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Scattering off two oscillating disks: Dilute chaos
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We investigate the role of the unstable periodic orbits and their manifolds in the dynamics of a time-
dependent two-dimensional scattering system. As a prototype we use two oscillating disks on the plane with
the oscillation axes forming an ange The phase space of the system is five dimensional and it possesses a
variety of families of unstable periodic orbit®f/PO9 with intersecting manifolds. We perform numerical
experiments to probe the structure of distinct scattering functions, in one and two dimensions, near the location
of the UPOs. We find that the corresponding manifolds occur only in a very particular and localized way in the
high-dimensional phase space. As a consequence the underlying fractal structure is ubiquitous only in higher-
dimensional, e.g., two-dimensional, scattering functions. Both two-dimensional and one-dimensional scattering
functions are dominated by seemingly infinite sequences of discontinuities characterized by small values of the
magnitude of the projectile’s outgoing velocity. These peaks accumulate toward the phase-space locations of
the UPOs, with a rate which monotonically depends on the corresponding instability exponent. They represent
the intersections of the set of the initial conditions with invariant sets of larger dimensionality embedded in the
phase space of the system, which are not directly related with the UPOs. We adopt the term “dilute chaos” to
characterize these phenomenological aspects of the scattering dynamics.

DOI: 10.1103/PhysRevE.70.056215 PACS nuni®)er05.45.Jn, 05.45.Pq

I. INTRODUCTION not true[12]. If the scattering functions present a finite num-

Since the dawn of modern Hamiltonian classical mechanP€r ©f singularities the scattering is considered as regular.

ics a lot of work has been devoted to the study of the non- MoVving on to systems with higher-dimensional phase
linear dynamics of low-dimensional systefi§. Among an ~ SPace, the extension of the definition and properties of cha-

impressive number of interesting questions considered b tic S‘iatte”r.‘g IS tr;]ot stralgkgtfotrwa(rjdl. :[I'h_e ro:]e of the UPOYS ;S't
many authors, the role of time dependence of the interactio SSS (k:)ggrr{ er?g@n tega;ng%/he? iﬂ\?arlielljn? gbpec?:erﬁgacgkiste i'nl
potentials was also investigated. Time dependence increas ) Y

. ) . . ase space with manifolds possessing sufficiently large di-
the dimension of the phase space by destroying typically th ensions to affect and explain the structure of the scattering

energy conservation: For bou_nd systems, even fpr one degr?ﬁwctions[w—lq. In particular, we mention the occurrence
of freedom(DOF), this leads in general to chaotic behavior o yate5(16). Their manifolds are invariant objects that de-
expressed through the appearance of exponential sensitivijhe poundaries in phase space, just in the same way as sepa-
to the initial conditiong2—4]. For open systems the influence ratrices do. The implications of such an object on scattering
of time dependence of the scattering potential has been egynamics has been studied recently in a three-DOF system,
sentially considered only in one DOF periodically kicked consisting of three atoms on a plane interacting with pairwise
Hamiltonian systemégyielding a two-DOF map mainly due  Morse potential§16]. The gate for this system corresponds
to the difficulties caused by the increase of the dimensionalto a specific configuration, namely, one atom resting with
ity of the phase spacfb,6]. A detailed comprehension of zero velocity infinitely far away from the other two; hence,
scattering processes has been achieved for time-independéhé gate manifold is of codimension 1 in the energy surface.
systems of two DOFs; in this case, the effective phase space The collective effect of the UPOs and their manifolds on
is three dimensional. In these systems, chaotic scatterintiie gate and the gate manifolds in a multidimensional scat-
manifests through the existence of homoclinic and heterotering system remains largely an unsolved problem. The mo-
clinic intersections of the manifolds of the unstable periodictivation of this work is to examine this effect when the mul-
orbits (UPOg, yielding a fractal arrangement of singularities tidimensionality of the phase space is caused by the time
in the scattering functiong—11]. Notice that the converse is dependence of the scattering potential. In particular, we ad-
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dress this problem for a system with two oscillating hard Yy
disks as scatterers. Planar scattering off hard disks represents
a prototype of low-dimensional open systems. When the hard
potential is time independent, the system has two DOFs and

-----------

the effective phase space is three dimensional. For one or EANE I N

two disks the scattering process is regular due to the presence { A, ": i A i

of an additional integral of motion; the corresponding scat- ( A !

tering functions show a smooth behavjai]. For three non- A8 N N eAL X
collinear disks there is no other integral besides the energy PGS x4

and the situation changes dramatically: The scattering func- ! \

tions possess a widely fluctuating form with singularities on ‘

a fractal sef18,19. N
Introducing time dependence, in particular through oscil- :

lation of the hard-disk potential, leads to a five-dimensional

phase spacex,y,uy,uy,t), where(x,y) are the coordinates

on the scattering plane arfdy,u,) the components of the

projectile’s velocity. One therefore could expect naively that

chaotic scattering should naturally appear, provided that the FIG. 1. The two oscillating disks on the plane. The solid circles

corresponding dynamics support the presence of UPOs, arigPresent the disks at their equilibrium positions, whereas the

connections among them. The situation is in fact more comdashed ones are the disks at their extremal positions. The axes of

plicated[20—23. Time dependence allows important energy°scillation are also showdotted lines.

transfer processes to take place between the target and the

projectile. These events may lead to a large decrease of the

projectile’s velocity, which manifest in the scattering func- by focusing on the role of the periodic orbits. In Sec. V we

tions as low-velocity peakd VPs) [21,22. Even in the case study the interrelation between the manifolds of the UPOs

of one oscillating disk, where no periodic orbit is present, aand the set of LVPs. In Sec. VI we quantify the self-

set of discontinuous peaks occygl]. In fact, these peaks similarity of the scattering functions. Finally in Sec. VII we

are related to the intersection of the set of initial conditionssummarize our main results.

with the stable manifold of the LVPs, or gate. For the one-

disk system the gate is defined as the set of stationary phase-

space points satisfying,=u,=0. As explained if21], this || THE TWO-DISK DRIVEN SCATTERING SYSTEM
set does not possess stable/unstable manifolds in a strict
sense, but only marginally: There are collisigmsth respect The system under consideration consists of two hard disks

to the variation of the initial conditionswith almost vanish- o infinite mass harmonically oscillating on the plane, with
ing outgoing projectile velocity, yielding a LVP. The corre- nejr axes of oscillation forming anglesand - 6, respec-
sponding scattering functions show an accumulation of disgyely, with thex axis. The position of the center of the disks

continuous LVPs towarli|=0. _ ~i=1, 2 as a function of time is given by
Due to the lack of UPOs in the one-disk system it is not

possible to explore the influence of the set of unstable peri-

odic orbits on the gate and its manifolds. For this reason we xci() = X2, + A sin(wt + &), (1)
consider the scattering off two oscillating disks with a non-

vanishing angle between their oscillation axes. This setup

allows for the presence of several families of UPOs. Weyherex, is the equilibrium position of the center of thi
perform a detailed analysis of scattering functions dependingisk, A, is its amplitude of oscillation its frequency, and
on one or two variables. We find the following among other 4. its initial phase. The potential that is felt by a particle

things. _ _ scattered by the disks can be written as
(1) The UPOs influence the structure of the manifolds of

the gate, since they are accumulation points of infinite se-
guences of LVPs. We are able to explain this in terms of a 2
simple one-dimensional model. V(X,t) = X, VO (R =[x = xci(D)])), (2)

(2) The rate of accumulation is characterized by a scaling i=1
factor determined by the stability properties of the corre-
sponding UPO.

