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The connections in many networks are not merely binary entities, either present or not, but have associated
weights that record their strengths relative to one another. Recent studies of networks have, by and large,
steered clear of such weighted networks, which are often perceived as being harder to analyze than their
unweighted counterparts. Here we point out that weighted networks can in many cases be analyzed using a
simple mapping from a weighted network to an unweighted multigraph, allowing us to apply standard tech-
niques for unweighted graphs to weighted ones as well. We give a number of examples of the method,
including an algorithm for detecting community structure in weighted networks and a simple proof of the
maximum-flow–minimum-cut theorem.
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I. INTRODUCTION

Many systems can usefully be represented as networks or
graphs—collections of vertices joined in pairs by edges. Ex-
amples include the internet and the worldwide web, citation
networks, social networks, and biological and biochemical
networks of various kinds. Although an old and well estab-
lished branch of study in mathematics and sociology, re-
search on networks has in recent years attracted significant
attention from members of the physics community as well,
who have successfully applied a variety of physical ideas to
the analysis and modeling of these systems[1–4].

Most of the networks that have been studied in the phys-
ics literature have been binary in nature; that is, the edges
between vertices are either present or not. Such networks can
be represented by(0, 1) or binary matrices. A network withn
vertices is represented by ann3n adjacency matrixA with
elements

Aij = H1 if i and j are connected,

0 otherwise.
J s1d

However, as has long been appreciated, many networks are
intrinsically weighted, their edges having differing strengths.
In a social network there may be stronger or weaker social
ties between individuals. In a metabolic network there may
be more or less flux along particular reaction pathways. In a
food web there may be more or less energy or carbon flow
between predator-prey pairs. Edge weights in networks have,
with some exceptions[5–9], received relatively little atten-
tion in the physics literature for the excellent reason that in
any field one is well advised to look at the simple cases first
(unweighted networks) before moving on to more complex
ones(weighted networks). On the other hand, there are many
cases where edge weights are known for networks, and to
ignore them is to throw out a lot of data that, in theory at
least, could help us to understand these systems better.

In this paper, we highlight a simple but useful technique
that allows us to say many things about weighted networks
without deviating far from the familiar territory of un-
weighted ones. By mapping weighted networks onto multi-

graphs, we point out, many of the standard techniques that
have been developed to study unweighted networks can be
carried over with little or no modification to the weighted
case. We present a number of examples of applications to
well known network problems.

II. WEIGHTED NETWORKS AND MULTIGRAPHS

A weighted network can be represented mathematically
by an adjacency matrix with entries that are not simply zero
or 1, but are equal instead to the weights on the edges:

Aij = sweight of connection fromi to jd. s2d

For example,

In this example the weights on the edges are all integers, and
we will focus on the integer case for the moment. We will
also assume throughout this paper that all weights are non-
negative. Negative weights are possible in some cases. They
are, for instance, used sometimes in sociological studies of
acquaintance networks to represent animosity between indi-
viduals. We will not treat this case here, however.

Adjacency matrices with non-negative integer entries oc-
cur in another situation as well, in networks with multiple
edges between vertex pairs. For example,
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Multiple edges are sometimes calledmultiedgesand net-
works or graphs containing themmultigraphs, and we will
use this nomenclature here.

As we can see, the two networks above have the same
adjacency matrix, and in many ways they behave the same.
For example, if we are thinking of traffic flowing over the
internet (or even traffic down a road), then the maximum
traffic that can flow between two vertices joined by two iden-
tical edges is the same as the maximum that can flow be-
tween the same two vertices if they are joined by a single
edge with twice the capacity.1 This suggests that we could
obtain insight into the behavior of weighted graphs very sim-
ply by mapping them onto unweighted multigraphs. That is,
every edge of weightn is replaced withn parallel edges of
weight 1 each, connecting the same vertices. The adjacency
matrix of the graph remains unchanged and any techniques
that can normally be applied to unweighted graphs can now
be applied to the multigraph as well.

A. Some simple examples

Let us begin our demonstration of the principles above by
giving a few extremely simple examples of their use. For our
first, we ask what the equivalent is of vertex degree in a
weighted graph. Recall that the degree of a vertex is the
number of edges attached to it. We could use the same defi-
nition for a weighted graph—simply count the number of
edges attached to a vertex regardless of their weight—but
this, as we have said, ignores much potentially useful infor-
mation contained in the weights. To the extent that degree is
a measure of the importance of a vertex in a network, surely
vertices with strong connections should be accorded more
importance than vertices with only weak connections?

