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We study the bulk and finite-size critical behavior of the Osnd symmetricw4 theory with spatially anisotropic
interactions of noncubic symmetry ind,4 dimensions. In such systems of a givensd,nd universality class,
two-scale factor universality is absent in bulk correlation functions, and finite-size scaling functions including
the Privman-Fisher scaling form of the free energy, the Binder cumulant ratio, and the Casimir amplitude are
shown to be nonuniversal. In particular it is shown that, for anisotropic confined systems, isotropy cannot be
restored by an anisotropic scale transformation.
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A basic tenet in the physics of critical phenomena is the
notion of a universality class. It is characterized by the di-
mensionalityd of the system and by the numbern of the
components of the order parameter.(See, e.g., the review
article [1].) Within a certainsd,nd universality class, the uni-
versal quantities(critical exponents, amplitude ratios, and
scaling functions) are independent of microscopic details,
such as the particular type of(finite-range or van der Waals
type) interactions or the lattice structure[2]. This implies that
a given universality class includes both spatially isotropic
and anisotropic systems.

Once the universal quantities of a universality class are
known the asymptotic critical behavior of very different sys-
tems(e.g., fluids and magnets) is believed to be known com-
pletely provided that onlytwo nonuniversal amplitudesA1
andA2 are given. This property is known astwo-scale factor
universalityor hyperuniversality[1,3,4]. In terms of the sin-
gular part of the reduced bulk free energy densityFs/VkBT
; fsst ,hd aboveTc,

fsst,hd = A1t
dnWsA2ht−bdd s1d

with Ws0d=1 and t=sT−Tcd /Tc!1, this property can be
stated as[5]

lim
t→0+

fsst,0djd = Qsd,nd = universal. s2d

Thus the amplitudej0=sQ/A1d1/d of the correlation length
j=j0t

−n at zero ordering fieldh is not an independent ampli-
tude but is universally related toA1. The validity of two-
scale factor universality has been established by the
renormalization-group(RG) theory on the basis of anisotro-
pic Hamiltonian with short-range interactions below the up-
per critical dimensiond* =4 [4] but no general proof has
been given for the anisotropic case.

In this paper we study the critical behavior of systems
with a spatial anisotropy of noncubic symmetry within a
given sd,nd universality class. An example is an Ising ferro-
magnet with an isotropic nearest-neighbor(NN) coupling
J.0 and an anisotropic next-nearest-neighbor(ANNN) cou-
pling J8 on a simple-cubic lattice. In some range ofJ8 /J this

model has the same type of critical behavior as the ordinary
sJ8=0d Ising model. We shall show that for such systems Eq.
(2) must be generalized to

lim
t→0+

fsst,0dp
i=1

d

jsid = Qsd,nd = universal, s3d

wherejsid=j0
sidt−n are the correlation lengths associated with

the principal directions of the anisotropic system and where
Qsd,nd is the same universal quantity for both isotropic and
anisotropic systems.(For d=2, n=1, this is already known
for the Ising model with anisotropic NN(ANN) interactions
JxÞJy [3].) There are, in general,d+1 nonuniversal bulk
amplitudesj0

s1d , . . . ,j0
sdd, A2 whose ratios are also nonuniver-

sal. Note that there still exists a unique critical exponent
nsd,nd that is identical for isotropic and anisotropic systems
within the samesd,nd universality class[6–10].

A different type of critical behavior exists in the so-called
stronglyanisotropic systems[11–14] where not onlyampli-
tudesdepend on the spatial directions but also the critical
exponents(e.g., ni and n') depend on the direction. These
systems do not belong to thesd,nd universality class of or-
dinary critical points and our analysis will not include such
types of anisotropy.

While Eq. (3) is a natural generalization of Eq.(2) we
shall call attention to the intriguing problem offinite-size
effects in anisotropic systems. For simplicity we shall con-
fine ourselves to the case of periodic boundary conditions in
rectangularL13L23 ¯ 3Ld block geometries(includingLd

cubic geometry and̀ d−13L film geometry). There have
been several studies of this problem in the past[5,13,15–18].
We shall only briefly comment on the more complicated case
of anisotropic confined systems with nonperiodic boundary
conditions[17,19–23].