(3) The set of LVPs, in turns, seems to separate regions ihereR; is the radius of theth disk and the limitVo—c is
phase space, and apparently controls the existence of hetefigken. For concreteness we consifig||=[|A]|=A, ¢1=¢,
clinic connections among the UPOs. =¢o, and oO=w/4. We write A;=A(cosd,sind), A,

The outline of the paper is as follow. In Sec. Il we de- =A(-cosé,sin6), x2,=(-d/2,0), andx2,=(d/2,0), with d
scribe our model system. In Sec. 1l the periodic orbits of thethe distance between the centers of the disks at their equilib-
system are determined. In Sec. IV we present our main nudum positions, as shown in Fig. 1. The positions of the cen-
merical results on the scattering functions and interpret therters of the disks as a function of time are therefore given by

056215-2



SCATTERING OFF TWO OSCILLATING DISKS.:.. PHYSICAL REVIEW E 70, 056215(2004)

I
L ettt
L [ \ e

o akin .
/ F2 \

Ol ..
I .
’ S, 9

— —-t

s

S

‘-“"\

FIG. 2. The four families of energy conserving periodic orbits.
The solid circles represent the disks at their equilibrium positions,
whereas the dashed ones represent the disks at their extremal posi-
tions. The axes of oscillation are shown as dotted lines. FIG. 3. Segments of the periodic orbits of the families F2 and

F3 penetrating the interaction region, shown as a shaded area.

_d . .
Xcilt) = <+ E * Acosdsin(wt + ¢0))' 1. Upper periodic orbits
+ (Asin g sin(wt + ¢y))] . ©) For this family, the time between successive collisions is a

i i i . multiple of the periodr=27 of the disks. Therefore, their
Here, the upper signs refer to disk 1, the lower signs to d'SIberiod is a multiple of 2 Their velocities are given by
2, andi,j are unit vectors in th&,y directions, respectively.

By choosingA as the length unit and 1/ as the time unit,
we can introduce the dimensionless variattes</A and® _d-2cosf-2R 4)

~ un
=wt. In these variables, the potential becomés 2mmn
=V,o/ (mAw?), with m the mass of the scattered particle. The

relevant parameters are theref®eR/A, d=d/A, and the Wheren=1, 2,.... These orbits reach the border of the inter-

angle . From now on we shall use dimensionless variablesction region, which is defined as the region where the par-

and omit the tilde for the sake of simplicity. ticle can interact with the disks. There is no lower limit with
In this work the values of the parameters &e5 and fespect to the magnitude of the velocity that the particle

d=15. They have been chosen such that the system exhibig§tould possess in order to be on a periodic orbit. The number
a rich dynamical behavior. of periodic orbits of this family is therefore infinite.

IIl. PERIODIC ORBITS 2. Lower periodic orbits

In general, collisions can occur with stationary and non- For these periodic orbits, the time between successive col-

stationary disks. Collisions with stationary disks, i.e., when!iSIONS is again a multiple of and their period is a multiple
the particle meets the disks at their extremal positions, corf 27- Their velocities are given by
serve the energy of the particle. Collisions with nonstation-

ary disks lead to a change in the energy of the patrticle, ex- d+2cosf-2R
cept in the case of radial collisions, i.e., when the velocity of Uy=—""——
the particle relative to the disk is radially directed.

(5

2N

wheren=1,2,...,Nnhax These orbits do enter the interaction
region, as shown in Fig. 3. Consider a particle that starts off
Collisions at the extremal positions of the disks yield nofrom a point A(see Fig. 3, with velocity u=u,i, for somen.
energy transfer, since at these positions the disks are statioti-the velocity of the particle is too small, before leaving the
ary. Hence, periodic orbits colliding at these locations condinteraction region the particle can be scattered off succes-
serve the energy. These orbits exist and appear as discresively by the same diskat point A). That is, even if the
families; they are denoted in Fig. 2 as F1, F2, F3, and F4. Fparticle has the correct velocity in order to meet the other
is the reflection symmetric image of F3 with respect toyhe disk at timenr, a sufficiently slow projectile will be scattered
axis. We will refer to them as upper, lower, and diagonalby the same disk it originated from before leaving the inter-
families, respectively. All periodic orbits within these fami- action region. Consequently, there is an upper limjt, for
lies possess the same projection onto position space, but difi; which depends on the geometric parameters of the system.
fer with respect to their momenta. The value ofn,,, is approximately obtained by

A. Periodic orbits of constant energy
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d+2cosf-2R
= - ) R= 2 tang,
0 2(VR?- 4 sirf@+ 2 cosd— R) ©
M| (d+ 2 cosf - 2R)arccosl — Ritan )
X , R<2tané.
27R(1/sin6-1)
I
This formula is derived using the assumption that the pe- 3. Diagonal periodic orbits

riodic orbit n exists if the particle emitted from point fsee In this case, the time between successive collisions is an

Fig. 3) with velocity u=u,i does not collide with the disk q4 myltiple ofr/2 and their period is a multiple af There

before exiting the collision region, which is shown as a6 wo families of such orbits, related by reflection with
shaded area in Fig. 3. A detailed derivation of these formula§espect to they axis. Their velocities are given by

as well as a deeper investigation of the dynamical behavior

in terms of the parameters will be given in a future work Va2 + 4 sirfd- 2R
[23]. The number of periodic orbits depends on how much U = Kor ) (7)

the projection of the periodic orbits onto position space over-

laps with the interaction region. When the equilibrium dis-wherek=1,3, ... ,kqax AS in the case of the lower periodic
tance of the disks is large compared to the amplitude of therbits, these orbits enter the interaction regich Fig. 3
oscillation (d>1) and their radius is smalR<1), a large and therefore there is an upper linkt,, of the accessible
number of orbits exist. values ofk. The value ofk,4 iS @approximately given by

Va2 + 4 sirf6- 2R

- , R=2tany,
o - VR? -4 sirf(0- V) + 2 cog6- V) -R ®
T | arcco$l - Rtany) (V2 + 4 sirfd - 2R)

