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Nonuniversal finite-size scaling in anisotropic systems
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We study the bulk and finite-size critical behavior of thenDsymmetrice® theory with spatially anisotropic
interactions of noncubic symmetry th<4 dimensions. In such systems of a givehn) universality class,
two-scale factor universality is absent in bulk correlation functions, and finite-size scaling functions including
the Privman-Fisher scaling form of the free energy, the Binder cumulant ratio, and the Casimir amplitude are
shown to be nonuniversal. In particular it is shown that, for anisotropic confined systems, isotropy cannot be
restored by an anisotropic scale transformation.
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A basic tenet in the physics of critical phenomena is themodel has the same type of critical behavior as the ordinary
notion of a universality class. It is characterized by the di-(J’=0) Ising model. We shall show that for such systems Eq.
mensionalityd of the system and by the numbarof the  (2) must be generalized to
components of the order parameté®ee, e.g., the review

article [1].) Within a certain(d,n) universality class, the uni- d
versal quantitieqcritical exponents, amplitude ratios, and lim f(t.0 ) = O(d.n) = universal 3
scaling functiony are independent of microscopic details, t—0+ b )i[[lg( Qdn) ' ®

such as the particular type ¢finite-range or van der Waals
type) interactions or the lattice structuf2]. This implies that i) £y ) . )
a given universality class includes both spatially isotropichere&"’=&;t"" are the correlation lengths associated with
and anisotropic systems. the principal directions of the anisotropic system and where
Once the universal quantities of a universality class ar&(d,n) is the same universal quantity for both isotropic and
known the asymptotic critical behavior of very different sys- anisotropic systemgFor d=2, n=1, this is already known
tems(e.g., fluids and magnetss believed to be known com- for the Ising model with anisotropic NKANN) interactions
pletely provided that onlytwo nonuniversal amplituded,  Jx#Jy [3].) There are, in generatl+1 nonuniversal bulk
andA, are given. This property is known aso-scale factor ~amplitudess,”, ... &, A, whose ratios are also nonuniver-
universalityor hyperuniversality[1,3,4. In terms of the sin- sal. Note that there still exists a unique critical exponent
gular part of the reduced bulk free energy dengigyVksT ~ »(d,n) that is identical for isotropic and anisotropic systems

=f4(t,h) aboveT,, within the samgd, n) universality clas§6-10.
A different type of critical behavior exists in the so-called
f4(t,h) = At W(Aht 9 (1)  strongly anisotropic systemfl1-14 where not onlyampli-

tudesdepend on the spatial directions but also the critical
with W(0)=1 andt=(T-T.)/T.<1, this property can be €xponentse.g.,», andv,) depend on the direction. These

stated ag5] systems do not belong to thd,n) universality class of or-
dinary critical points and our analysis will not include such
lim f4(t,00&%=Q(d,n) = universal. (2)  types of anisotropy. o
t—0+ While Eq. (3) is a natural generalization of E¢2) we

shall call attention to the intriguing problem @hite-size
Thus the amplitudet,=(Q/A)" of the correlation length  effects in anisotropic systems. For simplicity we shall con-
&=¢&t7" at zero ordering fieldh is not an independent ampli- fine ourselves to the case of periodic boundary conditions in
tude but is universally related t4;. The validity of two-  rectangulat,; X L,X --- X Ly block geometriegincluding L¢
scale factor universality has been established by theubic geometry ande®1xL film geometry. There have
renormalization-grouRG) theory on the basis of @sotro-  been several studies of this problem in the [j&st3,15-18§
pic Hamiltonian with short-range interactions below the up-We shall only briefly comment on the more complicated case
per critical dimensiond* =4 [4] but no general proof has of anisotropic confined systems with nonperiodic boundary
been given for the anisotropic case. conditions[17,19-23.

