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Memory effects require for their incorporation into random-walk models an extension of the conventional
equations. The linear Fokker-Planck equation for the probability densitypsrW ,td is generalized by including
nonlinear and nonlocal spatial-temporal memory effects. The realization of the memory kernel is restricted due
the conservation of the basic quantityp. A general criteria is given for the existence of stationary solutions. In
case the memory kernel depends onp polynomially, transport may be prevented. Owing to the delay effects a
finite amount of particles remains localized and the further transport is terminated. For diffusion with nonlinear
memory effects we find an exact solution in the long-time limit. Although the mean square displacement
exhibits diffusive behavior, higher order cumulants offer differences to diffusion and they depend on the
memory strength.
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I. INTRODUCTION

Although the crucial factors governing the dynamics of
systems, comprising many units, consist of interaction and
competition, there is an increasing interest to include
memory effects as a further unifying feature of complex
physical[1,2] as well as biological systems[3]. Recently[4]
memory effects in correlated anisotropic diffusion are stud-
ied in nanoporous crystalline solids. Likewise the effects of
transport memory are discussed in Fisher’s equation[5], also
applicable for bacterial population dynamics[6], resulting in
nonlinear damping and traveling wave solutions[7]. The
transport with memory, depending on the survivability of a
population, is analyzed in[8]. In the present paper we em-
phasize in an analytical solvable model, that the generic be-
havior of the system may be changed when additional non-
linear delay effects are included into the consideration. In
particular, we discuss the transport behavior which is real-
ized after a sufficient accumulation time and after cumulat-
ing particles within a spatial region. Thus the transport pro-
cesses are affected by additional spatial correlations. The
simplest way to describe transport in a medium is based on a
random walk. The probabilitypsrW ,td to find a particle at the
position rW at time timet is governed by the Fokker-Planck
equation[9]

]tpsrW,td = MsrW,t;p,¹W pd. s1d

Here the operatorM consists of an diffusive and a driving
part. In case the diffusive part is relevant we follow scaling
arguments, extended also to more general processes in[10].
Based on that one can identify a diffusive time scale given
by tD. l2/D. Here l is a typical length scale, where the
probability is changed significantly. In case the transport pro-

cess is realized after a spatial-temporal accumulation pro-
cesses the time evolution of the probability could also de-
pend on the history of the sample to which it belongs, i.e.,
the changing rate of the probability should be influenced by
the changing rate in the past. Thus the evolution of the prob-
ability psrW ,td has to be supplemented by memory terms.
Such a term models, for example the way on which a seed
probability at a certain timet8 had been accumulated by a
delayed transport mechanism, originated by the surrounded
environment of the particle. In general, the changing rate of
p at time t is also determined by the accumulation rate at a
former time t8, t. In between, i.e., within the intervalt= t
− t8, the particles are enriched while changing the probability
at t8. Regardless that process the available amount of par-
ticles at timet is governed by an instantaneous transport term
as well as by the changing rate at former timest8. Conse-
quently the evolution Eq.(1) should be modified according
to

]tpsrW,td = MsrW,t;p,¹W pd

+E
0

t

dt8E
−`

`

ddr8KsrW − rW8,t − t8;p,¹W pd

3LsrW8,t8;p,¹W pd. s2d

This equation is of convolution type. Whereas the operator
M characterizes the instantaneous and local processes, both
operatorsK andL are responsible for the delayed processes.
In general the operatorsM, K and L are assumed to be

nonlinear inpsrW ,td and ¹W psrW ,td. They have to be specified
according to the physical situation in mind. In particular we
show that the operators are restricted whenpsrW ,td is a con-
served quantity.

It is well-known that evolution equations with such a kind
of memory kernels can be derived following the well estab-
lished projector formalism due to[11], see also[12]. Notice
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that Eq.(2) is an effective single particle equation embedded
in a N-particle system. The main approach for the further
analysis consists of assuming that the time scale of the
memory effects is controlled by the time scale of the prob-
ability itself. The environment of a single particle is deter-
mined by the transport processes of the remainingN particle
which follows approximately the same underlying physical
processes. In the next section the operatorsK and L are
specified based on that argument.

