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A nonequilibrium steady-state thermodynamics to describe shear flow is developed using a canonical dis-
tribution approach. We construct a canonical distribution for shear flow based on the energy in the moving
frame using the Lagrangian formalism of the classical mechanics. From this distribution, we derive the Evans-
Hanley shear flow thermodynamics, which is characterized by the first law of thermodynamicsdE=TdS
−Qdg relating infinitesimal changes in energyE, entropyS, and shear rateg with kinetic temperatureT. Our
central result is that the coefficientQ is given by Helfand’s moment for viscosity. This approach leads to
thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation
function for Q. We show the consistency of this approach with the Kawasaki distribution function for shear
flow, from which a response formula for viscosity is derived in the form of a correlation function for the
time-derivative ofQ. We emphasize the role of the external work required to sustain the steady shear flow in

this approach, and show theoretically that the ensemble average of its powerẆ must be non-negative. A
nonequilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is

equal to the average ofẆ. Numerical results from nonequilibrium molecular-dynamics simulation of two-
dimensional many-particle systems with soft-core interactions are presented which support our interpretation.
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I. INTRODUCTION

The great success of thermodynamics as a physical theory
to describe various equilibrium phenomena has stimulated
attempts to generalize it to a theory applicable to macro-
scopic time-dependent phenomena, namely to a nonequilib-
rium thermodynamics. Many efforts have been devoted to
this subject, and led to some proposals for nonequilibrium
thermodynamics, for example, the classical irreversible ther-
modynamics[1], the rational thermodynamics[2,3], and the
extended irreversible thermodynamics[4]. Recently, a non-
equilibrium thermodynamics, which tries to give more rigor-
ous predictions by restricting its applied field into nonequi-
librium steady states, is also discussed[5–7].

Shear flow is a typical example of nonequilibrium steady
phenomena. For a constant velocity gradient, it has a steady
current (the shear stress), and has many applications in the
investigation of rheological properties of materials[8,9].
Such models have been widely used to calculate the shear
viscosity, whose shear rate dependence is still actively dis-
cussed[10–13]. The apparent existence of a critical phenom-
enon, appearing as a transition from a uniform bulk phase to
an organized stringlike phase, is shown at high shear rate
[14–16]. The phenomenon of shear banding has also been
discussed recently[17–19]. The nonequilibrium molecular
dynamics of shear flow with thermostatting is widely used as
a method of calculating the shear viscosity[20], and the
nonequilibrium properties of such systems exhibit the conju-
gate pairing rule of the Lyapunov spectrum[21–24] and sat-
isfy the fluctuation theorem[25,26]. Shear flow has also been
described by the Bhatnagar-Gross-Krook kinetic equation,
which is a simplification of the Boltzmann equation, and
using this equation, transport coefficients and hydrodynamic
modes were calculated[27–29]. Steady shear flow is a spa-
tially homogeneous and time-independent phenomenon, so a

simple description can be expected. However, no convincing
thermodynamic description of shear flow has been given.

Evans and Hanley[30–33] have proposed nonequilibrium
steady-state thermodynamics to describe shear flow. It ex-
presses the first law of thermodynamics for the shear flow by
adding the termjdg expressing the response to a shear rate
g, namely

dE = TdS + jdg s1d

as the relation among infinitesimal quasistatic changes of
internal energyE, entropyS, the shear rateg at temperature
T, and the coefficientj defined byj;u]E /]guS [34]. As a
conceptual feature, the Evans-Hanley thermodynamics is
characterized by the fact that the shear rate is an external
parameter chosen as an additional variable to describe non-
equilibrium effects. This is analogous to the choice of vari-
ables in equilibrium thermodynamics where the variables are
chosen as parameters manipulated externally, for example
the temperature and volume, etc. This choice of thermody-
namic variables has the advantage that observables are rather
easy to access by experiments and computer simulations.
This feature also distinguishes the Evans-Hanley thermody-
namics from some other nonequilibrium thermodynamics, in
which local quantities related to conserved quantities, such
as the local momentum density, are chosen as additional vari-
ables to describe nonequilibrium effects, because they
change slowly with time and are consistent with the phenom-
enological equations of hydrodynamics. Compared with such
general formalisms for nonequilibrium thermodynamics, the
Evans-Hanley thermodynamics gives a much simpler de-
scription, as its applied field is restricted to a steady shear
rate. On the other hand, one of the problems in the Evans-
Hanley shear flow thermodynamics was that a clear physical
meaning for the coefficientj, especially its microscopic ex-
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pression, was not known, so that one has not had clear ex-
perimental or numerical evidence to support this thermody-
namics. On this point, Ref.[35] tried to calculate
numerically a value ofj by introducing a nonequilibrium
entropy in a low-density system. Also recently, Ref.[36]
discussed a phenomenological expression forj in a linear
viscoelastic fluid.

Another important aspect of nonequilibrium thermody-
namics is its construction from a solid statistical mechanical
foundation. Some attempts in this direction have been dis-
cussed using the nonequilibrium canonical distribution ap-
proach [37–42], the projection operator approach[43–48],
and so on. As one such approach, the nonequilibrium canoni-
cal distribution approach justifies a response formula for
thermodynamic perturbations, which is different from the
mechanical perturbation expressed as a change in an external
parameter appearing explicitly in the Hamiltonian[49]. It
uses, in principle, the distributionfsGd of canonical type,

fsGd = J−1 expH− bFHsGd + o
a=1

ñ

masGdAasGdGJ , s2d

whereJ is a normalization constant,b is the inverse tem-
perature,HsGd is the Hamiltonian as a function of the phase-
space vectorG, andmasGd andAasGd are pairs of conjugate
variables whose forms depend on the nonequilibrium phe-
nomena under consideration. In many cases, the distribution
fsGd, and therefore the functionsmasGd and AasGd, a
=1,2, . . . ,ñ, are introduced based on the “local equilibrium
assumption”[42], although it is not always necessary. Using

the distributionfsGd and the Liouville operatorL̂, we calcu-
late average quantities as the ensemble average under time
evolution of the distribution function,

f̃sG,td ; exph− iL̂st − t0djfsGd, s3d

which may be regarded as the distribution function at timet
evolved from the initial canonical distribution functionfsGd
at time t0. In this way, we can derive the thermal response
formula for viscosity, thermal conductivity, and so on
[39–42]. This approach was generalized to non-Hamiltonian
systems such as the Sllod equation for shear flow systems
with isokinetic thermostat[50–52], and was used to calculate
some thermal quantities, such as the specific heat of nonequi-
librium steady states[53,54]. However, it is still an open
problem to construct the Evans-Hanley shear flow thermody-
namics from this nonequilibrium canonical distribution ap-
proach based on distributions of this type(2). Usually, the
thermodynamic relation for the first law of thermodynamics
in the canonical distribution approach is introduced based
upon the local equilibrium assumption, but the form(1) for
shear flow cannot be justified by this assumption, because
the termjdg cannot be attributed to an equilibrium thermo-
dynamical relation even if we consider a very small portion
of the system.

The principal aim of this paper is to derive the Evans-
Hanley shear flow thermodynamics based on the canonical
distribution approach to nonequilibrium steady states. First
we show that the canonical distribution for shear flow is

represented by the distribution(2) in the case whereñ=1,
masGd=g andAasGd=−QsGd. HereQsGd is the Helfand mo-
ment of viscosity and its time derivative is connected with
the off-diagonal component of the pressure tensor. The ca-
nonical distribution given here is different from the canonical
distribution based on the local equilibrium assumption, be-
cause the “nonequilibrium term” −gQsGd in the distribution
fsGd cannot be neglected regardless of the system size. To
derive the canonical distribution for shear flow, we introduce
the Hamiltonian for the moving frame which follows the
steady global current, then using the Lagrangian techniques
of classical mechanics, and the fact that the quantityHsGd
+oa=1

ñ masGdAasGd in the distribution(2) should correspond
to this moving frame Hamiltonian. This procedure gives a
systematic way to choose the functionoa=1

ñ masGdAasGd for
the canonical distribution approach to nonequilibrium steady
states.

Second, we show that our approach is consistent with the
so-called Kawasaki distribution[20,40]. This implies that
with the ensemble average of the shear stress using the dis-
tribution (3), the linear-response formula for viscosity is de-
rived in the form of a correlation function of the time-
derivative of the Helfand moment for viscosityQ. We also
emphasize the role of the work required to sustain the steady
shear flow in our justification of the first law of the shear
flow thermodynamics. We introduce a nonequilibrium en-
tropy, which increases in time, and show that the heat based
on this entropy has the same magnitude as the power needed
to sustain the shear flow.