In this paper we study the critical behavior of systems It has been hypothesizd8] that two-scale factor univer-
with a spatial anisotropy of noncubic symmetry within a sality holds not only forbulk systems but also fotonfined
given (d,n) universality class. An example is an Ising ferro- systemsexcept that the finite-size scaling functions depend
magnet with an isotropic nearest-neight@®N) coupling  on the geometry and on the boundary conditions. For ex-
J>0 and an anisotropic next-nearest-neigh@dNN) cou-  ample, for a system in a cube of volurh& with periodic
pling J’ on a simple-cubic lattice. In some rangeJofJ this  boundary conditions, the singular part of the reduced free
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energy densityf4(t,h,L) near bulkT, was predicted to have r A v d
the asymptotic scaling form for larde [5] H(ro,Uo, A;A;V; @) :f dix| R+ S e P TP
v 2 wp 2 Xy 0Xg
0L =L Nend Gl G, (4) . u0<<p2>2) )

where the functiorY,,dX,y) is universal and wher€, and  for the n-component fieldp(x). The sum runs over the com-
C, are the only nonuniversal parameters. A similar ansatponentsx, of the spatial coordinates, a=1, ... d. Thed
was made for the correlation lengghin anL%1x o cylinder X d anisotropy matrixA = (A,p) is assumed to be real, sym-
[5]. As a consequence, the amplitudfg,,d0,0) and the metric, and positive definite. This model has a critical point
Binder cumulant ratiq1,24,25 at some valuery=ro(A;Ug,A) where A is a (sharp or
smooth) cutoff in k space. In addition to the three parameters
ro, Up, and A of the standard isotropi€A=1) model, our
U= %[(fYcubJﬁf)/(ﬁzYcubJﬁyz)Z]y:o,xzo (5 ~ model hgsd(d+1)/2 nonuniversal parameters cor.1tained.in
the matrixA. Below we shall argue that the nondiagonality
of the anisotropy matriA is a generic case of real aniso-
tropic systems. For simplicity we assume a cubic volume,
V=LY 0=x,=<L, with periodic boundary conditions.
First we prove that the model defined by Ed) belongs

are predicted to be universgFor example, they should be
independent of the ratid’/J.) The scaling form(4), if ex-

tended tq realistic geometries and boundary conqmons, h% the same bulk universality class as the standard isotropic
far-reaghlng consequences for measurable quan(iies). Landau-Ginzburg-Wilson model witA =1. The characteris-
In particular the prediction of a universal character of the

Casimi litud tic properties of the matriA are described in terms of thie
asimir amplitude eigenvalues\;>0 and eigenvectors, defined byAe;=\;e.
A rotation by the orthogonal matri¥) yields the diagonal
— (V. matrix UAU~*=X with diagonal elements;. After the trans-
A=(d=D¥m(0,0 ©®  tormation of the spatial coordinates

is of interest, e.qg., for fluid27], superfluid[28], and super- X' =N"HAUX (8)
conducting[29] films. and of the field

The universality of the scaling functioné of Egs.(4) or
(6) was supposed to be valid for all systems in a given uni- @' (x') = (detA)Y4p(U™IAY%x"), 9
versality clasg1,5] including anisotropic lattice systems pro-
vided that an appropriate rescaling of the lattice spacings d
Ier}gt_h L)is pe_rforme_c[’_:?]. T_his appears to be_: consi_stent with detA =[]\ >0, (10)
existing studies of finite-size effects in anisotropic systems i1

where it was stated that isotropy can be restored asymp-
totically by an anisotropic scale transformation the Hamiltonian(7) becomes
[11,13,16,18-21,23,30
We have found that this picture of finite-size effects in H(fo.Uo, AA; V@)
anisotropic systems, though valid in special cases, is, in gen- - H' (ro, ub, A’V @) (12)
eral, not correct. In the present paper we show, for periodic
boundary conditions, that Eq&})—(6), though valid for iso- 1
tropic systems and for systems Wlth cubic symmetry in the :f ddxr<@(pr(xr)2+ (V') + u(’)((PrZ)Z) (12)
rangelL/&=<0(1) [31], are not universally valid for the an- v/ 2 2
isotropic systems of the type described aba@eey., spin
models with NN and ANNN interactions on simple-cubic With the changed four-point coupling
latticeg although these systems belong to the same univer- , 1
sality class as isotropic systems. In such anisotropic systems Up = (detA) “Uo, (13
the finite-size scaling functions depend, in general, on add
tional nonuniversal parametegapart fromC, andC,), even
after a rescaling of the lattice spacing or of the length d
Thus, in general, two-scale factor universality and isotropy v =]] L= (detA)~ Y2y, (14)
cannot be restored and the notion of a universality class is i=1
only of restricted relevance for the scaling functions of con-
fined systems. ' o ' L/ =LA12, (15)
We shall prove our claims within the (@) symmetrice?
field theory with the spatially anisotropic Hamiltonigath ~ with a transformed cutoff\’ in k’ space k’=A2Uk, and
=0) with a critical point at