Our model can be grouped into the increasing efforts to
discuss delay and feedback mechanism. The analysis of the
projector formalism[11] had been successfully applied for
the density-density correlation function studying the freezing
processes in undercooled liquids[13,14]. Recently a Fokker-
Planck equation with a non-linear memory term was used to
discuss anomalous diffusion in disordered systems[15]. The
results could be confirmed by numerical simulations includ-
ing diffusion on fractals[16], see also[17,18]. Moreover, it
was argued[19] that mobile particles remain localized due to
the feedback-coupling. Notice that a formal solution of
whole class of non-Markovian Fokker-Planck equations can
be expressed through the solution of the Markovian equation
with the same Fokker-Planck operator[20]. The non-
Gaussian fluctuations of the asset price can be also traced
back to memory effects[21]. An additional cumulative feed-
back coupling within the Lotka-Volterra model, which may
stem from mutations of the species or a climate changing,
leads to a significant different behavior[22] compared to the
conventional model. If the Ginzburg-Landau model for the
time evolution of an order parameter is supplemented by a
competing memory term, the asymptotic behavior and the
phase diagram is completely dominated by such a term[23].
Whereas the feature of the approach, proposed in those pa-
pers, consists of self-organization, i.e., the time scale of the
memory is determined by the relevant variable itself, for in-
stance the concentration, there is a broad class of models
with external delay effects[24–26], for a survey and appli-
cations in biology see[27]. That case is characterized by a
given external memory kernel. The differences of both ap-
proaches is discussed also in[28]. The spreading of an agent
in a medium with long-time memory, which can model epi-
demics, is studied in[29]. Time-delayed feedback control is
an efficient method for stabilizing unstable periodic orbits of
chaotic systems[30] where the time delay may induce vari-
ous patterns including traveling rolls, spirals and other pat-
terns[31]. The influence of a global feedback is studied re-
cently in a bistable system[32], where the purpose of that
paper is a discussion of the domain-size control by a feed-
back.

In view of the large variety of systems with feedback
couplings it seems to be worth to study simple models,
which still conserve the crucial dynamical features of evolu-
tion models such as inherent nonlinearities and moreover, as
a new ingredient, delayed feedback-couplings. In the present
paper we discuss the influence of a non-Markovian memory
term on transport processes. The retardation effects are char-
acterized by the memory kernelK, which is chosen in such a
manner, that it competes with the conventional diffusion part
and obeys the same symmetry properties. In particular, we
discuss the transport behavior under the inclusion of nonlin-

ear memory term. Under that conditions the characteristic
time tD is modified. Accordingly we demonstrate, the long-
time behavior is dominated apparently by the delay effects.
The system is able to reach a stationary state with a finite
probability.

II. MODEL

In this section we specify the model, defined by Eq.(2),
under the assumption that basic quantitypsrW ,td is conserved.
This condition is realized by

Ṗstd =
d

dt
E

−`

+`

ddr psrW,td = 0. s3d

To preservep the instantaneous termM has to be related to

a current, e.g.,M~¹W · jW. ChoosingpsrW ,td=0 for r →`, we
get after a Laplace transformation

zPszd − P0 = K̂szdL̂szd with K̂szd =E ddr KsrW,zd, s4d

L̂szd =E ddr LsrW,zd,

with P0=Pst=0d. For an arbitrary polynomial kernelK̂ the
conservation law is in general not fulfilled provided the op-
eratorL is simply defined byL;−]tpsrW ,td (the minus sign
is only for convention). Making this ansatz we conclude
from Eq. (4)

fzPszd − P0gfK̂szd + 1g = 0

and consequently the conservation law is guaranteed. Notice

that the solutionK̂szd=−1 is irrelevant. Physically, the as-
sumption forL means, that we take into account a coupling
of the rates, e.g., the evolution at the observation timet is
directly coupled to the changing rate att8, t. Processes in
the past will be permanently reevaluated at present time. In
doing so the memory kernel gives rise to a coupling of the
time scales. In the vicinity of the upper limitt8. t the
memory term readsKfrW ,0 ,psrW ,0dg]tpsrW ,td, i.e., a momentary
change at the observation timet is coupled to the value at the
initial time t=0. Therefore the very past is related to the
instantaneous value ofpsrW ,td. In the opposite case, at the
lower limit t8.0, the change of the quantitypsrW ,td near to
the initial value]t8psrW ,t8=0d is directly coupled to the in-
stantaneous valuepsrW ,td via the kernel. In such a manner the
memory part represents a weighted coupling of the behavior
at the initial time and the observation time. Due to the cou-
pling of the rates the long-time behavior of the system will
be modified. One reason for that could be that the reacting
species are embedded into an environment of all the other
particles of the system. Due to the mutual interaction, reac-
tants, lacking at timet, were annihilated at an earlier timet8.
Especially in sufficiently complex diffusion-reaction systems
the feedback and memory effects should be relevant. In such
system additional degrees of freedom like in flexible macro-
molecules in melts or in concentrated solutions[33], nematic

