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We report measurements of the early-time momentum diffusion for the atom-optical delta-kicked rotor. In
this experiment a Bose-Einstein condensate provides a source of ultracold atoms with an ultranarrow initial
momentum distribution, which is then subjected to periodic pulses(or “kicks”) using an intense far-detuned
optical standing wave. We characterize the effect of varying the effective Planck’s constant for the system,
while keeping all other parameters fixed. The observed behavior includes both quantum resonances(ballistic
energy growth) and antiresonances(re-establishment of the initial state). Our experimental results are com-
pared with theoretical predictions.
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I. INTRODUCTION

The delta-kicked rotor(DKR) is a nonlinear dynamical
system which exhibits starkly contrasting behavior in classi-
cal and quantum regimes. For example, the well-known
chaotic diffusion exhibited by the classical DKR is com-
pletely suppressed by coherence effects(dynamical localiza-
tion [1,2]) in the quantum regime. The field of quantum
chaos (see, e.g., Refs.[3,4]), which brings together the
study of classically chaotic systems and their quantum me-
chanical analogs, is relatively new, especially given the ma-
turity of the two parent fields. Indeed, most of the progress in
quantum chaos has been made only during the last quarter
century.

From an experimental point of view, the field of quantum
chaos received a major boost in the 1990s with the use of
ultracold atoms and pulsed standing-wave laser fields to re-
alize a near-ideal quantum version of the delta-kicked rotor
[5]. At the low temperatures achievable using laser cooling,
quantum behavior of the atomic particles becomes manifest,
and optical manipulation of the atoms offers unprecedented
control over the forces they experience. Furthermore, one
can identify for this system an “effective Planck’s constant,”

k–, which is directly proportional to the period of the laser
pulsing and can therefore be adjusted to, in a sense, make the
system “more” or “less” quantum mechanical.

This so-called “atom-optical kicked rotor” has since been
the subject of intense investigation by a number of experi-
mental groups in a variety of different contexts(see, e.g.,
Refs. [6–10]). These investigations have in general focused
on the long-time behavior of the system; that is, on the prop-
erties of the system after a relatively large number(at least
several tens) of kicks. For these purposes, widths of the ini-
tial momentum distributions on the order of a few photon
recoils (i.e., sp,4"kL, wherekL is the wave number of the
laser light) have sufficed, since the effects under investiga-
tion have typically not been dependent on starting from ex-
tremely precise initial states of the atomic motion. However,
for detailed investigations of early-time behavior of the
kicked rotor and of certain uniquely quantum mechanical

phenomena, it is extremely desirable, or even essential, to
have yet more control over the initial state.

While most work on the kicked rotor has concentrated on
differences between classical and quantum behavior in the
late-time regime early-time behavior was investigated by
Shepelyansky[11,12]. This work showed that significant dif-
ferences also exist ininitial diffusion rates, and the initial
quantum diffusion rate exhibits a strong dependence on the
effective Planck’s constantk–. Also this dependence can lead
to signatures in the late-time energies[9,10,13] and diffusion
rates [14,15], but for a direct study of initial rates a very
narrow initial momentum distribution is vital from the point
of view of being able to resolve small energy changes as a
function of the system parameters after just a small number
of kicks. Furthermore, more recent theoretical work[16] has
revealed that, with a very narrow initial momentum distribu-
tion, initial diffusion rates exhibit an even richer structure(as
a function ofk–) than that predicted by Shepelyansky, whose
calculations assumed broad(uniform) initial conditions.

At certain specific values ofk–—in particular, wherek– is a
rational multiple of 4p—quite remarkable phenomena can
occur in the form of so-called “quantum resonances” and
“antiresonances”[16–21]. These phenomena require particu-
lar initial momentum states which evolve in such a way that
during the free evolution period in between kicks the differ-
ent components of the state vector of the system experience
either identical phase shifts, or a phase shift that alternates in
sign from one momentum component to the next. Where the
phase factor is identical for all components, ballistic energy
growth is observed(quantum resonance). Where the phase
factor alternates in sign, the system returns identically to its
initial state after every second kick(quantum antiresonance).
With a broad initial momentum distribution such resonance
and antiresonance behavior can still be observed experimen-
tally in the atom-optical kicked rotor[9,21], but it is far less
pronounced than in the ideal case of initial momentum eigen-
states. With a dilute atomic Bose-Einstein condensate, how-
ever, it is possible to realize an initial state that is, to all
intents and purposes, a momentum eigenstate and therefore
allows a much clearer investigation of these phenomena.
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In this work, we follow the suggestion of Daley and
Parkins in Ref.[16] and investigate the early-time behavior
of the atom-optical kicked rotor using a Bose-Einstein con-
densate to provide a very narrow and precise initial momen-
tum state of the atoms. We focus on investigating the energy
as a function of kick number for specific values of effective
Planck’s constant, and our results demonstrate the behaviors
predicted theoretically. Our work complements recent ex-
perimental studies of atom-optical versions of(classically
chaotic) nonlinear dynamical systems which also make use
of extremely narrow atomic momentum distributions to pro-
vide very precise initial conditions[22,23]. Our experiment,
and in particular the quantum antiresonance phenomenon, is
also related to work on the matter-wave Talbot effect[24],
although the measurements and context differ substantially.