Third, we derive the form(1) of the first law of thermo-
dynamics for shear flow from our canonical distribution ap-
proach, and show that the quantityj in the form(1) is given

by j=−Q̄, with Q̄ being the ensemble average of the Helfand
moment for viscosityQsGd. We also discuss the thermody-
namic stability condition for shear flow, which leads to the
positivity of the correlation function ofQsGd as well as the
positivity of the specific heat.

Finally, we present some numerical calculations of many-
particle systems with soft-core interactions to support our
thermodynamic interpretation of steady shear flow. Here, we
use the Sllod equations with an isokinetic thermostat and
Lee-Edwards boundary condition[55]. In these simulations,
we show the shear rate dependence of the average of Hel-
fand’s moment of viscosity, its correlation function, and the
work needed to sustain the shear flow.

II. CANONICAL DISTRIBUTION FOR STEADY FLOWS

A. Moving frame and energy

Systems discussed here are steady flows, with the global
velocity distribution of the flow given by a time-independent
function Vsr d at the positionr in the inertial frameFsined.
The system consists ofN particles with equal massm and is
described by classical mechanics(without magnetic fields).

We use the Lagrangian formalism of classical mechanics
to compare quantities in different frames. The Lagrangian
formalism is a direct consequence of the frame-independent
principle of least actiondet1

t2dtL=0 for fixed values of posi-
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tions at timest1 and t2, whereL is the Lagrangian.
In the inertial frameFsined, the LagrangianLsined=Lsined

svsined ,qd is given by

Lsinedsvsined,qd =
1

2
mfvsinedg2 − Usqd s4d

as a function of vsined;sv1
sined ,v2

sined , . . . ,vN
sinedd and q

;sq1,q2, . . . ,qNd, wherev j
sined andq j are the velocity and the

spatial position of thej th particle, respectively, andUsqd is
the potential function. Using the definitionspsined

;]Lsined /]vsined and Hsinedspsined ,qd;psined ·vsined−Lsined, the
Lagrangian (4) leads to expressions for the momentum
psined=mv j

sined and the Hamiltonian Hsinedspsined ,qd
=fpsinedg2/ s2md+Usqd. Here we note that the Hamiltonian
Hsined is a function ofpsined andq.

We introduce the velocityv j
smovd of the j th particle in the

moving frameFsmovd, which is connected to the velocityv j
sined

in the inertial frameFsined by v j
smovd;v j

sined−Vsq jd. The quan-
tity v j

smovd is often referred to as the thermal velocity of par-
ticle j . The positionq is invariant under this frame change
Fsined→Fsmovd [40,57]. Inserting the velocityv j

sined=v j
smovd

+Vsq jd into Eq. (4), the LagrangianLsmovd=Lsmovdsvsmovd ,qd
of the system in the moving frameFsmovd is given by

Lsmovdsvsmovd,qd = Lsined =
1

2
mo

j=1

N

fv j
smovd + Vsq jdg2 − Usqd

s5d

as a function ofvsmovd;sv1
smovd ,v2

smovd , . . . ,vN
smovdd and q.

Equation (5) leads to the momentum psmovd

;]Lsmovd /]vsmovd as

p j
smovd = mfv j

smovd + Vsq jdg = mv j
sined = p j

sined. s6d

Therefore, the momentum is independent of the choice of the
framesFsmovd and Fsined, and hereafter we use the notation
p;sp1,p2. . . ,pNd;psmovd=psined for the momentum, and
also use the notationG;sp ,qd for the phase-space vector.
On the other hand, the HamiltonianHsmovd=HsmovdsGd in the
moving frameFsmovd is given by

HsmovdsGd = HsinedsGd − o
j=1

N

p j ·Vsq jd. s7d

using the definitionHsmovdsGd;p ·vsmovd−Lsmovd. It is essen-
tial to note that although the momentapsmovd and psined are
equal, the HamiltonianHsmovdsGd in the moving frameFsmovd

is different from the HamiltonianHsinedsGd in the inertial
frameFsined and their difference is proportional to the global
current distributionVsq jd. The transformation from the iner-
tial frame to the noninertial frame of reference, namely the
moving frame, is well known in classical analytical mechan-
ics [57].

We must distinguish the dynamics generated by the iner-
tial frame HamiltonianHsinedsGd from those generated by the
moving frame HamiltonianHsmovdsGd. To discuss these dy-
namics, we introduce the Liouville operator defined by

iL̂sÃdX ;
]HsÃdsGd

]p
·
]X

]q
−

]HsÃdsGd
]q

·
]X

]p
s8d

for any quantityXsGd, whereÃ= ine for the frameFsined and
Ã=mov for the frameFsmovd. Using the Liouville operator

L̂sined sL̂smovdd, the distribution%sG ,td of G at timet is given

by exph−iL̂sinedst− t0dj%sG ,t0d fexph−iL̂smovdst− t0dj%sG ,t0dg
using the distribution%sG ,t0d at the initial time t0 in the
frameFsined sFsmovdd.

B. Canonical distribution

The central assumption of this paper is that in the moving
frameFsmovd defined by the global velocity distributionVsr d,
the system can be regarded as an equilibrium state. It is
important to note that this assumption is not obvious, be-
cause generally a global flow causes some local effects such
as string phases in shear flows[14–16,20] and possibly tur-
bulent phases, and so on, which can destroy this assumption.
However, these phases generally occur in far-from-
equilibrium states so we may expect that our assumption is
satisfied in a regime near equilibrium. Under this assump-
tion, we introduce the canonical distribution

fsGd = J−1 exph− bHsmovdsGdj s9d

=J−1 expH− bFHsinedsGd − o
j=1

N

p j ·Vsq jdGJ s10d

for steady flow, whereb is the inverse temperature 1/skBTd
with the Boltzmann constantkB and the temperatureT, and
J is the partition functionJ;edG exph−bHsmovdsGdj. For
simplicity, we use units so thatkB=1 hereafter in this paper.
It should be noted that the functionfsGd is the distribution of
psined andq in the inertial frameFsined, as well as the distri-
bution of psmovd and q in the moving frameFsmovd, because
the identity of the momenta impliesG=spsined ,qd
=spsmovd ,qd. Also notice that the canonical distribution(9) is
stationary in time in the moving frameFsmovd, because

iL̂smovdfsGd=0.

In this paper, we use the notationX̄ for the ensemble
average using the canonical distributionfsGd, namely

X̄ ;E dGXsGdfsGd s11d

for any functionXsGd.
A typical example of the canonical distribution(10) is in

rotating flows, as discussed in Appendix A. Applying it to
rotating flows, we obtain the well known canonical distribu-
tion for the rotating flow, and therefore its thermodynamics
[58].

The canonical distribution(10) is different from that ob-
tained from the “local equilibrium assumption,” which is
popular in many texts on nonequilibrium statistical mechan-
ics. In this approach, the canonical distribution functiongsGd
is chosen as
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gsGd ; J̃−1 expH− bFo
j=1

N
1

2m
fp j − mVsq jdg2 + UsqdGJ

= J̃−1 expH− bFHsmovdsGd + o
j=1

N
1

2
mfVsq jdg2GJ

s12d

with J̃;edGexp(−bho j=1
N fp j −mVsq jdg2/ s2md+Usqdj). This

type of distribution was actually used to calculate the shear
viscosity[27,28,37,40,41], and its localized version was used
as a canonical distribution under the local equilibrium as-
sumption(see, for example, Ref.[42]). However, one of the
problems is that the distribution(12) is not consistent with
the thermodynamics of rotating flows. Therefore, the differ-
ence between the two distributions(10) and(12) is crucial to
the subject of this paper, which is a statistical foundation for
steady-state thermodynamics. This problem basically comes
from the fact that the distributiongsGd does not take into
account the inertial force. Despite this point, one may also
notice that the deviation of the distribution(12) from the
distribution(10) is of orderOsV2d in the global velocity, and
near equilibrium this term may be small compared with the
second term on the right-hand side of Eq.(7), which is of
orderOsVd.

III. CANONICAL DISTRIBUTION APPROACH
TO SHEAR FLOWS

In this section, we construct a nonequilibrium statistical
mechanics for steady shear flows based on the canonical dis-
tribution (10). Considering the time evolution of the canoni-
cal distribution (10) in the inertial frameFsined, we get a
nonequilibrium distribution function for shear flows in the
form called the Kawasaki distribution. This leads to a linear-
response formula for viscosity using a correlation function of
the time-derivative of the Helfand moment for viscosity. We
also discuss the work needed to sustain the steady shear flow
as well as the viscous heat generated, which is consistent
with the second law of thermodynamics. These points will be
used to interpret the first law of thermodynamics for steady
shear flows.