If we apply our rule, mapping the weighted network to a
multigraph, and then calculate the degree as we would for a
normal unweighted graph, we immediately find that the de-
greeki of a vertexi in a weighted network is the sum of the
weights of the edges attached to it:

ki = o
j

Aij . s3d

This certainly seems reasonable, and has indeed been pro-
posed previously using heuristic arguments[8]. It also gives
sensible results. For instance, in a social network in which

the weights on edges represent the number of hours a person
spends per week with each of their acquaintances, their de-
gree would be the total number of hours they socialize per
week—a very reasonable measure of social influence. In the
case of traffic or current of some kind flowing around a net-
work, with weights representing the magnitude of the flow
along the edges, the sum of the flows on each of the edges
attached to a vertex gives the total amount of traffic flowing
through the vertex. In a road network, for example, the de-
gree of an intersection would just be proportional to the
number of cars passing through it.

As another example, consider eigenvector centrality
[10–12], a measure of centrality akin to an extended form of
degree centrality and closely related to “PageRank” and
similar centrality measures used in web search engines
[13,14]. The eigenvector centralityxi of a vertex in an un-
weighted network is defined to be proportional to the sum of
the centralities of the vertex’s neighbors, so that a vertex can
acquire high centrality either by being connected to a lot of
others (as with simple degree centrality) or by being con-
nected to others that themselves are highly central. We write

xi = l−1o
j

Aijxj , s4d

wherel is some constant. In matrix notation this becomes
lx=Ax, so thatx is an eigenvector of the adjacency matrix.
By simple arguments one can show that one should take the
eigenvector corresponding to the leading eigenvalue[15].

By mapping to a multigraph, we can find the equivalent
centrality measure for weighted networks. Network neigh-
bors that are connected to a vertex with twice the weight now
contribute twice as much to the vertex’s eigenvector central-
ity. As a result, we find that the correct generalization of
eigenvector centrality to a weighted network is, as we would
hope, still the leading eigenvector of the adjacency matrix,
with the elements of the matrix being equal to the edge
weights, as before. Such a measure could be useful for ex-
ample for ranking search results in a citation network
[16,17]. If a paper cites another many times rather than just
once, it could be taken as an indication of a closer or stronger
connection between the two papers. Using such citation fre-
quencies as edge weights, our eigenvector centrality would
then give papers high scores either if they are cited by many
others or if they are cited with high weight by a few others.

Many authors have studied random walks on networks
[18–20]. What should be the appropriate generalization of
walks to weighted networks? Mapping the network to a mul-
tigraph and then performing an ordinary random walk on the
resulting unweighted network, we get a walk that traverses
edges always in proportion to their weight. Thus at vertexi
the walk chooses a step to vertexj with probability

Pij =
Aij

o
j

Aij

=
Aij

ki
, s5d

which is exactly the same rule we use for walks on un-
weighted graphs, provided we generalize the definition of the
degreeki as in Eq.(3). Again this is an intuitively sensible

1Recently, we were informed of a report in which an argument of
this type was used in a study of the Internet at the level of autono-
mous systems[42]. Many thanks to Marian Boguñá for bringing
this to our attention.
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result. If we have something flowing around a network, such
as water through a network of pipes, then Eq.(5) is precisely
the rule that would be followed by a passive “tracer” mol-
ecule swept along by the water, provided that the water is
well mixed at each network node, so that we get a random
walk rather than some kind of correlated walk.

B. The maximum-flow–minimum-cut theorem

The results above are all, in a sense, trivial, though it is
satisfying that our simple rule for understanding weighted
networks leads us to them naturally. Now let us turn to some
more substantive applications. First, we use our mapping to
multigraphs to rederive a famous result in the theory of net-
works, the maximum-flow–minimum-cut(max-flow/min-
cut) theorem.

The max-flow/min-cut theorem is a theorem about
weighted networks. It states that, in a network where the
weights represent the maximum allowed flow of a fluid or
other commodity along the edges, the following is true: The
maximum flow that can pass between any two vertices is
equal to the weight of the minimum edge cut set that sepa-
rates the same two vertices.

An edge cut setis a set of edges whose removal from the
graph will disconnect the vertices in question. Aminimum
edge cutset is a cut set of edges the sum of whose weights
has the minimum possible value for such a set. The weight of
the minimum cut set is called theconnectivityof the vertices
in question.