TRIMPER, ZABROCKI, AND SCHULZ PHYSICAL REVIEW E70, 056133(2004)

056133-2



elastomer[34] or in biology [27]. In that context one is in-
terested in the description of effluent reprocessing plants in
systems with closed water circulation. A special ecosystem
of aerobic and anaerobic microorganisms is evolved in the
clarifiers of such systems due to natural immigration or due
to additional allowance. The living conditions of the micro-
organisms are mutually associated via the exchange of inter-
mediate catabolic products. Each change of the concentration
of one species will be stored in the food chain and effects the
evolution of this species at a later time. Furthermore, the
partial mixing in the clarifiers by convection and diffusion
processes enlarges the effects over the whole system, so that
the memory integral introduced in Eq.(1) includes both the
time and the spatial coordinates. This special example may
be extended also to other complex biological, chemical or
engineering problems with various hidden degrees of free-
dom, which are able to influence the evolution of a selected
component significantly, for instance by biological interac-
tion with other species via the food chain or via biological
competition. Such effects which are partially observable,
could contribute to the memory term.

From Eq.(2) we can make some general statements for an

arbitrary kernelKsrW ,t ;p,¹W pd and LsrW ,t ;p,¹W pd=−]tpsrW ,td.
As stressed before the last condition guarantees the conser-
vation of psrW ,td. After Fourier transformation with respect to
the spatial coordinate and Laplace transformation with re-
spect to the time, we get from Eq.(2)

pskW,zd =
p0skWd

z+ D̂skW,zdk2
with D̂skW,zd =

D

1 +KskW,zd
, s5d

whereKskW ,zd is the Fourier-Laplace transformed kernel. As-
suming a regular behavior of the kernel we make the ansatz

KskW,zd =
BskWd

z
+ VskW,zd with lim

z→0
VskW,zd = finite. s6d

Provided the kernel reveals a finite stationary value

lim
t→`

KskW ,td;BskWd, then psrW ,td yields a stationary solution,

too. Inserting Eq.(6) in Eq. (5) we obtain

pskW,zd =
gskWd

z
+ cskW,zd, with gskWd =

p0skWd

BskWd + Dk2
,

cskW,zd =
p0skWdDk2f1 + VskW,zdg

fAskWd + sDk2dgfz„1 + VskW,zd… + BskWd + Dk2g
.

s7d

Summarizing the results we conclude that the model, follow-
ing Eq. (2) for the conserved quantitypsrW ,td, gives rise to a

nontrivial stationary solutiongskWd, or equivalentgsrWd, if the

Laplace transformed kernelKskW ,zd satisfies the conditions

lim
z→0

zKskW,zd Þ 0. s8d

This result is a generalization of a previous one obtained for
a homogeneous system[35].

Since psrW ,td is a probability density we can derive an
evolution equation for the mean square displacementsstd
=krW2l. Provided the functionpsrW ,td is already normalized,
one finds

d

dt
sstd = 2dD −E

0

t

dt8K̂st − t8dL̂2st8d −E
0

t

dt8K̂2st − t8dL̂st8d,

s9d

whereK̂ and L̂ are defined in Eq.(4) and K̂2 and L̂2 are the
corresponding second moments. In the simplest case without
memory andM=D¹2psrW ,td one concludes from Eq.(9)
sstd=2dDt. In the next section we discuss two cases with
nonzero kernelK depending onpsrW ,td itself, e.g., the time-
space scale of the memory is given by the scales where the
variablepsrW ,td becomes relevant.

III. NONLINEAR MEMORY

For applications we consider the case of diffusive instan-
taneous term given by

M = D¹W 2psrW,td, s10d

whereD is the diffusion constant. In the first subsection let
us illustrate the influence of memory by specifying the kernel
K by a power law in the quantityp. Hereby we follow the
ideas discussed recently[15,19].

