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The short-time critical dynamics of the two-dimensional eight-state random-bond Potts model is investigated
with large-scale Monte Carlo simulations. Dynamic relaxation starting from a disordered and an ordered state
is carefully analyzed. The continuous phase transition induced by disorder is studied, and both the dynamic and
static critical exponents are estimated. The static expopént shows little dependence on the disorder
amplituder, while the dynamic exponerntand static exponent L/vary with the strength of disorder.
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I. INTRODUCTION RBP model[17] givesg-dependence critical exponents, con-
sistent with that obtained with the transition matrix method
The effect on the critical behavior of adding quenched[22]. To summarizethe above analytical and numerical re-
disorder to statistical systems has been intensively investsults support that the exponenvaries continuously with the
gated in the last two decades, both theoretically and numerstrength of disorder, whilgg/v is more or less independent
cally. According to the earlier workgl—4|, quenched disor- of the strength of disorder. Both exponents suggest that the
der could produce rounding of a first-order phase transitior2D RBP model is not in the same universality class as the 2D
and thus induce a second-order one. Along this understandsing model.
ing, many activities in the last years have been devoted to the On the other hand, it is interesting and important to inves-
random-bond PottéRBP) model and some varianf§—27.  tigate the effect of disorder on critical dynamics. The spin-
It is exactly known that the pure two-dimensioriaD) Potts  glass dynamics is a very important example. However, the
model undergoes a first-order transition fpr-4, while a  critical slowing down in numerical simulations of spin
continuous one forg=<4. Therefore, the 2D RBP model glasses is so severe that we hardly simulate large lattices.
serves as a good laboratory for examining the effect of disThe RBP model may be a good model system for under-
order. For a review of the Potts model, see R28§]. standing the slow dynamics of disordered systems. Tradition-
A decade ago, Chen, Ferrenberg, and Landau performedadly, it was believed that universal dynamic scaling behavior
Monte Carlo simulation of the 2D eight-state RBP model. Aonly exists in the long-time regime of the dynamics evolu-
second-order phase transition was observed. From the ntion. However, numerical simulations of the critical dynam-
merical values of the critical exponents, the 2D RBP modelics of the RBP model in the long-time regime are not easy.
was believed to be in the same universality class as the putgttle progress has been achieved in this direction.
2D Ising model[5,6]. Similar conclusions were obtained for ~ In 1998, with renormalization group methods Janssen,
the random-bond Ashkin-Teller model, four-state RBP modelSchaub, and Schmittmann derived a dynamic scaling form
and random-bond Ising modgt]. There is also experimental for the O(N) vector model, which is valid up to theacro-
evidence claiming the same for the four-state Potts modedcopic short-time regimefter a microscopic time scatg;.
[8]. [29]. The dynamic process they considered is that the system
However, contradictive results were obtained by Ludwiginitially at a very high temperature state with a small or zero
[9] and Dotsenkeet al. [10]. It was argued with renormal- magnetization is suddenly quenched to the critical tempera-
ization group methods that a new random-bond fixed pointure and then released to dynamic evolution of madet is
exists forq>2, whose critical behavior is not Ising like. important that a new independent critical exponérte in-
Later, Chatelain and Berch27] performed numerical simu- troduced to describe the scaling behavior of the initial mag-
lations for the self-dual eight-state RBP model and observedetization. Such a short-time dynamic scaling behavior has
that the exponents/v and B/ v are quite different from the been numerically verifiedi30-34, and it is also consistent
Ising values, but close to Cardy and Jacobsen’s predictiowith relevant theories and experiments in spin glasses
with the transition matrix methoflL3]: that 8/ v varies con-  [30,35,3§. In spin glasses, the remanent magnetization cor-
tinuously with g and v changes only weakly. From the nu- responds to the autocorrelation function in the regular Ising
merical simulations of the five-state RBP model, the magsystems without disorder. Furthermore, the short-time dy-
netic exponent also indicates a new universality clags In namic scaling can be extended to the dynamic relaxation
the case of the three-state RBP model, whose pure versiatarting from an ordered staf82,37,38.
exhibits a continue phase transition, Monte Carlo simulations More interestingly, based on short-time dynamic scaling,
[15,19 suggest that while the ratiog/v and B/v do not it is possible to extract not only the dynamic exponents, but
change significantly, the exponentchanges continuously also the static exponents as well as the critical temperature
with the strength of disorder. A recent numerical study of the[32,39-41]. Since the measurements are carried out in the
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short-time regime of the dynamic evolution, the method doesletermined according to E@3) for different values of the