A. Shear flows and Helfand’s moment of viscosity

We consider the shear flow system in which the global
current is a linear velocity profile given by

Vsq jd = gqjyix, s13d

whereqjy is they component of the position of thej th par-
ticle, andix is the unit vector in thex direction. Here,g is the
shear rate, a position-independent constant.

The shear flow system is proposed to describe a fluid
between the two plates which move at different speeds, and
is frequently used to calculate viscosity. The viscosity is
given by the linear coefficient ofPxysGd with respect to the
shear rateg, where the pressure tensorPabsGd is defined by

PabsGd ;
1

Vo
j=1

N F 1

m
pjapjb − qjb

]Usqd
]qja

G . s14d

HereV is the volume of the system, andpja sqjad is theath
component of the momentump j (the positionq j) of the j th
particle. If particle-particle interactions in the system are
given by a two-body interaction only, namely the potential
Usqd is expressed in the formUsqd=s1/2do jÞkfsuq j −qkud,
then Eq.(14) can be rewritten as

PabsGd =
1

Vo
j=1

N F 1

m
pjapjb +

1

2o
k=1

N

sqjb − qkbdFjkaG s15d

with Fjka;−]fsuq j −qkud /]qja interpreted as theath compo-
nent of the force acting on thej th particle due to thekth
particle. The pressure tensorPabsGd comes from the balance
equation for the momentum[20].

For the case of the global velocity distribution(13), Eq.
(7) is given by[56]

HsmovdsGd = HsinedsGd − gQsGd, s16d

whereQsGd is defined by

QsGd ; o
j=1

N

qjypjx. s17d

It is essential to note that the quantityQsGd is connected to
the shear stressPxysGd as

iL̂sinedQsGd = VPxysGd, s18d

namely the quantityQsGd is Helfand’s moment for viscosity
[59,60]. [In the references, the name “Helfand’s moment of
viscosity” is used for the quantitysTVd−1/2QsGd, but in this
paper, for convenience we use this name for the quantityQ
itself without the factorsTVd−1/2.] Helfand’s moment of vis-
cosity is used to calculate the viscosity by analogy with the
Einstein formula for the diffusion constant[61,62].

B. Canonical distribution for shear flows

In the case of Eq.(13), the distribution functionfsGd is
given by

fsGd = J−1 exph− bfHsinedsGd − gQsGdgj. s19d

This is the canonical distribution function for shear flow in a
nonequilibrium steady state. This distribution can be attrib-
uted to the general form(2) of the canonical distribution
whenHsGd=HsinedsGd, ñ=1, A1sGd=QsGd, andm1sGd=−g.

Now we mention some physical meanings for the shear
flow canonical distribution function(19). For this purpose,
we convert the distribution function(19) for the canonical
variableG into the distribution functionf9svsmovd ,qd for the
positionq and the velocityvsmovd in the moving frameFsmovd,
and obtain
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f9svsmovd,qd

= J−1 expH− bFo
j=1

N
1

2
mfv j

smovdg2 + Usqd + usqdGJ ,

s20d

where the functionusqd is defined by

usqd = −
1

2
mg2o

j=1

N

qjy
2 . s21d

Hereusqd can be regarded as a potential corresponding to the
inertial force which pushes particles in the direction of larger
uqjyu, namely the region of larger global currentV. In other
words, this potentialusqd expresses the effect of Bernoulli’s
theorem in the hydrodynamics. Another important point is,
using the distributionf9svsmovd ,qd and the averaging defined
by Eq. (11), we obtain

o
j=1

N
1

2
mfv j

smovdg2 =
d̃NT

2
s22d

for any potentialUsqd, whered̃ is the spatial dimension of
the system. Therefore,T can be interpreted as the kinetic
temperature[63]. It may be noted that the same relation with
Eq. (22) is also derived from the distributiongsGd defined by

Eq. (12) by interpreting the averageX̄ of X as the average
under the distributiongsGd.

It is essential to note that owing to Eq.(18), the distribu-
tion (19) is not stationary in the inertial frameFsined, namely

iL̂sinedfsGdÞ0, although it is stationary in time in the moving

frame Fsmovd, namely iL̂smovdfsGd=0. Physically speaking,
this difference of the dynamics of the canonical distribution
in the different framesFsined andFsmovd comes from the fact
that we need some work to sustain the steady shear flows,
but the effect of such work is not included in the canonical
distribution fsGd. In order to include the effect of this work,
we have to generalize the distribution(19), and introduce the

distribution f̃sG ,td at time t as

f̃sG,td ; exph− iL̂sinedst − t0djfsGd s23d

= fsGdexpH− bgVE
t0

t

dsP̃xysG,− s+ 2t0dJ , s24d

wheret0 is the initial time. Here, to derive Eq.(24) we used

the relation (18), iL̂sinedHsinedsGd=0, and exph−iL̂sinedst
− t0djQsGd=QsGd−Vet0

t dsP̃xysG ,−s+2t0d, and defined

P̃xysG ,td by

P̃xysG,td ; exphiL̂sinedst − t0djPxysGd. s25d

The distribution(23) corresponds to the distribution(3) in a
general formulation of the nonequilibrium canonical distri-
bution approach. Moreover, the form of the distribution(24)
is called the Kawasaki distribution function for shear flows

[20,40]. It may be noted that the distributionf̃sG ,td is nor-

malized, namelyedG f̃sG ,td=1, as well asedGfsGd=1.

Using the distributionf̃sG ,td defined by Eq.(23), we in-
troduce the time averagekXsGdlt by

kXsGdlt ;E dGXsGd f̃sG,td s26d

for any functionXsGd of G. This averaging is generally dif-
ferent from the averaging(11) given by the canonical distri-
bution fsGd, except in special systems such as rotating sys-

tems whereX̄=kXlt for anyX is satisfied. We will discuss the
difference between these two averages more concretely in
Sec. IV C.

Noting from Eq.(24) that the difference between the dis-

tribution f̃sG ,td and the distributionfsGd appears as the fac-

tor exph−bgVet0
t dsP̃xysG ,−s+2t0dj, we will discuss the rela-

tion of this factor to the work needed to sustain the shear
flow in Sec. III D. One may interpret the canonical distribu-
tion fsGd as a steady distribution function in the moving
frame Fsmovd, but in order to calculate the work needed to
sustain the steady flow, we have to investigate it in a differ-
ent frameFsined, because the work to sustain the steady flow
is information given by looking at the moving system in the
inertial frame. Therefore, the canonical distributionfsGd
should not be regarded as an artificial test initial distribution,
like in other canonical distribution approaches for linear-
response theory[39,40]. The information about the work to
sustain steady flows is essential to calculate transport coeffi-
cients such as the viscosity, as will be shown in Sec. III C.

C. Linear response formula for viscosity

To calculate the transport coefficient from the nonequilib-
rium canonical distribution approach is beyond the scope of
this paper. However, many works have been devoted to this
subject[37–42,49], so it may be meaningful to mention the
consistency of the nonequilibrium canonical distribution(24)
with the linear-response formula for viscosity.

Using the notation(26) and the quantityPxysGd defined
by Eq. (14), the viscosityh is given as

h ; − lim
g→0

kPxysGdl`

g
. s27d

Using the distributionf̃sG ,td given by Eq.(24), the viscosity
h is represented as

h = bVE
t0

`

dtkP̃xysG,tdPxysGdlseqd, s28d

where we introduced the notationkXsGdlseqd as the equilib-
rium average ofXsGd for any function XsGd, namely
kXsGdlseqd;Jseqd−1edGXsGdexph−bHsinedsGdj with the equi-
librium partition functionJseqd. The derivation of Eq.(28) is
given in Appendix B.[In the same Appendix B, we also
discuss two kinds of nonlinear-response formulas for
kPxysGdl` with respect to the shear rateg, one of which can
be regarded as a natural generalization of Eq.(28).] Here, it
is important to note that
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PxysGd = 0, s29d

at any shear rateg, as also shown in Appendix B, so that we
obtain the equation −limg→0PxysGd /g=0, meaning that the
distribution fsGd does not include information about the vis-
cosity. Equation(28) is the well known linear-response for-
mula for viscosity[49].