A. Polynomial kernel

Based on the analysis of undercooled liquids in the frame
of mode-coupling theory[13,14] the random walk had been
analyzed in a glasslike environment[15]. In that case the
memory kernel becomes

KsrW,td = lp2srW,td, s11d

wherel is the strength of the memory. Because in that case

K̂std is different from zero and in general different from −1
one has to choose the operatorL=−]tpsrW ,td to preserve the
basic quantityp. The evolution equation reads

]tpsrW,td = D¹2psrW,td − lE
0

t

dt8E
−`

`

ddr8p2srW − rW8,t − t8d

3]t8psrW8,t8d. s12d

Making a simple scaling transformationrW→LrW, t→Lzt, p
→L−dp, the evolution equation with the memory kernel, de-
fined by Eq.(11) remains invariant by the replacementD
→DL2−z andl→lLd−2. From here one gets the critical di-

mension dc=2. Defining according to Eq.(6) K̂std
=leddr p2srW ,td, the mean square displacementsstd obeys as
follows from Eq.(9) after Laplace transformation
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sszd =
s0fz+ zK̂szdg + 2Dd

zfz+ zK̂szdg
with s0 = sst = 0d = 0. s13d

As demonstrated in[19] the nonlinear transport process with
the kernelK in Eq. (11) allows a stationary solution. Follow-
ing Eq. (6) the stationary part of the kernel reads

K̂szd =
B̃

z
with B̃ ; BskW = 0d = lE

−`

`

ddr g2srWd Þ 0,

wheregsrWd is the stationary solution according to Eq.(7). As
a result the mean square displacement exhibits a finite sta-
tionary solution

lim
t→`

sstd ; s̀ =
2dD

B̃
~

D

l
, s14d

which is only reasonable for a positive memory strength
l.0 in agreement with[15,19]. For simplicity the initial
value s0 is assumed to be zero. In the short time regime,
characterized byz@0, we find sszd.2dDz−2. As a conse-
quence the mean square displacement increases linearly int,
whereassstd becomes constant in the long-time limit. The
result is shown in Fig. 1. The characteristic cross-over time
from a linear increase in time to the constant stationary

value, given by Eq.(14), is given bytc=1/B̃. A linear sta-
bility analysis shows that the finite stationary solution is
stable. Physically a finite stationary limit can be identified
with localization. Owing the self-organized memory effects a
finite amount of particles remains localized preventing a fur-
ther transport. The analytical results are well confirmed by
numerical simulations[16]. Note that one can also calculate
higher order moments likewstd=ksrW2d2l which offers also a
stationary behavior which fulfills the relation

lim
t→`

wstd = S1 +
2

d
DS2 −

B̃2

Dd
D lim

t→`
s2std

with B̃2=leddr rW2g2srWd.
A similar behavior can be deduced for another power law

memory kernels. Let us simply estimate the localization ef-

fect. From Eq.(12) one concludes that at the initial timet
=0 conventional diffusion occurs. For a subsequent small
time interval and at a fixed spatial point, Eq.(12) is yet of
diffusion type but with an effective diffusion parameter
Deff,D. This reduction of the mobility will be amplified
with increasing time leading to localization. Whenever the
probabilty psrW ,t→`d tends to a stationary distribution, the
mean square displacementsstd tends also to a time indepen-
dent quantity which means likewise localization. Assuming
]t8psrW8 ,t8d,0, i.e., a particle leaves prefentially the pointrW8
at timet8, then one concludes from Eq.(12) that]tpsrW ,td.0.
Thus, the return probability to an originally occupied site is
enhanced. Notice that this conclusion is valid provided the
kernel is positive. In our case this condition is fulfilled if
l.0; see Eq.(11).

B. Nonlinear diffusion

Now we regard as a further realization of Eq.(2) with a
conservedpsrW ,td a nonlinear diffusion equation. Here the
nonlinearity may be originated by the memory. For example,
a Brownian particle moving in a strongly disordered me-
dium, can be subjected to additional delay effects due to the
interaction with the environment. Another application could
be realized by transport of food in plants, where the food is
temporally stored in certain cells and released later as re-
quired.

