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Analysis of weighted networks
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The connections in many networks are not merely binary entities, either present or not, but have associated
weights that record their strengths relative to one another. Recent studies of networks have, by and large,
steered clear of such weighted networks, which are often perceived as being harder to analyze than their
unweighted counterparts. Here we point out that weighted networks can in many cases be analyzed using a
simple mapping from a weighted network to an unweighted multigraph, allowing us to apply standard tech-
niques for unweighted graphs to weighted ones as well. We give a number of examples of the method,
including an algorithm for detecting community structure in weighted networks and a simple proof of the
maximum-flow—minimum-cut theorem.
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I. INTRODUCTION graphs, we point out, many of the standard techniques that
have been developed to study unweighted networks can be
Many systems can usefully be represented as networks or_ . o 2 .
. ; o ; ) carried over with little or no modification to the weighted
graphs—collections of vertices joined in pairs by edges. Ex- L9
. . . - . case. We present a number of examples of applications to
amples include the internet and the worldwide web, citation
. . . ; . Wwell known network problems.
networks, social networks, and biological and biochemical
networks of various kinds. Although an old and well estab-
lished branch of study in mathematics and sociology, re-
search on networks has in recent years attracted significant
attention from members of the physics community as well, ] )
who have successfully applied a variety of physical ideas to A weighted network can be represented mathematically
the analysis and modeling of these systdfsA. by an adjacency matrix with entries that are not simply zero
Most of the networks that have been studied in the physOr 1, but are equal instead to the weights on the edges:
ics literature have been binary in nature; that is, the edges

between vertices are either present or not. Such networks can

Il. WEIGHTED NETWORKS AND MULTIGRAPHS

be represented b¥, 1) or binary matrices. A network with Aj; = (weight of connection froni to j). (2
vertices is represented by arx n adjacency matriA with
elements
_J1 if iandj are connected, i For example,

710 otherwise. ABCD
However, as has long been appreciated, many networks are 0131\ A
intrinsically weighted, their edges having differing strengths.
In a social network there may be stronger or weaker social —_ 1020 B
ties between individuals. In a metabolic network there may - 3900 C
be more or less flux along particular reaction pathways. In a
food web there may be more or less energy or carbon flow 1000 D

between predator-prey pairs. Edge weights in networks have,
with some exception§s—9], received relatively little atten-
tion in the physics literature for the excellent reason that in
any field one is well advised to look at the simple cases firstn this example the weights on the edges are all integers, and
(unweighted networksbefore moving on to more complex we will focus on the integer case for the moment. We will
ones(weighted networks On the other hand, there are many also assume throughout this paper that all weights are non-
cases where edge weights are known for networks, and toeegative. Negative weights are possible in some cases. They
ignore them is to throw out a lot of data that, in theory atare, for instance, used sometimes in sociological studies of
least, could help us to understand these systems better. acquaintance networks to represent animosity between indi-
In this paper, we highlight a simple but useful techniqueviduals. We will not treat this case here, however.
that allows us to say many things about weighted networks Adjacency matrices with non-negative integer entries oc-
without deviating far from the familiar territory of un- cur in another situation as well, in networks with multiple
weighted ones. By mapping weighted networks onto multi-edges between vertex pairs. For example,
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ABCD the weights on edges represent the number of hours a person
B spends per week with each of their acquaintances, their de-
0131 A gree would be the total number of hours they socialize per
week—a very reasonable measure of social influence. In the
A c = 1020 B case of _traffic or current of some kind flowi_ng around a net-
3900 C work, with weights representing the magnitude of the flow
along the edges, the sum of the flows on each of the edges
1000 D attached to a vertex gives the total amount of traffic flowing
D through the vertex. In a road network, for example, the de-
Multiple edges are sometimes calledultiedgesand net- 9rée of an intersection would just be proportional to the
works or graphs containing themultigraphs and we will ~"umber of cars passing through it. _
use this nomenclature here. As another example, consider eigenvector centrality