The factor exph−bgVet0
t dsP̃xysG ,−s+2t0dj in the nonequi-

librium canonical distribution(24) gives the difference be-
tween the two distributionsfsGd and f̃sG ,td, and plays an
essential role in the derivation of the linear-response formula
(28) for viscosity. It may be emphasized that this kind of
factor can be derived from a different approach using the
Sllod equation[20,50]. The Sllod equation expresses the dy-
namics of the velocity corresponding tovsmovd, and has been
used in many numerical and analytical works on shear flow
systems[20,52]. In the canonical distribution approach using
the Sllod equations, the time evolution of a canonical distri-
bution under Sllod dynamics is considered, and it leads to the
distribution evolving a time integral of the shear stress, such
as the distribution(24). These two approaches give the same
formula (28) for the viscosity. A difference between this ap-
proach and the approach discussed in this paper is that the
Sllod dynamics approach is based on distributions of the type
(12), so that it does not take into account the inertial force.
This make discussions of thermodynamic relations(for ex-
ample, the first law of thermodynamics) rather more compli-
cated than the approach used in this paper. It may also be
noted that the Sllod dynamics is different from the dynamics
for vsmovd from the HamiltonianHsmovdsGd in the moving
frameFsmovd, and in the Sllod dynamics approach the distri-
bution corresponding tofsGd is just an initial test distribution
and cannot be interpreted as a steady distribution in the mov-
ing frame Fsmovd like the Hamiltonian dynamics approach
discussed in this paper. In the Sllod equation approach, the
shear rate dependence appears in the dynamics itself, so that
the response formula for viscosity is treated as a response
formula to a mechanical perturbation. On the other hand, in
the Hamiltonian dynamics approach the shear rate depen-
dence appears in the distributionfsGd, not in the dynamics,
and the formula(28) for viscosity can be regarded as a re-
sponse formula to a thermodynamic perturbation, which does
not have any potential form in the inertial frame Hamil-
tonian.

D. Work needed to sustain shear flows
and the house-keeping heat

Now we discuss further the information involved in the

distribution f̃sG ,td, which the canonical distributionfsGd
does not have. It is the information about the work required
to sustain the steady shear flow.

First, the powerkẆlt to sustain the shear flow at timet is
estimated by

kẆlt ;
dkHsmovdlt

dt
=

dH̃smovdsG,td
dt

= − gVkPxylt, s30d

where H̃smovdsG ,td is defined asH̃smovdsG ,td;exphiL̂sinedst
− t0djHsmovdsGd. Here, in order to derive Eq.(30) we used the

equations iL̂sinedHsinedsGd=0 and ]H̃smovdsG ,td /]t

=exphiL̂sinedst− t0djVPxysGd.
In steady flow systems, the energy added to the system as

the work needed to sustain the flow must be eliminated from
the system as heat[33]. This type of heat is called the
“house-keeping heat,” and its special role has been empha-
sized in the construction of a nonequilibrium steady-state
thermodynamics[5,6]. Figure 1 is a schematic illustration of

the powerkẆlt required to sustain the shear flow and the
house-keeping heat. Now we estimate this house-keeping
heat from the nonequilibrium canonical distribution ap-
proach. First, we introduce the observableSsGd correspond-
ing to entropy as

SsGd ; − lnhfsGdj. s31d

[Note that SsGd is actually used as the observable corre-
sponding to the entropy in rotating flows, as shown in Ap-
pendix A.] Using this entropy observable we define the non-
equilibrium entropykSlt as the ensemble average ofSsGd
under the distributionf̃sG ,td. A similar kind of entropy to
kSlt was used in Refs.[37,39] for a different form of the
distribution fsGd. Using Eq.(24), the entropykSlt is repre-
sented as

kSlt = −E dGfsGdlnh f̃sG,− t + 2t0dj

= S̄+ bgVE
t0

−t+2t0
dsP̃xysG,− s+ 2t0d

= S̄− bgVE
t0

t

dskPxyls. s32d

Therefore, the house-keeping heatTfdkSlt /dtg at time t is
given by

FIG. 1. Schematic illustration of the powerkẆlt required to
sustain the shear flow and the house-keeping heatTfdkSlt /dtg. In

this illustration, the powerkẆlt is represented as the power to move
the upper boundary of the shearing system. This power supplies the
energy to sustain the steady shear flow, which is eliminated from
the system as the house-keeping heat.
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T
dkSlt

dt
= − gVkPxylt s33d

=kẆlt. s34d

This is the balance equation that shows that the power
needed to sustain the shear flow must be equal to the house-
keeping heat. Using Eqs.(27), (33), and (34), the house-

keeping heat and the ensemble averaged powerkẆlt to sus-
tain the shear flow are connected to the viscosityh as

TfdkSlt /dtg=kẆlt=Vhg2+Osg3d.
The entropykSlt satisfies the inequality

kSlt ù kSlt0
= S̄ s35d

at any timets.t0d. The detail of the derivation of the in-
equality (35) is given in Appendix C. Noting thatkSlt

−kSlt0
=et0

t dtfdkSlt /dtg and assuming thatdkSlt /dt is time-
independent in a steady state, we obtain

dkSlt

dt
ù 0. s36d

This is the expression of the second law of thermodynamics
in the nonequilibrium canonical distribution approach. The
inequality(36) means simply that the shear flow system pro-
duces a positive house-keeping heat constantly in time. In
this sense, the total entropy productionkSlt−kSlt0

diverges as
time t goes to infinity, because the total amount of heat pro-
duced by the steady viscoelastic shear flow in the infinite
time interval is infinite[64]. In other words, the system is
kept as a nonequilibrium steady state by discharging an
amount of entropy constantly, which is transferred from the
external work. Therefore, the inequality(36) must be distin-
guished from another type of second law of thermodynamics,
meaning that an entropy increases in time and approaches a
stable value in a relaxation process. This type of the second
law of thermodynamics, or the thermodynamical stability
condition, will be discussed in Sec. IV B. By combining the
inequality (36) andT.0 with Eqs.(33) and (34), we have

kẆl`

V = − gkPxysGdl` ù 0. s37d

Namely, the averaged powerkẆl` needed to sustain the
shear flow must be positive(or zero). This is one of the
results, which can be checked by numerical simulation, as
will actually be shown in Sec. V A. It may be noted that the
inequality (37) implies the non-negativity of the viscosityh
as a special case.

IV. THERMODYNAMICS FOR SHEAR FLOWS

As discussed in Sec. III D, the factor

exph−bgVet0
t dsP̃xysG ,−s+2t0dj, which gives the difference

between the distributionf̃sG ,td and the canonical distribution
fsGd, includes the effect of the work needed to sustain the
shear flow, or the house-keeping heat. On the other hand, the

expression for the first law of thermodynamics proposed by
Evans and Hanley does not include this effect(otherwise it
must include time-dependent terms for the sustaining work
and the house-keeping heat). Moreover, Ref.[6] emphasized
that we must subtract the contribution of the house-keeping
heat from the entropy in order to obtain an expression for the
first law of thermodynamics for steady states. Equation(32)
implies that the entropy minus the contribution from the
house-keeping heat is given bykSlt−et0

t dsfdkSls/dsg=kSlt

+bgVet0
t dskPxysGdls=S̄, which is the entropy defined

through the canonical distributionfsGd, not through the dis-

tribution f̃sG ,td. For these reasons(although it may be pos-
sible to construct a nonequilibrium steady-state thermody-
namics explicitly including the effect of the house-keeping
heat), in this section we construct a shear flow thermody-
namics based on the canonical distributionfsGd excluding
the effect of the house-keeping heat, and show that it is con-
sistent with the Evans-Hanley thermodynamics.

A. First law of thermodynamics

As the first thermodynamic property of the shear flow
system, we consider the first law of thermodynamics. In the
shear flow system, using Eq.(16) we obtain the relation

Hsmovd = Hsined − gQ̄, s38d

which connects the average energiesHsmovd andHsined in the
two different framesFsmovd andFsined, respectively. The en-

tropy S̄ based on the canonical distributionfsGd is given by

S̄= ln J + bHsmovd s39d

=ln J + bfHsined − gQ̄g s40d

using Eqs.(11), (19), and(31). The free energyFsmovd in the
moving frameFsmovd is introduced as

Fsmovd ; Hsmovd − TS̄ s41d

=− T ln J, s42d

where we used Eq.(39) to derive Eq.(42). [Here, it may be
noted that the free energyFsmovd can also be expressed as
Fsmovd=kHsmovdsGdlt−TkSlt using the averaged energy

kHsmovdsGdlt and entropykSlt related to the distributionf̃sG ,td
which includes information about the house-keeping heat.]
Similarly, the free energyFsined in the inertial frameFsined is
also introduced as

Fsined ; Hsined − TS̄ s43d

=Fsmovd + gQ̄ s44d

=− TSln J − g
] ln J

]g
D s45d

using Eqs.(40) and] ln J /]g=bQ̄. Equation(44) connects
the free energiesFsmovd andFsined in the two different frames
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Fsmovd andFsined, respectively. Using Eqs.(42) and (45), the
free energiesFsmovd andFsined can be calculated directly from
the partition functionJ.