i\'/vith the changednoncubig volume
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rC’)c(uC’)vA,) = rOC(A;UOIA)' (16)

The temperature variabley—ro.=ro—rj.=agt remains in-
variant under the transformati@8) and(9).

According to Eq.(12), the bulk critical behavior of the
anisotropic model H with the couplingu,, Eqg. (7), can be
calculated within the minimally renormalizegotropic bulk
theory (V' —,A’ —o) for H' with the couplingug in
2<d<4 dimensiong32], provided thau}> 0. Specifically,
the renormalized quantities of the Hamiltoniati are de-
fined as

U’ = w Tz 7 A, (17)
er=2,"¢", (18)
r=2Zro—roo (19
with Ay=I'(3-d/2)2?979%(d-2)"* and
oo = (UY?*S(e), (20)

e=4-d, whereS(e) and theZ factorsz;(u’,e) depend ore
andu’ in the same way as they depend orand u in the
standardA=1,V—x, A —x) theory[32], with an identical

fixed point valueu’ * = u*. This statement applies also to the

field-theoretic functiong,(u’) and ,/(u’) which determine
the critical exponents and ». This proves that the critical

behavior ofH andH’ belongs to the same universality class

in the whole range oA where detA >0.

Our model, Eq(7) with A # cyl, can be considered as the

continuum version of ap* lattice HamiltonianHice With
short-range interactiond; [see, e.g., Eq(50) below for a
lattice model with a single lattice constad]. Noncubic

anisotropies may arise either from a noncubic lattice strucby ~determining

ture or from noncubic interactions on a cubic lattjees an

example see Eq51) below] or from both types of anisotro-

pies. In some range & nearA = cy1 with ¢;> 0, H,ice and

H belong to the same universality class. Note, however, that

in generalr o jagice(Jij ; Up, @) 7 roc(A ; Ug, A).

PHYSICAL REVIEW E 70, 056136(2004)

G'(X";up,) = Aglx' [ (|x'|/¢) (25)

with a universal scaling functio®, a nonuniversal ampli-
tude Ag(ug, A’), and with & =&(ugt™, apart from correc-
tions to scaling. Equation®), (22), and(25) imply asymp-
totically

G(x; A, Ug) = AGINH2UX| "2 (N H2Ux|/E) - (26)

with A;=Ag(detA)"2 Thus the anisotropy does not change
the universal structure of the scalifignction ® but makes
the scalingargumentof & and the spatial behavior db
anisotropic, even right ak(A) (see alsd7-9)).

Choosing x=xe along the principal directioni,i
=1,---,d defined by the eigenvectog, we have (Ux);
:Xitsij and

Gx@;A, o) = Ag(XilIN2) 27 ([xlre"),  (27)
where
(A, up) = gt (28)

are theprincipal correlation lengthsof the anisotropic sys-
tem with the nonuniversal amplitudes

&(A,Ug) = \g5(up).