, R<2tany,
7wR(1/cosy— 1)
[
wherey=¥+7/2-6, and again with disk 2 at the point A and its velocity is reversed.
i It then collides again with disk 1 at the same point B, but this
\If:arctar(z sin ‘9)_ (9p time it gains energy because the disk velocity is directed
upward. It then returns to the point A after time @ith

velocity uy. Our numerical results show that this orbit is
isolated in the sense that it does not appear as a member of a
family. Note that the distance AB is traversed four times with
These orbits exhibit nonradial collisions with moving two different velocities in the course of one period & the
disks as well as collisions with stationary disks. Conse-periodic orbit.
quently an exchange of energy between the disks and the The second orbit starts at a point A of the stationary disk
particle takes place. In our system locating such orbits is & with a velocityu, directed horizontally, as shown in Fig.
hard numerical task mainly because of their strong instabil4(b). It then moves horizontally until it collides with the
ity. We have found only two orbits of this kind and their stationary disk 1 at point B. It then changes its direction,
reflection symmetric counterparts with respect to yhexis.  since the collision is not radial, and collides with disk 2 at
In our study we have restricted our search to non-energypoint C. For this collision the velocity of the disk is directed
conserving orbits that exhibit one collision with a disk at itsupwards. It collides at points B and A again and then it
extremal position. collides with disk 1 at point D. For this collision the velocity
The first orbit of this kind we have located is shown sche-of the disk is directed upwards. The particle then returns to
matically in Fig. 4a). The orbit starts at a point A of the point A with the same velocity, it started with. This peri-
stationary disk 2 with a velocityiy normal to the disk. It then odic orbit has period 4
collides with disk 1 at a point B while the velocity of the disk
is directed downward. At this collision the particle loses en- C. Lyapunov exponents
ergy, and since its relative velocity is directed radially, it In the following we investigate the largest Lyapunov ex-
returns toward disk 2 following the same path. It collidesponent of the periodic orbits of the system. To do this we

B. Periodic orbits of nonconstant energy
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FIG. 5. Largest finite-time Lyapunov exponent for the upper
(squarg, lower (circles, and diagonaltriangleg orbits as a func-
tion of the period.

ity u,, of the orbit tends to zero. The periodic orbits therefore
approach the orbits for which=0 and x is constant and
lying at the border of the interaction region. These orbits
have both Lyapunov exponents equal to zero, i.e., they are
marginally unstable. We note that the value of the Lyapunov
exponent for the upper and the diagonal families is very
close.

gL
&

FIG. 4. Schematic representation of two non-energy-conserving

periodic orbits of the system. The period of the orbitanis 27 and
in (b) it is 47, wherer is the period of the oscillation of the disks.

IV. SCATTERING FUNCTIONS AND THEIR
INTERPRETATION

The extremal positions of the disks and the axes of oscillation are

indicated with the dotted lines.

integrate two orbits, one is the periodic orbit and the other i

an orbit with a slightly perturbed initial condition

X(0) =xpo(0) + €1,

u(0) =upp(0) + &5, (10

wherexpg(0),upp(0) correspond to the initial conditions of
the periodic orbit and=(g,,&,) is a small random perturba-
tion vector in phase space.

We calculate the largest finite time Lyapunov exponent a

the slope of a straight line fitted to the curverli)/|e|],

wherer(t) is the phase-space distance between the two orbits

In the numerical experiments presented below, we con-
sider and analyze the scattering functions such as the dwell
i#ime T, and the number of collisions with the disks The

ormer is defined as the time spent in the scattering region,
which is a circular region of radiuR,>R centered at the
origin that encloses the interaction regidnis equivalent to

the time of flight to a detector. Mostly, we consider one-
parameter scattering experiments; hence the scattering func-
tions are given in terms of this parameter. In the scattering
experiments of this section, the initial conditions are such
that the particles can start arbitrarily close to a certain family
of periodic orbits, and we vary only the magnitugigof the
%nitial velocity, which has a fixed direction.

A. Scattering functions probing the upper family

as a function of time. Starting close enough to the periodic
orbit (|e|=10"") we were able to integrate the orbits for
several periods, typically 15 or more. We have found that the
calculated Lyapunov exponent converges well in a time less
than four periods. The value of the calculated Lyapunov ex-
ponent as well as its convergence properties are practicallyhe initial phase of the disks i,=7/2. The initial velocity
independent of the initial position and the direction of theof the particle is directed along the positixeaxis, vy=Ugi.
perturbation vectok. Its magnitude is varied in a range where all the periodic
The Lyapunov exponents for the upper, lower, and diagoeorbits of the upper family exist. Therefore for some values of
nal families are shown in Fig. 5; in the case of the uppern, the scattered particle falls exactly onto the periodic orbits
orbits we considered the first 15 orbits. We observe that thef the upper family. We compute the dwell tinfeand the
Lyapunov exponent decreases with the period of the periodioumberN of collisions with the disks in terms of the initial
orbit. This is intuitively expected since, as— «, the veloc-  velocity ug; results of this setup are shown in Fig. 6. The

We choose as initial position of the particle

d
Xo= (—5+cosa,sin 6). (12
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FIG. 7. (@) Magnification of the region marked as A in Figai
FIG. 6. Scattering functionga) T(up) and (b) N(up) near the  (b) Magnification of the region marked as Al (a). In both cases,
upper orbits. The locations of the periodic orbits are shown as dotthe correspondingl(up) scattering function is shown as an inset.

ted vertical lines. .
Fig. 6 these peaks are relatively low due to the instability of

locations of the periodic orbits are shown as dotted verticathe corresponding UPOs and the finite resolution in the cal-
lines. culation. We also observe that at some value of the initial
The scattering functions of Fig. 6 display a rich structurevelocity, there is a prominent peak in the number of colli-
of peaks around the locations of the periodic orbits. Thesions(labeled as M1 in Fig. 6 and no peakTnThis is due
T(ug) scattering function at the vanishing, limit is domi-  to the fact that the particle shows subsequent multiple colli-
nated by a background which varies asid/This is due to  sions with one and the same disk for an initial velocity
the fact that, asl,— 0, the particle collides for the first time slightly higher than that of the disk at the instant of the first
with the disk at a position which tends to the extremal posi-collision. These scattering events leading to peaks in the
tion of the disk. Consequently the particle traverses the orbiN(Ug) and not in theT(uy) scattering functions have been
with a velocity that remains almost constant and equalfo studied in[21].
leading to a dwell time that grows as U,/ Periodic orbits A maghnification of the region marked as A in Fig.ah
correspond to true singularities in the scattering functionsshown in Fig. 7a), reveals a self-similar structure; a further
On the left of then=1 orbit, there is a prominent peak which magnification is shown in Fig.(B). The peak labeled as Lla
is labeled as L1 in Fig.@). Yet events leading to this peak in Fig. 7(a) is analogous to the peak L1, but is due to a loss
do not display a large number of collisions. Peaks of thisof energy after the second collision with a disk. The peak
kind occur when the scattered particle loses a large part of itebeled as L1b in Fig. (D) is again similar to L1 but is due to
energy after a collision with a disk; we refer to such peaks as third collision. There is a sequence of such peaks due to the
low-velocity peak$21,22. The particle then traverses a seg- first, second, .., collisions accumulating toward the periodic
ment of its orbit(until the next collision with a small veloc-  orbit. This accumulation also occurs around other UPOs of
ity and thereforel becomes large. This specific peak is duethis family.
to a loss of energy of the scattered particle after the first The region marked as B1 in Fig(&f has a structure simi-
collision with the disks. Such peaks occur for all other 1 lar to region B of Fig. Ga). It is found that the scattered
periodic orbits and are located on valugscorresponding to  particle can approach the=2 periodic orbit by starting with
smaller velocities. Asn increases the corresponding two an initial velocity in the region Bl. In the initial velocity
peaks come rapidly closer. range of Fig. 7a) other periodic orbits of higher ordercan
Peaks in the number of collisions, such as the one labelebde approached by starting with initial velocities in the re-
by P1 in Fig. 6, correspond to an exact tracing of the periodi@ions marked as Cin=3) and D1(n=4). This implies the
orbits by the scattered particle. These represent true singexistence of heteroclinic connections among tiw€l orbit
larities for both theT(uy) andN(up) scattering functions. In  and(at least then=2,3,4 periodic orbits. In the following we
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will attempt to give a qualitative interpretation of this locally
self-similar structure and understand its hierarchy.