It has been hypothesized[5] that two-scale factor univer-
sality holds not only forbulk systems but also forconfined
systems, except that the finite-size scaling functions depend
on the geometry and on the boundary conditions. For ex-
ample, for a system in a cube of volumeLd with periodic
boundary conditions, the singular part of the reduced free
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energy densityfsst ,h,Ld near bulkTc was predicted to have
the asymptotic scaling form for largeL [5]

fsst,h,Ld = L−dYcubesC1tL
1/n,C2hLbd/nd, s4d

where the functionYcubesx,yd is universal and whereC1 and
C2 are the only nonuniversal parameters. A similar ansatz
was made for the correlation lengthji in anLd−13` cylinder
[5]. As a consequence, the amplitudeYcubes0,0d and the
Binder cumulant ratio[1,24,25]

U =
1

3
fs]4Ycube/]y4d/s]2Ycube/]y2d2gy=0,x=0 s5d

are predicted to be universal.(For example, they should be
independent of the ratioJ8 /J.) The scaling form(4), if ex-
tended to realistic geometries and boundary conditions, has
far-reaching consequences for measurable quantities[1,26].
In particular the prediction of a universal character of the
Casimir amplitude

D = sd − 1dYfilms0,0d s6d

is of interest, e.g., for fluid[27], superfluid[28], and super-
conducting[29] films.

The universality of the scaling functionsY of Eqs.(4) or
(6) was supposed to be valid for all systems in a given uni-
versality class[1,5] including anisotropic lattice systems pro-
vided that an appropriate rescaling of the lattice spacings(or
lengthL) is performed[5]. This appears to be consistent with
existing studies of finite-size effects in anisotropic systems
where it was stated that isotropy can be restored asymp-
totically by an anisotropic scale transformation
[11,13,16,18–21,23,30].

We have found that this picture of finite-size effects in
anisotropic systems, though valid in special cases, is, in gen-
eral, not correct. In the present paper we show, for periodic
boundary conditions, that Eqs.(4)–(6), though valid for iso-
tropic systems and for systems with cubic symmetry in the
rangeL /j&Os1d [31], are not universally valid for the an-
isotropic systems of the type described above(e.g., spin
models with NN and ANNN interactions on simple-cubic
lattices) although these systems belong to the same univer-
sality class as isotropic systems. In such anisotropic systems
the finite-size scaling functions depend, in general, on addi-
tional nonuniversal parameters(apart fromC1 andC2), even
after a rescaling of the lattice spacing or of the lengthL.
Thus, in general, two-scale factor universality and isotropy
cannot be restored and the notion of a universality class is
only of restricted relevance for the scaling functions of con-
fined systems.

We shall prove our claims within the Osnd symmetricw4

field theory with the spatially anisotropic Hamiltonian(at h
=0)

Hsr0,u0,L;A ;V;wd =E
V

ddxS r0

2
w2 + o

a,b

d
Aab

2

]w

]xa

]w

]xb

+ u0sw2d2D s7d

for then-component fieldwsxd. The sum runs over the com-
ponentsxa of the spatial coordinatesx, a=1, . . . ,d. The d
3d anisotropy matrixA ;sAabd is assumed to be real, sym-
metric, and positive definite. This model has a critical point
at some valuer0=r0csA ;u0,Ld where L is a (sharp or
smooth) cutoff in k space. In addition to the three parameters
r0, u0, and L of the standard isotropicsA =1d model, our
model hasdsd+1d /2 nonuniversal parameters contained in
the matrixA. Below we shall argue that the nondiagonality
of the anisotropy matrixA is a generic case of real aniso-
tropic systems. For simplicity we assume a cubic volume,
V=Ld, 0øxaøL, with periodic boundary conditions.

