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The simulation of complex quantum systems on a quantum computer is studied, taking the kicked Harper
model as an example. This well-studied system has a rich variety of dynamical behavior depending on param-
eters, displays interesting phenomena such as fractal spectra, mixed phase space, dynamical localization,
anomalous diffusion, or partial delocalization, and can describe electrons in a magnetic field. Three different
guantum algorithms are presented and analyzed, enabling us to simulate efficiently the evolution operator of
this system with different precision using different resources. Depending on the parameters chosen, the system
is near integrable, localized, or partially delocalized. In each case we identify transport or spectral quantities
which can be obtained more efficiently on a quantum computer than on a classical one. In most cases, a
polynomial gain compared to classical algorithms is obtained, which can be quadratic or less depending on the
parameter regime. We also present the effects of static imperfections on the quantities selected and show that
depending on the regime of parameters, very different behaviors are observed. Some quantities can be obtained
reliably with moderate levels of imperfection even for large number of qubits, whereas others are exponentially
sensitive to the number of qubits. In particular, the imperfection threshold for delocalization becomes expo-
nentially small in the partially delocalized regime. Our results show that interesting behavior can be observed
with as little as 7-8 qubits and can be reliably measured in presence of moderate levels of internal

imperfections.
DOI: 10.1103/PhysReVvE.70.056218 PACS nun$)er05.45.Mt, 03.67.Lx, 72.15.Rn
I. INTRODUCTION model. The Hamiltonian of this system has a simple form,

In the past few years, the field of quantum informatjgh Y&t displays many interesting physical features not present in
has attracted more and more attention in the scientific confduantum maps previously studied in this context, such as
munity. Among the most fascinating promises of this domainfractal spectra, stochastic web, anomalous diffusion, or coex-
is the possibility of building a quantum computer. Such aistence of localized and delocalized states. It was introduced
quantum processor can use the superposition principle arifl the context of solid-state physi¢motion of electrons in
the interferences of quantum mechanics to perform newpresence of magnetic figldnd has been the subject of many
types of algorithms which can be much more efficient tharstudies. Using this model as a test ground, we will present
classical algorithms. Celebrated examples are Shor’s algdhree different ways of simulating the quantum map on a
rithm which factors large integers exponentially faster thanquantum computer, two of them inspired by previous works,
any known classical algorithrf2] and Grover's algorithm and compare their efficiency. We will then present examples
which searches unstructured lists quadratically faster thaaf physical quantities which can be obtained on a quantum
classical method§3]. Another type of quantum algorithms computer. It turns out that depending on the parameters of
concerns the simulation of physical systems. Examples inthe system, at least polynomial speedup compared to classi-
clude many-body quantum syster®, classical and quan- cal algorithms can be obtained for different quantities. Nu-
tum spin system§5], and classical dynamical systefigs7].  merical simulations and analytical estimations will also
Algorithms implementing quantum maps are especially interevaluate the effects of imperfections in the quantum com-
esting, since the systems simulated have simple equations pfiter on the estimation of these quantities.
motion but can display very complex behaviors. Their sim-
plicity enables one to simulate them with a small number of
qubits. For example, it is possible to simulate efficiently the
baker map8] (experimental implementation with the NMR
technique has already been performi&), the quantum
kicked rotator[10,11, the sawtooth mapl2], or the tent
map [13]. In such algorithms, it is important to determine
which physical quantities can be obtained accurately through
measurement on the quantum computer and what is the total Ho(l,6) = cogl) + cog6). 1)
algorithmic complexity of the whole process. It is equally
important to determine the effects of errors in the computaThis Hamiltonian has been the subject of many stuheg,
tion to assess the efficiency of the algorithm on a realistidor example,[15-19), but its dynamics is somewhat re-
quantum computer. stricted by the fact that it describes an integrable system. A

In the present paper, we will study in detail an importantgeneralization of this model was introduced some time ago;
example of quantum map—namely, the kicked Harpeiit is called the kicked Harper model:

1. HARPER AND KICKED HARPER MODELS

The Harper model was introduced in 19584] to de-
scribe the motion of electrons in a two-dimensional lattice in
presence of a magnetic field. Its Hamiltonian reads
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FIG. 1. Phase space of the classical kicked Harper mddel: from red(gray) (maximal value to blue (black) (minimal value.

=L —0 (Harper model (upper lefy, K=L=0.5 (upper righj, K=L
=1.5(lower leff), andK=L=2.5 (lower righy (10 000 iterations of  chaotic zones around separatrices. ReiL, this network of
256 classical orbits One cell of size 2 X 27 is shown, the phase  thin chaotic zones surrounding large islands is called the

space being periodic. “stochastic web”(see Fig. 2 For intermediate values of
K,L, the phase space is mixed, with integrable islands sepa-
H(l,6,t) =L cogl) + K cog6) > &(t - m), ) _rated by Iar_ge chaotic zones. For larder, cl_assical chaos
m is present in most of the phase spacé Fig. 1), and a

) typical trajectory will diffuse through the system. The quan-
wherem runs through all integers values aKdL are con-  yym dynamics is related to these classical properties, but
stants. This Hamiltonian reduces to Ed) in the limit K ghows some striking differences. In the linkieL — 0, the
=L—0, but has a more complex dynamics depending on thgystem is integrable and wave functions are concentrated
parameters. Its dynamics between two kicks can be intesround classical tori, but complexity manifests itself in the
grated to yield the map spectrum of the Hamiltonian, which is fractéHofstadter

T=1+K sin 0, 9=6-Lsinl. 3) butterfly_'). For_smaIIK,L the motion of a quantum wave
packet is dominated by the presence of classical invariant
As in the case of the kicked rotator, there is a classicaturves; the wave packet can spread in between these curves
periodicity in both# and|. Thus the phase space is com- or cross them by quantum tunneling. For largeL, in the
posed of cells of size 2X 27 where the same structures regime of classical diffusion, as in the kicked rotator, a phe-
repeat themselves. nomenon similar to Anderson localization of electrons in dis-
This map(3) has been related to the motion of electronsordered solids takes place. Through this phenomenon, called
in a perpendicular magnetic and electric fields and also to thdynamical localization, a wave packet started at some value
problem of stochastic heating of a plasma in a magnetic fieldof momentumn will first spread, but contrary to classical
The quantization of Eq2) yields a periodic Hamiltonian trajectories this spreading will saturate. This corresponds to

which after integration over one period yields a unitary evo-the fact that eigenfunctiong,(n) of U in Eq. (4) in momen-

lution operator acting on the wave functign tum spacethey are called Floquet eigenfunctions since they
Z: 0¢: il coshif)/h ik Cos(};)/ﬁw @) correspond to the action of the evolution operator during one
' period are exponentially localized. Their envelopes obey the

wheren=-iQd/ 96 and y( 6+ 2Qm) = y{ 6). law i,(n) ~ exp(—=|n—m|/1)/\I wherem marks the center of

This system has been the subject of many studies in thiéhe eigenstate anidis the localization length. This phenom-
past few years, which focused on localization propertieenon is especially visible for moderate value¥Kofvhere all
[20-27, tunneling propertie$28,29, etc. eigenfunctions are localized. For larger valueKothe sys-

In the limit K=L— 0 the system is classically integrable. tem undergoes a transition: some eigenfunctions are still lo-
For smallK,L, chaos begins to appear around separatricesalized, but more and more are delocalizedgodio and
and spreads over larger and larger phase space aré&at as spread over the whole system. This coexistence of localized
increase(see Fig. 1 In the regime of smalK,L, classical and delocalized states gives rise to specific physical proper-
transport from cell to cell is possible only in the very small ties. Indeed, it is very different from what happens in the
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30 of qubits leads to increasing the size of phase spagmber

of cellg) in then direction. Only for the study of the stochas-
tic web present at smaKK=L (Sec. IV A) will the phase
space be extended in both directions and its gzenber of
cells) fixed. In this case increasing the number of qubits

leads to smaller and smallér

25

20
[ll. SIMULATING THE TIME EVOLUTION:
THREE POSSIBLE ALGORITHMS

15 . .
The evolution operato¢4) is composed of two transfor-

mations which are diagonal in, respectively, the momentum
and position representations. This form is general for a fam-
ily of kicked maps such as the kicked rotator, sawtooth map,
and others. On a classical computer, the fastest way to imple-
ment such an evolution operator on a wave functioNpf
components is to use the fast Fourier transfoRRT) algo-
rithm to shift back and forth between timeand 6 represen-
tations and to implement each operator by direct multiplica-
5 10 15 20 25 30 tion in the basis where it is diagonal. In this way,