(a)

B. One-dimensional representation

Since the interesting dynamics occurs close to the peri-
odic orbits, and since on these orbits the dynamics is truly
one dimensional in position space, it is meaningful and elu-
cidating to use the following one dimensional representation.
We consider the projection of the dynamics onto the axis of
the periodic orbit, which in the case of the upper and lower
families is thex axis. The projection of the position of the
particle onto thex axis as a function of time is then repre- ()
sented by connected linear segments onxteplane. The
corresponding projections of the disks are represented by
two curves, which in the case of the upper orbits have the
form

d
X(t) = + VRZ+ sirf(1 ¥ sinwt)2 - St cosésinwt,

(12 T

where the upper signs refer to disk 1 and the lower ones to FIG. 8. (&) One-dimensional representation of the periodic orbits
disk 2. We emphasize that the one-dimensional represent8=1 (solid line), n=2 (dashed ling and a primary LVP(dotted
tion is only approximate, and ceases to have validity wherin®)- An orbit with us>u;, is shown(dash-dotted ling (b) En-
sufficient energy is transferred to thyecomponent of the largement of a region af): periodic orbit(solid line), LVP (dotted
velocity of the particle. Yet the model elucidates scatteringine), and a full stop of the particledashed ling The dash-dotted
events that actually take place in the full two-oscillating-disk””e corrgsponds to an event where the particle encounters the disk
model. “tangentially.”
In this one-dimensional representation, gegiodic orbits
(of the upper family are represented by lines connecting theperiodic orbit collides with the disk anay=0) as the period
minima of the upper curve with the maxima of the lower of the orbit increases. In Fig(), these eventgrdered with
curve as shown in Fig.(8). Low-velocity peaksccur when decreasing initial velocify are illustrated in the one-
orbits encounter one of the disk’s curves almost tangentiallydimensional representatio(@ The periodic orbi(solid line)
The velocity after the collision is then small and such that theof velocity u;; (b) a LVP (dotted ling corresponding to a
particle can escape the interaction region without collidingcollision after which the particle has just the energy to escape
with the same disk twicg21,22. After the collision, the line  from the interaction region without colliding with a disfc)
that represents the trajectory of the particle is almost parallet full stop of the particlddashed ling of velocity 2up (this
to thex axis. event does not correspond to a LVP since the particle is still
Close to any initial velocityy; that corresponds to a peri- in the interaction region and will collide with a disk in a time
odic orbit of orderi, there is a velocity;,, that leads to a interval of the order of the period of the oscillatjor(d)
LVP immediately after the first collision. This velocity is €vent(dash-dotted linewhen the particle has a velocity,
smaller than that of the periodic orbu:(l)<ui. We refer to  €qual to the disk velocity at the point of the collision.

the associated peaks in the scattering functionpramary AUA_ft[eJ* theu f]lri\t/ilfzmrstla(;gl tt(?ea '::Sé\éallv?;e':g'g;\aelo_ﬁgfs
low-velocity peaksThe initial velocity u;,, that leads to a 0~ L=y T P ) _ e
LVP is in the range same is tI’L.Je fofuy ), Ua], [U?(l),u?,], ...,.deflned by per|o.d|F:
. orbits of higher ordefsee Fig. @a)]. This spread of the ini-
Up < Ugs < Uj(q) < Uj, tial velocity interval makes accessible a large sequence of
events after the first collision. Consequently, in the range
[Uyq),ur] of initial velocities, other LVPs can occur, which

initial velocity that leads to a full stop of the particle after the are _due to the second, third, etc., collisions. Th? initial ve-
first collision; see Fig. @). We denote by the derivative locities Fhat lead to .these peaks arg ??”Ota"iéﬁ Uya)

of the curve that describes the disk moti@mthis case th&w ~ respectively. Starting with an initial velocityu,, in
component of the disk velocityat the instant of the colli- [u*l(l),ul], the particle can follow the periodic orbit one col-
sion; thenu;=up anduss=2up. Asi increases, both; anduss  lision more, and exhibit a LVP after the second collisjeae
decrease; therefore the differenag-u,,, also decreases. Fig. qb)]. Therefore, the same spread of the velocities men-
This means that the collisions leading to a primary LVP oc-tioned above occurs also with initial velocities in the range
cur closer and closer to the extremal po{at which the [u*l(z),ul] but is due to the second collision. Since in this

whereu is the initial velocity that the particle must have in
order to collide with the disk “tangentially” and; is the
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FIG. 10. Location and hierarchical arrangement of LVPs and
events that correspond to approximate tracing of periodic ofBids
app), located betweeu*m) andu;. The sequence afy), Uy, ...
accumulating toward the periodic orhit is also shown.

LVPs, all due to the second collision, between the initial
velocitiesuz(l) and UZ(Z)- They occur when the velocity of the

particle after the first collision is such that the second colli-
sion[with the lower curve that describes the disk motion; see
Fig. 9c)] is almost tangent. The sequence of these peaks is
not infinite, since the particle can collide with the same disk
if the velocity after the first collision is small enougtb)
Approximate tracing of periodic orbits: In the same range of
initial velocities, there is also a sequence of peaks which
correspond to an approximate tracing of some periodic orbits
' of the family. They occur when the velocity of the particle
after the first collision is such that the second collision is at a
FIG. 9. (a) lllustration of the spreadiu; and Au, of velocities ~ maximum of the lower curvgsee Fig. €c)]. This sequence is
after the first collision, when the initial velocity is in the interval also not infinite: The velocity after the first collision that
[Uyq),Us] o [Ug),Up]. (b) Periodic orbitn=1 (solid line), and  corresponds to a LVP cannot be arbitrarily close to zero, i.e.,
LVPs obtained after the first collisioashed lingand the second no orbits of arbitrarily high periods can be traced.
collision (dotted ling. (c) Events with initial velocities in the inter- These events occur alternatingly with varying initial ve-
val [uy, Uy, ]. Approximate tracing of the=2 periodic orbit  |ocity u,. In Fig. 10 the hierarchy of the structure around the
(dashed ling a LVP after the second collisiofdotted ling; n=1 n=1 periodic orbit is schematically illustrated. The horizon-
periodic orbit(solid line); and events corresponding tq;, and  tal axis represents the initial velocities and the location of
Uy (dash-dotted lings LVPs is shown with vertical lines above this axis. The loca-
tion of then=1 periodic orbit as well as the events that lead
one-dimensional representation this argument holds for af @PProximate tracing of periodic orbits are shown with ver-
arbitrary number of collisions, there is an infinite sequencdic@l lines below the axis. The same description carries over
U1y, Uyz--- Of LVPs accumulating toward the periodic or- for all orbits of the upper family.