The equality of maximum flow and minimum cut set size
has an important practical consequence. There are simple
computer algorithms, such as preflow-push algorithms[21],
that can calculate maximum flows quickly(in polynomial
time), and the equivalence implied by the max-flow/min-cut
theorem means that we can use the same algorithms to cal-
culate sizes of minimum cut sets as well. Maximum-flow
algorithms are now the standard numerical technique for cal-
culating sizes of cut sets.

Here we show that the max-flow/min-cut theorem can be
deduced from a much earlier and simpler theorem about un-
weighted networks, Menger’s theorem. Menger’s theorem is
often derived as a corollary of the max-flow/min-cut theo-
rem, but we show that the derivation can proceed in the
opposite direction as well. This is interesting for two reasons.
First, it offers a quite different proof of the max-flow/min-cut
theorem from the usual one, which is based on augmenting
paths and residual graphs. Second, it is considerably harder
to prove the max-flow/min-cut theorem from first principles
than it is Menger’s theorem, so the method we describe of-
fers a more transparent demonstration of the max-flow/min-
cut theorem than the usual textbook presentations.

Menger’s 1927 theorem states the following for an un-
weighted network[22]: If there exists no cut set of fewer
thann edges between two vertices in a graph, then there are
at leastn edge-independent paths between the same two ver-
tices.

Two paths through a network are said to be edge-
independent if they share none of the same edges.2 Many
proofs of Menger’s theorem have been given—see, for in-
stance, Ref.[23].

Given Menger’s theorem, we first establish the truth of
the max-flow/min-cut theorem for unweighted networks as
follows. Consider the maximum flow between two verticess
andt in a network and suppose that a minimum edge cut set
between these vertices consists ofn edges. The removal of
any edge in this cut set will reduce the flow by at most one
unit, since that is the maximum flow an edge can carry in an
unweighted network. Thus if we remove alln edges in the
cut set one by one, we remove at mostn units of flow. But,
since the cut set disconnects the verticess andt, this removal
must stop all of the flow. Hence the entire flow is at mostn.

However, Menger’s theorem tells us that if the minimum
cut set has sizen then there must be at leastn edge-
independent paths betweens and t. Each of these paths can
carry a single unit of flow froms to t and hence the network
as a whole can carry at leastn units between these two ver-
tices.

Thus the maximum flow betweens and t is simulta-
neously both at most and at leastn, and hence it must in fact
be exactly equal ton: the maximum flow is equal to the size
of the minimum-cut set in an unweighted graph. Note that
this result applies just as well to graphs with multiedges as to
those with only single edges.

Now we extend this result to weighted graphs using the
mapping between weighted graphs and multigraphs. If we
take a network of pipes and replace every pipe that can carry
a maximum ofn units of flow byn pipes that can carry one
unit each, then the maximum flow between any adjacent pair
of vertices is unchanged, and hence the maximum flow be-
tween any two vertices in the network is also unchanged.

Now every minimum cut set on an unweighted multigraph
includes either all or none of the parallel edges between any
adjacent pair of vertices; there is no point cutting one such
edge unless you cut all of the others as well—you have to cut
all of them to disconnect the vertices. Thus, the minimum-
cut set consists of sets of cuts of all the edges between cer-
tain vertex pairs. If we consider all such cut sets, minimal or
not, and then minimize over them, we will find the global
minimum-cut set. However, these cut sets are in a trivial
one-to-one correspondence with, and have the same weight
as, the cut sets on the weighted graph, and hence the mini-
mum cut set on the weighted graph has the same weight as
that on the multigraph.

Thus both maximum flows and minimum cuts are numeri-
cally equal on unweighted multigraphs and the correspond-
ing weighted graphs, and hence since the max-flow/min-cut
theorem is true on unweighted graphs—including
multigraphs—it must also be true on the corresponding
weighted graphs.

Finally, we extend the result to the case of noninteger
weights. To do this we simply redefine what we mean by a

2In fact, Menger originally stated his theorem for vertex cut sets
and vertex-independent paths, but the extension to edges is trivial
and easily proved.
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unit of flow. Let the size of the unit of flow ber. Then a
weighted edge with maximum flownr for n integer trans-
forms into n edges of flowr each in the multigraph. The
proof goes through as before, and as we allowr →0, all
values of the edge weights are allowed and hence the max-
flow/min-cut theorem is proved for all weighted networks.