(The amplitudest) and g) may depend, in general, also on
the cutoff) Their product

(29)

d

VCOI’T(A) = H §(|)

i=1

(30)

constitutes the appropriate measure of the correlation volume
whose shape is ellipsoidal rather than spherical. This is seen
the singular partFg(t;A,up)/VksT
=f(t;A,uy) of the bulk free energy densityf
=-limy_. V*InfDge ™ of the anisotropic system. Using
Egs.(10), (11), (14), and(15) we obtain

fo(t;A,Ug) = (detA) Y2 (t;up), (31)

In order to elucidate the effect of the nondiagonality of where f (t;ug) is the singular part of the bulk free energy
the anisotropy matrixA we first discuss the bulk order- gensity f'=~lim,, ... V'"*InfD¢’e™H’ associated witH’,

parameter correlation function fdr=T,

G(X;A,Ug) = (e(X)@(0))y, (21)

where(---)y means an average with the exponential weight

e™M. Equationg8), (9), and(12) imply
G(x;A,Up) = (detA)™2G" (x";up), (22)
where
G'(x";ug) = (¢'(X) @' (0))p - (23

The second-moment bulk correlation lengtku) associated
with H’ is defined by

1 ) fddX/X/ZG/(X/;u(/)) 1/2
") = = lim . 24
¢ (o) <2d Ve SO G/ (X';U) (24

ForT=T,and|x’|/& = 0O(1) the asymptotic scaling form of

G'(x";up) reads[1,5] for [x'|> A" &> A",

Eq. (12). Together with Eq(2) for the isotropic system, Egs.
(10), (14), and(28)—<31) lead to

lim fo(t; A, up)Veor(A) = Q(d,n) = universal, (32
t—0+

which is identical with Eq(3).

From Eqs(26)—«29) we see that a complete knowledge of
the asymptotic behavior of the correlation functiénre-
quires the knowledge of thd+1 nonuniversal amplitudes
Ag and 8) and of thed(d—-1)/2 nonuniversal parameters
characterizing the directions of tldesigenvectorg,. For real
magnetic materials these quantities are unknown as they de-
pend on all microscopic details. Furthermore, real magnetic
materials may have lattice structures and anisotropic interac-
tions(e.g., ANN, ANNN, and third ANN interactionsorre-
sponding to a nondiagonal matri. It is because of the
nondiagonality ofA that both a scale transformation and a
rotation are necessary and that a simple rescaling @-
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plitudes is not sufficient. Clearly two-scale factor universal- — * o — )

ity is absent in the bulk correlation functions of such aniso- li(z;A) =f ds(47?)7Ig71P(s, A)e 294, (39
tropic systemse.g., metamagnef83]) although they belong 0

to the same universality class as isotropic systéms., flu-

ids). with

While the anisotropy does not destroy the universality of
the scaling functionb of the bulk correlation functionG (in P(s.A) = (7/9)¥2 — -m-Ams 40
the nonexponential regime/ é<0(1) [2]), a fundamental (8,A) = (fs) % © ' (40)

complication arises foconfinedsystems since, in general,
the principal directionsal_of thg intrinsic anisotropy are to- tha sum3,, runs overm=(m,, ...,my) with all integers
tally unrelated to the orientation of the surfaces of the con- — .
fining geometry(e.g., Ly X L, X --- X Ly rectangular geom- Ma=0.%1,.... For A=1,0cdX;1) =GeuveisoX) IS the
etry). This introduces a source of nonuniversality that cannoknown scaling function of the isotropic ca$a4]. For A
be absorbed only by a transformation of the lendthsf the 1, however,g.,,dX;A) is nonuniversal and depends #n
confining geometry or of the scaling argument. Within ourjn g highly complicated way via the inhomogeneaus- 0
model(7), a complete information of this source of nonuni- modes, even after having introduced the rescaled lehth
versality requires, ah=0, the knowledge ofi+d(d-1)/2  Eq.(36). The effect of these modes depends on the orienta-
=d(d+1)/2 nonuniversal paramete(sather thand param-  tion of the eigenvectors, relative to the shape of the con-
eterg. Within this model we shall show that this implies not fining geometry. In general this anisotropy effect cannot be
only the absence of two-scale factor universality but the abinferred from the knowledge of finite-size scaling functions
sence of universality itself for all finite-size scaling functions of isotropic systems of the same universality class and can-
and finite-size amplitude ratios of anisotropic systems witmot be described by a transformation of the argument
noncubic symmetryln particular, two-scale factor univer- g eiso(X) (Unlike the case for the scaling functid of the
sality and isotropy cannot be restored by an anisotropic scaléyulk correlation functiorG) or by a rescaling of..
transformation for confined systems in rectangular geom- Only in the special cases whefe=\ is diagonal at the
etries with a nondiagonal anisotropy matri. This is the  outset and where the eigenvecteysiappen to be parallel to
central general result of this paper to be demonstrated in thgie edges of the confining cube, the finite-size scaling func-
following on the basis of exact results in the largémit and  tion of the anisotropic system in a cubic geometry can be
of one-loop RG results fon=1, 2, 3. reexpressed in terms of the scaling function of iswropic
First we consider the susceptibilify (per componentof system in al; X --- X L} block geometry,Li’:L)\i‘l’z. Such
the field-theoretic mode(7) aboveT, in a finite cube with  special cases with a diagonal matfixared=2 or d=3 spin
periodic boundary conditions. In the limit— at fixeduon  models on sc cubic lattices with only NN couplings# J,