L O(Ny log Ny) classical operations are needed to implement
Eq. (4) on aNy-dimensional vector. On a quantum computer,
it is possible to use the quantum Fourier transf¢@iT) to
shift between momentum and position representations, using
O((log Ny)?) quantum gates. In each representation, one has

10

FIG. 3. Map of delocalization in théK,L) plane. Grayness
represents the inverse participation rafie1/3,|#(n)|* (IPR), a
measure of delocalization of states, frégm1 (state localized on
one momentum stat¢o é=Ny (totally delocalized stajeNy, is the . o i P
dimension of the H?Iberf spgyz(eCont)(l)ur lines correspy(;dHto values then t? lmglement the multiplication by a phaeé,L coutn/t
of ¢ ranging from 32 to 192 by increments of 38,,=2°, #/2=  and g K codoh,
=(13-15)/82 (actual value is the nearest fraction with denominator  In the following we will envision three different strategies
29). White corresponds to lowest values, black to maximal values ofo implement these diagonal operatorgi) exact computa-

& Each¢ value is obtained by averaging over all eigenstates of theion using additional registers to hold the values of the co-
evolution operatot) of Eq. (4). sines(ii) decomposition into a sequence of simpler operators
which are good approximations during short time slices, and
kicked rotator model, where usually all states are localizedgjii) direct computation, the cosine function being approxi-
once classical chaos is presésee, for example[11]) orin  mated by aChebyshey polynomial.
the Anderson transitio(investigated ir{30]) where the tran- The first one is in principle exact, but requires extra reg-
sition separates a regime where all eigenstates are localizggters, and was already proposed18]. The second one has
from a regime where all are delocalized. In this regime ofsome similarities with the one explained[i80] for another
partial delocalization, an initial wave packet will spread, butsystem. The third one was not used in the context of quantum
a certain fraction of the total probability will remain local- gjgorithms to the best of our knowledge, although the
ized. In addition, the diffusion of probability in momentum method is well known in computer sciengsee, for example,
space has been shown numerically to be anomalous, with gB1] for a recent use of this method to simulate many-spin
exponent depending on the parameter vall®8,22,23.  systems on a classical compytée note that an approxi-
These properties are summarized by the phase diagram gfate algorithm to simulate the kicked Harper for long time
Fig. 3. Different quantities can be obtained in these differentyas used i32]; however, in that paper the aim of the au-
regimes with the help of a quantum computer. thors was different, since they only wanted to construct effi-

The phase space can be decomposed in cells of size Zcjently a good approximation of the ground-state wave func-
X 2. Its global topology depends on boundary conditions.jon in order to use it for generating phase-space distributions
For a system of siz&\, if the phase space is closed with of other systems, and it is not clear that the method works for
periodic boundary conditions, with, respectivey,and P other purposes. We also note that the simulation of the
cells in theg andn directions, theri =27PQ/Ny. Therefore,  Harper model on optical lattices was envisioned38]. In
if one wants to keeph constant, the produd?Q should be  the following discussions, we denote by the total number
chosen such thaPQ/Ny is the closest rational td/(2m).  of qubits including ancilla and workspace qubits, aNd
For most of the results of this paper, the phase space will be 2 is the total dimension of the Hilbert space of the quan-
a cylinder closed in the direction (Q=1) and extended in  tum computer. We denota, with n.<ng the number of
the direction of momentum, and transport properties will bequbits describing the Hilbert space of the kicked Harper
studied in the momentum direction, as in the kicked rotatormodel[i.e., the wave function evolved through E4) is Ny
In Lhis case/(2m) was set to 1§6+1/[(5-1)/2]}=(13  dimensional withN,=2"], andny is the number of elemen-
-\5)/82 as in[23] to avoid unwanted arithmetical effects. tary quantum gates used for one iteration of the quantum
The choice of a constaritimplies that changing the number map (4).
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A. Exact algorithm

This approach is similar to the one taken[ikD] for the of : U U2 U
quantum simulation of the kicked rotator. In each represen- |
tation, the value of the cosines is built on a separate registe
and then transferred to the phase of the wave function by

appropriate gates.

If one starts with aNy-dimensional wave functiofy)
=3N"1a6) in the 6 representation, wittN,=2", then the
flrst step is to perform

Ny-1 Ny-1

> aleyoy— X al6)|cosé).
i=0 i=0

To this aim, the B, values co&/2)) and sir{27/2)), for

FIG. 4. Gate sequence for slices algorittiRp are Z rotations of
angle «

operations. On the other hand, the drawback of this approach
is the need of several extra registéose holding the values

of the cosines, plus others for the workspace of the compu-
tation) and a relatively large number of gates. In the present
status of experimental implementations of quantum comput-

j=1,...n, are first precomputed classically with precision ers, both the number of qubits and the number of gates that
2™ W|th for example,n,=2n, using a recursive method can be applied are very expensive resources. In the follow-

based on Moivre's formula; then, sincé= E 1,8”277/2
with 8;=0 or 1, one has

expig) = l_r[ expliB;2m/2)
=1

j=1

This enables to compuljeosﬂ) for eaché; in n, multi-
plications by exfi27/2)) conditioned by the values o 719
needing in totaD(n3) guantum gates.

Then once the binary decomposition of abss present
on the second register, conditional application of thene-
qubit gates

6 expeszim)
0 exp—iK27/h)
yields the state

Ny-1

>, a exf - iK cod6)/%]|6.)|cosa,).

i=0

ing, we will therefore expose two alternative strategies to

|mplementU, which are much more economical in the use of
resources, but involve additional approximations.

B. Slice method

This technique enables to compute the opertﬁlm:nc Eq.
(4) without explicitly calculating the cosines. It approximates

U by a sequence of many operators, each of them being
easier to compute. It can be viewed as “slicing” the operator
into elementary operators.

As above, we start with &l-dimensional wave function
lyy==N 1a,|0) in the @ representation, withl,,=2". In gen-
eral, suppose we want to perform the operator

U =g —ik cos(po)

In the 6 representation, this operator is diagonal, so we
just have to multiply each state by the phask <P First,
we write 6 as

E a2, (5)

H|0

Then the cosines in the last register are erased by runninghere thed;’s are the binary expansion éfandN,=2". If
backward the sequence of gates that constructed them, ape22m with m odd, then

one ends up with the state
Ny-1

> a exyd-iK cod 6)/4]|6,)/0),
i=0

which is the result of the action of the unitary operator

exg-iK cog6)/#] on |y
Then the use of the QFT which need}s{nf) guantum

P -a-1
PO="1 ( > d2'+a)mod 2.
H i=0

Thus Uy is equivalent to applying

e—ik cogmo)

on then,—a first qubits. In the following, we will suppose

gates shifts the wave function to the momentum representdhat p is odd (a=0) for the sake of simplicity.
tion, and exactly the same technique as above enables us to With the help of one ancilla qubit, let us perform the

implement the operator efgiL cog#f)/%] in O(n’) quan-

following sequence, where all gates are applied to the ancilla

tum gates. A second QFT enables us to go back toéthe (initially set to |0)), except forCy which is the operatot)

representation.

applied on the principal register, controlled by the ancilla

The whole  process implements one iteration of the evolufthe gate sequence is also displayed in Fig. 4

tion operatorU in O(n®) operations, with exponential preci-

M(a,U) = HC He “27:HC --He (“2o2HC H.

sion. This algorithm is therefore efficient, and precision can
be increased exponentially at a cost of polynomial number oThis product is equal to
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a aU2+U_2 U+U—l 1.2 T T T T T T T T
M(a,U) = cog = - sir? — +isin
() 2 2 2 2 al ]
aU2-U2
—isiP———
2 2
+yU?
=l+ia o,+0(a?) for a<1.

