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Memory effects require for their incorporation into random-walk models an extension of the conventional
equations. The linear Fokker-Planck equation for the probability depsityt) is generalized by including
nonlinear and nonlocal spatial-temporal memory effects. The realization of the memory kernel is restricted due
the conservation of the basic quantityA general criteria is given for the existence of stationary solutions. In
case the memory kernel dependsmpolynomially, transport may be prevented. Owing to the delay effects a
finite amount of particles remains localized and the further transport is terminated. For diffusion with nonlinear
memory effects we find an exact solution in the long-time limit. Although the mean square displacement
exhibits diffusive behavior, higher order cumulants offer differences to diffusion and they depend on the
memory strength.
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I. INTRODUCTION cess is realized after a spatial-temporal accumulation pro-

Although the crucial factors governing the dynamics of CSS€S the tin"_ne evolution of the probab!lity _could also_de-
systems, comprising many units, consist of interaction and€nd on the history of the sample to which it belongs, i.e.,
competition, there is an increasing interest to includein® changing rate of the probability should be influenced by
memory effects as a further unifying feature of Comp|exthe;.chanq|ng rate in the past. Thus the evolution of the prob-
physical[1,2] as well as biological systeni8]. Recentlyj4] ~ aPility p(F,t) has to be supplemented by memory terms.
memory effects in correlated anisotropic diffusion are stud-Such a term models, for ex.{ample the way on which a seed
ied in nanoporous crystalline solids. Likewise the effects ofProbability at a certain time’ had been accumulated by a
transport memory are discussed in Fisher’'s equdtralso dela_\yed transport mechanlsm, originated by the _surrounded
applicable for bacterial population dynami@j, resulting in environment of the partlc_le. In general, the cha_nglng rate of
nonlinear damping and traveling wave solutiof§. The P at timet is also determined by the accumulation rate at a
transport with memory, depending on the survivability of afor{mer timet’<t. In between, i.e., within the intervai=t
population, is analyzed if8]. In the present paper we em- ~t the particles are enriched while changmg the probability
phasize in an analytical solvable model, that the generic bedt t'- Regardless that process the available amount of par-
havior of the system may be changed when additional nonicles at timet is governed by an instantaneous transport term
linear delay effects are included into the consideration. IS Well as by the changing rate at former tintésConse-
particular, we discuss the transport behavior which is realduently the evolution Eqc1) should be modified according
ized after a sufficient accumulation time and after cumulat!©
ing particles within a spatial region. Thus the transport pro- . . -
cesses are affected by additional spatial correlations. The ap(r,t) = M(r.t;p,Vp)

simplest way to describe transport in a medium is based on a t % .

random walk. The probabilitp(',t) to find a particle at the +f dt’f do%r' K(F-7't—t";p,Vp)

position at time timet is governed by the Fokker-Planck 0 -

equation(3] XL(F,U';p,Vp). (2
ap(r,t) = M(F,t;p,Vp). D

This equation is of convolution type. Whereas the operator
Here the operatoM consists of an diffusive and a driving M characterizes the instantaneous and local processes, both
part. In case the diffusive part is relevant we follow scalingoperatorsC and £ are responsible for the delayed processes.
arguments, extended also to more general procesqd®jin In general the operatord1, K and £ are assumed to be
Based on that one can identify a diffusive time scale givemonlinear inp(f,t) and Vp(F,t). They have to be specified
by m=I?/D. Herel is a typical length scale, where the according to the physical situation in mind. In particular we
probability is changed significantly. In case the transport prospow that the operators are restricted wipéit) is a con-
served quantity.
It is well-known that evolution equations with such a kind
*Electronic address: trimper@physik.uni-halle.de of memory kernels can be derived following the well estab-
"Electronic address: michael.schulz@physik.uni-ulm.de lished projector formalism due td 1], see alsd12]. Notice
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that Eq.(2) is an effective single particle equation embeddedear memory term. Under that conditions the characteristic
in a N-particle system. The main approach for the furthertime 75 is modified. Accordingly we demonstrate, the long-
analysis consists of assuming that the time scale of théme behavior is dominated apparently by the delay effects.
memory effects is controlled by the time scale of the prob-The system is able to reach a stationary state with a finite
ability itself. The environment of a single particle is deter- probability.
mined by the transport processes of the remailNngarticle

which follows approximately the same underlying physical
processes. In the next section the operaféreind £ are

specified based on that argument. In this section we specify the model, defined by E?),