First we prove that the model defined by Eq.(7) belongs
to the same bulk universality class as the standard isotropic
Landau-Ginzburg-Wilson model withA =1. The characteris-
tic properties of the matrixA are described in terms of thed
eigenvaluesli .0 and eigenvectorsei defined byAei =liei.
A rotation by the orthogonal matrixU yields the diagonal
matrix UAU−1=l with diagonal elementsli. After the trans-
formation of the spatial coordinates

x8 = l−1/2Ux s8d

and of the field

w8sx8d = sdetAd1/4wsU−1l1/2x8d, s9d

detA = p
i=1

d

li . 0, s10d

the Hamiltonian(7) becomes

Hsr0,u0,L;A ;V;wd

= H8sr0,u08,L8;V8;w8d s11d

=E
V8

ddx8S r0

2
w8sx8d2 +

1

2
s=8w8d2 + u08sw82d2D s12d

with the changed four-point coupling

u08 = sdetAd−1/2u0, s13d

with the changed(noncubic) volume

V8 = p
i=1

d

Li8 = sdetAd−1/2V, s14d

Li8 = Lli
−1/2, s15d

with a transformed cutoffL8 in k8 space,k8=l1/2Uk, and
with a critical point at
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r0c8 su08,L8d = r0csA ;u0,Ld. s16d

The temperature variabler0−r0c=r0−r0c8 =a0t remains in-
variant under the transformation(8) and (9).

According to Eq.(12), the bulk critical behavior of the
anisotropicmodel H with the couplingu0, Eq. (7), can be
calculated within the minimally renormalizedisotropic bulk
theory sV8→` ,L8→`d for H8 with the coupling u08 in
2,d,4 dimensions[32], provided thatu08.0. Specifically,
the renormalized quantities of the HamiltonianH8 are de-
fined as

u8 = m−«Zu8
−1Zw8

2 Adu08, s17d

wR8 = Zw8
−1/2

w8, s18d

r = Zr
−1sr0 − r0c8 d s19d

with Ad=Gs3−d/2d22−dp−d/2sd−2d−1 and

r0c8 = su08d
2/«Ss«d, s20d

«=4−d, whereSs«d and theZ factorsZisu8 ,«d depend on«
and u8 in the same way as they depend on« and u in the
standardsA =1,V→` ,L→`d theory[32], with an identical
fixed point valueu8* = u*. This statement applies also to the
field-theoretic functionszrsu8d and zw8su8d which determine
the critical exponentsn and h. This proves that the critical
behavior ofH andH8 belongs to the same universality class
in the whole range ofA where detA .0.

Our model, Eq.(7) with A Þc01, can be considered as the
continuum version of aw4 lattice HamiltonianHlattice with
short-range interactionsJij [see, e.g., Eq.(50) below for a
lattice model with a single lattice constantã]. Noncubic
anisotropies may arise either from a noncubic lattice struc-
ture or from noncubic interactions on a cubic lattice[as an
example see Eq.(51) below] or from both types of anisotro-
pies. In some range ofA nearA <c01 with c0.0, Hlattice and
H belong to the same universality class. Note, however, that
in generalr0c,latticesJij ;u0,ãdÞ r0csA ;u0,Ld.

In order to elucidate the effect of the nondiagonality of
the anisotropy matrixA we first discuss the bulk order-
parameter correlation function forTùTc

Gsx;A,u0d ; kwsxdws0dlH, s21d

wherek¯lH means an average with the exponential weight
e−H. Equations(8), (9), and(12) imply

Gsx;A,u0d = sdetAd−1/2G8sx8;u08d, s22d

where

G8sx8;u08d ; kw8sx8dw8s0dlH8. s23d

The second-moment bulk correlation lengthj8su08d associated
with H8 is defined by

j8su08d = S 1

2d
lim

V8→`

e ddx8x82G8sx8;u08d
e ddx8G8sx8;u08d

D1/2

. s24d

For TùTc and ux8u /j8&Os1d the asymptotic scaling form of
G8sx8 ;u08d reads[1,5] for ux8u@L8−1,j8@L8−1,

G8sx8;u08,d = AGux8u−d+2−hFsux8u/j8d s25d

with a universal scaling functionF, a nonuniversal ampli-
tude AGsu08 ,L8d, and with j8=j08su08dt

−n, apart from correc-
tions to scaling. Equations(8), (22), and(25) imply asymp-
totically

Gsx;A,u0d = AG8 ul−1/2Uxu−d+2−hFsul−1/2Uxu/j8d s26d

with AG8 =AGsdet Ad−1/2. Thus the anisotropy does not change
the universal structure of the scalingfunction F but makes
the scalingargumentof F and the spatial behavior ofG
anisotropic, even right atTcsAd (see also[7–9]).