not suffer from a critical slowing down. What we pay for this disorder amplitude and state parameter

approach is that the measurements of the dynamic exponents In this paper, we study the self-dual cage=0.5 of the

and static exponents cannot be separated. Therefore, the stdght-state random-bond Potts model with the short-time dy-

tistical errors of the static exponents include those from thenamic approach. Monte Carlo simulations with a standard

dynamic exponents. However, if we are also interested in th#letropolis algorithm are performed on a two-dimensional

dynamic behavior, the short-time dynamic approach is rathegquare lattices with periodic boundary conditions. For a re-

useful. view of the short-time critical dynamics and its applications,
A first numerical study based on the short-time dynamicsee Refs[32,39.

approach suggests that the critical dynamic behavior of the The physical observables we measure are the time-

2D RBP model appears also not in the universality class oflependent magnetization, its second moment, autocorrela-

the 2D Ising modef18]. However, the numerical simulations tion, and spatial correlation of thg-state Potts model, re-

are not very systematic and complete. The updating time ispectively, defined as

limited to 300 or 500 Monte Carlo time steps, which is not

sufficiently long for a slow dynamics with disorder. The ob- _ q 1

tained ex H _ M(t) - 2 2 <50'-(t),l_ _> ’ (4)

ponents are not so accurate, and especially, the es (q-1L2\ 4 [ q

timate of the exponend looks problematic. The probable

reason is that the exponefitmay not be estimated by mea- ) 5

suring the maximum magnetization of its eight components MM = ———( | D (5 _ 1) (5)

in the nonequilibrium state. (q-DAA\ | <\ 01 g '

q
The purpose of this article is to present a systematic study
of the short-time critical dynamics of the eight-state random-
bond Potts model in two dimensions. We will perform simu- At) = i2<2 (50_(0) ()~ }>> (6)
lations up to 150 000 Monte Carlo time steps, carefully ana- L7\ 5 hTq
lyze the dynamic scaling behavior, and provide relatively
accurate measurements of the critical exponents. We show 1 1
that the dynamic exponertand the static exponent i ary C(x,t) = —2< (50_(010_ © = —) > ) (7)
with the strength of disorder. L g
The models and scaling analysis of the dynamic behavior ) ) )
are described in Sec. II. Numerical simulations are presenteffhereL is the lattice size.
in Sec. Ill. The final section contains the conclusions.

I
[
B. Quench with ordered start

Il. MODEL AND DYNAMIC SCALING BEHAVIOR For a dynamic process quenched from a completely or-
A. Random-bond Potts model dered statéan ordered stayt—i.e., the initial magnetization
my=1—we assume a universal dynamic scaling form in the

The Hamiltonian of the twp-dimensionaj-state P'otts macroscopic short-timeegime. For thekth moment of the
model with quenched random interactions can be written $nagnetization, for example

- k—lTH = > K;; Sy Kij>0, (1) M®(t,7,L) = b M® (b2, b 7,b7IL), k=1,2. (8)
B ()

. ) Here 7=(K;—K4.) /Ky, and B, v are the well-known static

where the spinr takes the values 1--q, § is the Kronecker critical exponentsz is the dynamic exponent, artalis an

delta fur?ctlon,'and the sum is over neares.t—nelghbor pairs Ogrbitrary scale factor. This dynamic scaling form looks the
a two-dimensional square lattice. The dimensionless cou:

i K lected f " | K dK same as that in equilibrium or close to equilibrium, but now
plings K;; are selected from positive values Kh andK, ;¢ expected to hold already when the dynamic system is
=rK4, with a strong to weak coupling ratic=K,/K; called

