain an approximate solution of this equation.

Defining the complex amplitudeAstd by

y = sAeit + A * e−itd/2, x = siAeit − iA * e−itd/2, s3d

and inserting them in Eqs.(2) we get

Ȧ =
A

8
s4« + uAu2d −

A*

8
s4« + uAu2de−i2t −

A

24
ei2t +

A*

24
e−i4t.

s4d

Close to the bifurcation point«=0, slow variations of the
amplitudeAstd can be determined by averaging Eq.(4) over
the period of the fast oscillations,t=2p. This averaging is
equivalent to neglecting the terms containing fast oscillations
(e±it, e±i2t, etc.). Thus the averaged equation for the ampli-
tude reads

Ȧ = As4« + uAu2d/8. s5d

For «,0, this equation has two steady-state solutionsA=0
anduAu=2Î−«. The first represents a stable fixed point of the
system at the originsx,yd=s0,0d, and the second corre-
sponds to an unstable limit cycle with the periodt=2p, am-
plitude 2Î−«, and a real positive Floquet exponentls=−«.
For «.0 the limit cycle disappears, and the fixed point at the
origin becomes unstable. Thus at«=0 we have a subcritical
Hopf bifurcation. As is seen from Fig. 2(c), the analytical
results obtained from the averaged equation(5) are in good
quantitative agreement with the numerical results determined
from the exact equations(2) when the system is in the vicin-
ity of the bifurcation point.

Nonlinear delayed feedback controller. Now we assume
that the currentx is an observable accessible in experiment.
To stabilize the unstable limit cycle appearing for«,0 we
consider the following delayed feedback control algorithm:

ẋ = − y + «x + x3/3 + wx, s6ad

ẏ = x, s6bd

ẇ = lcw − ksx − xtdx. s6cd

The termwx in Eq. (6a) is the control perturbation intro-
duced in the circuit as an additional voltage source. Equation
(6c) describes an unstable delayed feedback controller with
lc.0. Herew is a dynamical variable of the controller andk
defines the feedback strength. We use the notationxt;xst
−td. Note that the perturbation does not change the solution

FIG. 1. (a) Circuit modeling a subcritical Hopf bifurcation.(b)
Current vs voltage characteristic of the nonlinear element.(c) Am-
plitude uAu, periodt, and Floquet exponentls of the unstable limit
cycle as functions of the bifurcation parameter«. Lines represent
analytical results obtained from the averaged equation(5). Dots are
the numerical results obtained from the exact equations(2). The
amplitude is defined as the maximum of thex variable on the limit
cycle.

FIG. 2. (a) Real parts of leading Floquet exponents of the con-
trolled UPO as functions of the control gain for«=−0.01, lc

=0.005. Dotted and solid lines show the solutions of the character-
istic equations(10) and (11), respectively. Dots correspond to the
values of Floquet exponents obtained from the exact variational
equations(12). (b) Root loci of Eq.(11) ask varies from 0 tò for
the same parameter value as in(a). Crosses and black dots denote
the location of the roots fork=0 andk=`, respectively.(c) and(d)
Same diagrams as in(a) and (b) but for «=−0.1 andlc=0.05.
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of the free system corresponding to the UPO of periodt,
since, forx=xt, Eq. (6c) is satisfied byw=0 and the pertur-
bationwx in Eq. (6a) vanishes.

Unlike the control algorithm considered in Ref.[21] here
we introduce nonlinear coupling terms—namely, the prod-
uctswx andsx−xtdx in Eqs.(6a) and(6c), respectively. The
nonlinearity is a necessary ingredient of the DFC algorithm
when considering the stabilization of UPO’s close to the bi-
furcation point. It is easy to verify that any linear coupling
terms[e.g.,w in Eq. (6a) andx−xt in Eq. (6c)] vanish due to
the averaging procedure and thus result in uncoupled aver-
aged equations for the slow dynamics of the controller and
the controlled system. To provide an interrelation between
these two subsystems in the averaged equations we need a
nonlinear coupling in the original equations.

For small values of the parameters« andlc, the averaged
equations for the closed-loop system are obtained by insert-
ing Eqs.(3) in system(6) and neglecting the fast-oscillating
terms:

Ȧ = As4« + uAu2d/8 + Aw/2, s7ad

ẇ = lcw − ks2uAu2 − AAt
* − AtA * d/4. s7bd

Using the ansatzAstd=rstdeiwstd, from the imaginary part of
Eq. (7a) it is easy to derive an equation for the phase,rẇ
=0. It follows that the phase is independent of time,w
=const. For the slowly varying real amplituderstd and con-
troller variablewstd we obtain

ṙ = rs4« + r2d/8 + rw/2, s8ad

ẇ = lcw − krsr − rtd/2. s8bd

This system can be even more simplified. Taking into ac-
count thatrstd is a slow variable the delay termrt can be
approximated by the first derivative,rt=rst−td< rstd−tṙ.
This approximation is valid fortuṙ u / r !1. Then the time-
delay system(8) transforms to a system of ordinary differ-
ential equations:

ṙ = rs4« + r2d/8 + rw/2, s9ad

ẇ = lcw − ktrṙ /2. s9bd

The eigenvaluesl of the fixed pointsr0,w0d=s2Î−« ,0d of
this system satisfy the characteristic equation

l2 − slc − « + «ktdl − «lc = 0. s10d

They correspond to two leading nonzero FE’s of the con-
trolled UPO(the zero FE is defined by the equation for the
phaseẇ=0 derived above). Note that the UPO satisfying the
time-delay system(6) has an infinite number of FE’s, and
most of them are lost in this approximation. A more precise
characteristic equation for the FE’s can be derived from the
averaged equations(8) without using the approximation for
the time-delay termrt. Linearization of Eqs.(8) around the
fixed point sr0,w0d=s2Î−« ,0d leads to the transcendental
equation

l2 − slc − «dl − «lc − «ks1 − e−ltd = 0. s11d

For ulut!1, it coincides with Eq.(10) due to the approxi-
mation e−lt<1−lt. In Figs. 2(a) and 2(c) we compare the
FE’s defined by Eqs.(10) and(11) with the “exact” values of
the FE’s obtained numerically from the nonaveraged varia-
tional equations

dẋ = − dy + f« + x0
2stdgdx + x0stddw, s12ad

dẏ = dx, s12bd

dẇ = lcdw − kx0stdsdx − dxtd, s12cd

derived from the original system(6). Heredx=x−x0std and
dy=y−y0std are small deviations from the periodic orbit
fx0std ,y0stdg=fx0st+td ,y0st+tdg, which satisfies the free sys-
tem (2), anddw=w.

For u«ut!1, all three above results are in good quantita-
tive agreement[Fig. 2(a)]. Thus the leading FE’s of the con-
trolled UPO can be reliably obtained from the simple qua-
dratic equation(10). The stability conditions of this equation
for «,0 are

lc . 0, k . k0 = slc − «d/s− «td. s13d

The first condition confirms the general statement that the
torsion-free UPO’s can be stabilized only with an unstable
controller. The second condition can be rewritten in the form
kt.1+lc/ls, wherelc is the eigenvalue of the free control-
ler andls=−« is the FE of the unstable limit cycle of the free

FIG. 3. Dynamics of(a) currentx, (b) controller variablew, and
(c) delayed feedback perturbationksx−xtd. Solid lines are the solu-
tions of the nonlinear system(6) with initial conditionsxstd=0 for
−tø t,0, xs0d=0.5, ys0d=0, andws0d=0. Dashed lines represent
the solution of averaged equations(8) with initial conditions rstd
=0 for −tø t,0, rs0d=0.5, andws0d=0. The values of parameters
are«=−0.1,lc=0.05,t=6.2871, andk=0 for t,t andk=0.35 for
t.t.
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system. The mechanism of stabilization is evident from Fig.
2(b). For k=0, two real positive solutions of Eq.(10), l
=ls andl=lc, describe unstable eigenvalues of the free sys-
tem and the free controller, respectively. With increasingk,
the eigenvalues approach each other on the real axis, and
then collide and pass to the complex plane. Fork=k0, they
cross the imaginary axis and move symmetrically into the
left half-plane; i.e., both the system and the controller be-
come stable. An optimal value of the control gain iskop
=k0+2Îlc/ls/t since it provides the fastest convergence to
the stabilized UPO with the characteristic ratelmin=−Îlslc.

For large values ofu«u, the root locus diagram is more
complicated; see Fig. 2(d). For u«ut,1 the approximation of
the delay termrt by the derivative is not valid; however, for
u«u!1 we can use the averaged Eq.(8) as well as the tran-
scendental characteristic Eq.(11). Figure 2(c) shows that Eq.
(11) indeed yields good quantitative results, while Eq.(10) is
no longer valid. Now the eigenvalues due to the delay term
come into play. As a result, there appears a second stability
thresholdk1 such that the stabilization of the UPO becomes
possible only in a finite interval of the control gain,
k0,k,k1.

Direct integration of the nonlinear equations(6) confirms

the results of linear analysis. Figure 3 shows the successful
stabilization of the UPO close to the bifurcation point. After
a transient process the controlled system approaches the pre-
viously unstable orbit and the feedback perturbation van-
ishes. The envelopes of the transient are well described by
the averaged equations(8). This confirms the validity of the
averaging procedure applied to the time-delay system(6).

In conclusion, we have developed an analytical approach
for the time-delayed feedback control of an unstable periodic
orbit without torsion, which could not be stabilized by the
conventional delay technique. As an example we have con-
sidered the specific model of a nonlinear electronic circuit at
a subcritical Hopf bifurcation. Nevertheless, the described
theoretical approach is valid for any dynamical system close
to the bifurcation point and allows a complete analytical
treatment. We believe that these results are of general impor-
tance for optimizing the control technique and will stimulate
the search for further modifications aiming at the improve-
ment of the control performance.

This work was supported by the Alexander von Humboldt
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