Choosing x=xiei along the principal direction i , i
=1,¯ ,d defined by the eigenvectorei, we have sUxd j

=xidi j and

Gsxiei ;A,u0d = AG8 suxiu/li
1/2d−d+2−hFsuxiu/jsidd, s27d

where

jsidsA,u0d = j0
sidt−n s28d

are theprincipal correlation lengthsof the anisotropic sys-
tem with the nonuniversal amplitudes

j0
sidsA,u0d = li

1/2j08su08d. s29d

(The amplitudesj08 andj0
sid may depend, in general, also on

the cutoff.) Their product

VcorrsAd = p
i=1

d

jsid s30d

constitutes the appropriate measure of the correlation volume
whose shape is ellipsoidal rather than spherical. This is seen
by determining the singular partFsst ;A ,u0d /VkBT
; fsst ;A ,u0d of the bulk free energy density f
=−limV→` V−1 lneDwe−H of the anisotropic system. Using
Eqs.(10), (11), (14), and(15) we obtain

fsst;A,u0d = sdetAd−1/2fs8st;u08d, s31d

where fs8st ;u08d is the singular part of the bulk free energy

density f8=−limV8→` V8−1 lneDw8e−H8 associated withH8,
Eq. (12). Together with Eq.(2) for the isotropic system, Eqs.
(10), (14), and(28)–(31) lead to

lim
t→0+

fsst;A,u0dVcorrsAd = Qsd,nd = universal, s32d

which is identical with Eq.(3).
From Eqs.(26)–(29) we see that a complete knowledge of

the asymptotic behavior of the correlation functionG re-
quires the knowledge of thed+1 nonuniversal amplitudes
AG8 and j0

sid and of thedsd−1d /2 nonuniversal parameters
characterizing the directions of thed eigenvectorsei. For real
magnetic materials these quantities are unknown as they de-
pend on all microscopic details. Furthermore, real magnetic
materials may have lattice structures and anisotropic interac-
tions (e.g., ANN, ANNN, and third ANN interactions) corre-
sponding to a nondiagonal matrixA. It is because of the
nondiagonality ofA that both a scale transformation and a
rotation are necessary and that a simple rescaling ofd am-
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plitudes is not sufficient. Clearly two-scale factor universal-
ity is absent in the bulk correlation functions of such aniso-
tropic systems(e.g., metamagnets[33]) although they belong
to the same universality class as isotropic systems(e.g., flu-
ids).

While the anisotropy does not destroy the universality of
the scaling functionF of the bulk correlation functionG (in
the nonexponential regimer /j&Os1d [2]), a fundamental
complication arises forconfinedsystems since, in general,
the principal directionsei of the intrinsic anisotropy are to-
tally unrelated to the orientation of the surfaces of the con-
fining geometry(e.g., L13L23 ¯ 3Ld rectangular geom-
etry). This introduces a source of nonuniversality that cannot
be absorbed only by a transformation of the lengthsLi of the
confining geometry or of the scaling argument. Within our
model (7), a complete information of this source of nonuni-
versality requires, ath=0, the knowledge ofd+dsd−1d /2
=dsd+1d /2 nonuniversal parameters(rather thand param-
eters). Within this model we shall show that this implies not
only the absence of two-scale factor universality but the ab-
sence of universality itself for all finite-size scaling functions
and finite-size amplitude ratios of anisotropic systems with
noncubic symmetry.In particular, two-scale factor univer-
sality and isotropy cannot be restored by an anisotropic scale
transformation for confined systems in rectangular geom-
etries with a nondiagonal anisotropy matrixA. This is the
central general result of this paper to be demonstrated in the
following on the basis of exact results in the large-n limit and
of one-loop RG results forn=1, 2, 3.

First we consider the susceptibilityx (per component) of
the field-theoretic model(7) aboveTc in a finite cube with
periodic boundary conditions. In the limitn→` at fixedu0n
it is determined by[34]

x−1 = r0 + 4u0nL−do
k

sx−1 + k ·Ak d−1 s33d

with k ·Ak ;oa,b
d Aabkakb. The sumok runs overk vectors

with componentska=2pma /L ,ma=0, ±1, . . . up to some
cutoff L. For 2,d,4 the asymptotic form of the correlation
lengthj8 defined by Eq.(24) is j8=j08t