Noting the definition of the partition functionJ
;edG exph−bHsmovdj=edG exph−bfHsined−gQgj including
the two parametersTs=b−1d andg explicitly, Eq.(42) implies
that the free energyFsmovd is a function of the temperatureT
and the shear rateg: Fsmovd=FsmovdsT,gd. Actually, by Eq.
(42) we obtain

]fbFsmovdg
]b

= −
] ln J

]b
= Hsmovd, s46d

]fbFsmovdg
]g

= −
] ln J

]g
= − bQ̄, s47d

which are summarized as

dfbFsmovdg = Hsmovddb − bQ̄dg. s48d

Inserting Eqs.(41) anddb=−T−2dT into Eq. (48), we obtain

dFsmovd = − S̄dT− Q̄dg, s49d

where the free energyFsmovd is an explicit function ofT and
g. Equations(44) and (49) lead to

dFsined = − S̄dT+ gdQ̄. s50d

Equations(49) and (50) are also equivalent to

dHsmovd = TdS̄− Q̄dg, s51d

dHsined = TdS̄+ gdQ̄, s52d

using the relations(41) and (43). The second term on the
right-hand side of Eq.(51) can also be derived from the
relation ]HsmovdsGd /]g=−QsGd from Eq. (16), therefore

u]Hsmovd /]guS̄=−Q̄ under an adiabatic process. It is clear that
the Evans-Hanley expression(1) for the first law of shear
flow thermodynamics is the relation(51), whereE=Hsmovd

andj=−Q̄.
From Eq. (51), the energyHsmovd in the moving frame

Fsmovd is regarded as a function ofS̄ andg, while the energy

Hsined in the inertial frameFsined is a function ofS̄ andQ̄ by
Eq. (51). The two energiesHsined andHsmovd in the different
frames are connected by a Legendre transformation, namely
Hsined= uHsmovd−g]Hsmovd /]guS̄, as well as the two free ener-
gies in the different frames. Using Eq.(52), we obtain

u]S̄/]HsineduQ̄=1/T and u]S̄/]Q̄uHsined=−g /T by regarding the

entropyS̄ as a function ofHsined and Q̄. Therefore, the ther-
modynamic variable conjugate to the averaged Helfand mo-

ment of viscosityQ̄ is the minus inverse temperature times
the shear rate −g /T, like the fact that the thermodynamic
variable conjugate to the energyHsined is the inverse tempera-
ture 1/T. After all, thermodynamic functions such as the free
energyFsmovd are calculated from the partition functionJ,
and by combining them with the first law of thermodynamics
we can calculate thermodynamic quantities, for example the

Helfand moment of viscosityQ̄= u−]Fsmovd /]guT and the en-

tropy S̄= u−]Fsmovd /]Tug, and their relations including the
equation of state are as in equilibrium thermodynamics.

B. Thermodynamic stability conditions

As the second thermodynamic property of the shear flow
system, we consider a stability condition for shear flow[65].
We consider a small partA of the macroscopic shear flow
system, in which averages of energy, entropy, and Helfand’s
moment of viscosity in the inertial frameFsined are given by

Hsined, S̄, andQ̄, respectively. The other partR of the system,
which is much bigger than the systemA and is called the
“environment” or “reservoir,” has the thermodynamic values

T0, S̄0, andg0 of the temperature, the entropy, and the shear
rate, respectively. Now, we consider moving an infinitesimal

amount of energy as heat −T0dS̄0 from the reservoirR into
the small systemA. In this process, the total entropy must

increase:dS̄+dS̄0ù0. By combining this inequality with the

first law of thermodynamicsdHsined=−T0dS̄0+g0dQ̄ based on

Eq. (52), we have dHsined−T0dS̄−g0dQ̄=dsHsined−T0S̄

−g0Q̄dø0, using the fact that the reservoirR is so big that
T0 and g0 do not change in this process. This inequality

means that the quantityHsined−T0S̄−g0Q̄ always decreases
and reaches a minimum in a stable state. In other words, if

we force a change to the values ofHsined, S̄, and Q̄ at the

stable point bydHsined, dS̄, and dQ̄, respectively, then the

inequality dHsined−T0dS̄−g0dQ̄ù0 must be satisfied as the
stability condition for the shear flow system. This simply
leads to

d2Hsined ù 0 s53d

for any infinitesimal deviationsdS̄anddQ̄. By a well known
technique used in thermodynamics(see, for example, Ref.
[58] or Appendix D), the condition(53) is equivalent to

U ]S̄

]T
U

Q̄
. 0, s54d

U ]Q̄

]g
U

T
. 0. s55d

The condition(54) simply means that the specific heat at

constantQ̄ is always positive at a positive temperatureT. To
understand the condition(55) we note

U ]Q̄

]g
U

T
= bsQ2 − Q̄2d s56d

as shown in Appendix D. Therefore, combining Eq.(56) with
the inequality(55), we obtain

Q2 − Q̄2 . 0. s57d

Namely, the stability condition(55) means the positivity of
the correlation function for Helfand’s momentQsGd of vis-
cosity.
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Based on Eq.(1), Evans and Hanley claimed the inequal-
ity u]j /]guT.0 as a stability condition for shear flows
[31,32]. This inequality is incompatible with the inequality

(55) in the case ofj=−Q̄. This difference comes basically
from the fact that they discussed a thermodynamic stability
condition using the energyHsmovd, whereas we discussed it
using the energyHsined. Obviously, the correlation function of

Q cannot be negative because ofQ2−Q̄2=sQ−Q̄d2ù0, so
noting Eq. (56) we cannot justify the stability condition
claimed by Evans and Hanley in the canonical distribution
approach.

C. Relations between canonical averages

So far we have introduced two types of canonical average

X̄ and kXlt, and in Sec. V we introduce the usual time aver-
age. It is very important to distinguish between these aver-
ages. The thermodynamic relations discussed in Secs. IV A

and IV B are the relations for the ensemble averageX̄ of
observableXsGd using the canonical distributionfsGd. On
the other hand, in numerical simulations using the Sllod
equations with an isokinetic thermostat(as in Sec. V), the
values obtained are the mixed ensemble-time averagekXlt

for the distributionf̃sG ,td in the limit t→`. Therefore, it is
important to obtain an explicit relation between these two
different ensemble averages.

For any functionXsGd, the relation between the two en-

semble averagesX̄ and kXl` is

kXl` = X̄ − bgVE
t0

`

dtfX̃sG,td − X̄gfPxysGd − Pxyg, s58d

whereX̃sG ,td;exphiL̂ sinedst− t0djXsGd. The derivation of Eq.
(58) is given in Appendix E. A similar equation for the ca-
nonical distribution approach using the Sllod equations is
shown in Ref.[53].

From relation(58), if the fluctuationX̃sG ,td−X̄ of X is
weakly correlated to the shear stressPxysGd, then the en-

semble averageX̄ can be nicely approximated by the average
kXl`. However, notice that the justification for such an ap-
proximation strongly depends on the choice of the quantity
X. A typical example is the case ofX=PxysGd, in which we
must not neglect the second term on the right-hand side of
Eq. (58), because in this case the first term on the right-hand
side of Eq.(58) is zero, namelyPxy=0, as shown in Appen-
dix B. One should also notice that the second term in Eq.
(58) is small near equilibrium, because it includes the non-
equilibrium parameterg as a factor.

V. NUMERICAL SIMULATIONS OF SHEAR FLOW

In this section, we show numerical results for some quan-
tities which have appeared in the preceding Secs. III and IV,
and we check the results obtained there.

For this numerical calculation, we use a two-dimensional
square system ofN particles with side lengthLs=ÎVd. The

particle-particle interaction is given by the isotropic soft-core
pair potential

fsrd = 5kS 1

r12 −
1

r0
12D in r , r0

0 in r ù r0
6 s59d

with r0=1.5 and k=1. The particle number densityr
;N/V is 0.8. The massm of the particle and the kinetic
temperatureT are both chosen as 1. The number of particles
is N=450, except in Sec. V D, where theN dependence of
quantities will be discussed. We use the Sllod equations with
Lees-Edwards boundary conditions and the Gaussian isoki-
netic thermostat so that the kinetic temperature[given by Eq.
(22)] is kept constant[20]. A fourth-order predictor-corrector
method[66] is used to carry out these numerical simulations
with a time step ofDt=0.001. In this algorithm, the sum of

the “thermal momentum”P̃j ;p j −mVsq jd is zero in both
coordinate directions.