In,

If we takeU=€P?,
M(a,U) =1 +ia cogpb)o,+ O(a?),

since the ancilla qubit is in thi®) state,

M (a,U) ~ e cosph),

The kick operator can then be performed -1 applica- o 260 460 660 8(I)0 1000
tions of M(e,U): ns
-k FIG. 5. Localization length computed with the slice method
U= M(a,U)" with a=—. over exact localization lengthy as a function of number of slices
Ns per iteration. Localization length is extracted afterl000 itera-
A more accurate expansion can be obtained by symmdions. Initial state is[y0)=[0), with K=1, L=5, %/2m=(13
trizing M(a,U): -\5)/82 (actual value is the nearest fraction with denominatbr 2
with n,=ny—1).
— a
M(e,U) = M(E*U>M(§'U 1) To precise the accuracy of the method, we show examples
i 5 1\ of the localization length in the localized regime as a func-
=1+iaU+U o _a_<U+U ) +0(d) tion of number of gates in Fig. 5. The convergence with
2 z 2 2 ' increasing number of slicagates is clearly seen, although
— for a small number of gates oscillations are present. Data
ThusUy=M(a,U)" up to order 2 ina. from n,=7,8 andn,=9, 10 areclose to each other due to the
In this way, once a certain precision has been fixgedan  structure of the algorithm: indeed,/ (27) is approximated
be chosen such that the error is small enough. by its closer approximantsi/ Ny, and incrementing, by 1

If we apply this strategy to the kicked Harper mpdel, thechanges every other time the value7ofNo major modifi-
method is therefore to first compute @xjK cog6)/A]  cation is seen in the numerical data for increasmgindi-
through the technique abovk=K/#%,p=1), then use a QFT cating that in this regimag does not need to be drastically
to shift to the momentum representation. In theepresen-  changed withn,. _ N
tation, the operator ekpiL cog%f)/%] can be cast in the One may think that the spectrum is a much more sensitive
form above forfi=2mm/N,, with p—m, k—L/#%, and ¢  dquantity than the localization length. In Fig. 6, we display the
—2mn/Ny. The use of a QFT then shifts back the waveconvergence for the spectrum bffor K andL small, in a
function to thed representation. parameter regime close to the fractal “butterfly” visible for

The evolution of aNy-dimensional wave function with the unkicked Harper modé¢see Fig. 24 The quantities dis-

Ny =2" through one time slice is efficient, costi@jlog N) played correspond to eigenphases, where 0|¢,a>

quantum operatiqns. Indeed, fog §Iices, one diagonal op- =expliE,)| i) for some|y,). The matrix of the operatdd of
erator in Eq.(4) is implemented in 4+@-a)+(s~1[7  £4 " (4) is built by evolving through the slice method ex-
+2(n,—a)] elementary gates, witla<n,. The number of ,3ined apove the basis vectors and then diagonalized. Con-
§I|ces fixes the precision. If one requires a fixed precisionyergence can be achieved with a few hundred time slices.
independent of the number of qubits, then the whole methog e 1o numerical limitations, we cannot present data for dif-
is efficient, iteratingU in O((log Ny)?) operationsthe most  ferent values ofi,, but we do not expect any drastic modifi-
costly operation asymptotically being the QFHowever, if  cation.

one requires the precision to increase with, then the In the subsequent sections, numerical simulations of this
method becomes less efficient. This algorithm is quite ecoalgorithm in presence of errors will be performed. To keep
nomical in qubits, since to simulate a wave function on athe computation time reasonable, we chose to use the slice
Hilbert space of dimension"2 only n,=n,+1 qubits are method with 2< 40 slices per iteration for transport proper-
needed. One should note that for large number of slices, theites (Sec. V). Although the localization length is not exactly
computation dominate the computation time although asthe correct one, the system is still localized and enables to
ymptotically the QFT dominates. In all numerical simula- study the variation of transport properties in presence of er-
tions we performed, the slice contribution was indeedrors and imperfections. For computation of the spectrum
dominant. (Sec. ), we used X 100 slices per iteration.
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FIG. 6. Eigenphases of E¢) as a function of number of gates
with the slice method: only 16 values are shown. Here6 (ng
=n,+1), h=27/25 K=L=10723.

C. Chebyshev polynomials

PHYSICAL REVIEW E70, 056218(2004)

" 1
2 ¢Ti(x) - 5Co
=0

then the error is bounded kﬁ/jv':r‘nﬁl|ck| and smoothly spread
over[—1,1]. Practically, thec,'s are always rapidly decreas-
ing, so the error term is dominated Hg,.;] and we can
choose a smalin while still keeping a good polynomial ap-
proximation off(x).

Let P(x) be a Chebyshev polynomial approximation of
cogm(x+1)]. If one wants to perform the operatdy,
=g kcodpd) on a Ny-dimensional vector wittN,=2" as in
the preceding subsection, then, for1,

Uy = o ikP(Blm-1).
Uy can be decomposed as a product of operators of the form
A(p)=€F?.
From Eq.(5),
eiﬁaf — H eiB(ZTr/NH)rdjl---djr21'1+"'+J'r.
J1 e
Since thed;’s are binary digitsdjl---djr is equal to 0 unless
all terms are equal to 1. If we denote mfr"ir(@ the mul-

In this approach, one uses the QFT as in the precedingicontrolled phase gate, which apply the phase(iekpcon-

methods to shift back and forth betweémndn representa-

ditionally on the control qubit$;---j, (if an index is redun-

tions. In each representation, the relevant operator is impledant, then it is counted only onge

mented by using a polynomial approximation of the cosines.
Since polynomials can be implemented directly through con-
trolled operations, this avoids the use of additional registers.
A commonly used polynomial approximation rests on

Chebyshev polynomials.
Chebyshev polynomialésee, for example[34]) are de-
fined by the recurrence relation

Tox) =1,

T1(X) =X,

To(X) = 2XT1(X) = Tpoa(x) for n= 2.

They are bounded by -1 and 1 prl, 1], with their extrema
smoothly distributed over this interval. f{x) is an arbitrary
function on[-1, 1] and we define, foj=0,... M-1,

1 1
M-1 m K+ mj| k+ 3
2 2 2
¢j=— > flcoq ——— | |cog —— ],
M= M M

then, for largeM,

M-1

>

1
¢ Ti(X) — =co
s 17 2

is a very good approximation dfx) on[-1,1].
If we truncate this formula to ordem,

r
Ap =11 ¢, (ﬁ(z—“) zn+~~+ir)_
e N \Nu

Since all these gates commute and since all the gates used
for the construction of, are also present in the development

of A, for r’ =r, then all the terms of the polynomi&l can

be applied at the same time as the term of highest order by
merging similar gates.

If p# 1, thenp is split into p=22m with m odd, as in Sec.

Il B. The even part 2is dealt with by applyindJ, only on
the n,—a first qubits. We then multiply the register wm
before applying the cosine kick. Sinogis coprime with the
dimension of the Hilbert spadé,=2", this operation is uni-
tary and can be performed without any additional qufuit
example with the circuit in Fig. )7

If we choose a Chebyshev polynomial approximation of
degreed, then the complexity of the algorithm i©(n,).

This method is economical in qubits, and the precision of the
approximation is easy to control. On the other hand, the
complexity increases with the precision, and this can become
prohibitive for very precise simulations. It is nevertheless

quite efficient for fixed precision computations, as can be
inferred from the fact that it is actually the method used in

classical computers to evaluate functions.

In our numerical simulations, we found that a Chebyshev
polynomial of degree 6 was enough to get a very good ap-
proximation of the wave function. This demands a much
larger number of gates than the slice method and scales badly
with ng, in ng (hereny=n; since there are no ancilla or work-
space qubjt However, some of the control-phase gates have
very small phases and are physically irrelevant. We can then
choose a precision threshold and simply drop all the gates
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FIG. 7. Circuit for multiplying the quantum registér (simple Ny

lines) by an odd classical numben (double lines.
) by ( > FIG. 9. Eigenphases of E¢) as a function of number of gates

with phases below this threshold. The distribution of theWith the Chebyshev method. System is the same as in Fig. 6.
phases of the gates computing the Chebyshev approximaﬁpebyshev polynomial of degree 6 is taken, ke(_eplng ga_tes with the
of degree 6 is displayed in the inset of Fig. 8. largest phases. /.-\n'overall phase fadqigiobal motion of eigenval-
This method of approximation is investigated in Figs. 8U€9 has been eliminated.
and 9. The localization length as a function of number of
gates is displayed in Fig. 8, for the same system parametephases can be an effective way to shorten the computation
as in Fig. 5. In Fig. 9, we display the convergence for thekeeping a reasonable accuracy. Still, the data presented lead
spectrum, in the same regime as in Fig. 6. to the conclusion that even with the elimination of a large
In both cases, the convergence is good for maximal numaumber of gates the method is clearly costlier in running
ber of gates, showing that the polynomial of degree 6 igime than the slice method to achieve similar precision.
indeed a good enough approximation in this regime of pa-
rameters. A good accuracy is achieved for a lower number of
gates, implying that dropping the gates with the smallest V. TRANSPORT PROPERTIES: MEASUREMENT
AND IMPERFECTION EFFECTS

10 . L
_ 8x10° . . . The three methods exposed above enable to simulate ef-
‘ ) ficiently the effects of the evolution operatdrof the kicked
‘ 6x10° 7 Harper model on a wave function. This produces the wave
function at a given time. An important question concerns
@ 4x10° T which quantities can be obtained through quantum measure-
ment of the registers and if the whole process including mea-
2x10° surement is more efficient than classical computation. A
=5 § separate question but also related to practical efficiency of

these algorithms is their stability with respect to errors and
imperfections while running them on a realistic quantum
computer.