~ Our model can be grouped into the increasing efforts tqinder the assumption that basic quanfity,t) is conserved.
discuss delay and feedback mechanism. The analysis of thgis condition is realized by

projector formalism[11] had been successfully applied for

the density-density correlation function studying the freezing : d (™ d e

processes in undercooled liquif3,14. Recently a Fokker- P(t) = EJ dr p(r,t) = 0. 3)

Planck equation with a non-linear memory term was used to -

diSCllJtSS an?c;nt?'OUS ?ﬁﬁusggin diSquef?d_Syslt@g@ T'hel g To preservep the instantaneous terfi has to be related to

results could be confirme numerical simulations includ- > > : >

ing diffusion on fractalq416], gee alsd17,18. Moreover, it a current, e.g.MV-J. Choosmgp(r,t)—o forr—eo, we

was argued19] that mobile particles remain localized due to get after a Laplace transformation

the feedback-coupling. Notice that a formal solution of - .

whole class of non-Markovian Fokker-Planck equations can ZP(2) - Po=K(2)L(2) with K(2) :f d¥r K(,2), (4)

be expressed through the solution of the Markovian equation

with the same Fokker-Planck operat¢20]. The non-

Gaussian fluctuations of the asset price can be also traced L(2) = f d% £(F.2)

back to memory effecti21]. An additional cumulative feed- 7

back coupling within the Lotka-Volterra model, which may N

stem from mutations of the species or a climate changingith Po=P(t=0). For an arbitrary polynomial kerné{ the

leads to a significant different behavi@2] compared to the conservation law is in general not fulfilled provided the op-

conventional model. If the Ginzburg-Landau model for theeratorL is simply defined byl =-4,p(f',t) (the minus sign

time evolution of an order parameter is supplemented by & only for convention Making this ansatz we conclude

competing memory term, the asymptotic behavior and thérom Eq. (4)

phase diagram is completely dominated by such a {@3h -

Whereas the feature of the approach, proposed in those pa- [zP(2) - Po][K(2) +1]=0

PErS, consusts of s'elf-orgamzatlon, €., th‘? tlmg scale Of.thﬁnd consequently the conservation law is guaranteed. Notice

memory is determined by the relevant variable itself, for in- R . )

stance the concentration, there is a broad class of modefat the solutionk(z)=-1 is irrelevant. Physically, the as-

with external delay effecti24—28, for a survey and appli- sumption for£ means, that we take into account a cogpllng

cations in biology se27]. That case is characterized by a Of the rates, e.g., the evolution at the observation tinee

given external memory kernel. The differences of both apdirectly coupled to the changing rate @t<t. Processes in

proaches is discussed also[28]. The spreading of an agent theT past will be permanently rgevalqated at present time. In

in a medium with long-time memory, which can model epi- d0ing so the memory kernel gives rise to a coupling of the

demics, is studied ifi29]. Time-delayed feedback control is time scales. In the vicinity of the upper limit =t the

an efficient method for stabilizing unstable periodic orbits ofemory term read&f[r,0,p(r,0)]ép(r 1), i.e., a momentary

chaotic system§30] where the time delay may induce vari- phe_lnge_ at the observation tihes coupled to .the value at the

ous patterns including traveling rolls, spirals and other patinitial time t=0. Therefore the very past is related to the

terns[31]. The influence of a global feedback is studied re-instantaneous value gi(f't). In the opposite case, at the

cently in a bistable systerf82], where the purpose of that lower limit t'=0, the change of the quantify(r,t) near to

paper is a discussion of the domain-size control by a feedthe initial valued, p(r,t'=0) is directly coupled to the in-

back. stantaneous valug(r,t) via the kernel. In such a manner the
In view of the large variety of systems with feedback memory part represents a weighted coupling of the behavior

couplings it seems to be worth to study simple modelsat the initial time and the observation time. Due to the cou-

which still conserve the crucial dynamical features of evolu-pling of the rates the long-time behavior of the system will

tion models such as inherent nonlinearities and moreover, d% modified. One reason for that could be that the reacting

a new ingredient, delayed feedback-couplings. In the presespecies are embedded into an environment of all the other

paper we discuss the influence of a non-Markovian memoryarticles of the system. Due to the mutual interaction, reac-

term on transport processes. The retardation effects are chdants, lacking at timeé, were annihilated at an earlier tinte

acterized by the memory kernkl, which is chosen in such a Especially in sufficiently complex diffusion-reaction systems

manner, that it competes with the conventional diffusion parthe feedback and memory effects should be relevant. In such

and obeys the same symmetry properties. In particular, weystem additional degrees of freedom like in flexible macro-

discuss the transport behavior under the inclusion of nonlinmolecules in melts or in concentrated soluti$83], nematic