This last trick, of changing the size of the units we use to
transform weighted edges into unweighted multiedges, can
be used for many calculations or proofs for weighted graphs,
and this relaxes the assumption we made earlier that the
weights in the graph are integers. In this way, essentially all
the results presented in this paper can be extended to the
noninteger case also.

C. Community structure in weighted networks

We turn now to a quite different question about weighted
networks, that of community structure. Many networks con-
sist not of an undifferentiated mass of linked vertices, but of
distinct “communities”—groups of vertices within which the
connections are dense but between which they are sparser.
This type of structure is seen especially in social networks,
but also in some biological and technological networks as
well. An interesting problem that has attracted much atten-
tion in recent years is that of creating a computer algorithm
which, when fed the topology of a network, can extract from
it the communities in the network, if there are any. The prob-
lem is related to the problem of graph partitioning, which is
well studied in computer science, but algorithms for graph
partitioning, such as the Kernighan-Lin algorithm[24] or
spectral bisection[25,26] are not ideally suited to general
network analysis: typically they only divide networks in two,
rather than into a general number of communities, they pro-
vide no measure of how good the division in question is, and
in some cases they also require the user to specify the sizes
of the communities before they start. In general they also
work only on unweighted networks.

Recently, Girvan and Newman[27] proposed an algo-
rithm for community structure discovery in unweighted net-
works that avoids these drawbacks and appears to work well
for many kinds of networks. Since the publication of that
work, the author has been asked a number of times whether
an appropriate generalization of the algorithm exists for
weighted networks. Certainly the algorithm can be applied to
such networks by simply ignoring edge weights, but, as we
have argued in this paper, to do so is to throw away useful
information contained in the weights, information that could
help us to make a more accurate determination of the com-
munities. In this section we use the techniques discussed in
this paper to derive an appropriate generalization of the al-
gorithm of Girvan and Newman to weighted networks.

It is worth pointing out, before proceeding, that not all
weights on network edges are necessarily appropriate as in-
put for determining community structure. Weights that indi-
cate particularly close connections or similarity between ver-
tices can give useful information about communities, but one
can also put many other kinds of variables on edges, and
they certainly need not be indicators of proximity or similar-
ity. For example, Barratet al. [8] have studied the network of

airline flights between airports. As they point out, the volume
of traffic along each route in this network contains important
information about the operation of the air transport system,
but it is not the case that airports linked by high-volume
routes are necessarily close or similar. In many cases indeed
the reverse is true. Traffic between Los Angeles and Tokyo is
very high, but this does not mean that Los Angeles and To-
kyo are similar places, or that they are close to one another—
they are not. In this section, therefore, we will consider spe-
cifically those networks in which the weights on edges take
greater values for vertex pairs that have closer connections or
are more similar in some way.

The algorithm of Girvan and Newman is based on the
idea of betweenness and works as follows. Theedge be-
tweennessof an edge in a network is defined to be the num-
ber of geodesic(i.e., shortest) paths between vertex pairss,t
on the network that run along that edge, summed over alls
and t. If there are two geodesic paths joining a given vertex
pair, then each one counts as a half of a path, and similarly
for three or more. The edge betweenness is a natural gener-
alization to edges of the well known vertex betweenness of
Freeman[28]. Edge betweenness is high for edges that act as
“bottlenecks” for traffic moving about the network. If traffic
from one part of the network to another has to go along one
or a few edges that connect those parts then the betweenness
on those edges will be high. But this is precisely what we
need to find the edges that connect different communities.
Intercommunity edges are precisely those few that connect
otherwise unconnected network portions. Thus if we remove
edges with high betweenness scores, we will remove the in-
tercommunity edges and leave only the communities them-
selves behind.

In practice the algorithm is implemented as follows. We
first calculate the edge betweenness of all edges in the net-
work, using, for instance, the fast betweenness algorithm de-
scribed in[5]. Then we find the edge that has the highest
betweenness and remove it from the network. If two or more
edges tie for highest betweenness we remove all of them.
Then—and this is crucial—we recalculate the betweenness
of all edges on the remaining network and repeat the process.
As we have argued elsewhere[27], the recalculation is im-
portant for the correct operation of the algorithm, since it
allows for the (common) situation in which there is more
than one edge between a given pair of communities.