In this section, we will focus on the transport properties of
the wave function. We recall that for the kicked Harper
model, for smallK,L diffusion can only takes place on the
small chaotic layer of the stochastic web. Then for larger

s s T T K,L there is a regime of parameters where all eigenstates are
log(n,) !ocahz_ed and another regime where Iocah_zed and delocal-
ized eigenstates coexigee Fig. 3. In these different param-

FIG. 8. Localization length computed with the Chebysheveter regimes, we will show that quantities measuring local-
method over exact localization lenghas a function of number of ization properties and diffusion can be obtained on a
gates. System parameters are the same as in Fig. 5,npiti  quantum computer more efficiently than on a classical de-
(dashed ling n,=8 (dotted ling, and n,=9 (solid line) (ng=n,). vice, althoug_h the gain is usually polynomial. We will th_en
Dashed horizontal line ik=lo. Chebyshev polynomial of degree 6 test the resilience to errors of these quantities obtained
is taken, keeping gates with the largest phases. Inset: number #irough the quantum algorithms, in particular through large-
gates as a function of their phase. Logarithms are decimal. scale numerical computations. The error model we chose
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corresponds to static internal imperfections. Indeed, physical 2P
realization of a quantum computer will never be perfect, and h(6,n) = w
H

some amount of disorder will always be present. In particu-

lar, interactions between qubits, which are needed to build n+Ny/2 L 2
the two-qubit gates, cannot in general be totally eliminated x| D (m)e (TPNHQm - n)7g2imme/Ny
when they are not needed. These static imperfections are not m=n-Nyy/2+1

linked to interaction with the outside world; they have been (7)

shown to give important effects, which can be larger than the
effects of noisy gate§l2,35,36. To model such errors, be- where the Gaussian for simplicity is truncated for values
tween each gate we require that the system evolves throudarger thanNy/2, (m) is the wave function in momentum

the Hamiltonian representationP (Q) is the number of cells in the momen-
_ tum (position) direction,N,=2" is the dimension of the Hil-
Hl‘z (Ao + ‘Si)"/iZJrEJiU’iK")i:l’ () bert space, an®=N,,6/(27Q). We note that methods to
I |

compute phase-space distributions on a quantum computer
where theo; are the Pauli matrices for the qubitand the  were discussed ifi13,32,4Q.
second sum runs over nearest-neighbor qubit pairs on a cir- In Fig. 10 we show the spreading of a wave packet along
cular chain. The energy spacing between the two states ofthe stochastic web for different numbers of qubits and differ-
gubit is represented by its average valsgplus a detuning ent strengths of imperfections. In this picture, the size of the
& randomly and uniformly distributed in the intervél classical phase space is fixed, and the number of qubits gives
-6/2,6/2]. The detuning parametérgives the width of the the value ofi. A diffusion process is observed, which can be
distribution near the average valdg and may vary from related both to the classical diffusion on the stochastic web
0 to A,. The couplings); represent the residual static inter- (Fig. 2) and to the effect of quantum tunneling from cells to
action between qubits and are chosen randomly and unfells. The diffusion constant is seen from Fig. 10 to depend
formly distributed in the interval ont#; it also depends oK, L (data not shownand is clearly
[-J/2,J/2]. We make the approximation that this Hamil- different from the classical diffusion consta@ompare the
tonian (6) acts during a timer, between each gate which is different times in Figs. 2 and 10In this near-integrable
taken as instantaneous. Throughout the paper, we take [§gime, the tunneling process is quite complicated and was
general one single rescaled parametevhich describes the recently studied if29]. In the same figure, one can see that
amplitude of these static errors, with 574=J7,. To probe with moderate levels of imperfections the exact Husimi dis-
the transport properties of the kicked Harper model on dribution is well reproduced by the algorithm.
quantum computer, we chose to getonstant; in this way, To probe transport properties in this regime, one can start
changing the number of qubits is equivalent to changing th& wave packet in the stochastic web and let it evolve. After a
size of phase spacadding one qubit doubles the size of the certain number of time steps, the diffusion constant can be
phase spage The only exception is in the first following obtained from measurement of the wave function. As the
Subsectior(near-integrame regimewhere the phase_space number of components of the wave function or of the Husimi
volume is constant andl varies with the number of qubits. distribution becomes exponentially largergsincreases, the
Throughout this section, effects of imperfections will be as-best way is to use coarse-grained measurements: measuring
sessed using the slice method to implement @). There- ~ only the first qubits adds up the amplitudes squared of many
fore the presence of one ancilla qubit implies thgtn, +1 neighboring components and limits the number of measure-

in all of this section. ments to a fixed value. This can be done to the wave function
_ _ _ directly in the momentum or position representation or to the
A. Near-integrable regime: Stochastic web Husimi function provided all the values are kept on a quan-

For K,L very small, the classical system is near inte-tum register. For example, the Husimi-like function devel-

grable: quantum transport is dominated by the presence éfPed in[13] can be obtained by modified Fourier transform
invariant curves. Motion from cell to cell can take place only from the wave function and allows the use of coarse-grained

by tunneling effect or by moving in the small chaotic zone measurements. If one starts a wave packet on the stochastic
around separatrices. In the caéeL, this small layer forms ~Web, it will diffuse according to the laws(t)?) =~ D¢, with s
a “stochastic web{see Fig. 2 which extends in bott# and  being a distance in phase space &qdhe diffusion constant.
n directions. A wave packet started in this region will slowly Performing time evolution up to a tim requirest* quan-
diffuse along this web. This process is best seen using quatidm operations multiplied by logarithmic factors. At this
tum phase-space distributions, which allow direct comparistage, a fixed number of coarse-grained measurements is
sons between classical distributions such as the ones in Fig.enough to give an approximation bf. On a classical com-
and 2 and quantum wave functions. puter, one can truncate the Hilbert space up to the maximal
The Wigner functior{37,38 is an example of such quan- dimension effectively used in the calculation, which is of the
tum phase space distribution. However, it can take negativerder yt*. Propagating the wave packet will castyt* clas-
values, and only a smoothing over cells of afiegives non-  sical operations, after whicBs can be obtained. Therefore
negative values. The use of a Gaussian smoothing leads tbe quantum computation is polynomially faster than the
the Husimi distribution(see, e.g.[39]) which in our case is classical one. Methods which use an ancilla qubit to measure
defined by the formula the value of phase-space distributions at a given point such
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FIG. 10. (Color onling Example of Husimi
distribution of a wave packet spreading on the
stochastic web; her&=L=0.5, =27 X 64/2%
(8Xx8 celly, initial state is a Gaussian wave
packet of ared started half a cell above the cen-
ter of the figure, after 100 iterations using 2
X 40 slices per iteration. Lefe =0 and from top
to bottom n;=14, n=11, n=8 (ng=n,+1).
Right: n,=14 and from top to bottore=1075, ¢
=107, ¢=10"* Color/grayness is related to am-
plitude of the Husimi function, from zerlue/
black) to maximal value(red/white. Compare
with the classical diffusion in Fig. 2.

A -

as the ones 132,40 will necessitate extra measurementst, for various parameter valuety,being the timgnumber of
since they cannot be used to perform coarse-grained me#erationg for which the error on the Husimi functions is half
surements efficiently. Still, by reducing,L as n, is in-  the mean value of that function on the stochastic web.
creased, one can keep the number of large components of the The numerical data suggest the law
Husimi function of the wave packet of ordBl, (instead of
N2). In this case, the Husimi function measured on the an- t, = Ch/(s“ng), (8)
cilla qubit of [32] is efficiently measurable. This is formally
an exponential gain over direct classical simulation sincewith «=1.02+0.02 (compatible with a«=1) and pB
measuring one component of the Husimi distribution at a=1.23+0.09 withCy,~0.007. This law is polynomial in both
fixed timet will be logarithmic inN,. The same happens for & andng, which indicates that even though individual values
coarse-grained measurements at fixe®till, as# goes to  of the Husimi function can be exponentially small, the effect
exponentially small values the dynamics for fixedill be-  of imperfections remains small compared to these individual
come very close to the classical one, so it is unclear whiclvalues for a polynomial time. This means that such quantities
new information can be gained this way. can be reliably obtained in presence of moderate levels of
To clarify the stability of these algorithms with respect to imperfections. More work is needed to understand the pre-
errors, in Fig. 11 we show quantitatively the effects of im- cise origin of the law(8). We note that irf11] where random
perfections on the Husimi distributions for a wave packetnoise in the quantum gates were used as main source of
spreading on the stochastic web for various numbers of querrors a similar polynomiglbut differeny law was found for
bits and imperfection strengths. We computed the time scalthe relative error on the Husimi function.