1/s2−dd with

j08 = s4u08nAda0
−1/«d1/sd−2d. s34d

For largeL@L−1 and small 0ø t!1 we find the asymptotic
scaling form forL8 /j8&Os1d

xst,L;Ad = L8g/ngcubesL8/j8;Ād, g/n = 2, s35d

with the rescaled length

L8 = LsdetAd−1/2d s36d

and the normalized anisotropy matrix

Ā = A/sdetAd1/d, s37d

wheregcubesx; Ād is determined implicitly by

xd−2 − gcube
s2−dd/2 = s4 − ddAd

−1I1sgcube
−1 ;Ād, s38d

I jsz;Ād =E
0

`

dss4p2d−jsj−1Pss,Āde−zs/4p2
, s39d

with

Pss,Ād = sp/sdd/2 − o
m

e−m·Āms. s40d

The sumom runs overm=sm1, . . . ,mdd with all integers

ma=0, ±1, . . .. For Ā =1,gcubesx;1d;gcube,isosxd is the

known scaling function of the isotropic case[34]. For Ā
Þ1, however,gcubesx; Ād is nonuniversal and depends onĀ
in a highly complicated way via the inhomogeneousmÞ0
modes, even after having introduced the rescaled lengthL8,
Eq. (36). The effect of these modes depends on the orienta-
tion of the eigenvectorsei relative to the shape of the con-
fining geometry. In general this anisotropy effect cannot be
inferred from the knowledge of finite-size scaling functions
of isotropic systems of the same universality class and can-
not be described by a transformation of the argumentx of
gcube,isosxd (unlike the case for the scaling functionF of the
bulk correlation functionG) or by a rescaling ofL.

Only in the special cases whereA =l is diagonal at the
outset and where the eigenvectorsei happen to be parallel to
the edges of the confining cube, the finite-size scaling func-
tion of the anisotropic system in a cubic geometry can be
reexpressed in terms of the scaling function of theisotropic
system in aL183 ¯ 3Ld8 block geometry,Li8=Lli

−1/2. Such
special cases with a diagonal matrixA ared=2 or d=3 spin
models on sc cubic lattices with only NN couplingsJxÞJy
[3,13,23] or JxÞJyÞJz [18], respectively.

We note that a conclusive answer about the appropriate
way of rescaling the lengthL cannot be inferred only on the
basis of the result ofxs0,L ;Ad at Tc, without further knowl-
edge. The same statement applies to the correlation length
jis0,L ;Ad in a Ld−13` cylinder. It would always be pos-
sible to rewritex at Tc in the form

xs0,L;Ad = L̂g/ngcube,isos0d s41d

with the amplitudegcube,isos0d of the isotropic system if all
anisotropy effects are formally absorbed in the length

L̂ = L8fgcubes0;Ād/gcube,isos0dgn/g. s42d

But after the calculation of a different physical quantity atTc

it becomes obvious that this lengthL̂ is inappropriate as will
be demonstrated in the following.

Next we present the anisotropy effect on the finite-size
scaling function of the singular part of the reduced free en-
ergy density per component in the large-n limit for cubic
geometry and periodic boundary conditions. ForL@L−1, 0
ø t!1, L8 /j8&Os1d we find

fsst,L;Ad = L−dYcubesL8/j8;Ād, s43d
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Ycubesx;Ād = −
ln 2

2
+

sd − 2dAd

2ds4 − dd
fgsx;Ādg−d/2

+
1

8p2E
0

`

dsS4p2

s
+

1

gsx;Ād
DPss,Āde−s/s4p2gd,

s44d

wheregsx; Ād;gcubesx; Ād is determined implicitly by Eqs.

(38)–(40). The scaling functionYcubesx; Ād, including the

amplitudeYcubes0;Ād, is nonuniversal. Only on the level of a
lowest-modesk =0d approximation in Eq.(33) does the ex-

plicit dependence ofYcube on Ā disappear. The effect of the
mÞ0 modes cannot be described simply by a transformation
of the scaling variablex of Ycubesx;1d;Ycube,isosxd of the
isotropic case and it depends ondsd+1d /2−1 nonuniversal

parameters contained inĀ. [Equivalent parameters appear
already inG, Eq. (26).] This holds, of course, also for the
relevant case of general finiten,` as can be shown[35]
within a one-loop RG calculation for the model(7). The

exact scaling functionYcubesx; Ād for generaln remains un-
known even if the exact scaling functionYcube,isosxd were

given for generaln and if the exact matrixĀ were given for
a special anisotropic system.