We use the notationkXl for the time-averaged value of
any quantityX given by this numerical simulation. To calcu-
late this average, we used data over more than 106 time steps
omitting the first 104 time steps.(We checked that 104 time
steps is much longer than the relaxation time of the time-
correlation function for the thermal momentum.) This should
correspond to the ensemble averagekXl` used so far. This is
supposed by the fact that we can calculate the viscosity from
the time averagekPxyl in this simulation, based on Eq.(27)
assumingkPxyl`=kPxyl. We calculateg dependences of three
quantities:kPxyl, kQl, andkQ2l. We usekPxyl to discuss the
power to sustain the flow and the house-keeping heat given
by Eq. (33). The quantitieskQl andkQ2l are used to discuss
the behavior of Helfand’s moment of viscosity and the ther-
modynamic stability condition(55). Here, it is assumed that
the quantitiesQ andPxy are not strongly correlated with each
other because of the relation(18), and in the case ofX=Q or
Q2 the second term on the right-hand side of Eq.(58) may be
small compared to the first term in the small shear rate case.
This implies that the behavior of the time averages of Hel-
fand’s moment of viscosity and its correlation function are

not so different from the ones forQ̄ and Q2−Q̄2, respec-
tively, near equilibrium.

A. Work needed to sustain the shear flow

The first numerical result is for the powerẆ/V per unit
volumesV=562.499̄ d for the work required to sustain the
shear flow, or equivalently, the house-keeping heat per unit

volume. It is given as the time average ofẆ/V;−gPxysGd,
based on Eqs.(33) and(34). Figure 2 shows the shear rateg

dependence of the time-averaged powerkẆl /V per unit vol-
ume. The inset is the same graph except showing it in a
wider shear rate region.(Note that we used a linear-log scale
in this inset, whereas we use a linear-linear scale for the main
figure.) Following from the inequality(37), the power to
sustain the flow shown in Fig. 2 is always positive(or zero).

It may be noted that the average powerkẆl needed to
sustain the shear flow should be an even function ofg, be-
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cause it should be invariant under a change in sign of the
shear rateg. In Fig. 2, we fitted the numerical data to a
quadratic functiony=aPx2 with the fitting parameteraP
=1.513 09. Near equilibriumg,0.5, the graph is nicely fit-
ted by this quadratic function. As the shear rate increases, a
region in which the value ofkPxysGdl is almost independent
of g (namely the region fitted by a linear functiony=aP8x
with the fitting parameteraP8 =2.000 05) appears[15], and
after that the string phase region appears[14–16] (the region
g.8 approximately in the inset to Fig. 2). The string phase
can be checked not only by the string-type arrangement of
particle positions, but also by the strong time-oscillating be-
havior of the time-correlation functions for quantities such as
the potential energy, the shear stress, and so on[16]. For an
isokinetic thermostat, the house-keeping heat is also given as
the time average of the thermostat term. We checked numeri-
cally that this quantity is equal to the time average of
−gPxysGd.

B. Helfand’s moment of viscosity

Figure 3 shows the graph of the time average of Helfand’s
moment of viscosity per unit volumekQl /V as a function of
shear rateg. It (almost) takes the value 0 at equilibriumg
=0, and increases linearly as a function ofg. In this figure,
we also give a fit to a linear functiony=aQg, with the pa-
rameter valueaQ=150.043.

To explain this linear behavior for Helfand’s moment of
viscosity as a function of shear rate, we simply note that

kQl = o
j=1

N

kqjyp̃jxl + go
j=1

N

kqjy
2 l s60d

with the x componentp̃jx;pjx−gqjy of the thermal momen-
tum of the j th particle. Our numerical calculations show that
the value of the first term on the right-hand side of Eq.(60)

is extremely small(or zero) compared to the value of its
second term, namelyo j=1

N kqjyp̃jxl<0. Moreover, using a ho-
mogeneous continuum assumption for the fluid, the value of
the quantityo j=1

N kqjy
2 l appearing in the second term on the

right-hand side of Eq.(60) can be estimated aso j=1
N kqjy

2 l
<NL−1e0

Ldyy2=NL2/3. These estimations lead tokQl /V
<sN/3dg=150g, which explains the value of the fitting pa-
rameteraQ.

The time-averaged Helfand’s moment of viscositykQl
should be at least an odd function of shear rateg, because the

infinitesimal deviationgdQ̄ giving the energy changedHsined

in the inertial frame by Eq.(52) must be invariant under the
change of sign of the shear rate. It may be noted that this
linear dependence for the time average of Helfand’s moment
Q of viscosity with respect to shear rate is satisfied not only
in the near-equilibrium region but also even in the string
phase region, shown in the inset to Fig. 3, possibly because
the Sllod equations are a homogeneous shear algorithm.

It may be noted that in our simulations, Helfand’s moment
of viscosity can change discontinuously in time, when a par-
ticle steps over a boundary in the direction orthogonal to the
global shear flow. However, it should be a small boundary
effect which can be neglected in the thermodynamic limit
N→` and r=const, and our numerical calculations gave a
good convergence for the long time average of Helfand’s
moment of viscosity.

C. Correlation function for Helfand’s moment of viscosity

As the last example, Fig. 4 shows the shear rate depen-
dence of the correlation functionskQ2l−kQl2d /V of Hel-
fand’s moment of viscosity divided by the volumeV. This
figure shows that this correlation function is always positive
at least forg,10, consistent with the thermodynamic stabil-
ity condition (55).

The correlation function for Helfand’s moment of viscos-
ity should be an even function of the shear rate. Noting this

FIG. 2. The average power per unit volumekẆl /V needed to
sustain the shear flow, as a function of shear rateg as a linear-linear
plot. The solid line is the fit to a quadratic function and the dashed
line is the fit to a linear function(valid for g.3). Inset: the same
graph as a linear-log plot including a wider range ofg.

FIG. 3. Time average of Helfand’s moment of viscosity per unit
volumekQl /V as a function of shear rateg. The solid line is the fit
to a linear function. Inset: the same graph including a wider range
of g.
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point, in the small shear rate region of Fig. 4 we give the fit
of numerical data to the functiony=aC0+aC2x

2 with the
fitting parameter valuesaC0=46.749 andaC2=1349.38. The
graph is nicely fitted by this quadratic function in the small
shear rate region. This point may be explained by noting

kQ2l − kQl2 < o
j=1

N

o
k=1

N

kqjyqkyp̃jxp̃kxl

+ g2o
j=1

N

o
k=1

N

skqjy
2 qky

2 l − kqjy
2 lkqky

2 ld s61d

using the thermal momentum componentp̃jx. Here we as-
sumed that the time average of the linearly dependent terms
for the thermal momentum can be neglected. As the two
termso j=1

N ok=1
N kqjyqkyp̃jxp̃kxl ando j=1

N ok=1
N o j=1

N kqjy
2 qky

2 l can be
consideredg-independent, the correlationkQ2l−kQl2 can be
fitted by a quadratic function ofg.

In the inset to Fig. 4, we give the shear rate dependence of
the time average of the correlation function for Helfand’s
moment of viscosity per unit volume in a much wider region
of shear rate on a linear-log scale.(Note that we used a
linear-linear scale in the main figure of Fig. 4.) It should be
noted that a rapid drop of the value of this correlation func-
tion occurs in the string phase region. In the intermediate
region, which is approximately the region 2.5,g,8 in Fig.
4, between the region fitted by the quadratic function ofg
and the string phase region, fluctuations in the valuekQ2l
−kQl2 become much larger than in the other regions, and
their values in Fig. 4 are less reliable.

D. Remarks in connection with the isokinetic thermostat
dynamics and the canonical distribution approach

Sllod dynamics with the isokinetic thermostat is regularly
used to simulate shear flows. It is supposed to reproduce the

value of shear stress predicted by a canonical distribution
approach[51], and succeeded to reproduce some real experi-
mental values[12]. However, we note that, strictly speaking,
the time average from Sllod dynamics with the isokinetic
thermostat does not always reproduce the ensemble average
for the nonequilibrium canonical distribution used in this pa-
per, even in the equilibrium state whereg=0 after taking the
thermodynamic limitN→` (andr=const). Now we discuss
a couple of examples illustrating these ensemble differences.

First, in the numerical simulations used in this section, the
sum of the thermal momentump̃ j ;sp̃jx , p̃jyd;p j −mVsq jd
over particle numberj in each direction is zero at all times,
meaning that there is a constraint on the values of the ther-
mal momenta, that is,o j=1

N p̃jx=0. On the other hand, in the
canonical distribution approach, all components of momenta
can be treated as independent variables. This difference, for
example, causes the different averaged values for
o j=1

N ok=1
N kp̃jxp̃kxl and o j=1

N ok=1
N p̃jxp̃kx. Actually, the value of

o j=1
N ok=1

N kp̃jxp̃kxl=kso j=1
N p̃jxdsok=1

N p̃kxdl is zero as each brack-
eted sum is individually zero. The value ofo j=1

N ok=1
N p̃jxp̃kx,

however, is given bymNT in the canonical distribution be-
cause ofp̃jxp̃kx=mTd jk.