As we can see, the two networks above have the samig0—14, @ measure of centrality akin to an extended form of
adjacency matrix, and in many ways they behave the sam&€gree centrality and closely related to “PageRank” and
For example, if we are thinking of traffic flowing over the similar centrality measures used in web search engines
internet (or even traffic down a roadthen the maximum [13,14. The eigenvector centralitg of a vertex in an un-
traffic that can flow between two vertices joined by two iden-Weighted network is defined to be proportional to the sum of
tical edges is the same as the maximum that can flow pdhe cgntra_thhes of thg ver.tex's ne|gh_bors, so that a vertex can
tween the same two vertices if they are joined by a singlécduire hlgh' cen.trallty either by bemg. connecteq to a lot of
edge with twice the capacifyThis suggests that we could Others(as with simple degree centraljtpr by being con-
obtain insight into the behavior of weighted graphs very sim-nected to others that themselves are highly central. We write
ply by mapping them onto unweighted multigraphs. That is, .
every edge of weighh is replaced withn parallel edges of X =N\ 2 A, (4)
weight 1 each, connecting the same vertices. The adjacency '
matrix of the graph remains unchanged and any techniqueghere A is some constant. In matrix notation this becomes
that can normally be applied to unweighted graphs can nowx=Ax, so thatx is an eigenvector of the adjacency matrix.
be applied to the multigraph as well. By simple arguments one can show that one should take the

eigenvector corresponding to the leading eigenvalit.
_ By mapping to a multigraph, we can find the equivalent
A. Some simple examples centrality measure for weighted networks. Network neigh-

Let us begin our demonstration of the principles above byors that are connected to a vertex with twice the weight now
giving a few extremely simple examples of their use. For ourcontribute twice as much to the vertex’s eigenvector central-
first, we ask what the equivalent is of vertex degree in dty. As a result, we find that the correct generalization of
weighted graph. Recall that the degree of a vertex is th€igenvector centrality to a weighted network is, as we would
number of edges attached to it. We could use the same deftope, still the leading eigenvector of the adjacency matrix,
nition for a weighted graph—simply count the number ofwith the elements of the matrix being equal to the edge
edges attached to a vertex regardless of their weight—bwveights, as before. Such a measure could be useful for ex-
this, as we have said, ignores much potentially useful inforample for ranking search results in a citation network
mation contained in the weights. To the extent that degree iEL6,17. If a paper cites another many times rather than just
a measure of the importance of a vertex in a network, surelpnce, it could be taken as an indication of a closer or stronger
vertices with strong connections should be accorded morgonnection between the two papers. Using such citation fre-
importance than vertices with only weak connections? ~ quencies as edge weights, our eigenvector centrality would

If we apply our rule, mapping the weighted network to athen give papers high scores either if they are cited by many
multigraph, and then calculate the degree as we would for gthers or if they are cited with high weight by a few others.
normal unweighted graph, we immediately find that the de- Many authors have studied random walks on networks
greek; of a vertexi in a weighted network is the sum of the [18-20. What should be the appropriate generalization of

weights of the edges attached to it: walks to weighted networks? Mapping the network to a mul-
tigraph and then performing an ordinary random walk on the

k=, Aj. 3 resulting unweighted network, we get a walk that traverses
i edges always in proportion to their weight. Thus at vertex

This certainly seems reasonable, and has indeed been pi€ Walk chooses a step to vertewith probability

posed previously using heuristic argumef8g It also gives A A
sensible results. For instance, in a social network in which P = — (5)