bit —u A | tati f the whole struc- In terms of the one-dimensional representation, we turn
It Uy, =t AN @najogous representation o w YChow to analyze other aspects of the scattering functions

ture is therefore contained betwelﬂi}a) andu,. This explains  (Figs. 6 and ¥ for the upper orbits. In Fig. 1&), the one-
the self-similar structure observed in Figs. 6 and 7. The samdimensional representation of the processes belonging to the
construction holds around other periodic orbits: For every peaks labeled as L1, L2, L3 of Fig. 6 is shown. These peaks
there is a sequenaa%(l), u;(z),... of LVPs due to the first, are primary LVPs due to the first collision, occurring close to
second,.. collisions accumulating towards,. the n=1,2,3 periodic orbits ini, space, respectively. Their
Starting off with initial velocities in the interval initial velocities correspond toi ), Uy, anduys respec-
[uz(l),u*l(z)] leads, after the first collision, to a velocity spread tively. The magnification shown in Fig. 7 displays the self-
Auj illustrated in Fig. @b). The following events are then similar structure betweem;, (peak L1) and u;. In that
accessible.(a) Secondary LVPs: There is a sequence ofrange, there exists a velocity which leads to a prominent
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there exists a sequence of LVPs due to the second collision
(peaks L4 and Lbas well as a structure reminiscent of that
around then=2,3, ...,n,ax periodic orbits of Fig. 6. This
occurs because these orbits can be approximately traced with
initial velocities in that range. The one-dimensional represen-
tation of the events belonging to the peaks labeled as L1a,
L4, L5 in Fig. 7@) is shown in Fig. 1{b). The magnification

in Fig. 7(b) [region Al of Fig. 7a)] reveals the self-similar
structure in the rangEu*l(z),ul] (peak Lla, and the vertical

dotted ling. The prominent LVP labeled L1b is due to the
third collision, and its initial velocity corresponds 0@(3). In
the rangdu; ), Uy ] (peak L1a and peak L3there is again
a sequence of LVPs such as L6, which are due to the third
collision, and there are approximate tracings of periodic or-
bits, such as the peak labeled P2. The one-dimensional rep-
resentation of the latter events is shown in Figicll

We recall that the preceding description of the one-
dimensional representation can only be taken over up to a
certain development level of the scattering functions of the
full planar oscillating two-disk system. Interestingly, the one-
dimensional representation described above introduces a
symbolic sequence to characterize the scattering events. We
emphasize that such symbolic dynamics requires symbols
assigned to the LVPs to fully describe the dynamics. This is,
the invariant semustalso include the LVPs.

C. Scattering functions probing the lower family

In this case, we use as initial position
d .
Xo = —E—cose,—sme . (13

The initial phase of the disks is fixed #,=37/2, and the
initial velocity is directed along the positive axis, vo=Ugi.

Its magnitude is varied in a range where periodic orbits exist;
therefore for some values af, the scattered particle falls
exactly onto the periodic orbits of the lower family.

In Fig. 12@) we presenfT(ug). Note that in this configu-
ration only two orbits of the lower family exist. Around each
periodic orbit, a rich structure is observed. In analogy to the
upper family, we notice the appearance of LVPs and the self-
similarity of the arrangement of peaks, as shown by the suc-
cessive magnifications around the 1 periodic orbit plotted
in Figs. 12b) and 12c). However, in contrast to the upper
family, our numerical results suggest that in this case a peri-
odic orbit cannot be reached or approximately traced by
starting off with initial conditions in the neighborhood of
another one. This implies that there are no heteroclinic con-
nections among different periodic orbits of this family. This
impediment is due to the fact that the periodic orbits collide

FIG. 11. One-dimensional representation of the processes negjity the disks deep inside the interaction region. In terms of

the upper family of periodic orbitga) Peaks labeled L1, L2, L3 in
Fig. 6;(b) L1a, L4, L5 of Fig. {a); and(c) L1b, L6, P2 of Fig. b).

LVP, labeled as L1a, close to thme=1 periodic orbit. As can

the one-dimensional representation, the periodic orbits occur
colliding on the minima of the lower curve and on the
maxima of the upper curvé-ig. 13. The nature of the peaks
as well as their accumulation toward the periodic orbits can

be seen from its one-dimensional representation, this peak ke explained using the same arguments as for the upper fam-
ascribed to the second collision and its initial velocity corre-ily. We turn to describe the origin of the peaks labeled in Fig.

sponds tau,,. Betweeruy ;, (peak LY anduy,, (peak L13,

12(a), using the same notation as for the upper orbits.
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. | periodic orbit and following it for one more collision. This
| corresponds to the initial velocity; , <u, and leads to the

s00] A : m—L peak labeled as Lla in Fig. (. The sequencey ), Uy ),
400 : COE e ) ... accumulates towardi; alternately: uz(l), u*1(3), ... are
’ A larger thanu, Whereasuz(z), u*1(4), ... are smaller. In Fig.

13(b), the one-dimensional representation of the trajectory
corresponding to the initial velocity, ) is shown. This al-

ternating behavior is due to the fact that the periodic orbits

\ are inverse hyperbolic; in terms of the one-dimensional rep-

— resentation the periodic orbits alternate collisions at the

minima of the lower curve and at the maxima of the upper

’ one, which describe the motion of the disks. Around the

® B LVPs of the scattering functions there is no additional struc-
300 ture, because of the important transfer of velocity to yhe

component, which favors the escape and prevents the appear-
ance of additional structures. The range of initial velocities
[u;(3), uz(l)] leads to a large spread of velocities after the first

collision, denoted adu in Fig. 13b). The latter makes two
“secondary” LVPs accessible, namely, those labeled as S1
and S2 in Fig. 1@). Their one-dimensional representation is
g shown in Fig. 18). Only two such peaks exist. This is due
to the fact that, if a trajectory starts off with an initial veloc-
10 12 ity larger than that of peak S2, it will collide with disk 2
u more than once, thus losing the possibility of colliding with
disk 1 which would yield a low velocity after the collision.
© | Similar peaks exist betwean, anduy, due to the second

collision, betweeniy 5 anduy 5 due to the fourth, and so on.

The hierarchy and the locations of the peaks described above
are shown in Fig. 14.

The structure around the=2 periodic orbit is similar.
The important difference is that there are no peaks due to the
second, third, ... collision in the ranges[uys),Uyy],
[u;(z),u;(4>], ..., respectively. This is a consequence of the
0 fact that trgjectories with initial velocities between and
1018 1020 1022 1024 1026 1028 Uy (and u,,)) are “screened” by disk 2, experiencing a
Yy second collision with disk 2. This is illustrated in Fig.(@3

Finally, we note that the structures in the region marked as
Ain Fig. 12@) are not related to periodic orbits but to the
singularity in the number of collisions located @g=0.

A similar structure of LVPs accumulating toward the
UPOs is also found in probing the diagonal family or orbits.
The structures in the scattering functions can be explained
using exactly the same arguments we used in the case of the
upper and the lower families of orbif&4].