Il. MODEL
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elastomel34] or in biology [27]. In that context one is in- lim z}C(IZ 2) %0 (8)
terested in the description of effluent reprocessing plants in 70 ' '
systems with closed water circulation. A special ecosyste
of aerobic and anaerobic microorganisms is evolved in th
clarifiers of such systems due to natural immigration or dué* "° N . . .
to additional allowance. The living conditions of the micro- Smge p(r. 1) IS a probability density we can derive an
organisms are mutually associated via the exchange of inte?—"gzlu“c’n equation for the mean square displacensnt
mediate catabolic products. Each change of the concentratigni/ - Provided the functiorp(r,t) is already normalized,
of one species will be stored in the food chain and effects théne finds
evolution of this species at a later time. Furthermore, the d t A t A
partial mixing in the clarifiers by convection and diffusion —g(t) :2dD—J dt’K(t—t")Ly(t") —f dt’K,(t—t")L(t"),
processes enlarges the effects over the whole system, so th 0 0
the memory integral introduced in E€L) includes both the (9)
time and the spatial coordinates. This special example may A . A A
be extended also to other complex biological, chemical oivhereK andL are defined in Eq4) andK, andL, are the
engineering problems with various hidden degrees of freeeorresponding second moments. In the simplest case without
dom, which are able to influence the evolution of a selectednemory andM=DV?p(f,t) one concludes from Eq9)
component significantly, for instance by biological interac-s(t)=2dDt. In the next section we discuss two cases with
tion with other species via the food chain or via biological nonzero kernekC depending om(f,t) itself, e.g., the time-
competition. Such effects which are partially observablegpace scale of the memory is given by the scales where the
could contribute to the memory term. variablep(f,t) becomes relevant.

From Eq.(2) we can make some general statements for an
arbitrary kernelK(F,t;p,ﬁp) and L(r,t;p,Vp)==a,p(r,t).
As stressed before the last condition guarantees the conser-
vation of p(f,t). After Fourier transformation with respectto  For applications we consider the case of diffusive instan-
the spatial coordinate and Laplace transformation with retaneous term given by
spect to the time, we get from ER)

his result is a generalization of a previous one obtained for
homogeneous systejd5].

Ill. NONLINEAR MEMORY

M =DV?(f 1), (10)
(K2) = Po(k) with D(K.2) = D (5) whereD is the diffusion constant. In the first subsection let
Pk, 7+ 15(I2 2k ' 1+ IC(IZ 2) ' us illustrate the influence of memory by specifying the kernel

K by a power law in the quantitp. Hereby we follow the

. _ ideas discussed recenfly5,19.
where/(k,z) is the Fourier-Laplace transformed kernel. As-

suming a regular behavior of the kernel we make the ansatz .
A. Polynomial kernel

R B(IZ) R R Based on the analysis of undercooled liquids in the frame
K(k,z) = —— + Q(k,2) with lim Q(k,2) =finite. (6) of mode-coupling theory13,14 the random walk had been
z z-0 analyzed in a glasslike environmefit5]. In that case the
memory kernel becomes

Provided the kernel reveals a finite stationary value
lim KC(k,t)=B(k), then p(r,t) yields a stationary solution,
t—oo

too. Inserting Eq(6) in Eq. (5) we obtain where\ is the strength of the memory. Because in that case

k(t) is different from zero and in general different from -1
one has to choose the operatdr—a,p(r,t) to preserve the

K(F,t) = NpA(F 1), (12)

p(k,2) = 9k +y(k,2), with  g(K) = P"&, basic quantityp. The evolution equation reads
z B(k) + Dk? ¢
ap(F,t) =DV?p(r,t) — xf dt’f ddr ' p?(F =7, t—t")
N > 0 —o0
- KDk 1 +Q(K, N
lﬂ(k,Z) - pO( ) [ ( Z)] X(?t,p(r',t'). (12)