We note that the same rescaled lengthL8, Eq. (36), is
employed in the scaling argumentL8 /j8 of Ycube as ingcube
but not in the leadingL−d power law of Eq.(43). At T=Tc, it
would of course be possible to rewritefs in the form

fss0,L;Ad = L̄−dYcube,isos0d s45d

with the amplitudeYcube,isos0d of the isotropic system if the
anisotropy effect is formally absorbed in the length

L̄ = LfYcubes0;Ād/Ycube,isos0dg−1/d. s46d

This lengthL̄ differs, however, from the lengthL̂, Eq. (42),
introduced formally for the susceptibilityxs0,L ;Ad.

As seen from our results forxst ,L ;Ad and fsst ,L ;Ad, a
possible ambiguity of defining a rescaled length disappears
after calculating the complete temperature dependence of the
finite-size scaling functions of the anisotropic system. At the
same time such results clarify whether or not isotropy can be
restored by a scale transformation. The exact analytic form
of our results(35) and (43) for TùTc unambiguously an-
swers this question for cubic geometry and periodic bound-
ary conditions. An extension of our results to rectangular
L13L23 ¯ 3Ld block geometry[35] confirms our findings,
i.e., even after a rescaling of the lengthsLi the finite-size
scaling functions remain nonuniversal for systems with a
nondiagonal matrixA.

We conclude that, for rectangular geometry and periodic
boundary conditions, finite-size scaling functions are, in gen-
eral,not universally determined only by the bulk universality
class but do depend on nonuniversal parameters in a highly
complicated way if the system is anisotropic in the sense
specified above. In particular, within our model(7), if the
matrix A is nondiagonal, isotropy cannot be restored by a
rescaling of lengths[36].

We expect that this conclusion holds also for nonperiodic
boundary conditions and for nonrectangular geometries. For
example, we expect that the universality of the amplitudeu
of the “corner” termuL−d ln L of the d=2 and d=3 free
energy density for free boundary conditions atTc [37,38] is
not generally valid for anisotropic systems. The universality
of u was proven in[37] only for isotropic sd=2d systems
whereas in[38] it was supposed to be valid “within a given
RG universality class.” Furthermore, there have been calcu-
lations [19–21,23] of edge exponents of anisotropic spin
models in wedge geometries with free boundary conditions.
It was found that the anisotropy enters explicitly into the
exponents and that it was possible to rescale lengths aniso-
tropically to bring the problem into an isotropic form. We
expect, however, that this is, in general, not possible for the
temperature-dependent finite-size scaling functions of lattice
systems with edges whose continuum limit yields an effec-
tive Hamiltonian of the form of Eq.(7) with a nondiagonal
matrix A.

FIG. 1. Cumulant ratio 1−Uswd /Us0d vs cou-
pling ratio w=J8 / sJ+2J8d of the field-theoretic
model, Eq.(7), in three dimensions forn=1, 2, 3
(solid, dotted, dashed lines) according to Eqs.
(53)–(57).
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We briefly extend our analysis tòd−13L film geometry
with periodic boundary conditions, withL being the thick-
ness in thedth direction. In the large-n limit we find

fs,filmst,L;Ad = L−dfsĀ−1dddg−d/2Yfilm,isosx̃d, s47d

whereYfilm,iso is the scaling function for theisotropicsystem,

with a transformed argumentx̃= L̃ /j8,

L̃ = fsA−1dddg1/2L s48d

and wheresA−1ddd andsĀ−1ddd are thedth diagonal elements

of the inverse ofA andĀ, respectively[39]. In contrast with
Eq. (4), a nonuniversal amplitude appears at bulkTc and the
Casimir amplitude

D = sd − 1dfsĀ−1dddg−d/2Yfilm,isos0d s49d

is nonuniversal. The simplicity of this anisotropy effect is
due to the one-loop structure of diagrams contributing to the
large-n limit. From finite-size theory at orderu0

2 [40] we infer

a highly complicatedĀ dependence offs,film for finite n.
Furthermore we expect that the amplitudes[41] and scaling
functions[42] of density profiles in film geometry are non-
universal for anisotropic systems with noncubic symmetry.
More generally, our results suggest that the feature of univer-
sality in the theory of boundary critical phenomena[43–45]
as well as the notion of a “surface universality class” and of
“ s2+1d-scale factor universality”[45] need to be reconsid-
ered for the case of anisotropic systems.