X . : . L still far from equilibrium, after a time scalg,,. which is long
the disorder amplitudeaccording to a bimodal distribution enough in the microscopic sengg,. is not universal. It is

P(K) = pd(K = Ky) + (1 - p)s(K - K,). (2)  only afew Monte Carlo time steps for some simple dynamic
) N ~ systems, while can be hundreds or thousands of Monte Carlo
Forp=0.5, the system iself-dualand the exact critical point time steps for slow dynamics.
can be determined bjA2] In general, for determination of the dynamic exponent
(- 1)(eKe— 1) = q 3) and static exponents, a dynamic process starting from a com-
' pletely ordered state can be more favorable than starting
whereK ;. andK, are the corresponding critical valueskof  from a completely disordered state, since the statistical fluc-
and K,, respectively. The case af=1 corresponds to the tuation is somewhat less, and especially the nonzero magne-
pure Potts model, and the critical point is locatedKat tization can be used for the scaling analysis. Assuming that
=In(1+yqg). With an additional random-bond distribution, the lattice is sufficiently large, the dynamic scaling form of
however, new second-order phase transitions are induced ftine magnetizatioiM(t) = M@(t) around the critical point is
any of theg-state Potts models and the new critical points arewritten as
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M(t, 7) = TR (tY"%7), c, = Blvz. (9) ever, a very large lattice and sufficient samples for an aver-
_ N age.
If 7=0, the magnetization decays by a power &) Finally, to extract the exponertindependently, we may

~t‘°_1. If 7+ O thellpower-law b_ehavior is modifieo_l by the consider a small but nonzero initial magnetizatiop From
scaling functionF(t*"?7). From this fact, one determines the ¢ dynamic scaling in Eq12), it is easy to deduce that the

critical point and the critical exponeyt/ vz. To estimate the  magnetization in the short-time regime obeys a power law
exponent 17z, we differentiate IMM(t, 7) and obtain ,
M(t,mg) ~ mot”. (17)

_ _ _ In many cases, the exponent is positive; i.e., the magnetiza-
In order to estlma'ge the dynamic expc;nen?dependently tion undergoes a critical initial initial increase. In the past
we mtroduce a Binder _cumularlﬂ:M( IM2-1, ahd the ~ decade, this phenomenon has been intensively discussed
finite-size scaling analysis shows that at the transition pointoth theoretically and numerically. Usually, this behavior can
UtL) ~t2 c,=diz. (11) be easily detected in Monte Carlo simulations. In the pres-

ence of disorder, however, this may not be the case.
From EQs.(99—«(11), we are able to extract all the static
exponentsB and v and the dynamic exponeat which are
originally defined in equilibrium. The attractive feature of I1. NUMERICAL SIMULATIONS
the short-time dynamic approach is that we npagdict all
these exponents at the beginning of the time evolution an
therefore do not suffer from a critical slowing down.

d.In M(t,7)| =0~ t9, ¢, =1lvz. (10

d We have performed Monte Carlo simulations with the
standard Metropolis algorithm. Taking into account the slow
dynamics induced by disorder and the effect of crossover
C. Quench with disordered start from the pure Potts model to with disorder, the maximum
updating time is taken to be from 10 000 to 150 000 Monte

For a dynamic process quenched from a completely disc(g time steps, depending on the strength of of disorder
ordered statga disordered starwith a zero orsmallinitial 5 the initial conditions. The results are presented with a

magnetizationm, a generalized dynamic scaling form can |arice sizel =280. To investigate the possible finite-size ef-
be written down, e.g., for thith moment of the magnetiza- fects, some simulations have been also performedLfor

tion: =140. Samples of the initial configuration for averaging are
M®(t, 7,mg,L) = b™*"M® (b2, b7, brom, b1L), from 5000 to 10 000. To estimate the errors, samples are
divided into some subgroups. In addition, errors induced by
k=1,2. (12)  fluctuations along the time direction are also taken into ac-