Ak ’
—_ i

1Recently, we were informed of a report in which an argumentof
this type was used in a study of the Internet at the level of autonowhich is exactly the same rule we use for walks on un-
mous system$42]. Many thanks to Marian Bogufia for bringing weighted graphs, provided we generalize the definition of the
this to our attention. degreek; as in Eq.(3). Again this is an intuitively sensible
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result. If we have something flowing around a network, such Two paths through a network are said to be edge-
as water through a network of pipes, then E.is precisely — independent if they share none of the same edddany

the rule that would be followed by a passive “tracer” mol- proofs of Menger’s theorem have been given—see, for in-
ecule swept along by the water, provided that the water istance, Ref[23].

well mixed at each network node, so that we get a random Given Menger’s theorem, we first establish the truth of
walk rather than some kind of correlated walk. the max-flow/min-cut theorem for unweighted networks as

follows. Consider the maximum flow between two vertises
andt in a network and suppose that a minimum edge cut set
between these vertices consistsnoédges. The removal of
any edge in this cut set will reduce the flow by at most one
unit, since that is the maximum flow an edge can carry in an
The results above are all, in a sense, trivial, though it isynweighted network. Thus if we remove alledges in the
satisfying that our simple rule for understanding weightedcut set one by one, we remove at moainits of flow. But,
networks leads us to them naturally. Now let us turn to som&ince the cut set disconnects the vertisesidt, this removal
more substantive applications. First, we use our mapping tenust stop all of the flow. Hence the entire flow is at mast
multigraphs to rederive a famous result in the theory of net- However, Menger’s theorem tells us that if the minimum
works, the maximum-flow—minimum-cutmax-flow/min-  cut set has sizen then there must be at least edge-
cut) theorem. independent paths betwesrandt. Each of these paths can
The max-flow/min-cut theorem is a theorem aboutcarry a single unit of flow frons to t and hence the network
weighted networks. It states that, in a network where theds @ whole can carry at leastunits between these two ver-
weights represent the maximum allowed flow of a fluid ortIC€S. _ o
other commodity along the edges, the following is true: The Thus the maximum flow betwees andt is simulta-

maximum flow that can pass between any two vertices i§1€0Usly both at most and at leastand hence it must in fact

equal to the weight of the minimum edge cut set that sepabe exactly equal to: the maximum flow is equal to the size

rates the same two vertices of the minimum-cut set in an unweighted graph. Note that
An edge cut seks a set of edges whose removal from thethls result applies just as well to graphs with multiedges as to

graph will disconnect the vertices in question.nfinimum those with only smgle_ edges. . .
. . Now we extend this result to weighted graphs using the
edge cutset is a cut set of edges the sum of whose weights

. . ) apping between weighted graphs and multigraphs. If we
has th_e.m|mmum posgble value for suc.h.a set. The V\{e|ght O?;ke a network of pipes and replace every pipe that can carry
the minimum cut set is called trmnnectivityof the vertices