II. ATOM-OPTICAL KICKED ROTOR

A. Theoretical model

The basic model describing the atom-optical kicked rotor
has been described by a number of authors, and here we
briefly summarize this following the notation of Ref.[16]. A
cold atomic sample interacts with a standing wave of laser
light with frequencyvL, far detuned from resonance. The
laser is pulsed with periodT and pulse profilefstd. Due to the
large detuning, the internal atomic dynamics can be elimi-
nated and the Hamiltonian determining the motion of the
atoms can be written as

Ĥ =
p̂2

2m
−

"Veff

8
coss2kLx̂do

n=1

N

fst − nTd, s1d

wherex̂ andp̂ are the atomic position and momentum opera-
tors, respectively, andVeff=V2/d is the effective potential
strength, with V /2 the (single-beam) resonant Rabi fre-
quency andd the detuning from atomic resonance. We can
rewrite Eq.(1) as a scaled dimensionless Hamiltonian in the
form

Ĥ8 =
r̂2

2
− k cossf̂do

n=1

N

fst8 − nd, s2d

which is standard for the kicked rotor system. The position
operator is defined byf̂=2kLx̂, the momentum operatorr̂

=2kLTp̂/m, the scaled time ist8= t /T, andĤ8=s4kL
2T2/md Ĥ.

The classical stochasticity parameter(or kick strength) is
given by k=VeffvRTtp, where tp is the pulse length and
vR="kL

2 /2m is the recoil frequency. In this workfst8d is
taken to represent a square pulse, i.e.,fst8d=1 for 0, t8,a,
wherea=tp/T, in which casek=k /a. In these scaled units,

we haveff̂ , r̂g= ik–, with k–=8vRT. Thus the quantum nature

of the system is reflected by an effective Planck’s constantk–,
which changes as we adjust the pulsing periodT.

B. Early-time diffusion

In the case of thed-kicked rotor [i.e., a→0, fst8d
→dst8d] the evolution of the system can be represented by
the quantized standard map,

f̂n+1 = f̂n + r̂n, s3d

r̂n+1 = r̂n + k sinsf̂n+1d, s4d

where f̂n=f̂st8=nd and r̂n= r̂st8=nd, with the values re-
corded immediately after the kick att8=n. In this version of
the standard map, the first kick occurs att8=1.

In our experiment, an image of the atomic cloud allows us
to determine the momentum distribution and hence the ki-
netic energy after a set number of kicks. With the change in
kinetic energy between consecutive kicks we then determine
the momentum diffusion rate

Dsnd =
kr̂n

2l
2

−
kr̂n−1

2 l
2

. s5d

An analytical investigation of early-time quantum diffu-
sion rates in the DKR was made by Shepelyansky[11,12],
whose calculations assumed uniform(broad) initial position
and momentum distributions and involved the evaluation
of quantum correlation functions of the formkfsinsf̂nd ,

sinsf̂0dg+l for nø4. From a sum of such correlation func-
tions an estimate of the initial quantum diffusion rate was
obtained, which predicts(broad) peaks, or resonances, as a
function of k–. In particular, prominent peaks appear in the
diffusion rate wherek– is an integer multiple of 2p, together
with other maxima whose number and positions(with re-
spect tok–) vary with kick strengthk.