Here x, is an independent exponent describing the scaling©Unt:

behavior ofm,, and it can be expressed with another expo-
nenté as . .
A. Continuous phase transition

Xo= Blv+ bz. (13) Aizenman and Wehi4] have rigorously proved that quite

Two interesting observables in this process are the autdienerally ford<2 anarbitrarily weak amount of quenched
correlation and the second moment of the magnetization. Fdond randomness leads to elimination of any discontinuity in

=0 andm,=0, it is well known thaf30,32 the density of the variable conjugate to the fluctuating pa-
5 rameter, but the signal of the continuous phase transition is
M@t ~t, y=(d-28/v)z. (14)  difficult to be detected in the weak disorder regime for a

finite lattice size. There seems to exist a finite-size-dependent
threshold value of the quenched disorder amplitugié3].
This fact is also reflected in the dynamic processes. For a
- small value ofr, the dynamic system looks like it is under-
Al ~ 7, )‘:E_a- (15 going a first-order phase transition. For a lattice size
=280 and a maximum updating time 10 000, the threshold
Interesting here is that even thoughy=0, the exponent  value is about.=1.30. Forr >r,, the typical behavior of a
still enters the autocorrelation. The behavior in Etp) has  second-order phase transition can be observed. For example,
been confirmed in a variety of statistical systef86,32. the relevant observables exhibit a power-law behavior at the
In principle, one may also determine the exponentzl/ transition temperaturindependent of the initial conditions
from Eq. (12) in a way described in the preceding subsec-This is shown for=3 in Fig. 1. According to Schalke and

Careful analysis revealg@5] that the autocorrelation at the
transition point behaves like

tion. However, the fluctuation here is larger. Zheng[44], this fact provides a evidence that a second-order

Similarly, the scaling behavior of the equal-time spatialphase transition is induced.
correlation function at=0 is In other words, one will not observe any power-law be-
Clx.1) ~ 2607wtz 1) (16) havior if the phase transition is a standard first-order one. If

the first-order transition is weak, an approximate power-law
The dynamic exponemtand static exponeng/ v can be also  behavior may appear at a certain temperature, but this pseud-
extracted from the data collapse ©fx,t). This needs, how- ocritical temperature is initially condition dependgAd].
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FIG. 1. The second-order phase transition induced by disorder at the disorder amp#iBid@) The initial condition is completely
disordered. The second momevif?(t) is plotted vst on a log-log scale foK,=0.721525K,=0.717 936, andK_=0.714 346 withL
=280. (b) The initial condition is completely ordered. The magnetizatM(t) is plotted vst on a log-log scale foK,=0.721 525K,
=0.717 936, andK_=0.715 064 withL=280. Obviously, in both cases the observables reach a power-law behavior at the transitié@.point

B. Quench with disorder start exponentd in some ways—e.g., from a dynamic evolution

Now let us concentrate our attention on the dynamic procorresponding to Eq17)—we will be able to estimate both
cess with a completely disordered initial state. In Fig. 2, thehe dynamic exponer# and the static exponet/ v from y
second moment and autocorrelation with a disordered stagtnd\, respectively. In Ref{18], an effort was made to mea-
are displayed for=3, 4 and 10 with solid lines on a log-log sure the exponemf. However, the obtained values are not
scale. For the second moment, a power-law behavior is obsompatible with our simulations. In other words, if we take
served after a microscopic time scglg.~ 100 or 200 Monte  the value 0ff=0.203 forr=10 from there, the resulting dy-
Carlo time steps. Corrections to scaling and the crossoveramic exponent and static exponeng/ v are not consistent
effects are negligibly small even for3. with other measurements in this paper and in simulations in

For the autocorrelation, there are some corrections to scagquilibrium.
ing or crossover effects far=3, 4 up to a time arountc In Ref. [18], the magnetizatiorforder parametgris de-
~800. Forr=10, however, a nearly perfect power-law be- fined as the maximum value of the eight components of the
havior is seen starting frory,.~ 200. Potts spin. This definition is good in simulations in equilib-