056218-9



B. LEVI AND B. GEORGEOT PHYSICAL REVIEW E70, 056218(2004)

| bt
,|/\

R
MM’ Ww i ‘W‘w W *-i' i '\; wU ‘J’\uq

log(t,)

-30 4
0 100
t —40 1 1 1
0 . I . I . 1 . -400 —-200 0 200 400
-6 -5 -4 -3 -2 n
p
log(en,’)

FIG. 12. (Color onling Example of wave function in the local-
ized regime. Her& =1, L=5,%/(27)=(13-\5)/82 (actual value is
the nearest fraction with denominatd ) initial state is|¢)=|0),

+ after 1000 iterations using 5240 slices per iterationn,=8 (n,

FIG. 11. Effects of imperfections on the Husimi distribution of a
wave packet spreading on the stochastic web; eré =0.5,
=27 X 64/2% (8 X8 celly, initial state is a Gaussian wave packe 5
of areaf started half a cell above the center of the Fig. 2, and="r+1), from bottom tg tops=0 (black, solid ling, £=10"" (red,
iterations are made by the slice method using 4D slices per dashed ling ande=10" (green, solid ling In the center, the first
iteration. Straight line is the lay8) with a=1 andB=1.23. Crosses two_ curves are superposed and indistinguishable. Logarithm is
corresponds to various values ef(10°<e<10%) andn, (5  decimal.

<n,<14, with nyj=n,+1); averages were made over all Husimi
r q r

components inside the stochastic web and up to 100 realizations G saturation regime where the wave function is spread on a

disorder for eacl value. Inset: average relative error of the Husimi domain of size=I. Classically, in the parameter regime
function sh=(|h,—he|)/(hg) on the stochastic web foe=107 where the system is chaotic, the dynamics is diffusive

(dashed ling s=10"*5 (dotted ling, £=10" (solid line), and n, (n(t)>)=Dt with a diffusion constanD which depends on
=10 (ng=n,+1). Average is taken over all Husimi components in- parameters. One can expect the wave packet to follow for
side the stochastic web and 10 realizations of disorder. Logarithmshort time this diffusive behavior which will stop when a
are decimal. spreading comparable to the localization length is reached. In
this case, the wave packet needs to be evolved until a time
B. Localized regime t* ~12/D. Classically, one needs to evolve a vector of di-
mension~| until the timet*; this needs~I® classical opera-
WhenK is large enough for the chaotic zone to take mostions. On a quantum computer, once the precision is set, the
of the classical phase space, a classical particle will propahree algorithms above need only a logarithmic number of
gate diffusely in phase space. In contrast, for moderate vayates to perform one iteration, so the total number of gates is
ues of trle parametdf, all the eigenstates of the evolution ~|2_ Thijs gives a polynomial improvement for the quantum
operatorU of (4) are localizedsee Fig. 3. This localization  algorithm. It is known that in the delocalized phase, the wave
is a purely quantum phenomenon due to interference effectgacket can spread ballistically for some regimes of param-
and similar to the Anderson localization of electrons in sol-eter. If this extends to short times and to the localized re-
ids. In this parameter regime, an initial wave packet willgime, then the gain becomes quadratic.
have projections on only a small number of exponentially In Fig. 12, an example of a localized wave function is
localized eigenstates. Thus after a few iterations of the maghown for different imperfection strengths. A£0, the ex-
the wave packet will stop spreading and stay in a region oponential localization is clearly visible, the exponential de-
momentum space of size given by the localization length. Arcay being leveled off at very small valuégl(T?’O) only by
example of such a wave function is shown in Fig. 12. numerical roundoff. For larger values ofthe localized peak
In this regime, it is possible to measure the localizationis still visible with the correct amplitude, but a larger and
lengthl efficiently. Indeed, most of the probability is concen- larger background is visible, until the peak disappears.
trated in a domain of sizk If one performs a coarse grained  To analyze in a more precise way the effects of imperfec-
measurement of the wave function—i.e., only the most sigtions, we have to specify the observable that is used to get
nificant qubits are measured—the number of measurementie localization length. On a classical computer, different
will set the precision in units of. Thus once the desired data analyses can be used to calculate the localization length
relative precision is fixed, the number of measurements ifrom knowledge of the wave function. A first way consists in
independent of or n,. Nevertheless, if one starts from an extracting the second moment of the wave funciiaiin)?),
easily prepared initial wave packet—for example, on a singlavhich gives an estimate dfonce the saturation regime is
momentum state—one has to evolve it long enough to reacteached. One can also compute the inverse participation ratio
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FIG. 13. Example of IPR with imperfections as a function of

time, in the localized regime. Parameters values are the same as in FIG. .14' IPR as a function of imperfection strength n the Ioc_al-
Fig. 12, n,=8 (n;=n,+1), from bottom to topz=0, =107, & ized regime. Parameters values are the same as in Fig. 12pwith
. y M= q—''r ] — Y, - 3

-10% and £=103 Data from =0 and e=107 are =7 (solid line), n,=8 (dotted ling, n,=9 (dashed ling andn,=10
indisti]wguishable. (long-dashed ling(ny=n,+1). Averages were made over up to 10

realizations of disorder. Inset: fidelity as a function of imperfection
(IPR) é=1/3,|#(n)|*. For a wave function uniformly spread strength in the localized regime, with same parameter values and
over M states this quantity is equal td, and therefore it line codes as in the main figure. Logarithms are decimal.

also gives an estimate of the localization length. At lasan ] ] ) )
be measured directly by fitting an exponential function€éXact value wh|I(_e th.e IPR is already quite far off. Tr_ns can be
around maximal values af. understood qualitatively from the data shown in Fig. 12. In-

For an exact wave function, all three quantities give simi-deed, the effect of moderate static imperfections is to create
lar results. On a quantum computer, they may have ver{ Iarg_er and _Iarger background_ over vyr_uch the localization
different behavior with respect to imperfection strength. In-P€ak is superimposed. The IPR is sensitive to the presence of
deed, it was shown in generfl1,41 that the second mo- this background, while by its very definition the curve-fitting
ment is exponentially sensitive to the number of qubits inStratégy isolates the localization peak from the bapkgr.ound
presence of imperfections, making it a poor way to get infor-and is therefore more robu;t. The datg presented in Fig. 15
mation about transport properties. The IPR was shp#ii show that t_h|§ pegk kee_:ps its shape with relatively good ac-
to be polynomially sensitive to both number of qubits andcuracy until its final disappearance, even though a large
imperfection strength. Still, the IPR may be difficult to mea-
sure directly on a quantum computer. On the other hand, the
direct measurement ofby fitting an exponential curve on a

30 T T T

- . . n=7
coarse-grained measure of the wave function was shown ir ~ t  ____ n=8
[41] to be an effective way to extradtfrom a quantum [  _____ n'=

computation of the wave function. It is therefore interesting ——— n=10
to study the behavior of both latter quantities with respect to I
imperfections.

In Fig. 13, the time evolution of the IPR is shown for =
different values of the imperfection strength. For0, the
wave packet first spreads foxt*, and then the IPR be-
comes approximately constant and close to the localizatior 1°f
length. For larger values of, the wave packet spreads to
much larger parts of phase space, but the IPR still saturate
after some time to a value which dependssoandn,.