More recently, Daley and Parkins[16] re-examined the
early-time diffusion rates for very narrow initial momentum
distributions, as is appropriate to atom-optical experiments
with Bose-Einstein condensates. They find an even more
complex and interesting structure in the diffusion rates as a
function of k–, as exemplified by their result forDs2d, which
takes the form

Ds2d =
k2

4
f1 − J2sK2qde−2sr

2
cossr̄0dg

− kJ1sKqdfsr
2e−sr

2/2 cossr̄0d + r̄0e
−sr

2/2 sinsr̄0dg

+
k2

2
fJ0sKqd − J2sKqdg cossk–/2de−sr

2/2 cossr̄0d, s6d

whereKq=2k sinsk–/2d / k–, K2q=2k sinsk–d / k–, and a Gaussian
initial momentum distribution of meanr̄0 and variancesr

2 is
assumed. The ratesDs3,4,5d exhibit still more structure than
for Ds2d, but were computed numerically using wave func-
tion simulations [15,16,25] (which allow for finite pulse
widths and atomic spontaneous emission). Note that for a
broad initial momentum distributionDs2d is independent of

k– and given simply byDs2d=Ds1d=k2/4.

C. Quantum resonances and antiresonances

The phenomena of quantum resonances and antireso-

nances occur for particular values ofk– and in their “ideal-
ized” forms require very specific initial conditions. Take, for

example, an initial momentum eigenstateur0= jk–l, wherej is
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an integer. Through the kicking process, this state couples

only to eigenstatesur=s j + j8dk–l, where j8 is also an integer.

If k– is an evenmultiple of 2p, then it is straightforward to

show that expsi r̂2/2k–dus j + j8dk–l= us j + j8dk–l, i.e., during the
free evolution period in between kicks the state vector of
the system is unchanged. This leads to ballistic energy
growth (i.e., the energy depends quadratically on kick
number) and dynamical localization does not occur. This is
known as a quantum resonance and is related to the Talbot

effect in wave optics[26]. In contrast, ifk– is anoddmultiple

of 2p, then expsi r̂2/2k–dus j + j8dk–l= us j + j8dk–l if j + j8 is even,

and −us j + j8dk–l if j + j8 is odd. In this case, the system returns
identically to its initial state,ur0= jk–l, after every second
kick. This effect is known as a quantum antiresonance.

Other features(i.e., peaks or dips) appearing in the diffu-

sion rates as a function ofk– (see Fig. 2) can also be related to
behavior such as that described above. However, unlike

quantum resonances and antiresonances, thek– values for
which these features occur depend on the kick strengthk in
a nontrivial manner[16].

III. EXPERIMENT

We focus on the behavior of the energy as a function of

kick number and of the effective Planck’s constantk–. The
kick strength is fixed by keeping the laser intensity constant
and varying both the pulsing periodT (which is proportional
to the effective Planck’s constant) and pulse lengthtp, such
that the productTtp is a constant. The experiment is per-
formed with a Bose condensate of approximately 104 87Rb
atoms in theF=2, mF=2 hyperfine state. The condensate is
formed (as described in Ref.[27], but with minor modifica-
tions [28]) in a time-averaged orbiting potential trap with
harmonic oscillation frequencies ofvr /2p=71 Hz radially
and vz/2p=201 Hz axially. After radio frequency evapora-

FIG. 1. (a) Typical time-of-flight images of atomic clouds separated in momentum by 2"kL for 1 (top) to 4 (bottom) kicks. (b)

Corresponding momentum distributions. This particular case illustrates enhanced energy growth close to the quantum resonance atk–=4p.

FIG. 2. Experimental energies
(in dimensionless units) after 1
and 2 kicks,Es1d andEs2d, at the
lower kicking strength. After one
kick the energies are approxi-
mately constant as a function of

the effective Planck’s constantk–

[theory predicts Es1d=k2/4, a
constant]. For a broad initial mo-
mentum distribution, theory pre-
dicts simply that Es2d=2Es1d
=k2/2, but for a very narrow ini-
tial momentum distribution the
energyEs2d is heavily dependent

on k– and exhibits pronounced
peaks and dips. The error bars re-
flect shot-to-shot variation in the
atom number and fluctuation in
the laser intensity.
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tion to form a Bose condensate, the trap is relaxed to
vr /2p=32 Hz andvz/2p=91 Hz over a period of 200 ms.