In order to further confirm our results, some simulationsrium, since it help reduce the errors. However, it becomes
up to a maximum time 150 000 have been performed and thproblematic in a nonequilibrium state with specialized
samples for an average are 3000. In Fi@)3the autocorre- direction—e.g., starting from an initial magnetizatiomy
lation is displayed. The power-law behavior is convincingly =1.0 or a small but nonzero initial value in a certain compo-
extended. nent of the Potts spin. Actually, with this definition of the

In Table 1, the indicesy and \ in Egs. (14) and (150  magnetization, its dynamic evolution does not depends on
measured from Fig. 2 are listed. If we may obtain the criticalwhether a small nonzero initial value at a certain direction of

AQ) :

5 R | 0.0001 3
0 e R L . A
100 1000 ' 10000 1000

(a) (b)

FIG. 2. The second moment and autocorrelation at the transition temperature with a disorderéaj M&(t) plotted vst on a log-log
scale. Solid lines are from numerical data with a lattice £iz&80. Dashed lines show the power-law fits. For clarity, the data8fhave
been shifted up by a factor of &) A(t) plotted vst on a log-log scale. Solid lines are from numerical data with a latticelsiz280. Dashed
lines show the power-law fits.
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FIG. 3. (a) The autocorrelation with an disorder start for10 plotted vst on a log-log scale. The lattice sizelis=280. The solid line
is with 3000 samples, and the circled line is the same as that in Hiy. ®) Data collapse of the correlation functi®®(x,t) with a
disordered start. Solid lines are fior 150, 300, 600, 1200, 2400, 4800, 968@m below). Crosses fitted to the curve at a timare the data
att/2, but rescaled suitably according to E6) with z=4.57, 8/v=0.157.

the Potts spin is given, and #lways increases as time close to zero or negative. Indeed, according to our estimation

evolves.

in the next subsectiofsee Table), #=0.0925), 0.08%6),

With our definition of the magnetization, we have alsoand 0.0614) for r=3, 4, and 10, respectively, apparently
tried to simulate the dynamic process starting from a disormuch smaller tharg=0.3536), 0.2624), and 0.2083) for
dered state but with a small nonzero initial magnetization. Iy =2, 5, and 10 estimated in RdfL8]. However, from some
turns out that the magnetization drops to zero already in anther example$31,32,4%, 6=0.092 seems not that small to

early time. This usually indicates that the exponég very

be detected. This point remains a little puzzling. Probably, it
might be related to the disorder or many components of the

TABLE I. The critical exponents of the 2D eight-state RBP Potts spin.

model with different disorder amplitude measured from the scal-
ing functions ofA(t), M@(t), M(1), d,In M(t,7) andU(t), respec-

To further clarify the the dynamic scaling behavior, we
examine the spatial correlation functi@ix,t) and plot the

tively, starting from both the ordered and disordered initial statesdata collapse for=10 in Fig. 3b). According to Eq.(16),
Some results in the literature are also listed for comparison. Thene spatial correlation function at different times may col-
results of[17] are obtained with a self-dual continuous distribution lapse onto each other ¥ and C(x,t) are rescaled suitably

of the couplings, which may be considered correspondingaig &

Exponent my r=3 r=4 r=10
N=d/z-6 0.0 0.5723) 0.5085) 0.37G3)
y=(d-2B/v)/z 0.5522) 0.4962) 0.3691)
c,=pBlvz 1.0 0.056Q4) 0.04835) 0.03432)
a=1/vz 0.4389) 0.3738) 0.22@5)
c,=d/z 0.6698) 0.5934) 0.4286)
z=d/c, 2.994) 3.3713) 4.677)
Blv=(d-y2)/2 0.1699) 0.1636) 0.15q11)
z=d/(y+2cy) 3.01(2) 3.3712) 4.572)
Blv=cyz 0.1692) 0.1642) 0.1572)
1/v=qz 1.323) 1.263) 1.033)
0=d/z—-\ 0.0925) 0.0856) 0.06%4)
Blv 0.16Q4) [17]
1/v 1.012) [17]
y 0.4386) [18]
C1 0.039@6) [18]
C, 0.5189) [18]
0 0.2033) [18]

with the exponentz and B/vz. This is indeed the case as
shown in Fig. 8b). The valuesz=4.57 andB/v=0.157 used
here will be confirmed in the next subsection.