6001 (a)

300

200

1004

200 1

1004

300+

100

FIG. 12. (a) The T(up) scattering function for the lower family;
N(up) is shown in the same range @f in the inset. The locations of
the periodic orbits are shown with dotted vertical lings. Magni-
fication of T(ug) around then=1 periodic orbit;(c) magnification of
the region marked as B i¢b).

At the valueu, of the initial velocity the particle moves
on then=1 periodic orbit leading to a singularity in tigup)
plot. Due to the finiteness of the resolution and the instability
of the orbit, _this S:in.g.ularity appears as a re]atively small D. Scattering functions near the non-energy-conserving
peak. There is an initial velocity,,,>u, for which a LVP periodic orbits
occurs after the first collision. This peak is labeled as L1 in
Fig. 12a). The one-dimensional representation of this event We consider now scattering experiments whose initial
is shown in Fig. 18). From this figure we notice that, after conditions are in the neighborhood of one of the non-energy-
the collision with the disk, the particle “penetrates” the curveconserving periodic orbits detected numerically. We choose
that describes the motion of the disk. After that collision, theas initial conditions
velocity of the particle has an importaptomponent, which
is due to the fact thal*l(l)—ul is much larger than in the case

of the upper orbit$cf. Figs. 13a) and {a)]. As for the upper X = (9 — cosf+ Rcodm+ 6),sin 0+ Rsin(7 + 90)>,
family, a similar peak can occur by starting closer to the 2
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................ Uy =14 d
* @ disk 2
104
x
54
disk 1
; % ® e N

FI*G. 13. Or;le-dimensional representatio*n of distinc*t trajectories near the periodic orbits of t[we Iower(@rﬁimnts corresponding to
Uz, Uyqy, @nduy,,. Clearly, the inequalitiesi;, <u;<Uy, hold. (b) Events corresponding toy, Uy, andu,); the spreadiu is also
indicated.(c) Secondary LVP$peaks S1 and S2 of Fig. (&8]. (d) A trajectory with initial velocity in[us, u;(l)] (dashed ling experiences
a second collision with disk 2 instead of one with disk 1. No other secondary LVPs besides tljosexast.

u = (ug cog 7 + 6p),Ug Sin(m + 6y)), (14)  cape, as shown in Fig. 1®). The absence of additional
peaks in the number of collisions in these figures indicates

_ _ . . that this orbit does not communicate with any other periodic
whlere 00__10(‘)(16111%3?:’.%_77/ is a?]d Uo tlhs Va”e(ljt zzrr((;)u;]d tge orbit of the system, i.e., there are no homoclinic or hetero-
valu€lo= L. - F1gures 15 show the resufts 1etio) an clinic connections associated with this orbit.

N(ug), and successive magnifications are shown in Fig. 16.

Remarkably, the figures display a seemingly isolated peakV. MANIFOLDS OF THE UPOS AND THE SET OF LVPS
that corresponds to the periodic orbit. Magnifications of the
scattering functions around it show that there is an accumuy,
lation of LVPs with velocities larger than that of the periodic
orbit. These peaks are due to the last collisibefore es-

In order to get a better understanding of the properties of
e manifolds of the UPOs as well as their interrelations with
the manifold of the gate invariant set of the systésat of
LVPs) we perform two further numerical investigations.

- In order to study scattering functions that explore the
o neighborhood of periodic orbits belonging to different fami-
1cal. lies, we use a scattering setup in which both the direction and
2cal. 20l 2¢0, the magnitude of the initial velocity are varied by means of
T - s 3ol the parametes. In order to construct scattering functions
LV accum. | acoum. that probe the upper and diagonal families of orbits, the mag-

nitude of the initial velocity is varied according to

Up = Uy + S(Uy — Up) (15

u

° whereuy is the velocity of a periodic orbiif ordern) of the
upper family andup is the velocity of a periodic orbitof
FIG. 14. Location and hierarchy of the LVPs accumulating to-order k) of the diagonal family. The initial velocity vector,
ward then=1 lower periodic orbit. The notation used is the same aswith respect to the axis, forms an angle, which is varied
in Fig. 10. according to

. ) u . .
Uig Ui 1 Ui )
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nonconserving periodic orbita) Time delayT as a function ofly;
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ul)
FIG. 16. Successive magnifications of tfiéuy) plot of Fig.
15@) around the periodic orbit. The location of the periodic orbit is
shown with a dotted vertical line.

lower and diagonal families. These scattering functions will
provide complementary information, as they exhibit intersec-
tions with the stable manifolds of periodic orbits of the di-
agonal and upper families.

In Figs. 17, theT(s) andN(s) scattering functions probing
then=1 upper(s=0) and thek=2 diagonal(s=1) orbits are

(b) subtraction of the time after the last collision from the time ShOWN. The structure arours=0 ands=1 consists of the
delay; and(c) N(ug). The location of the periodic orbit is shown typical accumulation of LVPs around the corresponding pe-

with a dotted vertical line.

p=sYv, (16)
whereV is given by Eq(9). Then, the initial position of the
particle is

d . :
Xo = —5+cos¢9+ Rcose,sinf—-Rsine (17

and the initial phase of the disks is fixed ¢g=/2. There-
fore, fors=0 the particle follows theth order periodic orbit
of the upper family and fos=1 it follows the kth order

riodic orbits. The peak labeled as L1 is an isolated LVP
occurring far from thek=2 diagonal periodic orbit, with a
finite sequence of secondary peaks that accumulate toward it
from the left. Such peaks have been encountered and studied
in detail in [22]. Peaks labeled as L2 and L3 are primary
LVPs located close to the periodic orbits st0 ands=1,
respectively.

The peaks irN(s), labeled as P1 and P2, correspond to
tracing of periodic orbits. More specifically, it is found that
peak P1 corresponds to tracing of kel diagonal orbit and
peak P2 to the second energy nonconserving ¢obiperiod
47) we found numerically. Therefore, the more complex line
of initial conditions used in this scattering setup intersects
the stable manifolds of periodic orbits not located=a0 and

periodic orbit of the diagonal family. In the same manner wes=1. Successive magnifications of the region around peak P2
can construct a parameter to probe scattering events near tfraarked as A in Fig. 1(&)] are shown in Fig. 18. They reveal
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FIG. 17. (a) T(s) and(b) N(s) scattering functions probing the s
n=1 upper(s=0) and thek=2 diagonal(s=1) periodic orbits.