Second, the isokinetic thermostat used here keeps the ki-
netic energy constant so that the distribution of kinetic en-
ergy is ad function. This is different from the distribution of
kinetic energy in the canonical distribution, where there is
always a nonzero fluctuation of the kinetic energy around its
mean value. References[67,68] modify the distribution to
give consistency with the isokinetic thermostat, but it is not
obvious that we can justify the shear flow thermodynamics
based on such a modified distribution.

As a concrete example of these ensemble differences, let

us consider the first termC̃xy;o j=1
N ok=1

N ukqjyqkyp̃jxp̃kxlug=0

appearing on the right-hand side of Eq.(61) at equilibrium
g=0. Assuming that the variablesqjy and p̃jx are indepen-
dent, and thatkqjyqkyl only depends upon whetherj =k or j
Þk, then

o
j=1

N

o
k=1

N

kqjyqkyp̃jxp̃kxl

< kq1y
2 lo

j=1

N

kp̃jx
2 l + kq1yq2ylo

j=1

N

o
k=1skÞ jd

N

kp̃jxp̃kxl. s62d

If q1y is uniformly distributed between 0 andL, then kq1y
2 l

<L2/3 and kq1yq2yl<L2/4. Now, if this time average ap-

pearing in the quantityC̃xy in Sllod dynamics could be re-
placed by its ensemble average in the canonical distribution

fsGd, then the average valueC̃xy should be equal toC̄xy

;mTo j=1
N ukqjy

2 lug=0 because ofp̃jxp̃kx=0 in j Þk for the ca-

nonical average. However, the quantitiesC̃xy and C̄xy actu-
ally take different values, because the time average
o jÞkkp̃jxp̃kxl is not zero but takes the value −o j=1

N kp̃jx
2 l. It

follows that C̄xy<mNTL2/3 and C̃xy<mNTL2/12, soFxy

;uC̃xy−C̄xyu /C̄xy<3/4. Figure 5 is the graph of the normal-
ized differenceFxy as a function of system sizeN for square

FIG. 4. Correlation functionskQ2l−kQl2d /V of Helfand’s mo-
ment of viscosity per unit volume as a function of shear rateg in a
linear-linear plot. The solid line is the fit to a quadratic function.
The inset: the same graph except that it includes a wider region of
g and is a linear-log plot.
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systems at fixed densityr=0.8. The length of error bars in
this figure is given by 2uFxy−Fyxu, which must be zero in the
square cases. Figure 5 suggests thatFxy is in excellent agree-
ment with the value of 3/4 given above.

VI. CONCLUSION AND REMARKS

In this paper, we have discussed a canonical distribution
approach to nonequilibrium steady-flows and constructed a
steady-state thermodynamics from solid statistical mechani-
cal foundations. Using the Lagrangian technique of classical
mechanics, we introduced the energy in the moving frame by
separating the velocity of the global steady flow. A canonical
distribution based on this internal energy was introduced.
Our special concern was to describe steady shear flows and
their thermodynamics based on this canonical distribution
approach. Evans and Hanley proposed a first law of thermo-
dynamics of the formdE=TdS−Qdg relating energyE, tem-
peratureT, entropyS, and shear rateg. Here we derived this
shear flow thermodynamics based on our canonical distribu-
tion approach, and showed that the quantityQ is given by
the average of Helfand’s moment of viscosity, the tempera-
ture T is the kinetic temperature derived from the thermal
kinetic energy, andE can be interpreted as an internal energy.
We show the consistency of our approach with the Kawasaki
distribution from which the linear-response formula for vis-
cosity is derived. The work required to sustain the shear flow
and the heat removed to compensate it(the house-keeping
heat) were discussed. We introduced a nonequilibrium en-
tropy, and showed that it increases in time and the house-
keeping heat based on this entropy has the same magnitude
as the power needed to sustain the steady flow. This discus-
sion led to the non-negativity of average of −gPxy, wherePxy
is the shear stress, meaning that the power needed to sustain

the shear flow and the house-keeping heat is always non-
negative. Our first law of thermodynamics for steady shear
flows does not include the effect of the house-keeping heat.
We discussed the thermodynamic stability condition for the
shear flows, one of which is equivalent to the positivity of
the correlation function of Helfand’s moment of viscosity.
Our results were investigated in numerical simulations of
two-dimensional many-particle systems with soft-core inter-
actions, with Sllod equations and an isokinetic thermostat.

Our interest in this paper was to apply the canonical dis-
tribution approach using the moving frame Hamiltonian to
steady shear flow systems. On the other hand, this approach
is also applicable to rotating systems, as briefly discussed in
Appendix A. We summarize the similarities and differences
between these two systems in the canonical distribution ap-
proach. Both of these systems are steady flows whose mag-
nitude is proportional to a component of position vector: the
distance from the rotating axis in the rotating system or the
position component orthogonal to the flow in the shear sys-
tem. Both systems have parameters to characterize their cur-
rents: the angular velocityv in the rotating flow and the
shear rateg in the shear flow. In the rotating flow, the re-
sponse function for the internal energyHsmovd with respect to
the angular velocityv is minus the average of the total an-
gular momentumM , while in shear flow the response func-
tion of the internal energy with respect to the shear rateg is

minus the averaged Helfand moment of viscosityQ̄. On the
other hand, we must also emphasize some differences be-
tween these two systems. The biggest difference is that the
total angular momentumM of the rotating flow is a con-
served quantity, whereas Helfand’s moment of viscosityQ
appearing in the shear flow is not constant in time and its
time derivative gives the shear stressPxy (times volume of
the system). Physically speaking, this difference comes from
the fact that we need work to sustain the steady current in the
shear flow, whereas such work is not necessary in the rota-
tional system. Because of this conserved total momentum in
the rotating flow, the nonequilibrium canonical distribution

f̃sG ,td coincides with the canonical distributionfsGd itself. In
addition, the relationkXsGdlt=XsGd for any functionXsGd is
satisfied. This means that the nonequilibrium canonical dis-

tribution f̃sG ,td is stationary in time, not only in the moving
frame but also in the inertial frame. In shear flow systems,
such simple relations are not satisfied. In shear flow, the non-

equilibrium canonical distributionf̃sG ,td is not stationary in
time in the inertial frame, and is given by a Kawasaki distri-
bution, which is the canonical distribution functionfsGd mul-

tiplied by the factor exph−bgVet0
t dsP̃xysG ,−s+2t0dj. This

point plays an essential role in a derivation of the response
formula for viscosity in the shear flow. Moreover, this mul-

tiplicative factor in the distribution functionf̃sG ,td includes
information about the work needed to sustain steady flow
and the house-keeping heat. The comparison between rotat-
ing systems and shear flow systems in the canonical distri-
bution approach is also summarized in Table I.

One may notice that the canonical distribution approach
discussed in this paper can be generalized to more general
steady flows than the rotating system and the shear flow

FIG. 5. Time-averaged quantityFxy;uC̃xy−C̄xyu /C̄xy as a
function of particle numberN for Sllod dynamics with an isokinetic
thermostat in a square at equilibriumg=0 with the particle density

r=0.8 as a log-linear plot. HereC̃xy and C̄xy are defined byC̃xy

;o j=1
N ok=1

N ukqjyqkyp̃jxp̃kxlug=0 and C̄xy;mTo j=1
N ukqjy

2 lug=0, respec-
tively. The length of error bars in this figure is given by 2uFxy

−Fyxu. The solid line is the value 3/4, which is explained in the
text.
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system. One of the restrictions in our canonical distribution
approach is that we have to know the global velocity distri-
bution V a priori. In this sense, this approach is not appro-
priate to determine the global velocity distribution under
some external constraints, etc. It is also crucial that we know
a priori an external parameter that specifies the amount of
the global flow, like the angular velocity or the shear rate.
This parameter is treated as a thermodynamic quantity in the
expression for the first law of thermodynamics.