In terms of our model the instantaneous term is chosen as
conventional diffusion, but the memory kernelK is also re-
lated to gradient terms, i.e., theK=m¹2p. This realization is
a generalization of Cattaneo’s law[36–38], where the current

is assumed to bejWsrW ,t+td~¹W psrW ,td. Thus, the model in-
cludes not only the instantaneous and local coupling to the
gradient but also there appears a nonlocal, time-delayed dif-
fusive mechanism. The evolution equation reads after partial
integration

]tpsrW,td = D¹2psrW,td

− mE
0

t

dt8E
−`

`

ddr8¹W psrW − rW8,t − t8d · ]t8¹
W psrW8,t8d.

s15d

The nonlinear term is a competitive one to the conventional
diffusion term. Both concentration fluctuations at timest and
t8, respectively contribute to the behavior of the system. Dif-
ferent to the diffusion constantD.0, the sign of the param-
eterm can be positive and negative indicating the “direction”
of the feedback. Note that in this case the memory is not
determined by an external function as in the previous sec-
tion, but the memory is self-organized by the quantitypsrW ,td
and¹W p. The non-linear term is of the same form as used in
the so-called KPZ equation[39].

As discussed before, Eq.(15) remains invariant under a
simple scaling transformation for the spatial and time vari-
able as well as the probability density by replacing

D → L2−zD, m → L2−zm.

From here we conclude that the non-linear feedback term in
Eq. (15) behaves like diffusion. In terms of the effective

FIG. 1. The mean square displacement in units of the stationary
solutionsstd / s̀ as function of timet (in arbitrary units), according
to Eqs.(13) and (14).
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diffusion parameterD̂, introduced in Eq.(5), the model leads
to

D̂skW,zd =
D

1 + mk2pskW,zd
.

For a positive memory parameterm.0, it resultsD̂,D. In

the long wave length limitkW =0 we findD̂skW =0,zd=D, while
in the long time limit corresponding toz→0, the effective
diffusion parameter is different fromD. According to Eq.(7)
the model exhibits two stationary solutions

g+srWd = 0 and g−srWd = p0srWd −
1

k2dsrWd,

where k2=m /D is a scale-free parameter. In case ofp0srWd
=p0dsrWd the stationary solutiong− reads

g−srWd = Fp0 −
D

m
GdsrWd.

The nontrivial solution is only accessible ifg−.0. Because
both solutions are stable within a linear stability analysis,
compare Eq.(7), one has to study the complete dynamics. To
that aim let us perform a combined Fourier and Laplace
transformation of Eq.(15). The resulting quadratic equation

has two solutionsp±skW ,zd with

p+skW,zd =
p0skWd
2A1

o
n=1

`

s− 1dn+1an
s4A1dnzn−1

sz+ A2d2n−1 ,

p−skW,zd = −
p0skWd
A1

−
A2

A1z
− p+skW,zd,

with

A1skWd = mk2p0skWd, A2skWd = k2fD − mp0skWdg,

andan =

GSn −
1

2
D

2Îpn!
. s16d

Applying for simplicity the initial conditionp0skWd=p0 like
above, we find after a tedious but straightforward calculation

an exact expression forpskW ,td with

p+skW,td =
p0e

−A2t

Îp
o
n=1

`
Gsn − 1/2ds− 4A1tdn−1

nG2snd
Ms1 − n,n;A2td

; fsk2td, s17d

whereMsa,b;xd;1F1sa,b;xd is Kummer’s confluent hyper-

geometric function[40]. The corresponding solutionp−skW ,td
follows from Eq.(16). Using the expressions for the quanti-
tiesA1 andA2.0, defined in Eq.(16), one concludes that the

solution p+skW ,td is only a function of the variablek2t as in
case of conventional diffusion. Therefore, after Fourier trans-
formation the solutions can be written as

p+srW,td =
1

td/2FS rW2

t
D , s18d

where the scaling functionFswd is different from the diffu-
sive case, see below. To proceed further let us use the
asymptotic representation of Kummer’s function leading to

p+skW,td . p0e
−A2t I1s2tÎA1A2d

tÎA1A2

. s19d

I1syd is the modified Bessel function[40]. In the long time
limit the solution p+, belonging to the stationary solution
g+=0, is a stable one, whereas the other solutionp−, related
to g−.0, becomes unstable because in that caseA2 is nega-
tive. Actually, from Eq.(19) we can get the spatiotemporal
solution. Remark that a divergent factor, proportional tok2 in
the denominator of Eq.(19) is compensated by the modified
Bessel functionI1. This is also the reason that one has to
avoid the asymptotic expansion forI1 to estimate the scaling
function Fswd introduced in Eq.(18). We obtain

Fswd =
p0e

−rW2/4sD−mp0dt

f4psD − mp0dgd/2o
n=0

` S p0m

D − mp0
Dn s2nd!