A(K) + DK)][z(1 +Q(K,2)) + B(K) + Dk?]
(A L (le2)) + BK) ] Making a simple scaling transformatian— Ar, t— A%, p

() — A9, the evolution equation with the memory kernel, de-

o fined by Eq.(11) remains invariant by the replacemeDt
Summarizing the results we conclude that the model, follow-_, pA2-2 agnd A — AA%"2 From here one gets the critical di-

ing Eq. (2) for the conserved (luantitp(F,t), gives rise to a mension d,=2. Defining according to Eq.(6) k(t)
nontrivial Stationary SOlUtiO@(_)k), or equivalentg(F), if the :}\fddr pz(f’,t), the mean square disp|aceme(‘tb Obeys as
Laplace transformed kernél(k,z) satisfies the conditions  follows from Eq.(9) after Laplace transformation
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1y fect. From Eq.(12) one concludes that at the initial tirne
=0 conventional diffusion occurs. For a subsequent small
0.8 time interval and at a fixed spatial point, Hd.=2) is yet of
diffusion type but with an effective diffusion parameter
0.6 De<<D. This reduction of the mobility will be amplified
(1) with increasing time leading to localization. Whenever the
Seo probabilty p(r,t— ) tends to a stationary distribution, the
047 mean square displacemesit) tends also to a time indepen-
dent quantity which means likewise localization. Assuming
027 dp(r",1')<0, i.e., a particle leaves prefentially the poiiit
at timet’, then one concludes from EL2) thatd,p(r,t) > 0.
0- : : Thus, the return probability to an originally occupied site is

0.5 e 15 2 25 enhanced. Notice that this conclusion is valid provided the

ernel is positive. In our case this condition is fulfilled if

FIG. 1. The mean square displacement in units of the stationar
9 b >0; see Eq(11).

solutions(t)/s, as function of timet (in arbitrary unit3, according

to Egs.(13) and(14). B. Nonlinear diffusion
R Now we regard as a further realization of Eg) with a
z+zK(2)] + 2Dd conservedp(r,t) a nonlinear diffusion equation. Here the
s(g) = D2 KD with s,=s(t=0)=0. (13) p(r,0 .

- nonlinearity may be originated by the memory. For example,
Zz+zK(2)] . . R 4

a Brownian particle moving in a strongly disordered me-
As demonstrated ifil9] the nonlinear transport process with dium, can be subjected to additional delay effects due to the
the kernellC in Eq. (11) allows a stationary solution. Follow- interaction with the environment. Another application could

ing Eqg. (6) the stationary part of the kernel reads be realized by transport of food in plants, where the food is
- ) temporally stored in certain cells and released later as re-

~ B  ~ . o ired

_B _ o a2 quired.
K(2)= 7 with B= B(k=0) = )‘f_wd rgi(f) #0, In terms of our model the instantaneous term is chosen as

_ _ . ' conventional diffusion, but the memory kerr€lis also re-
whereg(r) is the stationary solution according to E@). As  lated to gradient terms, i.e., thé=uV?p. This realization is
a result the mean square displacement exhibits a finite stargeneralization of Cattaneo’s |§&6—-39, where the current

tionary solution is assumed to bg(f,t+ )« Vp(F,t). Thus, the model in-
_ 2dD D cludes not only the instantaneous and local coupling to the
t|lm s(t) =s,.= ? = (14)  gradient but also there appears a nonlocal, time-delayed dif-

fusive mechanism. The evolution equation reads after partial

which is only reasonable for a positive memory strengthintégration
A>0 in agreement witif15,19. For simplicity the initial ap(F,t) = DV2p(F,t)
value sy is assumed to be zero. In the short time regime, N "