90+ »
(c) 8

another isolated peak, implying the lack of homoclinic or 85 2 L
heteroclinic connections with this periodic orbit. The same “
structure is revealed by successive magnifications around the 80 "

regiqn B _in Fig. 17a). Thi_s is_; Cons_istent with the_r_esults PrTIT PrToYey
probing directly these periodic orbits: no heteroclinic con- - 75 :
nections involving the diagondbr non-energy-conserving

and upper periodic orbits are found. 09
Collecting our results, we have found homoclinic and het- 65
eroclinic connections between UPOs of the upper and the
lower families. Yet our numerical results show that these 601 : : :
connections occuonly between members of the same fam- 0212455 0212460  0.212465  0.212470
ily. This is interesting since there is no communication be- s
tween periodic orbits of the upper and lower families, even o ] ] )
though there are families of periodic orbite., the diagonal FIG. 18. (a) Magnification ofT(s) in the region A of Fig. 17a);

(b) magnification of the region B ofa); (c) magnification of the

orbits) that could allow this communication. _ . . .
The probing tools in the second numerical experiment aréS910" C 0f(b). The corresponding(s) scattering functions are
shown in the insets.

the two-dimensional scattering functions and the aim is to
reveal the interrelations between the manifolds of the UPOs

and those of the gate invariant set. In our system the gate

invariant set[16] consists of all the points in they plane  manifolds of the gate can be defined in a marginal sense, as
outside the interaction region such thgEu,=0, i.e., the the set of initial conditions leading to LVPs in the dwell-time
scattered particle is at rest in a region where it can at mosscattering function. These initial conditions lead to orbits
interact tangentially with the disks. Particles starting with athat, after their interaction with the disks, approach the gate
nonvanishing initial velocity outside the interaction regionas closely as possible.

cannot exit the interaction region with arbitrary small or van- A more detailed analysis of the two-dimensional scatter-
ishing outgoing velocity. Physically, this is due to the hard-ing functions and the involved structures will be given in a
wall type of the potential. Consequently orbits can only ap-future work[23]. Here we give a first record of some pre-
proach this set asymptotically, in the sense of reaching verliminary yet illuminating results. We choose as initial posi-
small but not arbitrarily small velocities. Therefore, the tion the point
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FIG. 19. (a) Outgoing velocity in terms of the componenig
anduy of the initial velocity. In the range of initial velocities, all the
periodic orbits of the upper family existb) Magnification of the
region A of (a). In this region then=1 periodic orbit of the upper u
family exists.

d
x0:<—§+cos«9,sin 9), (18

where ¢o=m/2 and the componentg, and u, of the initial
velocity are varied in a range where all periodic orbits of the
upper family exist. Such orbits exist fer,=0 andu, given
by Eqg. (4); concretely,u,=0.570 for then=1 orbit, u,
=0.285 forn=2, u,=0.142 forn=3. The final velocityu;
of the particle after its last collision with the disks is plotted
in terms ofu, andu,. The result is shown in Fig. 18).

The stable manifold of the gate, as defined above, consists
of initial conditions which leave the interaction region with a
velocity of small magnitude. It is therefore contained in the 0.784 °'736 0.7581 D760
black regions of Figs. 19. Obviously, the origin,=u,=0) x
belongs to the gate. The figure shows the existence of points g, 20, (a) Magnification of the region B of Fig. 18): (b)
belonging to the stable manifold of the gate that accumulatgyagnification of the region C a#); (c) magnification of the region
towards the origin. As was mentioned before, the set of upp of (a).
per periodic orbits also accumulates toward the origin. More-
over, the periodic orbits are also accumulation points of thdorming a small negative angle with the axig=0. This
LVPs, and thus for the stable manifold of the gate. This isstructure contains phase-space points leading to orbits with
shown in Fig. 1%), where a magnification of a region many collisions, as can be seen from Fig(éliwhere the
around then=1 periodic orbit is shown. N(uy,Uy) scattering function corresponding to Fig.(apis

As can be seen from the magnifications of Fig. 20, such ahown. In fact, for thexy of Eq. (18) these orbits approach
two-dimensional scattering function exhibits a self-similarthe diagonal UPOs and therefore we can say that this struc-
structure. Moreover, we notice in Fig. 19 a structure whichture is the intersection of the stable manifold of the diagonal
appears to be a line crossing the regions of the LVPs andrbits with theu,-u, plane. The stable manifold seems to be
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FIG. 21. (a) N(uy,uy) scattering function corresponding to the FIG. 22. (a) The value of the ratia, for the upper(square,
ur(uy, Uy) scattering function of Fig. 19(b) T(u,,u,) scattering lower (circles, and diagonaltriangleg orbits. (b) a, versus the
function corresponding to thei(u,,uy) scattering function of  Lyapunov exponents, for the same orbits.

Fig. 19.

VI. QUANTIFICATION OF THE SELF-SIMILARITY
OF THE SCATTERING FUNCTIONS
cut by the set of LVPgthe manifold of the gadein almost _ _ «
similar parts. It has been found that these parts do not com- Let us con3|d_er the way the V?'O_C't'aﬁl>’“n<z>*--~ of the
municate in the sense that the evolution of initial conditions-VPS after the first, second,. collision accumulate toward

within such a part lead to trajectories which do not leave thidh€ velocityu, of a certain periodic orbit. We have numeri-
part. The overall characteristics of the two-dimensional scatC@lly found that they approaaly, according to
tering functions are independent of the choice of the initial . . .
position x,. However the points of the apparently linear Un(a) = Un| _ [Ung) = Unl _ o [Ungy = Un|
structure can occasionally belong to the manifolds of a dif- |u;(2) - Uy - |u;<3) — Uy -
ferent family of UPOs depending on the initial positigg

For o lying between the two disks the linear set belongs t0Here, a, is a constant that depends on the specific periodic
the manifolds of the diagonal family, as already mentionedorbit. It can be showitsee Appendix Athat the set of accu-
while for x, above the disks the corresponding set belongs tenulating points u;(l),u;(z),__,, U;(w):Un has zero box-
the stable manifold of the upper family of UPOs. Finally, for counting dimension, regardless of the value of the ragidt
Xo below the disks the linear set of points belongs to thecgn also be showrsee Appendix Bthat this set has local
stable manifold of the UPOs of the lower family. mass dimension equal to 1 around the accumulation point,
After that first detection of the phase-space structures ohdependently of the specific periodic orbit in question.
the UPOs and the gate manifold, the question that arises iBherefore, we use only the valag to quantify the scaling
their impact on the time delay of the projectile inside theproperties of the structures in the scattering functions.
scattering region. Figure 24) depicts the dwell-time scatter- We have calculated the value af for several orbits. The
ing function T(uy,uy) for the x, of Eq. (18). Comparing to  results are shown in Fig. 28; a, is plotted versus the
Fig. 21(a) we can see that the set of LVPs is clearly muchLyapunov exponents in Fig. 2. It is found that the ratio
more effective on the dwell time since the regions of largea,, depends monotonically on the period of the orbit. More-
dwell time coincide with those of the LVPs, while the impact over, as can be seen from Fig.(2R the dependence af, on
of the manifolds of the UPOs is apparently less importanthe indexn of the periodic orbit in question, at least for the
probably due to their localization in phase space and/or duapper orbits, is to a good approximation a power law. The
to the large instability of the UPOs. exponent obtained from here is 1.97. It is also folrde