C. Quench with ordered start

To complete our study and provide estimates of all the
critical exponents, we now turn to a dynamic process starting
from a completely ordered state—i.e=1.0. The fluctua-
tion of the dynamic variables in this process is less than that
with a disordered start. However, the dynamic evolution is
somewhat slower and corrections to scaling are also rela-
tively stronger.

In Fig. 4, the magnetization and Binder cumulantrof
=3, 4 with an ordered start are displayed with solid lines on
a log-log scale. The corrections to scaling or crossover ef-
fects are visible up to aroung,;.~ 1000. If one measures the
exponents; andc,, up to only a few hundred Monte Carlo
time steps, there will be a discrepancy of about 20%.

Forr=10, the corrections to scaling are somewhat less but
still not negligible within some hundred time steps. In order
to make our results more convincing, as an example, we
have performed the simulations for10 up to a maximum
time t=150 000. This is shown in Fig. 5.

In Table I, the estimated values of andc, are given in
comparison with those from Refl18]. The discrepancy be-
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FIG. 4. The magnetization and Binder cumulant with an ordered s&ailtl(t) plotted vst on a log-log scale. Solid lines are for3 and
4 with a lattice sizd.=280. Dashed lines show the power-law fits. For clarity, the curve=@& has been shifted up by a factor of 1(B)
U(t) plotted vst on a log-log scale. Solid lines are for3 and 4 with a lattice size=280. Dashed lines show the power-law fits.

tween our results and those of REE8] is about 15%-20%. from these five independent measurements of the indices, we
The errors in Table | are not only statistical errors. In somemay have different ways to do it.
cases, errors induced by corrections to scaling have been (1) Fromc,, we may independently estimate the dynamic
taken into account when they are comparable or bigger thaexponentz. With z as an input, we obtain the static exponents
statistical errors. To achieve even more accurate results, i/ v and 1/ and the dynamic exponemtfrom c, ¢, and\
principle, we may think about to introduce some ansatz taespectively. The measurementyoprovides an independent
describe the corrections to scaling—e.g., as done in Retheck of the exponens/v.
[46]. However, we could not succeed, probably because the (2) We forget about,, and determine from y andc;, and
corrections to scaling are somewhat strong and the f@ur- then proceed to estimate other exponefts, 1/v and 6
morey parameter fit is not stable or we have not found afrom cy, ¢, and\, respectively.
correct ansatz. The results of the second approach and a part of the re-

Finally, we perform simulations at temperatures aroundsults of the first approach are given in the second sector of
the transition point to approximate the differentiation of Table I. The third sector includes some measurements in
In M(t,7). Then we may estimate the indey=1/vz from Refs.[17,18 for comparison. In Ref[17], simulations are
Eq. (10). The curves are plotted in Fig. 6. As usual, someperformed for a self-dual continuous distribution of the cou-
extra corrections may arise from the approximation of a dif-plings, and it may be considered corresponding twgar.
ferentiation with a difference, and the errors are also a little In Table I, we may first observe that different methods for
bigger than those of other observables. Taking into accourgstimatingz and B/ v yield consistent results within the er-
that it is not so easy to estimate the exponentve are rors. This provides us confidence that our results are reliable.
satisfied at moment with our results. However, the determination a from y andc, is more ac-

In the first sector of Table |, we summarize all our mea-curate. Therefore, it is used for calculatig», 1/v, and
surements of the indices, y, c¢;, ¢, andc,. Since we are 6—i.e., following the second approach above. In addition,
about to determine four critical exponemtsg/v, 1/v and@  we should mention that the error 8f v estimated fronc, is

T T T T T T T T T T T T T T T T T T

u® L
M(1)

r=10 0.001 |-

0.0001 -

(a) (b)