it is determined by[34] [3,13,23 or J,# J, # J, [18], respectively.
§ We note that a conclusive answer about the appropriate
X =10+ Augnl ) (k- AK) T (33)  way of rescaling the length cannot be inferred only on the
k

basis of the result of(0,L;A) at T, without further knowl-
edge. The same statement applies to the correlation length
&(0,L;A) in a L%t xee cylinder. It would always be pos-
sible to rewritey at T, in the form

with k-Ak =29 A,k ks The sumS, runs overk vectors
with componentsk,=2mm,/L,m,=0,+1,... up tosome
cutoff A. For 2<d< 4 the asymptotic form of the correlation
length ¢’ defined by Eq(24) is & =&t with

X(O.L;A) = L"Geupeisc(0) (42)

& = (dugnAgag/e) @2, (34)
. _ ~ with the amplitudeg,peiso(0) Of the isotropic system if all
For largeL> A" and small G=t<1 we find the asymptotic anjsotropy effects are formally absorbed in the length
scaling form forL'/¢ =0O(1)

— r— AN vl
XELIA) =L 7 gond LT A), Yiv=2, (35) L = L'[9cubd 0:A)/Deubeiso(0) ] (42)
with the rescaled length But after the calculation of a different physical quantityTat
' ~1/d it becomes obvious that this lengthis inappropriate as will
L'=L(detA) (36) be demonstrated in the following.
and the normalized anisotropy matrix Next we present the anisotropy effect on the finite-size
scaling function of the singular part of the reduced free en-
A= Al(detA)2d, (37) ergy density per component in the langdimit for cubic
o geometry and periodic boundary conditions. Ees A7, 0
whereg.,pdX;A) is determined implicitly by <t<1,L'/¢=0(1) we find
X472 = g2 = (4 - d) A 1(Tobe A) (39) Ft,LiA) = LY o L'1E A, (43)
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N2 (d-2A
2  2d(4-d)

+if0cd Ai2+
872, s

Whereg(x;A_\)Egcung;K) is determined implicitly by Eqgs.
(3840). The scaling functionY,,dx;A), including the

amplitudeY,,d0;A), is nonuniversal. Only on the level of a
lowest-mode(k=0) approximation in Eq(33) does the ex-

plicit dependence of.,.0n A disappear. The effect of the

Yound X A) = - [g(x;A)]92

) P(S,'K)e_y(‘lﬂ'zg) ,
g(x;A)

(44)

PHYSICAL REVIEW E 70, 056136(2004)

As seen from our results fop(t,L;A) and fy(t,L;A), a
possible ambiguity of defining a rescaled length disappears
after calculating the complete temperature dependence of the
finite-size scaling functions of the anisotropic system. At the
same time such results clarify whether or not isotropy can be
restored by a scale transformation. The exact analytic form
of our results(35) and (43) for T=T,. unambiguously an-
swers this question for cubic geometry and periodic bound-
ary conditions. An extension of our results to rectangular
Ly XLy, X -+ XLy block geometryf35] confirms our findings,
i.e., even after a rescaling of the lengthsthe finite-size
scaling functions remain nonuniversal for systems with a
nondiagonal matri.