It would also be interesting to interpret finite-size effects
in percolation problems of anisotropic systems[17,22] in the
light of the results of the present paper.

We illustrate our theory by the example of the Binder
cumulant ratioU for L→` at Tc, Eq. (5). We consider aw4

lattice model

Hlattice = ãdFo
i
S r0

2
wi

2 + u0swi
2d2D + o

i,j

Jij

2ã2swi − w jd2G
s50d

with an isotropic ferromagnetic interactionJij =J.0 be-
tween nearest neighbors but an anisotropic interactionJij
=J8 with only six (rather than 12) next-nearest neighbors in
the +−s1,1,0d, +−s1,0,1d, and +−s0,1,1d directions on a
simple-cubic lattice with a lattice constantã in a cube with
periodic boundary conditions. It is expected that a ferromag-
netic critical point exists not only forJ.0, J8ù0 but also
for J.0, J8,0. In the continuum limitsã→0d this model is
reduced to Eq.(7) with

A = c011 w w

w 1 w

w w 1
2 , s51d

wherew=J8 / sJ+2J8dø
1
2 and c0=2sJ+2J8d.0. (Note that

the matrix A is diagonal for a model with isotropic NNN
interactions.) The positivity of c0 requiresJ8.−J/2. For

wÞ0 the eigenvectorsei are not parallel to the cubic axes.
The constantc0 can be absorbed in the bulk amplitudej08 of
j8, Eq. (24), and does not appear in

Āswd = s1 − 3w2 + 2w3d−1/311 w w

w 1 w

w w 1
2 . s52d

One of the eigenvalues ofA vanishes atwc=−1
2, i.e., J8

=−J/4 (the two other eigenvalues vanish atw=1, J8=−J).
Thusw may vary in the range −12 ,wø

1
2 corresponding to a

line of ferromagnetic critical pointsTcswd terminating at a
Lifshitz point Tcswcd of thew4 continuum model(7) [but not
necessarily of thew4 lattice model(50) whose line of critical
pointsTcswd may end at a value ofw different from −1

2].
From a RG treatment of the model(7) within the minimal

renormalization scheme in three dimensions[32] parallel to
previous work[46] we obtainUswd for L→` at Tcswd in
one-loop order forn=1 as

Uswd = 1 − 1
3q4sỸdfq2sỸdg−2, s53d

where

qmsỸd =

E
0

`

ds sm exps− 1
2Ỹs2 − s4d

E
0

`

dsexps− 1
2Ỹs2 − s4d

. s54d

Here the quantityỸ depends onw throughĀswd,

Ỹ = − bS4p

l̃
fl̃2 + I1sl̃2;Ādg +

1

2
+ 4pl̃fl̃4 + I2sl̃2;ĀdgD ,

s55d

with

b = 144u8*q2s0d, s56d

l̃ = f24p1/2u8*1/2q2s0dg2/3, s57d

and u8* =u* =0.0412 whereI jsz; Ād is given by Eq.(39).
Clearly there is no way of eliminating the complicatedinter-

nal dependence on the anisotropy matrixĀ in Eq. (55); thus
isotropy cannot be restored by means of a scale transforma-
tion.

We have also extended this result to generaln [35]. While
the w dependence is weak for −0.4&wø

1
2 it becomes ap-

preciable upon approachingwc=−1
2, as shown in Fig. 1 for

n=1, 2, 3. This proves the nonuniversality ofUswd. Simi-
larly one can derive aw dependence of the Casimir ampli-
tudeDswd and of other scaling functions. Note, however, that
because of thenonuniversal characterof Uswd and Dswd,
these quantities may, in principle, differ, e.g., for thesd
=3,n=1d field-theoretic model[Eq. (7) with the matrix
(51)], and thesd=3,n=1d Ising model(with NN and ANNN
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couplings) even if the geometries and the boundary condi-
tions are the same in both models.

This kind of nonuniversal finite-size effect should exist
near critical points of real systems and should be detectable

in Monte Carlo simulations ofd=2 andd=3 spin models.
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