The average value of this saturation value is shown in Fig.
14 as a function ok for different values ofn,. Figure 15 0_7 ' _'6 : _'5 : ) : 3
shows the localization length obtained from curve fitting for log(e)
the same wave functions. For large enough values, dlfie
IPR grows very quickly, in a manner which seems exponen- FIG. 15. Localization length as a function of imperfection
tially dependent omg. The result of the curve-fitting strategy strength in the localized regime. Parameters values are the same as
is roughly similar, but shows an intermediate regiif®&® in Fig. 12, with averages made over up to 10 realizations of disor-
~ 10 for our data where it is still reasonably close to the der. Logarithm is decimal.
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chunk of its amplitude has been transfered elsewhere by im- 4 T T -
perfections. The inset of Fig. 14 shows the fidelity of the +

same wave function (t) =|(y(t) | ,.(t))|?> where|y(t)) is the

exact wave function anfif,(t)) the one in presence of im- 427 T

perfection$. It is interesting to note that the localization
length and IPR can be quite well reproduced even for values

of & where the fidelity is already quite low. —44r S§ 1
A more precise analysis can be developed from the effeciv
of imperfections on the eigenstates of the unperturbed evo= it

lution operatorU in Eq. (4). These eigenstatdg;,) can be +
written as a sum over momentum stales, which coincide
with quantum register states of the quantum computer wher

. . -48 .
the system is in momentum representation:
Ny
— m _5 L L 1
|‘/’a> zl Ca |m> ) © 3.6 3.7 3.8 3.9 4

. : . . log(n;n,")

In the localized regime, the eigenstatég) are localized
with localization lengthl; therefore, thecy are significant FIG. 16. Critical value ofs (error strength as a function of
only for ~| values ofm, with an average value of 1J. parameters foK=2, L=27, with other parameter values the same
Using perturbation theory, one can estimate the typical maas in Fig. 12.e. is defined by a saturation value of IPR twice the
trix element of the imperfection Hamiltoniaf6) between unperturbed value. Averages were made with up to 10 realizations

eigenstates. For the first term of ), this gives of disorder. Solid line is the formuléll). Logarithms are decimal.

-~ threshold for the transition to quantum chaos presented for a
Viyp~ <¢b|21 G0i Tgng|¢a> quantum computer not running an algorithm[85].
= When perturbation theory breaks down, it is usually ex-
pected from earlier works on quantum many-body physics
(100 [35,47 that the system enters a Breit-Wigner regime where
the local density of states is a Lorentzian of half-width
~ 2m|Vyy?/ A, according to the Fermi golden rule. This im-

~ Tl

Ny ng
> cgep(n> goflm)
i=1

mn=1

whereNy=2" is the dimension of Hilbert space on whith 4
acts,r, is the time for one gate, and the term duetgn Eq. pllithhatlt/ill\le 'PhR growsl "kT/A n~ &My g?\ll\l WherehA
(6) is not taken into account since it can be eliminated easily, H i 'Sbt e‘l’hmean eve sp}acn(%i ) Hsgcet r(?re
This estimate(10) is an approximation, since the action of ~ is an ancilla qubit This is not confirmed by the data shown

. .o~ . . n Fig. 17, which suggest that the IPR scales likeThis
Eq. (6) is separated from the action bfand in reality they indicates that in our system we are in a regime different from
are intertwined and do not commute. In E40), only ~I

the golden rulgBreit-Wignen regime.
neighboring quantum register states are coupled thraygh g « gney reg

terms of different detuning; (with random sign This term 3 . . . . . .
therefore gives on averagegy nq/ JI. The second term of
Eg. (6) in the same approximation will be the sum f An=
terms, each coupling one stdte) with another state differ- 251 on=8 i
ing by two neighboring qubitf)=|m+r). So a statei,) is ons= 1
coupled significantly only to statesy,) localized at a dis- oL Xxn=10 P
tancer in momentum fromji,). Therefore the same estimate A
applies, and overall one can estimatg,~ eng\ nq/\l

One can suppose that the IPR will become large whenc» 15 i
perturbation theory breaks down. This happens wignis o
comparable to the distance between directly coupled state 1t o A i
A.. From the arguments above, one expects that one state i ? A A
coupled to~I states so that this distance &5~ 1/l. The
threshold when IPR or localization length become large is %% [ 1
thereforeV,,~ A which corresponds to

ec~ Co/(ngVng\1), (12) g -45 -4 35 -3

. . . log(e)
whereC, is a numerical constant ang is number of gates

per iteration,n; number of qubits, and the localization FIG. 17. IPR as a function of. Parameters values are the same
length. Figure 16 is compatible with this scaling, with asin Fig. 16. Solid lines correspond to the dependeice. Loga-
Cll\l~0 3. We note that this threshold is similar to the rithms are decimal.
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Such a regime is present for large perturbation strength ir 0 '
many-body systems. It is indeed known that for large enough
values of the couplings, the system leaves the golden rule
regime and enters a new regime where the local density o
states is a Gaussian of width given by the variaoc&he
variance can be approximated b?sz#thsz 2nng. In
this regime the IPR is given by/A,~engvngN, which is
consistent with data from Figs. 14 and 17. This regime is
known to supersede the golden rule regimelfor o, which
should therefore be the case for our system. This implies tha
the relevant time scale for the system to remain close to the
exact one is 14. For the largest values of,, the data in Fig. -30
17 show some departure from this law, which may be due
simply to statistical fluctuationghe averaging is made over
more instances for smaller,) or a shift toward the golden 40 , ,
rule regime for largen,. -400 -200 0 200 400

The scaling laws obtained in this regime show that for n
£ <&, With & given by Eq.(11), the system is still localized FIG. 18. (Color onling Example of wave function in the par-
in presence of imperfection;, and the Iocaliz_atic_)n length iﬁially delocalized regime. Her&=2, L=5, #i/(2m)=(13-\5)/82
close to the exact one. In this case, the localization length ig,ctyal value is the nearest fraction with denominatby, anitial
correct for very long times, much longer than for examplesate is|y)=|0), after 100 iterations using240 slices per itera-
the fidelity decay time. For larger, the system with imper-  tion, n, =8 (n,=n, +1), from bottom to tops=0 (black, solid ling,
fections is delocalized. We still expect it to be close to thez=10"7 (red, dashed line and =103 (green, solid ling In the
exact one up to a time—l/a~1/(8ng\5nq). center, the first two curves are superposed and indistinguishable.

Logarithm is decimal.

§ |

—10 ]

C. Partially delocalized regime can be found by subtracting the localized part. Even though

For larger values oK at L fixed, the system enters a the plateau ha;_ not yet reached its final distributio_n, its inte-
partially delocalized region. In this regime, there is a coex-grated probability is related to the number of eigenstates
istence of localized and delocalized eigenstates. An initiaWhich are delocalized at these parameter values. This infor-
wave packet will have significant projections on all delocal-mation enables us to monitor the transition precisely for dif-
ized eigenstates but only on neighboring localized eigenfe_rent values oK andL, nontr|\_/|al mformatlo_n as seen from
states. After a certain number of time steficks) the part Fig. 3 The number of operations for clas_S|ce}I and quantum
corresponding to delocalized states will spread in all the sys@lgorithms are the same as for the localization length, and
tem, while the localized part will remain close to the initial therefore the same polynomial gain can be expected. Another
position. Figure 18 shows an example of a wave packet iniduantity which can be readily obtained is the quantum diffu-
tially at n=0 after 100 iterations in this regime, displaying an Sion constant. Indeed, away from the liKe-L, it is known
exponential peak corresponding to localization superimposetiat & quantum wave packet initially localized in momentum
on a plateau which spreads with time to larger and largeWill spread anomalouslyballistically) with the law (n(t))
momentum. It is known that the spreading of the wave™~ D,t%. Classically, estimating the diffusion constant requires
packet in this regiméfor large enough timeis ballistic away ~ one to simulate the system until some titieThis requires
from the lineK=L and diffusive on this line. one to evolve~t* quantum states until the time&, making

In this regime, as above a coarse-grained measuremefite total number of operatior (t*)% On a quantum com-
can give the localized part with moderate accuracy, thus erputer, one time step requires a logarithmic number of opera-
abling one to compute the localization length. As in the pretions, so the total number of operations-i¢* (t* iterations
ceding part, the gain over classical computation will be poly-followed by a constant number of coarse-grained measure-
nomial. As concerns the delocalized part of the wavementy, a quadratic gain compared to the classical algorithm.
function, it seems at first sight that getting information on it Close to the lineK=L, the quantum diffusion becomes nor-
is difficult, since it takes very long time to reach its satura-mal with the law(n?(t)) =~ Dt. In this regime, the same com-
tion distribution (it has to spread diffusively or ballistically putation gives a number of operation(t*)%? classically
through the whole systemand this distribution itself is compared to~t* for the quantum algorithm, with still a
spread over the exponentially large system. Still, after a timgolynomial gain. Such computations can give quite interest-
large enough for the wave packet to spread beyond the Idng results, in particular to specify precisely which kind of
calization length, the structure of the wave function can beliffusion is present in the vicinity of the link=L, a ques-
seen very clearly from coarse-grained measurements whosien which is not definitively settled.
number is on the order of the localization length. Once such Effects of different strengths of imperfections can be seen
a coarse-grained measurement has been performed and iheFig. 18. For moderate values ef a flat background of
localization length found by fitting an exponential function larger and larger amplitude is created by the imperfections.
around the maximum, the relative importance of the plateawWhen this background reaches the values of the plateau due
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FIG. 19. Example of IPR in presence of imperfections as a

function of time in the transition regime. Her&=4, L=5,

h/(Zw)=(13—\s“§)/82 (actual value is the nearest fraction with de-

nominator 2r), initial state is|)=|0) with 2 40 slices per itera-
tion, n,=8 (ng=n,+1), from bottom to tope=0, 6=10"", =10,
ande=10"3. Data frome=0 ands=10" are indistinguishable.
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FIG. 20. Critical value ofe (error strength as a function of
parameters foK=10, L=27 with other parameter values the same
as in Fig. 18.¢. is defined by a saturation value of IPR twice the
unperturbed value. Averages were made with up to 10 realizations
of disorder. Solid line is the formulél2). Logarithms are decimal.