We conclude that, for rectangular geometry and periodic

m # 0 modes cannot be described simply by a transformatiopoundary conditions, finite-size scaling functions are, in gen-

of the scaling variablex of Y pdX;1) = Yeypeiso(X) Of the
isotropic case and it deBends dd+1)/2-1 nonuniversal

parameters contained iA. [Equivalent parameters appear

already inG, Eg. (26).] This holds, of course, also for the
relevant case of general finite<c as can be showf35]
within a one-loop RG calculation for the mod€l). The

exact scaling functiorY,,,{x;A) for generaln remains un-
known even if the exact scaling functiofpeiso(X) were

given for generah and if the exact matrid were given for
a special anisotropic system.

We note that the same rescaled length Eq. (36), is
employed in the scaling argument/&’" of Y. pe @S iNQgeype
but not in the leading. " power law of Eq(43). At T=T,, it
would of course be possible to rewritgin the form

fS(O,L;A) = L™ cupeisa(0) (45)

with the amplitudeYpeiso(0) Of the isotropic system if the
anisotropy effect is formally absorbed in the length

f: L[YeundO ;'K)/Ycubeiso(o)]_l/d- (46)

This Iengthfdiﬁers, however, from the Iengtﬁ, Eq. (42),
introduced formally for the susceptibility(0,L;A).

eral,notuniversally determined only by the bulk universality
class but do depend on nonuniversal parameters in a highly
complicated way if the system is anisotropic in the sense
specified above. In particular, within our mod@)), if the
matrix A is nondiagonal, isotropy cannot be restored by a
rescaling of length$36].

We expect that this conclusion holds also for nonperiodic
boundary conditions and for nonrectangular geometries. For
example, we expect that the universality of the amplitude
of the “corner” termuL™@InL of the d=2 andd=3 free
energy density for free boundary conditionsTat[37,3§ is
not generally valid for anisotropic systems. The universality
of u was proven in[37] only for isotropic (d=2) systems
whereas iN38] it was supposed to be valid “within a given
RG universality class.” Furthermore, there have been calcu-
lations [19-21,23 of edge exponents of anisotropic spin
models in wedge geometries with free boundary conditions.
It was found that the anisotropy enters explicitly into the
exponents and that it was possible to rescale lengths aniso-
tropically to bring the problem into an isotropic form. We
expect, however, that this is, in general, not possible for the
temperature-dependent finite-size scaling functions of lattice
systems with edges whose continuum limit yields an effec-
tive Hamiltonian of the form of Eq(7) with a nondiagonal
matrix A.

01|
0.08
0.06 |

0.04

1-U(w)/U(0)

0.02

FIG. 1. Cumulant ratio 1Y(w)/U(0) vs cou-
pling ratio w=J"/(J+2J") of the field-theoretic
model, Eq.(7), in three dimensions fan=1, 2, 3
(solid, dotted, dashed lingsaccording to Egs.
(53~57).

-0.5
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We briefly extend our analysis te™ X L film geometry w0 the eigenvectors, are not parallel to the cubic axes.
with periodic boundary conditions, with being the thick-  The constant, can be absorbed in the bulk amplitugeof

ness in thedth direction. In the large limit we find &, Eq.(24), and does not appear in
sfllm(t L; A) L d[ l)dd:l d/ZYfllm |so&) (47) — L ww
Aw=1-3w?+2wd) Y w 1 w]. (52
whereYn iso iS the scaling function for thisotropic system, 1
with a transformed argumeft=L/&’, wow
T=[(A™Yqv2L (49) One of the eigenvalues oA vanishes aw.=-3, i.e., J'

=-J/4 (the two other eigenvalues vanishwat1, J' =-J).
— . 1 1 .
and wherg A1),y and (A3, are thedth diagonal elements Thusw may vary in the range ><w=; corresponding to a

. . . line of ferromagnetic critical point3.(w) terminating at a
of the inverse ofA andA, respectively{39]. In contrast with g P W) 9

e . 4 .
Eq. (4), a nonuniversal amplitude appears at blijkand the Lifshitz p(.)'mTC(Wcz of t_hecp continuum modg(?) [bUt. r_10t