How do we generalize this algorithm to the case of
weighted networks? Perhaps the most obvious approach to
take would be to generalize the edge betweenness. One can
define paths on a weighted network by assuming the “length”
of an edge to vary inversely with its weight, so that two
vertices that are connected twice as strongly will be half as
far apart. Geodesics on such a network can be calculated, for
instance, using Dijkstra’s algorithm[21]. Then we can define
the betweenness of an edge to be again the number of geo-
desics between verticess,t that pass along that edge summed
over all s and t. And the community structure algorithm is
then one in which we repeatedly remove the edge having the
highest such betweenness and recalculate the betweennesses.

Although an obvious and straightforward generalization
of the original method, however, this algorithm will almost
certainly give poor results. To see this, notice that any two

M. E. J. NEWMAN PHYSICAL REVIEW E70, 056131(2004)

056131-4



vertices that are particularly strongly connected to one an-
other will have a particularly short distance along the edge
between them. Geodesic paths will thus, all other things be-
ing equal, prefer to flow along such an edge than along an-
other longer edge between two less well connected vertices,
and hence closely connected pairs will tend to attract a lot of
paths and acquire high betweenness. This means that, as a
general rule, we are more likely to remove edges between
well connected pairs than we are between poorly connected
pairs, and this is the precise opposite of what we would like
the algorithm to do. Presumably, pairs of vertices that are
particularly strongly connected together should be placed in
the same community within the network, but the algorithm
as we have described it deliberately separates such pairs,
with the result that they will often end up in different com-
munities.

Abandoning this approach, therefore, we ask what the
correct generalization is of the algorithm of Newman and
Girvan to a weighted network. To derive an answer we em-
ploy our mapping from the weighted network to a multi-
graph. Suppose we have a weighted network with integer
weights on the edges and as before we replace each edge of
weight n by n parallel edges of unit weight. The adjacency
matrix remains unchanged. Now we apply the normal un-
weighted version of our algorithm to the resulting multi-
graph.

First, we note that the shortest path between any two ver-
tices is unchanged; since all edges still have unit length any
path that was previously a geodesic is still a geodesic. How-
ever, there are now, in general, more geodesic paths than
there were previously because of the multiedges. For each
pair of vertices with a double edge running between them,
there are now two geodesics for every one that previously
passed between those vertices—one going along either of the
two alternate routes created by the multiedge. As before, we
count each of these geodesics as a half of a path. Thus each
of the two edges now has a half of the edge betweenness that
it would have on a simple unweighted graph. The same ar-
gument applies to multiedges with three or more parallel
edges: the betweenness of each of the parallel edges is equal
to the betweenness of the corresponding edge on the simple
graph without multiedges, divided by the multiplicity of the
edge.

Now, following the prescription of the algorithm, we find
the edge in the graph with the highest betweenness and re-
move it. But notice that if the edge removed is a member of
a multiedge, then every other member of that multiedge must
have the same betweenness, and hence we should remove all
of them simultaneously. Thus we end up always removing an
entire multiedge at each step of the algorithm(or more than
one if there is a tie for highest betweenness). Then, as before,
we recompute the betweennesses for all edges and repeat.

Another and simpler way of summarizing this algorithm
is the following: we calculate the betweennesses of all edges
in our weighted graph in the normal way, ignoring the
weights. Then we divide each such betweenness by the
weight of the corresponding edge, remove the edge with the
highest resulting score, recalculate the betweennesses, and
repeat. We have derived this algorithm here only for the case
of integer weights on the edges, but we can extend it to the

noninteger case using the same trick that we employed in
Sec. II B, of defining successively smaller units in which the
weight of an edge is measured. The resulting algorithm is
identical to that for the integer case: betweennesses are sim-
ply divided by the weight of the edge and the edge with the
highest resulting score removed from the network.

This algorithm is simple, it is almost as fast as the original
unweighted version(adding only the extra operation of divi-
sion by the edge weight), and, as we now show, appears to
work excellently.

As a first example of the working of the algorithm we test
it on a set of computer-generated networks. We have gener-
ated random networks of 128 vertices each divided into four
groups of 32. Edges were placed such that on average each
vertex has as many connections to vertices outside its own
group as it does inside. The mean degree in these tests was
fixed at 16. Unsurprisingly, the normal unweighted commu-
nity structure algorithm is unable to pick out communities in
networks of this kind, as was demonstrated previously in
Ref. [27]. Now, however, without changing the structure of
the networks, we assign weights to the edges: between-
community edges are given a fixed weight of 1, while
within-community edges are given a weightwù1, which is
slowly increased from a starting value of 1 to explore the
sensitivity of the algorithm. Figure 1 shows the fraction of
vertices classified correctly by our algorithm in these tests.