. . a maximum ofn units of flow byn pipes that can carry one
In question. . o _unit each, then the maximum flow between any adjacent pair
The equahty of maximum flow and minimum cut set SIZ€ of vertices is unchanged, and hence the maximum flow be-
has an important practical consequence. There are simp{geen any two vertices in the network is also unchanged.
computer algorithms, such as preflow-push algorith2ig, Now every minimum cut set on an unweighted multigraph
that can calculate maximum flows quickiyn polynomial includes either all or none of the parallel edges between any
time), and the equivalence implied by the max-flow/min-cutadjacent pair of vertices; there is no point cutting one such
theorem means that we can use the same algorithms to caege unless you cut all of the others as well—you have to cut
culate sizes of minimum cut sets as well. Maximum-flowall of them to disconnect the vertices. Thus, the minimum-
algorithms are now the standard numerical technique for caleut set consists of sets of cuts of all the edges between cer-
culating sizes of cut sets. tain vertex pairs. If we consider all such cut sets, minimal or
Here we show that the max-flow/min-cut theorem can benot, and then minimize over them, we will find the global
deduced from a much earlier and simpler theorem about uriinimum-cut set. However, these cut sets are in a trivial
weighted networks, Menger’s theorem. Menger’s theorem i®ne-to-one correspondence with, and have the same weight
often derived as a corollary of the max-flow/min-cut theo-as, the cut sets on the weighted graph, and hence the mini-
rem, but we show that the derivation can proceed in théNUm cut set on the weighted graph has the same weight as
opposite direction as well. This is interesting for two reasonsthat on the multigraph. o _
First, it offers a quite different proof of the max-flow/min-cut ~ Thus both maximum flows and minimum cuts are numeri-
theorem from the usual one, which is based on augmenting@lly €qual on unweighted multigraphs and the correspond-
paths and residual graphs. Second, it is considerably hardéd Weighted graphs, and hence since the max-flow/min-cut
to prove the max-flow/min-cut theorem from first principles theorem is  true on unweighted graphs—including
than it is Menger’s theorem, so the method we describe offultigraphs—it must also be true on the corresponding
fers a more transparent demonstration of the max-flow/minweighted graphs. _
cut theorem than the usual textbook presentations. Finally, we extend the result to the case of noninteger
Menger’s 1927 theorem states the following for an un-weights. To do this we simply redefine what we mean by a
weighted networl{22]: If there exists no cut set of fewer
thann edges between two vertices in a graph, then there are?n fact, Menger originally stated his theorem for vertex cut sets
at leastn edge-independent paths between the same two veand vertex-independent paths, but the extension to edges is trivial
tices. and easily proved.

B. The maximum-flow—minimum-cut theorem
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unit of flow. Let the size of the unit of flow be. Then a  airline flights between airports. As they point out, the volume
weighted edge with maximum flowr for n integer trans-  of traffic along each route in this network contains important
forms into n edges of flowr each in the multigraph. The information about the operation of the air transport system,
proof goes through as before, and as we allow 0, all but it is not the case that airports linked by high-volume
values of the edge weights are allowed and hence the maxoutes are n.ecessarily qlose or similar. In many cases inde_ed
flow/min-cut theorem is proved for all weighted networks. the reverse is true. Traffic between Los Angeles and Tokyo is
This last trick, of changing the size of the units we use toV€'y high, but this does not mean that Los Angeles and To-
transform weighted edges into unweighted multiedges, caky© aré similar places, or that they are close to one another—
be used for many calculations or proofs for weighted graphst,hey are not. In this section, therefore, we will consider spe-

and this relaxes the assumption we made earlier that th%'flcally those networks in which the weights on edges take

weights in the graph are integers. In this way, essentially algreater values for vertex pairs that have closer connections or

. . e more similar in some way.
Lhoeniftzglé? Cp;:ge;}tsid in this paper can be extended to the The algorithm of Girvan and Newman is based on the

idea of betweenness and works as follows. Huge be-
tweennesof an edge in a network is defined to be the num-
ber of geodesici.e., shortegtpaths between vertex paisst
on the network that run along that edge, summed oves all

We turn now to a quite different question about weightedandt. If there are two geodesic paths joining a given vertex
networks, that of community structure. Many networks con-pair, then each one counts as a half of a path, and similarly
sist not of an undifferentiated mass of linked vertices, but offor three or more. The edge betweenness is a natural gener-
distinct “communities”—groups of vertices within which the alization to edges of the well known vertex betweenness of
connections are dense but between which they are sparséreemar{28]. Edge betweenness is high for edges that act as
This type of structure is seen especially in social networks;bottlenecks” for traffic moving about the network. If traffic
but also in some biological and technological networks agrom one part of the network to another has to go along one
well. An interesting problem that has attracted much attener a few edges that connect those parts then the betweenness
tion in recent years is that of creating a computer algorithnmon those edges will be high. But this is precisely what we
which, when fed the topology of a network, can extract fromneed to find the edges that connect different communities.
it the communities in the network, if there are any. The prob-Intercommunity edges are precisely those few that connect
lem is related to the problem of graph partitioning, which isotherwise unconnected network portions. Thus if we remove
well studied in computer science, but algorithms for graphedges with high betweenness scores, we will remove the in-
partitioning, such as the Kernighan-Lin algorithja4] or  tercommunity edges and leave only the communities them-
spectral bisectiorj25,26 are not ideally suited to general selves behind.
network analysis: typically they only divide networks in two,  In practice the algorithm is implemented as follows. We
rather than into a general number of communities, they profirst calculate the edge betweenness of all edges in the net-
vide no measure of how good the division in question is, andvork, using, for instance, the fast betweenness algorithm de-
in some cases they also require the user to specify the sizesribed in[5]. Then we find the edge that has the highest
of the communities before they start. In general they alsdetweenness and remove it from the network. If two or more
work only on unweighted networks. edges tie for highest betweenness we remove all of them.