a,. (19

Ungi+1) ~ un|
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Fig. 22b)] that there is a monotonic relation between theplexity the term “dilute chaotic scattering:” It reflects the
stability of a periodic orbit and the accumulation propertiespresence of homoclinic/heteroclinic connections in phase
of the LVPs toward it. space and thus complicated scattering behavior depending on
a dilute subset of initial conditions, and also the existence of
dominant invariant structurgset of LVP9S which limit and
VIl. SUMMARY AND CONCLUSIONS regulate the influence of the UPOs. Responsible for the oc-
. . . . ._currence of dilute chaos is the instability of the UPOs and/or
f In this paper, we h:_:\\r/]e |nr\1/_eitl(gj§\ted the classical dynamlc_ﬁm extremely localized appearang¢knear point set on
of an open system with a high- imensional phase space, | ,Uy) plang of their stable/unstable manifolds in phase
thg presence of a tme-dependgnt zero-range potgnnal. SP&race. The occurrence of dilute chaos has also been observed
c!flcally, we studied the_ scattering off two.oscnlatlng hard using different parameter sets for the sys{@®,24. In gen-
disks on the plane, leading to a five-dimensional phase spacgyg| “as the ratial/R increases, the UPOs become more un-
We cpn5|dered a general setup_when the oscnlatlon axes Qkaple and less dense in phase space. Therefore, the set of
the disks form an anglé. Our main goal was twofoldi) to | vPs plays a more important role in the dynamics, having
determine and classify the dominant structures that charaghe same accumulation properties as those described here.
terize the scattering dynamics of the system, thereby focus- We attribute the importance of the set of LVPs in the
ing on the specific features due to the potential’s time depenscattering dynamics to the large dimensionality of phase
dence, andii) to associate these structures with invariantspace. This may be achieved by considering many degrees of
sets in phase space. In particular, we were interested in clarfreedom or by including a time-dependent potential. For con-
fying the role of unstable periodic orbits in the scatteringservative systems, the high dimensionality permits that the
dynamics of the system. energy may be shared by the different DOFs, in particular,
The main tool in our investigations was the use of one-one or more may have no energy at all. The time dependence
and two-dimensional scattering functions. As a first step, wdy itself plays an important role for the presence of LVPs.
have shown the existence of several families of unstable pdndeed, these have been observed in time-dependent two-
riodic orbits, whose manifolds may or may not display ho-DOF systems which are conservati\zb,2g. The time de-
moclinic or heteroclinic intersections depending on the spependence of the potential, as has been noted previously, al-
cific periodic orbit. It turns out that the effect of homoclinic lows certain processes to display large energy loss. Again,
and heteroclinic connections is quite difficult to detect at thecertain regions in phase space, lying outside of the interac-
level of one-dimensional but visible at the level of two- tion region, may attain very small energy. In the cases men-
dimensional scattering functions. These are dominated by thiéoned above of time-dependent systems that become conser-
presence of infinite sequences of isolated peaks that accumvative, such regions in phase space have a low
late toward the position of the UPOs and are characterized bgimensionality because of additional constraints; in this case,
a very small magnitude of the projectile’s outgoing velocity; only scattering experiments that are prepared without keep-
therefore they are referred to as low-velocity peaks, and reing the constant of motion fixed may notice th¢#b]. For
sult from a large energy loss of the particle after an inelasti¢ime-dependent systems of more than two DOFs, the set of
collision with one of the disks. Our results definitely show LVPs has a relatively large dimensionality. Thus, in general,
the importance of including the set of LVPs in any attempt toscattering experiments will detect them easily. The important
describe the scattering dynamics. They form sequences orgpeint to emphasize is that the set of LVPs defines invariant
nized in a hierarchical structure; this can be clearly appreciregions in phase space of high dimensionality, which may
ated in the time delay scattering function. Although the basidnfluence the scattering dynamics. Their manifolds may have
building blocks of this hierachical structure are always thehomoclinic and heteroclinic intersections; this may explain
invariant manifolds of the UPOs, the location and hierarchythe hierarchical structure of their accumulation toward the
of the LVPs depend on the particular details of the systemUPOs that we found. Moreover, they may display properties
We were able to identify and classify the scattering event®f marginal instability, like parabolic manifolds, as it is the
leading to the specific structure of the scattering functiongase in our system of hard-wall potentifif].
using a simplified one-dimensional model. In addition, we The above observations clearly show that the scattering
have shown a monotonic dependence of the accumulatiogituation in higher dimensions becomes qualitatively more
rate of the LVPs with respect to the stability properties of thecomplex. In particular, there are examples suggesting that the
UPO to which they accumulate. gate and its manifolds can take over the role of the UPOs in
The set of LVPs acts effectively as separatrices in thghe basic construction of the chaotic sad{l®,26,27. A
pendulum, defining boundaries in phase space. In our modehallenging question is thus to look for a setup where the
system, this set allows for homoclinic and heteroclinic inter-role of UPOs becomes more important again, and even
sections of members of the same family of periodic orbitsdominant, in the presence of the LVPs. Moreover, a precise
The stable manifolds of such periodic orbits do reach theunderstanding on how the set of LVPs defines barriers in
asymptotig(incoming region, yielding a fractal set of singu- phase space for the manifolds of the UPOs remains open.
larities in the appropriate scattering functions. However, theiQuestions of this type are left for future investigations.
density in phase space is quite low due to the large dimen-
sionality of phase space; only certain two-dimensional scat-
tering experiments detect the complexity in the system. We L.B. acknowledges financial support from Projects
propose as an appropriate description of this dynamical conNo. [IN-101603 (DGAPA-UNAM) and No. 43375-E
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In our case, the distance between two successive points is
APPENDIX A: BOX-COUNTING DIMENSION . » ‘(5>1+1 (g)i
Uyirpy — U =11 =] ==
We shall now calculate the box-counting dimension of a D ) a a

setu, as the zero of the axis of the velocities. We choose =

our box size to be=(¢/a)! wherej is an integer and is the

length of the interva[uy, u,,,]. Since the distance between . ¢
= Ungj) -

u, and uz(j) is (¢/a)l, we need one box to cover the structure 1- a
between 0 anau;(j), and additionalj—1 boxes to cover the
otherj—1 points. Therefore,

set of accumulating points. In what follows for simplicity we ((’)1( {;)

a a
(B3)

Since the density of points is analogous to the inverse of the
distance, the density of points jgu)~ 1/u. Therefore the

N(j)=1+(-1) =j. (A1) integral of Eq.(B2) diverges. In order to regularize the inte-
. ] o gral, we use a velocity* >u, to write the integral in the
The box-counting dimension is then form
. InN(e) i Inj 1 . Inj urte 4
de=-lim =—lim - = - im —=0. -
F7 20 Ine i—= In(€la))  In(€/a) j—= ] plu*,u* +e]= adU, (B4)
u*
(A2)

) _ ~which tends tou[0,e] at the limit u* —0. We will thus
Consequently the set of points has zero box-counting d'merbalculatedm as a function ofu* and then take the limit*

sion regardless of the value of the ratig — 0 if needed. Evaluating the integral of E@®4) provides

€
APPENDIX B: LOCAL MASS DIMENSION AROUND u=u, ulu*, u* +e]= |n<1 +u—*>- (B5)

Here, we calculate the local mass dimendilgyof the set

of PoiNts Upy,, Upz).-.. around the accumulation poinf, .., This yields
=Uu,. The dimensiord,, is defined as In[In(1 +e/u* )]
A= lim e =TT B6
_In(u[0,]) M o Ine (B6)
dp = lim ———, (B1)
e—0 In &

The set of points has therefore local mass dimension
whereu[0,¢e] is the mass contained in the intery@le], and  equal to 1 around the accumulation point, regardless of the
is given by value of the ratica,,.
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