As the figure shows, the result of increasing the within-
community weightw is immediate: even for very small in-
creases, the algorithm’s performance improves markedly, and
more than three quarters of the vertices are correctly classi-
fied for any weightw.1.5. In other words, the extra infor-
mation contained in the edge weights does indeed help us
enormously to discern the community structure in the net-
work, and the generalized algorithm presented here, when
given this information, does a good job of finding that struc-
ture. For values ofw greater than 2, the algorithm classifies
essentially all vertices correctly.

Moving to real-world networks, we turn for our second
example to a well-known study from the social networks

FIG. 1. The fraction of vertices classified correctly by our algo-
rithm in the computer-generated graphs described in the text. Each
point is an average over ten different graphs.
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literature. In 1972, Sade[29] published a network study of a
group of 16 rhesus monkeys. Social ties between the mon-
keys were deduced from grooming behavior and the study is
unusual in that it recorded not only which monkeys groomed
which others, but also the number of instances of grooming
of each monkey by each other during the period of observa-
tion. The result is a weighted network containing far more
information than a simple binary adjacency matrix. Groom-
ing forms a directed network between monkeys; one monkey
grooms another and the direction is believed to be associated
with relative status of the individuals. But for the present
study, in which we regard grooming in either direction as
evidence of social interaction, we have symmetrized the net-
work, creating an undirected one with integer edge weights
equal to the total number of grooming instances in either
direction between each pair of monkeys. The network has 16
vertices and 69 edges with edge weights ranging from 1 to
49.

In Fig. 2(a) we show the result of feeding this network
through the ordinary unweighted version of the community
structure algorithm, which takes account only of the presence
of edges and not of their weights. The results are shown in
the form of a tree or “dendrogram” of the kind used in Ref.
[27], which displays the order of the splits in the network
produced by the successive removal of edges. As the figure
shows, the algorithm finds no community structure at all in
the network in this case. In Fig. 2(b) on the other hand, we
show the results of processing the algorithm through the

weighted community structure algorithm, and the difference
is striking. Now the algorithm detects clear structure within
the group, finding two principal communities, one of females
and the other primarily of males, plus two “outsider” males
who are not part of either community. This accords well with
the known social organization of the monkeys: females tend
to associate closely in matrilineal groups; males tend to as-
sociate with one another and with temporary mating partners,
but the adult males also move between tribes every few years
(presumably a tactic to avoid inbreeding within tribes) and
outsider males like those observed here are not uncommon.

These examples suggest that our algorithm is effective at
extracting community structure from weighted networks, in-
cluding cases in which algorithms that ignore edge weights
find no such structure. But there is still a problem: the algo-
rithm does not tell us how many communities a network
should be split into. The method gives us only a succession
of splits of the network into smaller and smaller communities
as represented by the dendrograms of Fig. 2, but it gives no
indication of which splits are best. In our previous work on
unweighted networks, we solved this problem by introducing
a quantity we called themodularity [30]. This quantity is
defined as the fraction of edges that fall within communities
minus the expected value of the same quantity if edges are
assigned at random, conditional on the given community
memberships and the degrees of vertices.

Suppose we have a possible division of an unweighted
network into communities, as provided for example by the
algorithm of Ref.[27]. Let ci be the community to which
vertex i is assigned. Then the fraction of the edges in the
graph that fall within communities, i.e., that connect vertices
that both lie in the same community, is

o
i j

Aijdsci,cjd

o
i j

Aij

=
1

2m
o
i j

Aijdsci,cjd, s6d

where thed functiondsu,vd is 1 if u=v and 0 otherwise, and
m= 1

2oi jAij is the number of edges in the graph. If we pre-
serve the degrees of vertices in our network but otherwise
connect vertices together at random, then the probability of
an edge existing between verticesi and j is kikj /2m, whereki
is the degree of vertexi. Thus the modularityQ, as defined
above, is given by

Q =
1

2m
o
i j
SAij −

kikj

2m
Ddsci,cjd. s7d

In practice this is an excellent guide to whether a particular
division of a network into communities is a good one. It
takes a value of zero if a division has no more within-
community edges that one would expect by random
chance—a good indication that the division in question is
poor. Nonzero values indicate deviations from randomness
and values around 0.3 or more usually indicate good divi-
sions. The maximum possible value ofQ is 1.