Recently, Girvan and NewmafR7] proposed an algo- Then—and this is crucial—we recalculate the betweenness
rithm for community structure discovery in unweighted net- of all edges on the remaining network and repeat the process.
works that avoids these drawbacks and appears to work wells we have argued elsewhej27], the recalculation is im-
for many kinds of networks. Since the publication of thatportant for the correct operation of the algorithm, since it
work, the author has been asked a number of times whethatlows for the(common situation in which there is more
an appropriate generalization of the algorithm exists forthan one edge between a given pair of communities.
weighted networks. Certainly the algorithm can be appliedto How do we generalize this algorithm to the case of
such networks by simply ignoring edge weights, but, as waveighted networks? Perhaps the most obvious approach to
have argued in this paper, to do so is to throw away usefulake would be to generalize the edge betweenness. One can
information contained in the weights, information that coulddefine paths on a weighted network by assuming the “length”
help us to make a more accurate determination of the conmaf an edge to vary inversely with its weight, so that two
munities. In this section we use the techniques discussed wertices that are connected twice as strongly will be half as
this paper to derive an appropriate generalization of the alfar apart. Geodesics on such a network can be calculated, for
gorithm of Girvan and Newman to weighted networks. instance, using Dijkstra’s algorithfi21]. Then we can define

It is worth pointing out, before proceeding, that not all the betweenness of an edge to be again the number of geo-
weights on network edges are necessarily appropriate as idlesics between verticast that pass along that edge summed
put for determining community structure. Weights that indi- over all s andt. And the community structure algorithm is
cate particularly close connections or similarity between verthen one in which we repeatedly remove the edge having the
tices can give useful information about communities, but onénighest such betweenness and recalculate the betweennesses.
can also put many other kinds of variables on edges, and Although an obvious and straightforward generalization
they certainly need not be indicators of proximity or similar- of the original method, however, this algorithm will almost
ity. For example, Barragt al. [8] have studied the network of certainly give poor results. To see this, notice that any two

C. Community structure in weighted networks
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vertices that are particularly strongly connected to one an-

other will have a particularly short distance along the edge%’
between them. Geodesic paths will thus, all other things be-&
ing equal, prefer to flow along such an edge than along an-S
other longer edge between two less well connected vertice@
and hence closely connected pairs will tend to attract a lot of%
paths and acquire high betweenness. This means that, as<
general rule, we are more likely to remove edges betweer3
well connected pairs than we are between poorly connecte(E
pairs, and this is the precise opposite of what we would Iike%
the algorithm to do. Presumably, pairs of vertices that areg
particularly strongly connected together should be placed ing
the same community within the network, but the algorithm &

as we have described it deliberately separates such pair: 01 — 1'5 —— '2 ——— 2'5 —t—— 3
with the result that they will often end up in different com- ) )
munities. weight of within-community edges w