. s . — ~2 _ > L >
characterized by>0, we f|_nd s(z) 2dD_z . As a conse- _Mf dt’f A% Vp(F-F t—t') - 4,V p(',t').
quence the mean square displacement increases linedrly in 0 o
whereass(t) becomes constant in the long-time limit. The (15)
result is shown in Fig. 1. The characteristic cross-over time
from a linear increase in time to the constant stationaryThe nonlinear term is a competitive one to the conventional
value, given by Eq(14), is given bytc:1/~B. A linear sta- diffusion term. Both concentration fluctuations at timesd

bility analysis shows that the finite stationary solution ist’, respectively contribute to the behavior of the system. Dif-
stable. Physically a finite stationary limit can be identifiedferent to the diffusion constai >0, the sign of the param-
with localization. Owing the self-organized memory effects a€teru can be positive and negative indicating the “direction”
finite amount of particles remains localized preventing a fur-Of the feedback. Note that in this case the memory is not
ther transport. The analytical results are well confirmed bydetermined by an external function as in the previous sec-
numerical simulation§16]. Note that one can also calculate tion, but the memory is self-organized by the quangity,t)
higher order moments like/(t)=((?)?) which offers also a andVp. The non-linear term is of the same form as used in

stationary behavior which fulfills the relation the so-called KPZ equatiof39].
~ As discussed before, E@l5) remains invariant under a
. _ 2\, Bz, simple scaling transformation for the spatial and time vari-
tlm () = (1 * d)(z Dd)!m s able as well as the probability density by replacing

= 2-7 2-7
with Bz=)\fddl’l’_)2g2(l7). D—A“D, u— ATu.

A similar behavior can be deduced for another power lawFrom here we conclude that the non-linear feedback term in
memory kernels. Let us simply estimate the localization ef£Eg. (15) behaves like diffusion. In terms of the effective
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diffusion parametel’:), introduced in Eq(5), the model leads
to

Dk =————.
1+ uk?p(k,2)

For a positive memory parametgr>0, it resultsD <D. In
the long wave length limik=0 we findD(k=0,2z)=D, while
in the long time limit corresponding te— 0, the effective

diffusion parameter is different frof. According to Eq(7)
the model exhibits two stationary solutions

1
9" =0and g-() = pe(r) - _25(6' FIG. 2. The picture shows the differences between conventional
K diffusion and the behavior gf,(r',t) denoted asip as function ofx
where k>=u/D is a scale-free parameter. In case pgfr) andt in arbitrary units. The result is based on E¢E8) and (20)
=pod(F) the stationary solutiog_ reads with D=1, pp=1, andu=0.1.

D
_(N) = -—|a). ~ 1 _(r?
g-(r) [po ,UJ () p+(r,t):tm|:<T), (18)
The nontrivial solution is only accessibledf >0. Because
both solutions are stable within a linear stability analysis, ) ) . ,
compare Eq(7), one has to study the complete dynamics. Towhere the scaling functioR(w) is different from the diffu-
that aim let us perform a combined Fourier and LaplaceiVe case, see below. To proceed further let us use the

transformation of Eq(15). The resulting quadratic equation aSymptotic representation of Kummer's function leading to
has two solutionspi(lz,z) with

—
R - [1(2tVAA
PO i (@A) pu(k) = poe S B0 19
R M= "(z+ AV e
) 0 (IZ) A . I1(y) is the modified Bessel functiofQ]. In the long time
p_(k2)=- 2> -—2%—p,(K2), limit the solution p,, belonging to the stationary solution
Al Az 0.=0, is a stable one, whereas the other soluponrelated
with to g_>0, becomes unstable because in that @&gsis nega-
tive. Actually, from Eq.(19) we can get the spatiotemporal
A;(K) = uk?po(K), A, (k) =KD - w1, solution. Remark that a divergent factor, proportionak&n
! 0 2 ° the denominator of Eq19) is compensated by the modified
1 Bessel functionl,. This is also the reason that one has to
F(n - —) avoid the asymptotic expansion fyrto estimate the scaling
anda, = TZ (16) function F(w) introduced in Eq(18). We obtain
2\ 7!
Atp))plying fc:: Zimfgslicity tzg initti)al conditri]oPpO(IZ);po IIik(T . Fw)= pOe—F2/4(D—MPo)t o ( Dot )n (2n)!
above, we find a .er ate 9IOUS. ut straightforward calculation [47(D - upo)]¥255\D - upo/ T(n+2)n!
an exact expression fa(k,t) with S
. di2-1 r
. e S T(n = 1/2)(- 4A0™ XLz ( . ) (20
o.(kt) = Poe™” ( )2( 1t) M(L - n,n:Ag) 4(D - upot
VT n=1 nr“(n)
= f(k%), (17)  with the generalized Laguerre polynomiehl'g{x). The differ-