A. Kicking

Once formed, the condensate is released from the trap and
exposed to pulsed optical standing waves after 1.7 ms of free
expansion(so that condensate mean-field effects can essen-
tially be ignored[29]). For our parameters, the momentum
full width at half maximum of the Bose condensate is 0.03
32"kL. These standing waves are generated by two counter-
propagating laser beams with parallel linear polarizations,
derived from a single beam which is detuned 1.48 GHz from
the 5S1/2, F=2→5P3/2, F8=3 transition. For a chosenk

value, the pulse period is scanned from 21.12ms sk–=4d to

the quantum resonance atT=66.38ms sk–=4pd. Conse-
quently the pulse length is varied from 1.25ms to 400 ns.
There are limitations on the precise values ofT and tp

caused by the incremental step-size values of the pulse gen-
erator. The laser detuning and intensity were chosen to give
the desired kicking strength while maintaining a negligible
spontaneous emission rates,34 s−1d. The momentum distri-
bution is determined using time-of-flight(4 ms of free ex-
pansion) and absorption imaging of the atomic sample.
When the condensate is released from the magnetic trap it
receives an(unwanted) impulse corresponding approxi-
mately to 12.5±0.5 mm/s, as determined by Bragg scatter-
ing [30]. In order to apply a standing wave which is station-
ary with respect to the condensate the frequency difference
between the two laser beams is adjusted to remove the rela-
tive motion. A double-pass acoustic-optic modulator is used
in each beam for altering its frequency and switching the
optical potential on and off.

B. Energy measurements

The kicks given to the atomic sample populate momen-
tum classes separated by 2"kL (as shown in Fig. 1). Follow-

FIG. 3. Energy versus kick
number for the lower kicking

strengthk=7.7 (a) k–=6.211, (b)

k–=10.523, and (c) k–=12.573.
Crosses are experimental data,
while the solid lines are the results
of numerical simulations withk
=7. Plot (a) illustrates antireso-

nance behavior atk–.2p, while
plot (b) demonstrates the presence
of a period-4 antiresonance close

to k–=10.5. Plot(c) illustrates en-
hanced energy growth close to the

quantum resonance atk–=4p.

FIG. 4. Energy versus kick
number for the higher kicking

strength,k=11.7 (a) k–=6.211,(b)

k–=10.992, and (c) k–=12.573.
Similar resonance type behavior is
observed in Fig. 3 as expected.
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ing the kicks, we determined the kinetic energy of the atomic
sample, which entailed counting the number of atoms in each
momentum state and multiplying by the energy of that state.
Subsequently, to obtain the average kinetic energy per atom
this energy value was divided bys2"kLd2 and the total num-
ber of atoms, and then multiplied bymk–2 (wherem is the
mass of the rubidium atom). This gave us an overall average
energy in dimensionless units,E=kr2l /2.

IV. EXPERIMENTAL RESULTS

We begin by highlighting the rich initial diffusion behav-
ior of our kicked rotor system with experimental data for the
energy after one and two kicks,Es1d andEs2d, as a function
of the effective Planck’s constantk–, for a fixed value of the
kicking strengthk. These data, plotted in Fig. 2, confirm the
prediction of Ref.[16] of a uniform value forDs1d=Es1d

−Es0d, but a strong dependence ofDs2d=Es2d−Es1d on k–,
given a sufficiently narrow initial momentum distribution.
Similar behavior is obtained for the higher kicking strength,
as we shall see later.

The energy after one kick is given theoretically byEs1d
=k2/4, which allows us to infer a valuek=7.7±0.6
s11.7±2d from the experimental data for the lower(higher)
kicking strength. These values are consistent with those cal-
culated from the laser intensity, detuning, and pulse details.
Note that for the one-kick data the duration of the kicking
pulse was chosen for eachk– value to match that used for
sequences of two or more kicks, so the one-kick energies do
in fact correspond to different experimental conditions. How-
ever, in dimensionless units the energy after one kick
skr1

2l /2d is predicted to be constant as a function ofk–.
Before continuing, we note that a related experiment in

which a released Bose-Einstein condensate of sodium atoms

FIG. 5. Numerical simulations
of energy as a function of kick

number for (a) k–=6.211 and(b)

k–=12.573, with k=7 and p̄0=0
(solid), p̄0=0.1"kL (dashed), and
p̄0=0.15"kL (dot-dashed). The
quantum antiresonance and reso-
nance phenomena are clearly very
sensitive to the initial mean mo-
mentum of the atomic cloud.

FIG. 6. Theoretical predictions
using Eq.(6) for the energy after 2
kicks, Es2d, versus effective

Planck’s constantk–, for k=7 and
p̄0=0 (solid), p̄0=0.25"kL

(dashed), and p̄0=0.5"kL (dot-
dashed). These results further il-
lustrate the sensitivity of the en-
ergy growth rate to the initial
mean momentum of the atomic
cloud, particularly at the quantum

resonancesk–=4pd.
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was subjected to a sequence of two standing-wave laser
pulses separated by a varying time delay was recently re-
ported by Denget al. [24]. While effects related to those
displayed above could be inferred from their results, their
work was not set in the context of the quantum kicked
rotor—if one does so, then the experiment they performed

corresponds to varyingk– and k simultaneously(since both
parameters are proportional to the kicking periodT, and the
laser intensity andtp were fixed for their measurements).