Abandoning this approach, therefore, we ask what the
correct generalization is of the algorithm of Newman and FIG. 1. The fraction of vertices classified correctly by our algo-
Girvan to a weighted network. To derive an answer we em+ithm in the computer-generated graphs described in the text. Each
ploy our mapping from the weighted network to a multi- point is an average over ten different graphs.
graph. Suppose we have a weighted network with integer
weights on the edges and as before we replace each edgeraninteger case using the same trick that we employed in
weight n by n parallel edges of unit weight. The adjacency Sec. Il B, of defining successively smaller units in which the
matrix remains unchanged. Now we apply the normal unweight of an edge is measured. The resulting algorithm is
weighted version of our algorithm to the resulting multi- identical to that for the integer case: betweennesses are sim-
graph. ply divided by the weight of the edge and the edge with the
First, we note that the shortest path between any two verighest resulting score removed from the network.
tices is unchanged; since all edges still have unit length any This algorithm is simple, it is almost as fast as the original
path that was previously a geodesic is still a geodesic. Howunweighted versioifadding only the extra operation of divi-
ever, there are now, in general, more geodesic paths thaion by the edge weightand, as we now show, appears to
there were previously because of the multiedges. For eadwork excellently.
pair of vertices with a double edge running between them, As a first example of the working of the algorithm we test
there are now two geodesics for every one that previouslyt on a set of computer-generated networks. We have gener-
passed between those vertices—one going along either of tleeed random networks of 128 vertices each divided into four
two alternate routes created by the multiedge. As before, wgroups of 32. Edges were placed such that on average each
count each of these geodesics as a half of a path. Thus eachrtex has as many connections to vertices outside its own
of the two edges now has a half of the edge betweenness thgtoup as it does inside. The mean degree in these tests was
it would have on a simple unweighted graph. The same arfixed at 16. Unsurprisingly, the normal unweighted commu-
gument applies to multiedges with three or more parallehity structure algorithm is unable to pick out communities in
edges: the betweenness of each of the parallel edges is equitworks of this kind, as was demonstrated previously in
to the betweenness of the corresponding edge on the simpRef. [27]. Now, however, without changing the structure of
graph without multiedges, divided by the multiplicity of the the networks, we assign weights to the edges: between-
edge. community edges are given a fixed weight of 1, while
Now, following the prescription of the algorithm, we find within-community edges are given a weighit=1, which is
the edge in the graph with the highest betweenness and relowly increased from a starting value of 1 to explore the
move it. But notice that if the edge removed is a member okensitivity of the algorithm. Figure 1 shows the fraction of
a multiedge, then every other member of that multiedge mustertices classified correctly by our algorithm in these tests.
have the same betweenness, and hence we should remove allAs the figure shows, the result of increasing the within-
of them simultaneously. Thus we end up always removing arommunity weightw is immediate: even for very small in-
entire multiedge at each step of the algoritfon more than  creases, the algorithm'’s performance improves markedly, and
one if there is a tie for highest betweenne3$en, as before, more than three quarters of the vertices are correctly classi-
we recompute the betweennesses for all edges and repeatfied for any weightw>1.5. In other words, the extra infor-
Another and simpler way of summarizing this algorithm mation contained in the edge weights does indeed help us
is the following: we calculate the betweennesses of all edgesnormously to discern the community structure in the net-
in our weighted graph in the normal way, ignoring the work, and the generalized algorithm presented here, when
weights. Then we divide each such betweenness by thgiven this information, does a good job of finding that struc-
weight of the corresponding edge, remove the edge with theure. For values ofv greater than 2, the algorithm classifies
highest resulting score, recalculate the betweennesses, aessentially all vertices correctly.
repeat. We have derived this algorithm here only for the case Moving to real-world networks, we turn for our second
of integer weights on the edges, but we can extend it to thexample to a well-known study from the social networks
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weighted community structure algorithm, and the difference
is striking. Now the algorithm detects clear structure within
the group, finding two principal communities, one of females
and the other primarily of males, plus two “outsider” males
who are not part of either community. This accords well with
the known social organization of the monkeys: females tend
to associate closely in matrilineal groups; males tend to as-
sociate with one another and with temporary mating partners,