FIG. 5. The magnetization and Binder cumulant with an ordered start=f&0. (a) M(t) plotted vst on a log-log scale. The solid line
is obtained with a lattice size=280, and the dashed line shows the power-lawitU(t) plotted vst on a log-log scale. The solid line is
obtained with a lattice size=280 and the dashed line shows the power-law fit.
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(a) (b)

FIG. 6. d,In M(t) plotted vst on a log-log scale with an ordered sta#) Solid lines are for =3 and 4 with a lattice size=280. Dashed
lines show the power-law fitgb) The solid line is forr =10 with a lattice sizd.=280 and the dashed line shows the power-law fit.

smaller than that frony. This is because in the latter case [18] and in the present paper yield almost the same results,
Blvis expressed as a differencedfndyz and bothd and  since there are no specialized directions of the Potts spins in
yz are much bigger thag/v. the dynamic process. For the casemgf=1, there is some
On the other handB/v shows little dependence on the difference between two definitions of the magnetization, but
disorder amplituder. This is consistent with the results in it is not significant(about 2%-3% within our simulations
Refs.[15,16. The values/»=0.1572) for r=10 is in good  since the component of the Potts spin with=1 dominates
agreement with3/»=0.1533) for r=10 in Ref.[27] and the dynamic process. Therefore, the discrepancy of 15%-—
B/v=0.1604) for a big r in Ref. [17], and clearly different 20% for the indicey, ¢;, andc, in Ref. [18] is mainly from

from B/v=0.125 of the 2D Ising model. corrections to scaling induced by disorder.

Our values of 1/ show a visible dependence onlt is
qualitatively similar to the numerical results for the three- IV. CONCLUSION
state RBP modd15]. This kind of phenomenon seems to be
typical for physical systems with disorder. Asincreases, In conclusion, with large-scale Monte Carlo simulations
1/v tends to 1.0, the Ising value in two dimensions. Suchwe have investigated the critical dynamic behavior in non-
trend is also reported for lbig r in Ref. [17]. equilibrium dynamic processes starting from both ordered

Another new result in our simulations is the estimate ofand disordered states for the two-dimensional eight-state
the dynamic exponerz. With disorder, the dynamic expo- random-bond Potts model. With the dynamic approach, a
nent z depends on the disorder amplitudeand is signifi- second-order phase transition is confirmed and the dynamic
cantly bigger thare=2.165 of the 2D dynamic Ising model scaling behavior far from equilibrium is systematically veri-
[32,39. For r=10, the valuez=4.57 indicates that the dy- fied. Both the dynamic and static critical exponents are esti-
namics is rather slow. It is clear that the 2D dynamic RBPmated with relatively good accuracy.
model is not in the same dynamic universality class as the The static exponeng/v shows little dependence on the
2D dynamic Ising model. Further evidence is the small val-disorder amplitude, and its value8/»=0.1542) for r=10
ues of# from 0.061 to 0.092, compared with=0.191 of the is in agreement with that in Ref§l7,27. The dynamic ex-
2D Ising model[32,47. ponentz and static exponent Y/vary with the strength of

Comparing our results for=10 with those in Ref[18], disorder. This scenario is similar to that ofilih the three-
one finds a discrepancy of 15%-20% for the indigeg;, state RBP moddll5]. The dynamic exponerztis much big-
andc,, while the measurement @fin Ref.[18] seems prob- ger than that of the 2D Ising model. The exponéneésti-
lematic. Theoretically, the exponefitgoverns the initial in- mated indirectly in this paper is much smaller than that in
crease of the magnetization in E(L7). In Ref. [18], the  Ref.[18].
magnetization is defined as the maximum value of the eight
components of the Potts spin. Even if the initial magnetiza-
tion is set tomy=0, the magnetization with that definition ACKNOWLEDGMENTS
will increase. Therefore, the resulting exponent does not cor- This work was supported in part by NN$Ehinag under
respond tod, and it is rather close ted—-28/v)/2z. For the = Grant Nos. 10325520 and 10275054 and by SRFCIng)
case ofmy=0, the definitions of the magnetization in Ref. and DFG(Germany under Grant No. TR 300/3-3.
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