to delocalized states, information on these delocalized states €NgVNg/ VN with BNy, other eigenstates. This will be the

is lost, but the localized peak remains umtils large enough

dominant effect, since these couplings lead perturbation

to destroy it. This is visible also in Fig. 19 which displays the theory to break down much earlier than for the purely local-
time evolution of a wave function in this transition region. ized system. Indeed/y,, is comparable to the distance be-
The data for: =0 show the spreading of the wave packet dugtween directly_coupled statea.~1/Ny~1/N (since N

to delocalized eigenstates; the IPR does not reach the dimefi2Nn) for engvng/ VN~ 1/N, which corresponds to

sion of Hilbert space since part of the amplitude does not
spread due to localized states. For intermediate values of

gc = Col(ng\ngVN), (12)

the spreading concerns more and more of the total amplitude,

increasing the IPR, until a large enough value @ reached
and the wave function is completely delocalized.

In this regime, the analysis of the preceding sectio

should be modified. Indeed, a certain fractigrof the Flo-

quet eigenstatel),) of U (unperturbedlin Eq. (4) are not
localized. For these delocalized states, dli®f Eq. (9) have
small nonzero values-1/YNy for all m. The estimation
Viyp™~ sng\s’nq/\fl for the typical matrix element of the imper-
fection Hamiltonian(6) between eigenstatdss,) and | )
remains correct only ify,) and|,) are both localized.

If |4 and |y, are both delocalized, one ha§~cj

~1/\5N—H in Eq. (10) for most m,n. This implies that the
quantities SyH,cl'cl, previously of order 14l, becomes
~1/yYNy (sum of Ny terms of order~1/Ny with random

signsg. This modifies the estimate fov,,; with the same

reasoning as in the localized case, one h¥g,
~ engVng/ VNy.
If one of the stateg),) and|) is localized and the other

one delocalized, theB}H, clcf is the sum of terms of order

~1/(\1\YNy) with random signs, which is of order1/VNy.

This gives the same estimateyp~eng\s’nq/\fNH for the ma-

trix element as if both states were delocalized.
Therefore, if a proportiorB of the unperturbed Floquet

whereC, is a numerical constanty the number of gates per
iteration,n, the number of qubits, and=2" the dimension

rof the Hilbert space of the quantum computer. Figure 20 is

compatible with this scaling, witl,~7.4.

In this regime, the critical interaction strength drops there-
fore exponentiallywith the number of qubits, in sharp con-
trast with the localized regime. This effect has been noted for
a different system if43] and is similar to the enhancement
of weak interaction in heavy nucldi44]. The physical
mechanism is that the much smaller coupling term between
states is compensated by the even smaller distance in energy
between coupled states. This result implies that even for
moderate number of qubits, a small interaction strength is
enough to modify enormously the long-time behavior of the
system: saturation values of the IPR are very much affected
by the perturbation, much more so than in the localized re-
gime. However, for short time the behavior of the system
should be close to the unperturbed one, implying that the
measures suggested to get interesting information, such as
relative size of the plateau and diffusion constants can still be
accessible.

Figure 21 shows examples of the growth of the IPR as a
function of K and imperfection strength. In the partially de-
localized zone, the figure shows a growth of the IPR wWith

eigenstates are delocalized, both localized and delocalizesthich is strongly affected by imperfections. An interesting

eigenstates will have matrix elements of ord&,

quantity is the value of the transition point between localized
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FIG. 21. IPR in presence of imperfections as a functioi of
the transition regime. Her&=27, #/(2m)=(13-5)/82 (actual FIG. 22. Shift of the transition point due to imperfections as a
value is the nearest fraction with denominatdr)2initial state is  function of imperfection strength ang,. Parameters values are the
[40)=|0), IPR is shown after 100 iterations using<20 slices per ~same as in Fig. 21, with averages made over up to 10 realizations of
iteration, andn,=8 (nq=n;+1), with averages made over 10 real- disorder. Solid line corresponds to the dependeki€g engyVngN.
izations of disorder. Logarithms are decimal.

and delocalized states. In systems such as the Anderson
model investigated ii30], the transition point is well de-
fined, since all states are localized or delocalized on one sid€g, ", = : o .
of the transition. In the case of the kicked Harper model therg\’hICh |mperfect|.ons destroy the I_o.callzatllon properties OT the
is some arbitrariness in the definition. We chose as transitiogyStem- In particular, the transition point is exponentially
point the valueK, (at L fixed) for which the IPR isN,/4 sensitive to the number of qubits. This sharp difference be-

=N/8 (even for a totally delocalized state, the IPR is actuallytween localized and delocalized regime can be easily seen on
often Niy/2=N/4 instead ofN,; due to fluctuations In the ~ €xperiments: the long-time behavior of the system will be
partially delocalized regime, the IPR at fixédshould grow  Very different in both cases. Still, the algorithms presented
with &. If the system is in the Breit-Wignefgolden rule can be useful in delocalized regime in presence of imperfec-
regime, the IPR should grow 49 A, whereA,~ 1/N is the tions, even fore>g.. Indeed, the system ShQU_|d remain
mean level spacing anid~ 27T|Vtyp|2/Ac~82ngnQ' We there-  close to the exact one up to a timel/o~ 1/(engyng) as in

fore expect the transition point to move with imperfectionsthe localized regime, so measurability of physical quantities
asF/An~sZn2nqN. On the contrary, in the Gaussian regime,

the IPR grows likeo/ A, wherea~zi19qu. In this case the 3 T T

transition point should move asi;VngN.

Figure 22 shows the data numerically obtained for the
shift of the transition point due to imperfections. It indicates
thatAK,~ sng\s’nqN agrees with the data, Wheraa?ﬁgnqN is
a much less reasonable scaling varia@data not shown
The data therefore seem to indicate that in the partially de-
localized regime as in the localized regime, the IPR grows as%‘
engVngN, as does the shift of the transition point. This result 2
is in sharp contrast with the findings [#0] for the Anderson
transition, which was shown to scale polynomially with the
number of qubits. In our case, the presence of delocalizec
state coexisting with localized states makes the delocaliza:
tion much easier in presence of imperfections.

Figure 23 shows the scaling of the IPR as a function.of
For small values ofy, the IPR without imperfections is al- 15,5 ) Y
ready a large fraction of Hilbert space dimension, so data are log(e)
meaningful only fom, =9. Still, data shown in Fig. 23 seem
to indicate that the regime whege« ¢ is present, confirming FIG. 23. IPR as a function of for K=10, L=27 with other
that the system is in a Gaussian regime rather than in thparameter values the same as in Fig. 18. Solid lines correspond to
golden rule regime. the dependencé«xe. Logarithms are decimal.