(a) H male
O female

[ :
SSSrORUZmSmSmEAR but the adult males'also move betweeq tnbe; every few years
R0 ZETOAROIANLZ (presumably a tactic to avoid inbreeding within tribesd

outsider males like those observed here are not uncommon.
(b) These examples suggest that our algorithm is effective at
extracting community structure from weighted networks, in-
| cluding cases in which algorithms that ignore edge weights
find no such structure. But there is still a problem: the algo-
rithm does not tell us how many communities a network
should be split into. The method gives us only a succession
of splits of the network into smaller and smaller communities
as represented by the dendrograms of Fig. 2, but it gives no
indication of which splits are best. In our previous work on
unweighted networks, we solved this problem by introducing

SENC888 SEEBRETESN a quantity we called thenodularity [30]. This quantity is

990 W
od &

defined as the fraction of edges that fall within communities

minus the expected value of the same quantity if edges are
assigned at random, conditional on the given community

@Semberships and the degrees of vertices.

FIG. 2. Community structure in the network of 16 rhesus mon-
keys studied by Sadg9]. Squares and circles represent male and
female monkeys, respectively, and the node labels are the same . N .
those used by the original research@y.Dendrogram produced by Suppo_se we have a passible d!VISlon of an unweighted
the algorithm of[27], which ignores the weights on the edgés network into communities, as provided for example by the

Dendrogram for the algorithm described here, which takes th@lgorithm of Ref. [27]. Let ¢ be the.community to Wh,iCh
weights into account. vertexi is assigned. Then the fraction of the edges in the

graph that fall within communities, i.e., that connect vertices
literature. In 1972, Sadg9] published a network study of a that both lie in the same community, is
group of 16 rhesus monkeys. Social ties between the mon-

keys were deduced from grooming behavior and the study is |2 A;j8(Ci,C))
unusual in that it recorded not only which monkeys groomed R —> A 8(ci,cp), (6)
which others, but also the number of instances of grooming > Aj 2m’

of each monkey by each other during the period of observa- ]

tion. The result is a weighted network containing far moreynere thes function 8(u,v) is 1 if u=v and 0 otherwise, and

information than a simple binary adjacency matrix. Groom-r.n:%E”Aij is the number of edges in the graph. If we pre-

ing forms a directed network between monkeys; one monkeXe e the degrees of vertices in our network but otherwise
grooms another and the direction is believed to be associated,,nact vertices together at random, then the probability of
with relative status of the individuals. But for the present, edge existing between vertidezndj is k k./2m, wherek

J )

study, in which we regard grooming in either direction asiq yhe gegree of vertek Thus the modularityd, as defined
evidence of social interaction, we have symmetrized the netyp ). “is given by

work, creating an undirected one with integer edge weights

equal to the total number of grooming instances in either 1 kik;

direction between each pair of monkeys. The network has 16 Q= Enz Ajj ~ om a(Ci,G)). (7)
vertices and 69 edges with edge weights ranging from 1 to U

49. In practice this is an excellent guide to whether a particular

In Fig. 2a) we show the result of feeding this network division of a network into communities is a good one. It
through the ordinary unweighted version of the communitytakes a value of zero if a division has no more within-
structure algorithm, which takes account only of the presenceommunity edges that one would expect by random
of edges and not of their weights. The results are shown ikhance—a good indication that the division in question is
the form of a tree or “dendrogram” of the kind used in Ref. poor. Nonzero values indicate deviations from randomness
[27], which displays the order of the splits in the network and values around 0.3 or more usually indicate good divi-
produced by the successive removal of edges. As the figursions. The maximum possible value @fis 1.
shows, the algorithm finds no community structure at all in  The same idea can be used to judge community divisions
the network in this case. In Fig(l® on the other hand, we in weighted networks. If we apply our rule for mapping
show the results of processing the algorithm through theveighted networks to multigraphs, it is straightforward to
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FIG. 3. Network of co-occurrence of words in Reuters newswire stories for October 17, 2001. The widths of the edges indicate their
weights and the colors of the vertices indicate the communities found by the algorithm described in the text.