The same idea can be used to judge community divisions
in weighted networks. If we apply our rule for mapping
weighted networks to multigraphs, it is straightforward to

FIG. 2. Community structure in the network of 16 rhesus mon-
keys studied by Sade[29]. Squares and circles represent male and
female monkeys, respectively, and the node labels are the same as
those used by the original researcher.(a) Dendrogram produced by
the algorithm of[27], which ignores the weights on the edges.(b)
Dendrogram for the algorithm described here, which takes the
weights into account.
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show that the correct generalization of the modularity is
given by precisely the same formula, Eq.(7), providedAij
represents the weight of the edge betweeni and j , the degree
ki is defined according to Eq.(3), andm= 1

2oi jAij as before.
The combination of the generalized community structure

algorithm and the generalized modularity allows us now to
make definitive divisions of networks into communities: we
apply the algorithm to generate a dendrogram and then from
the divisions represented by the different levels in the den-
drogram we choose the one that gives the highest value of
the modularity.

For a real-world demonstration of this method we take a
nonsocial network, for a change. Networks of the co-
occurrence of words in bodies of text have been studied by a
number of authors recently[31–33], and are a useful quanti-
tative tool for analyzing the semantic content of documents.
An influential recent example of such an analysis is the study
by Dooley and Corman[34] of news reports in the aftermath
of the attacks of September 11, 2001 in New York and Wash-
ington. They studied Reuters newswire reports for 66 days
following the attacks and tabulated the occurrence of the
commonest words in those reports by day. Here we take a

typical network from the middle of the period of the study,
the day of Wednesday October 17, 2001. The vertices in the
network represent words or phrases occurring more than ten
times in wire stories for that day(excluding very commonly
occurring words such as pronouns and prepositions), edges
represent the occurrence of pairs of words in the same sen-
tence, and the weights of the edges are the number of such
occurrences. The network has a total of 71 vertices and 287
edges, with edge weights ranging from 1 to 11. The most
commonly co-occurring pair of vertices is Washington/New
York.

Making use of these weights in the weighted version of
the community structure algorithm and employing the
weighted version of the modularity, we find that the optimal
modularity is achieved for the division into 17 communities
shown in Fig. 3. The two dominant news stories on this
particular day were the ongoing invasion of Afghanistan by
U.S. and British forces and the anthrax mail attacks taking
place in Washington, D.C. As the figure shows, our method
clearly picks out these two topics as the main “communities”
in the co-occurrence network(left and center-right in the
figure, respectively). A number of other lesser topics of dis-
cussion are highlighted in the smaller communities: Bush/

FIG. 3. Network of co-occurrence of words in Reuters newswire stories for October 17, 2001. The widths of the edges indicate their
weights and the colors of the vertices indicate the communities found by the algorithm described in the text.
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administration, Mueller/FBI, international/Red Cross, and so
forth.

An analysis of the same network using the unweighted
version of the algorithm finds some of the same structure, but
not all of it. The largest group of vertices, representing words
dealing with the anthrax attacks, is picked out quite clearly.
The group dealing with Afghanistan is not, however, and the
smaller groups make much less sense. This comes as no
surprise. Presumably most of the information contained in
this network is in the weights of the edges. Almost any pair
of words might co-occur in a sentence somewhere in this
large body of text, but words that co-occur frequently—as
many as 11 times in this case—almost certainly indicate
linked concepts.

It is worth mentioning that the ideas of this section could
easily be extended to other algorithms for detecting commu-
nity structure. Quite a number of such algorithms have been
proposed in recent years[35–41], and in theory any of these
could be generalized to the case of weighted graphs.

III. CONCLUSIONS

In this paper we have addressed the topic of weighted
networks—networks in which the edges between vertices

carry weights representing their strength or capacity. Al-
though such networks appear at first to be substantially more
difficult to understand than their unweighted counterparts,
we have argued that in many cases a mapping of the
weighted network onto an unweighted multigraph will allow
us to apply directly the results and techniques developed for
the unweighted case. We have given a number of examples
of this idea, ranging from the very simple, such as generali-
zations of degree and eigenvector centrality, to the more
complex, such as the proposal of an algorithm for detecting
community structure in weighted networks.

The methods presented in this paper are not intended as a
rigorous program for the study of weighted networks, but
more as a guide to the intuition when thinking about these
systems. We look forward with interest to learning of other
applications of these ideas.
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