A. Energy versus kick number

The energy as a function of kick number exhibits a com-
plex variety of behaviors as the effective Planck’s constant is
varied (for fixed k). Examples are plotted in Figs. 3 and 4,
where experimental energies for up to four kicks are shown.
Close tok–=2p [Figs. 3(a) and 4(a)] one observes the anti-
resonance phenomenon described earlier, in which the sys-
tem returns(approximately) to its initial state after every
second kick—this manifests itself as an oscillation in the
energy. In contrast, neark–=4p [Figs. 3(c) and 4(c)] one sees
a continual growth in the energy as a consequence of the
phenomenon of quantum resonance. For the lower kicking
strength, we also observe behavior suggesting a period-4 an-
tiresonance close tok–=10.5 [Fig. 3(b)]. Numerical simula-
tions confirm this behavior, fork=7, at a value ofk– in this
vicinity. For the larger kicking strength similar behavior oc-
curs to a certain extent, but is most pronounced at slightly
larger values ofk–. Unfortunately, falling signal-to-noise and
the effects of a finite initial mean momentum means that it is
very difficult to extract useful energy values beyond about
four kicks and hence to rigorously confirm this higher-order
behavior(at least with the experimental setup that was used).

Also plotted in Figs. 3 and 4 are the results of numerical
simulations for the appropriate values ofk– and a, and for
k=7.0 andk=11.7, respectively. Quantitative agreement be-
tween theory and experiment is reasonably good, but notable
deviations appear after several kicks for the antiresonance
and resonance atk–.2p and 4p, respectively. We believe
that these deviations are due partly to fluctuations in the
initial mean momentum of the atomic cloud relative to the
laser standing wave. Inspection of the images of the kicked
atomic clouds reveals that the position of the “zero momen-
tum” peak can fluctuate from shot to shot by an amount of up
to a few tenths of an atomic recoil. This was confirmed by
Bragg scattering measurements[30] and is associated with
the precise details of the switching off of the time-averaged
orbiting potential trap used to confine the initial Bose-
Einstein condensate. As shown in Ref.[16], the quantum
antiresonance and resonance phenomena are particularly sen-
sitive to any nonzero initial mean momentum of the atomic

ensemble. In Fig. 5 we demonstrate this sensitivity with
simulations for the parameters associated with Figs. 3(a) and
3(c) but now for initial mean momentap̄0=0.1"kL and p̄0
=0.15"kL. The width of the initial momentum distribution is
the same as in the experiment. As shown, with a finite value
of p̄0, one finds behavior more consistent with the experi-
mental data.

The sensitivity of the energy to the initial mean momen-
tum of the atomic cloud adds an extra variable to the prob-
lem, over which we at present have little control. To further
emphasize the dependence of the energy on the initial mean
momentum, in Fig. 6 we plot the energy after two kicks,
Es2d, using the theoretical result of Eq.(6) for several values
of the initial mean momentump̄0. This plot highlights the
extreme sensitivity to initial motion of the quantum reso-
nance atk–=4p, which in fact changes to anantiresonance
when p̄0=0.5"kL. It follows that, in order to see resonance
and antiresonance behavior controllably in their clearest
forms, one requires very precise control over the initial mean
motion of the atomic cloud.

V. CONCLUSION

In summary, our results show a rich structure of reso-
nances as a function of the effective Planck’s constant and
kick number for the atom-optical kicked rotor with a narrow
initial momentum distribution. For two kicks we have shown
that the resonant behavior is more complex than those pre-
dicted by Shepelyansky for a system with a broad initial
momentum distribution. Moreover, we observed quantum
antiresonancesk–=2pd and quantum resonancesk–=4pd in the
energy as a function ofk– for different kick strengths. Com-
parison between theory and experiment showed reasonable
agreement, but by introducing an initial mean momentum to
the numerical model better agreement could be obtained.
Consequently, we have shown that the quantum features are
very sensitive to precise initial conditions. One possible
method of eliminating the initial mean momentum of the
condensate would be to perform the measurements with the
condensate still confined by the magnetic trap. One difficulty
with this is that for our apparatus, condensate micromotion
will be introduced[30]. In addition, mean field effects will
occur, although the nonlinearity associated with these pro-
vides an opportunity to investigate instability of the conden-
sate wave function[31].
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