show that the correct generalization of the modularity istypical network from the middle of the period of the study,
given by precisely the same formula, E@), providedA;  the day of Wednesday October 17, 2001. The vertices in the
represents the weight of the edge betweandj, the degree ryetwo_rk represent words or phrases o_ccurring more than ten
k is defined according to Eg3), and m:%ziinj as before.  times in wire stories for that dagexcluding very c_o_mmonly

The combination of the generalized community structurePCcurring words such as pronouns and preposijioedges
algorithm and the generalized modularity allows us now toféPresent the occurrence of pairs of words in the same sen-
make definitive divisions of networks into communities: we €NC€, and the weights of the edges are the number of such
apply the algorithm to generate a dendrogram and then frorffCCUITeNces. The net\_/vork has a total of 71 vertices and 287
the divisions represented by the different levels in the dengdges, with edge wglghts_ranglng _from_ 1to 11.' The most
drogram we choose the one that gives the highest value @on&monly co-occurring pair of vertices is Washington/New
the modularity. ork.

For a real-world demonstration of this method we take Making use of these weights in the weighted version of

i %he community structure algorithm and employing the
nonsocial network, for a change. Networks of the CO-aighted version of the modularity, we find that the optimal
occurrence of words in bodies of text have been studied by goqylarity is achieved for the division into 17 communities

number of authors recent[81-33, and are a useful quanti- shown in Fig. 3. The two dominant news stories on this
tative tool for analyzing the semantic content of documentspgarticular day were the ongoing invasion of Afghanistan by
An influential recent example of such an analysis is the study) S, and British forces and the anthrax mail attacks taking
by Dooley and Cormaf34] of news reports in the aftermath place in Washington, D.C. As the figure shows, our method
of the attacks of September 11, 2001 in New York and Washelearly picks out these two topics as the main “communities”
ington. They studied Reuters newswire reports for 66 daysn the co-occurrence networileft and center-right in the

following the attacks and tabulated the occurrence of thdigure, respectively A number of other lesser topics of dis-

commonest words in those reports by day. Here we take aussion are highlighted in the smaller communities: Bush/
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administration, Mueller/FBI, international/Red Cross, and sacarry weights representing their strength or capacity. Al-
forth. though such networks appear at first to be substantially more
An analysis of the same network using the unweightedifficult to understand than their unweighted counterparts,
version of the algorithm finds some of the same structure, butve have argued that in many cases a mapping of the
not all of it. The largest group of vertices, representing wordsveighted network onto an unweighted multigraph will allow
dealing with the anthrax attacks, is picked out quite clearlyus to apply directly the results and techniques developed for
The group dealing with Afghanistan is not, however, and thehe unweighted case. We have given a number of examples
smaller groups make much less sense. This comes as d this idea, ranging from the very simple, such as generali-
surprise. Presumably most of the information contained irzations of degree and eigenvector centrality, to the more
this network is in the weights of the edges. Almost any paircomplex, such as the proposal of an algorithm for detecting
of words might co-occur in a sentence somewhere in thicommunity structure in weighted networks.
large body of text, but words that co-occur frequently—as The methods presented in this paper are not intended as a
many as 11 times in this case—almost certainly indicatgigorous program for the study of weighted networks, but
linked concepts. more as a guide to the intuition when thinking about these
It is worth mentioning that the ideas of this section couldsystems. We look forward with interest to learning of other
easily be extended to other algorithms for detecting commuapplications of these ideas.
nity structure. Quite a number of such algorithms have been
proposed in recent yeaf85—41, and in theory any of these
could be generalized to the case of weighted graphs. ACKNOWLEDGMENTS
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