The scaling laws obtained in this regime show that there
ng an exponentially small value; given by Eq.(12) above

On=9
xn=10
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=2" which can be efficiently built; for example, it can be the
state 2"’?S,|n), which can be obtained fron0) with n,
Hadamard gates. Once the stfigy) is realized, it can be
transformed wittm, Hadamard gates on the first register into
2725 ). We have seen that the evolution operator
U can be implemented in polflog Ny) operations by the
three strategies exposed in Sec. Ill. Therefore we can apply
AR APy powers ofU on the second register controlled by the value of
N i ~=§L"-‘{i‘l the first register. This yields 2/2%,|t)|U%g) in O(Ny) op-
e b erations, up to logarithmic factors. A QFT of the first register
will yield peaks centered at eigenvalues of the operator
) )+ . . . . . .
- 3 Thus measurement of the .f_lrst. register will give an eigen-
,‘liﬁi:! ' i, value ofU with good probability inO(N) operations includ-
g ™ ing measurement. A drawback of this approach is that peaks
have additional probabilities on nearby locations, and since
the number of eigenvalues i, measuring the precise
hf2x shape of all peaks will be inefficielO(NZ) operationg A
more precise, although slower, method is to use amplitude
amplification[46] (a method derived from the Grover algo-
rithm [3]) to zoom on a small part of the spectrum. This
enables to get the precise values of all eigenvalues in a given
will eventually rest on the comparison of this time scale withinterval. The total cost will bed(NyVN,,) operations. This
the time for the system to show the delocalization plateaumethods which uses Grover’s search on phase estimation can

On the contrary, in the localized regime for moderate levelgye seen as a process reverse to quantum coujdtfigwhere
of imperfections the localization length can be measured fobhase estimation is used on the Grover opeyator

e,
S .
Ei:gé?g;:}ﬂ(,

N

-
“HikE

FIG. 24. Eigenphases of the Harper oper&®ras a function of
# for K=L=103 n,=8.

very long times. Calculating the spectrum by direct diagonalization of a
Ny X Ny matrix such as the one of the operatbiof Eq. (4)
V. SPECTRUM: MEASUREMENT AND IMPERFECTION requires in general of the order &F, classical operations.
EFFECTS

However, in the case of the operalarof Eq. (4) there is a

Another type of physical properties which can be obtainedaster classical method similarAto the quantum phase estima-
through quantum simulation of the kicked Harper modeltion algorithm: one iteration ot) can be computed classi-
concerns the spectrum of the evolution operatbr This ~ Cally in O(Ny) operations(up to logarithmic factorsby us-
spectrum has been the focus of many stugee, e.g[23]):  Ing the classical FFT algorithm to shift betweenand ¢
it shows multifractal properties, and transport properties ~ 'epresentations and multiplying by the relevant phase in each
calized or delocalized statesre reflected in the eigenvalues, fepresentation. lterating this procels times and keeping
as well as dynamical propertiéshaotic or integrable states ~€ach intermediate wave function cost¥Ny) operations.
Additionally, for smallK=L, this spectrum will be close to Then a FFT enables to get the spectrum Wf with
the famous spectrum of the Harper mod@#lofstadter but-  O(Ny log Ny) operations. This method was advocate 48]
terfly”), which shows fractal propertigd5], as can be seen for getting the spectrum of the kicked Harper model. There-
in Fig. 24. fore it is possible to get the spectrum cIassicaIIyO(i\Iﬁ)

To get information about eigenvalues, we can use th@perations up to logarithmic factors. Thus the quantum algo-
phase estimation algorithm. This algorithm, at the heart ofithms explained abov¢O(N,) operations for one eigen-
the Shor algorithm, proceeds by transforming the statealue with unknown precisionQ(NyVNy) for all eigenval-
) into Z|t)|U'g). Then a QFT of the first register will  ues in a given small intervhlrealize a polynomial gain
give peaks at the values of the eigenphasedJoffo be compared to the classical ones. It is important to note that
efficient, this process should be applied to operatdrfor  although the number of operations needed is only polynomi-
which exponentially large iterates can be obtained in polynoally better in the quantum case, the spatial resources are ex-
mial number of operations. [j#5] it was suggested that even ponentially smallexlogarithmic number of qubits compared
if this condition is not fulfilled one can obtain approximate to the number of classical bjts
eigenvalues exponentially fast provided one starts from an The Figs. 25-27 show the spectrum of the kicked Harper
initial state|y) already close to an eigenvector. In the case amodel in presence of errors for both slice and Chebyshev
hand, we do not know how to get exponentially large iteratesnethods. The error model chosen is the static imperfection
in polynomial time or how to build a good approximation of Hamiltonian(6) as in the preceding section. The evolution
the eigenvectors without knowing them. We therefore sugoperator was computed by evolving basis states in presence
gest a third strategy, which is more generally applicable thawf errors and then diagonalizing the resulting operator. The
the ones above, but does not yield an exponential gain.  spectrum shown corresponds to smé#L, where the spec-

We first build the stat&Nt)] ), where|y) is an ar-  trum is close to the “Hofstadter butterfly,” as can be seen in
bitrary quantum state on a Hilbert space of dimendign  Fig. 24. Only 16 eigenvalues are shown. Overall phase shifts
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FIG. 25. Eigenphases of the evolution operaloof Eq. (4) as a FIG. 27. Eigenphases of the evolution operaiaof Eq. (4) as a
function of imperfection strength. The slice method is used with 2function of imperfection strength. The Chebyshev method is used; a
X100 slices to compute the operator. The 16 eigenphases closest@hebyshev polynomial of degree 6 is taken, keeping all gates. The
0 are shown. Here,=6 (nq=n,+1), h=21/25 (actual value is the 16 eigenphases closest to 0 are shown. Hgre6 (ng=n,), %
nearest fraction with denominatof)2andK=L=10"3. An overall ~ =27/25 (actual value is the nearest fraction with denominafy 2
phase factorglobal motion of eigenvalugshas been eliminated. andK=L=1073. An overall phase factofglobal motion of eigen-
Logarithm is decimal. value$ has been eliminated. Logarithm is decimal.

due to errors were eliminated since it seems reasonable the

can be estimated and compensated. It is clear from the da aobably to a perturbative regime, since small values afe

: S nvolved. For the Chebyshev method, our data indicate that a
presented that eigenvalues are much more sensitive ﬁo

strength of errors than transport properties. Numerical Iimi-oc\)’gfjr ;i\éilrg];er?r:issligl:al?jdﬁsv?%g;tgi Sg';ig]itizgg tzeggg-

tations prevented us to find the scalingnipof error effects, goo iracy. . pected,

but Figs. 26-28 show the scaling with respecistat con- tablished in Sec. Il that this method necessitates more gates

stantn ' for a similar accuracy, and each gate introduces errors. The
"

In the case of the slice method, the average error on thgcallng of errors with respect te indicates the lawAE

. ) i . . : ~eg® with a=1.3.
eigenvalue is clearly linear in. We think this corresponds

0 : : 2 . . .

= +/+ . 1t A

- +.°7
e *
7 oo
— /+/ — /”’
L e Ll -
4 2f -+ . 4 ot s .
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FIG. 26. Average errofin units of mean level spacin@f com- FIG. 28. Average errofin units of mean level spacingf com-
puted eigenphases through the slice method as a function of impeputed eigenphases through the Chebyshev method as a function of
fection strength; parameters are the same as in Fig. 25, and averagewerfection strength; parameters are the same as in Fig. 27, and
were made over all eigenvalues and over 10 realizations of disordeaverages were made over all eigenvalues. Dashed line corresponds
Dashed line corresponds XE«¢. Logarithms are decimal. to AEx 13 Logarithms are decimal.
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VI. CONCLUSION and resilient to errors than the Chebyshev method, although

In this paper, several quantum algorithms were presente@‘e latter is simila}r to the method used in classical computers
which enable to simulate the quantum kicked Harper modeil® €valuate functions. _
a complex system with relevance to certain physical prob- Our TESU”S show that interesting quantum effects such as
lems. The comparison showed that while the slice methodfactal-like spectrum, localization properties, and anomalous
and the Chebyshev method are approximate, they are mu(gﬁff_usmn are already V|_S|ble with 7-8 qub|ts._ We the_refore
more economical in resources than the exact simulation. lpelieve that such algorithms could be used in experimental
was also shown that different transport and spectral propefMPlementations in the near future.
ties can be obtained more efficiently on a quantum computer
than classically, although the gain is only polynomial. Nu-
merical simulations enabled us to precise the effect of nu-
merical errors on these algorithms and also to evaluate the We warmly thank Dima Shepelyansky for many helpful
effects of imperfections. The results show that depending osuggestions in the course of this work and also Andrei Po-
the regime of parameters, the same quantity can be stable oreransky and Klaus Frahm for several discussions. We thank
exponentially sensitive to imperfections. In general, in presthe IDRIS in Orsay and CalMiP in Toulouse for access to
ence of moderate amount of errors the results of the algaheir supercomputers. This work was supported in part by the
rithm can be meaningful, but a careful choice of the meaNSA and ARDA under ARO Contract No. DAAD19-01-1-
sured guantities should be done. For the different quantitie®553, by EC RTN Contract No. HPRN-CT-2000-0156, and
computed, the slice method was shown to be more efficierty project EDIQIP of the IST-FET program of the EC.
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