Gsn + 2dn!

3L2n
d/2−1S rW2

4sD − mp0dt
D , s20d

with the generalized Laguerre polynomialsLa
bsxd. The differ-

ent behavior ofp+srW ,td in comparison to conventional diffu-
sion is depicted in Fig. 2. In the initial time interval there
occurs oscillations in agreement with the representation of
the Laguerre polynomials[40], however in the long time
limit the behavior ofp is only slightly different from diffu-
sion. The difference to conventional diffusion may be also
established by analyzing the mean square displacementsstd
=krW2l. According to Eq.(9) sstd obeys the equation

FIG. 2. The picture shows the differences between conventional
diffusion and the behavior ofp+srW ,td denoted asdp as function ofx
and t in arbitrary units. The result is based on Eqs.(18) and (20)
with D=1, p0=1, andm=0.1.
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d

dt
sstd = 2dD −E

0

t

dt8K̂st − t8dL̂2st8d −E
0

t

dt8K̂2st − t8dL̂st8d.

s21d

Within the model, discussed in this section, we find from Eq.
(21) sstd=2dDt. The mean square displacement is identical
with that for diffusion. It is independent on the memory
strengthm. The difference to diffusion becomes visible in
higher order moments. Using the same procedure as for de-
riving Eq. (21), the fourth order momentwstd=ksrW2d2l obeys

d

dt
wstd = sstdf4Dsd + 2d + 2msd + 4dg.

From here the fourth order cumulantC4std=wstd−3sstd is
deduced to be

C4std = s2Dtd22dF1 − d +
m

4D
sd + 4dG ,

which is different from conventional diffusion withC4std
=2ds1−dds2Dtd2. The cumulant depends on the ratiom /D
=k2. The result can be extended to higher order cumulants.

IV. CONCLUSIONS

In this paper we have extended the conventional modeling
of diffusive processes by including non-Markovian memory
terms within the evolution equation. The additional terms are
chosen in such a manner that the relevant variablepsrW ,td can
be normalized. By this requirement the form of the memory
term is restricted to a class where the changing rate ofp at
the observation timet is coupled to the changing rate ofp at
a former timet8. Insofar the delay effect offers a long time
memory due to 0ø t8ø t. Further the model exhibits also a
long range memory because the kernelK depends onrW−rW8.
As a new ingredient the memory term is determined by the
basic quantitypsrW ,td itself, i.e., the memory is dominated by
the spatial-temporal scale of the probability densityp. In the
paper we demonstrate that such a self-organized feedback
coupling may change the dynamical behavior of the system
essentially, in particular due to the nonlinearity of the
memory effects. In case the memory offers a power law de-

pendence onp with a memory strengthl the particle per-
forming a random walk, can be localized and therefore a
further transport is prevented. This situation is realized for an
“attractive” memory strengthl.0, where the return prob-
ability dominates the dynamical behavior. There exists a fi-
nite stationary limit of the mean square displacementsstd
determined by the ratio of the diffusive constant versus the
memory strength:sst→`d~D /l. The reason for such a be-
havior is by means of an explicit coupling of the rate of the
concentration at the observation timet to that one at a pre-
vious time. This time accumulation is further accompanied
by an additional spatial accumulation, the effect of which is
comparable to the effect a long-range interaction forces and
consequently the results are basically independent on the
spatial dimensions in according to scaling arguments. These
many-body effects are shown to change the asymptotic be-
havior drastically. Due to the feedback-coupling of a particle
to its environment, a subsequent particle, undergoing a dif-
fusive motion, gains information from a modified environ-
ment. Hence the particle can be confined within a certain
region preventing a further transport. In this manner a self-
organized memory leads to a nonzero stationary mean square
displacement controlled by the memory strength.

A further application is given by a nonlinear diffusive
process where the memory is also originated by gradient
terms with the strengthm. Although the additional non-linear
memory term offers the same scaling behavior as conven-
tional diffusion the resulting probability distribution is com-
pletely different from diffusion. Whereas the second mo-
ment, the mean square displacement, shows a diffusive
behavior, higher order cumulants, in particular Binder’s cu-
mulant

CBstd = 1 −
wstd

3s2std
=

2

3d
F1 − d +

m

4D
sd + 4dG

reveals deviations from conventional diffusion. Especially,
CB is determined by the strength of the memory. The analysis
will be extended to chemical reactions in multicomponent
systems.
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