N . necessarily of the" lattice model50) whose line of critical
Casimir amplitude

points T,(w) may end at a value of different from —%].
dr2 From a RG treatment of the mod@l) within the minimal
A=(d= DIA ad *Vim,so0 “9  renormalization scheme in three dimensi§8g] parallel to
is nonuniversal. The simplicity of this anisotropy effect is Previous work[46] we obtainU(w) for L—o at To(w) in
due to the one-loop structure of diagrams contributing to thé@ne-loop order fon=1 as
large limit. From finite-size theory at orde.% [40] we infer

a highly complicatedA dependence ofgg, for finite n.
Furthermore we expect that the amplitudé4] and scaling  where
functions[42] of density profiles in film geometry are non-
universal for anisotropic systems with noncubic symmetry.
More generally, our results suggest that the feature of univer-

Uw) =1 -2,V 9,(Y)]2, (53

fo ds & exp- Y2 - )

0

sality in the theory of boundary critical phenomed&—49 ﬂm&) =— (54
as well as the notion of a “surface universality class” and of f dsexp(— Iye2 - 54)
« B H : 2
(2+1)-scale factor universality[45] need to be reconsid- 0
ered for the case of anisotropic systems.
It would also be interesting to interpret finite-size effectsHere the quantlty{ depends omw throughA(w)
in percolation problems of anisotropic systeftg,22 in the
light of the results of the present paper. —_ A ~ ~ — 1 — ~ —
. . — 2 2. 4 2.
We illustrate our theory by the example of the Binder Y =—Db{ —[I“+I(l ,A)]+§+47T|[| +1,(15A)]],
cumulant ratioU for L— at T, Eq.(5). We consider ap* |
lattice model (55)
~ r with
Hattice = ad|:2 ( 20 + UO(‘P| > + E ] *
i b=1441""9,(0), (56)
(50
[2477_1/2 !*1/2192(0)]2/3, (57)

with an isotropic ferromagnetic interactiod)j=J>0 be-
tween nearest neighbors but an anisotropic |nterac.ﬂ|pn
=J’ with only six (rather than 12next-nearest neighbors in and u’"=u*=0.0412 wherel;(z; A) is given by Eq.(39).

the +<1,1,0, +-(1,0,1, and +<0,1,1 directions on a Clearly there is no way of ellmlnatlng the complicaieter-
simple-cubic lattice with a lattice constaatin a cube with  nal dependence on the anisotropy matixn Eq. (55); thus
periodic boundary conditions. It is expected that a ferromagisotropy cannot be restored by means of a scale transforma-
netic critical point exists not only fod>0, J’=0 but also tion.

for J>0,J' <0. In the continuum limi{a— 0) this model is We have also extended this result to genergﬂﬂ While
reduced to Eq(7) with the w dependence is weak for —OSAN< 5 it becomes ap-
preciable upon approaching.=-5, as shown in Fig. 1 for
1 ww n=1, 2, 3. This proves the nonumversallty ofw). Simi-
A=c)lw 1 w|, (51) larly one can derive av dependence of the Casimir ampli-
ww 1 tudeA(w) and of other scaling functions. Note, however, that

because of theonuniversal characteof U(w) and A(w),
wherew=J’/(J+2J’)s% and cy=2(J+2J)')>0. (Note that these quantities may, in principle, differ, e.g., for tfe
the matrix A is diagonal for a model with isotropic NNN =3,n=1) field-theoretic model[Eqg. (7) with the matrix
interactions. The positivity of ¢, requiresJ’>-J3/2. For  (51)], and the(d=3,n=1) Ising model(with NN and ANNN
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couplingg even if the geometries and the boundary condi-in Monte Carlo simulations ofl=2 andd=3 spin models.
tions are the same in both models.

This kind of nonuniversal finite-size effect should exist Support by NNSFC, by Max-Planck-Gesellschaft, by

near critical points of real systems and should be detectablBLR, and by NASA is acknowledged.
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