. L . ent behavior of,(f,t) in comparison to conventional diffu-
whereM(a,b;x) =4Fy(a,b;x) is Kummer's confluent hyper sion is depicted in Fig. 2. In the initial time interval there

geometric functior{40]. The corresponding solutiop.(k,t)  occurs oscillations in agreement with the representation of
follows from Eq.(16). Using the expressions for the quanti- the Laguerre polynomial§40], however in the long time
tiesA, andA,> 0, defined in Eq(16), one concludes that the |imit the behavior ofp is only slightly different from diffu-
solution p,(k,t) is only a function of the variabl&’t as in  sion. The difference to conventional diffusion may be also
case of conventional diffusion. Therefore, after Fourier transestablished by analyzing the mean square displacesgnt
formation the solutions can be written as =(?). According to Eq(9) s(t) obeys the equation
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t pendence orp with a memory strength\ the particle per-

t
dt'K(t—t')Lz(t')—f dt'Ka(t = t)L(t"). forming a random walk, can be localized and therefore a
0 further transport is prevented. This situation is realized for an
(21) “attractive” memory strengtih >0, where the return prob-

Within the model, discussed in this section, we find from Eq.ablllty dominates the dynamical behavior. There exists a fi-

(21) s(t)=2dDt. The mean square displacement is identicalnlte stgnonary limit m.c the mean square displacems{or
. e S determined by the ratio of the diffusive constant versus the
with that for diffusion. It is independent on the memory

strengthu. The difference to diffusion becomes visible in memory strengths(t— »e)=D/X. The reason for such a be-

higher order moments. Using the same procedure as for dg_awor is by means of an explicit coupling of the rate of the

L —((72)2 concentration at the observation tihéo that one at a pre-
riving Eq. (21), the fourth order momen/(t)=(()%) obeys vious time. This time accumulation is further accompanied

d by an additional spatial accumulation, the effect of which is
aW(t) =s(t)[4D(d +2) + 2u(d + 4)]. comparable to the effect a long-range interaction forces and
consequently the results are basically independent on the

From here the fourth order cumulafy(t)=w(t)—-3s(t) is  spatial dimensions in according to scaling arguments. These

d - -
d—tS(t) =2dD f

0

deduced to be many-body effects are shown to change the asymptotic be-
havior drastically. Due to the feedback-coupling of a particle

Calt) = (2Dt)22d[1 —d+ ﬂ(d + 4)] to its environment, a subsequent particle, undergoing a dif-
4D fusive motion, gains information from a modified environ-

which is different from conventional diffusion witk,(t) ment. Hence the particle can be confined within a certain
ch 1s ere om conventiona usio 4 region preventing a further transport. In this manner a self-

=2d(1-d)(2DV)* The cumulant depepds on the raggD organized memory leads to a nonzero stationary mean square
=k*. The result can be extended to higher order Cum”|antsdisplacement controlled by the memory strength.
A further application is given by a nonlinear diffusive
IV. CONCLUSIONS process where the memory is also originated by gradient

terms with the strengtp. Although the additional non-linear

In this paper we have extended the conventional modelingyemory term offers the same scaling behavior as conven-
of diffusive processes by including non-Markovian memoryijonal diffusion the resulting probability distribution is com-
terms within the evolution equation. The additional terms argjetely different from diffusion. Whereas the second mo-

be normalized. By this requirement the form of the memoryhehavior, higher order cumulants, in particular Binder’s cu-
term is restricted to a class where the changing rate af  mylant

the observation timeis coupled to the changing rate pfat

a former timet'. Insofar the delay effect offers a long time 4 P 2
memory due to &t’'<t. Further the model exhibits also a Cel=1 3A(t) 3d[1 d+ 4D(d+ 4)]

long range memory because the kerkietlepends om—r". o . o .

As a new ingredient the memory term is determined by théevgals dew_atlons from conventional diffusion. Espeuallyl,
basic quantityp(F, ) itself, i.e., the memory is dominated by Ce IS determined by the strength of the memory. The analysis
the spatial-temporal scale of the probability dengityn the will be extended to chemical reactions in multicomponent
paper we demonstrate that such a self-organized feedbadiStems.
coupling may change the dynamical behavior of the system
essentially, in particular due to the nonlinearity of the

memory effects. In case the memory offers a power law de- This work was supported by the DRGFB 418§.

w(t) 2
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