An important future problem in shear flow thermodynam-
ics using this approach is to discuss the changes in the pres-
sure. References[30–33] introduced the pressureP simply
by adding the term −PdV on the right-hand side of Eq.(1).
For this term, it was conjectured that the pressureP would
be equal to the minimum eigenvalue of the pressure tensor
[35]. However, one should notice that nonequilibrium sys-
tems such as the shear flow system are not generally isotro-
pic, so that the pressure defined by −]E /]V may depend on
the direction in which we change the volumeV. Actually, as
shown in Fig. 6, the numerical simulations using Sllod dy-
namics in Sec. V show that the time averages ofPxxsG8d and
PyysG8d are different from each other at nonzero shear rate.
[Here G8 is the “thermal phase-space vector” given by re-
placing the momentump j with the thermal momentump̃ j
;p j −mVsq jd in the phase-space vectorG.] Noting that usu-
ally the pressure is calculated by the arithmetic average of
these time averages(or ensemble averages) (see Ref.[20],
also Ref.[42] for its justification using the microcanonical
distribution), this suggests that if the pressures in thex and
the y directions are given by averages ofPxxsG8d and
PyysG8d, respectively, then the pressure is direction-
dependent in shear flow systems. The quantitykPxxsG8dl
−kPyysG8dl is called the “normal stress” and a nonzero value
is one of the important properties of viscoelastic fluids
[9,20,72]. Therefore, it is important to understand whether
such a property is compatible with the thermodynamic
framework discussed in this paper, in other words to discuss
the first law of thermodynamics in which the averages
PxxsG8d andPyysG8d are included as thex andy components
of the pressure, respectively. It may be noted that a similar
question can be asked for rotating flows. We leave discussion
of these points for the future.

As mentioned in Sec. IV C, the thermodynamic relations,
Eqs.(52) and(57) derived in this paper, are relations for the
ensemble average(11) under the canonical distributionfsGd.
On the other hand, the numerical calculations discussed in

Sec. V give the average(26) under the distributionf̃sG ,`d.
Although these two averages are related by Eq.(58), it is still
an open question to calculate the canonical average(11),
required for the thermodynamic relations, from the dynami-
cal evolved canonical average(26) in numerical calculations.

Originally, Evans and Hanley introduced their shear flow
thermodynamics to discuss the nonanalytical properties of
the pressure, viscosity, and the internal energy as functions
of the shear rate. Such nonanalytical properties are predicted
by mode-coupling theory[41,69], and are supported by some
numerical calculations[20,70,71]. However, recently some
numerical works suggest that the shear rate dependence of
the pressure is analytic near equilibrium, except close to the
triple point [12,13]. Moreover, even at the triple point, the
nonanalytic dependence of the pressure is not completely
convincing[10]. It may also be noted that some theories that
predict an analytic dependence of the pressure and the vis-
cosity with respect to the shear rate have been proposed
[4,10,72]. In this sense, it is still an interesting problem to
discuss shear rate dependences of the pressure, the viscosity,
and so on using shear flow thermodynamics.

TABLE I. Comparison between rotating flows and shear flows in the canonical distribution approach.

Rotating flow Shear flow

Nonequilibrium parameterz angular velocityv shear flowg

Response function toz angular momentum M

fiL̂sinedM sGd=0g
Helfand moment of viscosityQ

fiL̂sinedQsGd=VPxysGdg
Global currentVsq jd v3q j gqjyix
Canonical distributionfsGd J−1 exph−bfHsinedsGd−v ·M sGdgj J−1 exph−bfHsinedsGd−gQsGdgj

Nonequilibrium distributionf̄sG ,td fsGd fsGd exph−bgVet0
t dsP̃xysG ,−s+2t0dj

First law of thermodynamics dHsmovd=TdS̄−M̄ ·dv dHsmovd=TdS̄−Q̄dg

FIG. 6. Time averages of the diagonal componentskPxxsG8dl
(circles) and kPyysG8dl (triangles) of the pressure tensor with the
thermal phase-space vectorG8 as functions of shear rateg in Sllod
dynamics with an isokinetic thermostat in a linear-linear plot. The
inset: the same graph except for including a wider region of shear
rate and in a linear-log plot.
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There are also questions about the numerical simulations
of shear flow themselves, from the point of view of the ca-
nonical distribution approach. Some such problems were al-
ready mentioned in Sec. V D. As another potential problem,
we mention the direction dependence of the thermal kinetic
energy. To discuss this point, we introduce the quantities
TxsG8d and TysG8d as TksG8d;s2/Ndo j=1

N p̃jk
2 / s2md with the

thermal momentum componentp̃jk;pjk−mVksq jd, whereVk

is thek component of the global current densityV. The arith-
metic average of ensemble averages ofhTksG8djk over the
componentk gives the kinetic temperature, so we may inter-
pret the quantityTksG8d as the observable for the “k compo-
nent of the temperature.” The canonical distribution ap-
proach discussed in this paper claims that the ensemble
averageTksG8d of the quantityTksG8d is k-independent, in
other words the kinetic temperature is direction-independent,
although we should note a difference in the two averages
TksG8d andkTksG8dl`. Figure 7 shows the graphs ofkTxsG8dl
and kTysG8dl as functions of shear rateg from numerical
simulations using the Sllod dynamics with an isokinetic ther-
mostat, used in Sec. V. This figure shows that the kinetic
temperature is direction-dependent at least in large shear rate
cases. As a related point, we note that the isokinetic thermo-
stat removes heat from any component of kinetic energy of
any particle uniformly. This is a great simplification in the
formula and numerical calculations and preserves a similar
dynamical structure to Hamiltonian dynamics leading to the
numerical observation of the conjugate pairing rule for the
Lyapunov spectrum[73], but its physical justification as a
mechanical thermostat is not completely convincing. For ex-
ample, one may use other types of thermostats in which the
heat is removed from the particles near the walls or from the
kinetic energy component orthogonal to the walls[74,75].
These different thermostats might give, for example, differ-
ent values ofkTxsG8dl andkTysG8dl from the isokinetic ther-

mostat. Checking the shear flow thermodynamics for such
types of thermostat remains an open problem.
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APPENDIX A: CANONICAL DISTRIBUTION APPROACH
TO ROTATING FLOWS

In this appendix, we give a derivation of the well known
canonical distribution and the thermodynamics for uniformly
rotating flows, based on the formalism given in Sec. II. The
detailed derivation of them is quite similar to that for the
shear flow system discussed in Secs. III A, III B, and IV A in
the text of this paper, so it is given rather briefly.

We consider a rotating flow with a constant angular ve-
locity vectorv. We assume that the HamiltonianHsinedsGd is
invariant under rotation about the axis of rotation. In this
appendix, the origin of the spatial coordinates and the axis of
rotation is taken at the center of mass of the system. Under
these conditions, the global velocity distribution functionV
is given by

Vsq jd = v 3 q j , sA1d

where3 is the usual vector product. Using Eq.(A1), relation
(7) is rewritten as[57,58]

HsmovdsGd = HsinedsGd − v ·M sGd sA2d

with the total angular momentumM sGd;o j=1
N q j 3p j. In

comparison with shear flow systems discussed in Sec. III it is
important to note that the total angular momentumM sGd is
conserved in the inertial frameFsined, namely

iL̂sinedM sGd = 0. sA3d

Because of this conserved property of the total angular mo-
mentum, this global velocity distributionV can be sustained
without any external effect in isolated systems. Using Eqs.
(10) and(A2), the canonical distribution for the rotating flow
is represented as[58]

fsGd = J−1 exph− bfHsinedsGd − v ·M sGdgj. sA4d

The distribution (A4) is stationary, namelyiL̂sinedfsGd
= iL̂smovdfsGd=0, in both framesFsmovd andFsined. The distri-
bution (A4) has the general form(2) of the canonical distri-

bution in the case thatHsGd=HsinedsGd, ñ= d̃, andAjsGd is the
component ofM sGd, andm jsGd is the component of −v in

the d̃-dimensional system. It is valuable to note that from the
canonical distribution(A4) we can derive the distribution
function f8svsmovd ,qd for the position q and the velocity
vsmovd in the moving frameFsmovd as

FIG. 7. x component kTxsG8dl (circles) and y component
kTysG8dl (triangles) of the kinetic temperature with the thermal
phase-space vectorG8 as functions of shear rateg in the Sllod
dynamics with the isokinetic thermostat. The inset: the same graph
except for including a wider range of shear rate.
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f8svsmovd,qd

= J−1 expH− bFo
j=1

N
1

2
mfv j

smovdg2 + Usqd + ucsqdGJ
sA5d

using Eq. (6), where ucsqd is given by ucsqd
;−o j=1

N mv2r j
2/2 with r j ;uv3q ju / uvu. The function

f8svsmovd ,qd is the distribution for a rotating flow including
explicitly the effect of the centrifugal potentialucsqd. We
cannot derive the distribution(A5) from the distribution(12).

Now we discuss the first law of thermodynamics for ro-
tating flows. Using Eq.(A2), we obtain the relation

Hsmovd = Hsined − v · M̄ . sA6d

The entropyS̄;−loghfsGdj is given by

S̄= ln J + bHsmovd sA7d

using Eq. (A4). Using Eq. (A7), the free energyFsmovd

;Hsmovd−TS̄ in the moving frameFsmovd is given by

Fsmovd = − T ln J. sA8d

Similarly, the free energyFsined;Hsined−TS̄ in the inertial
frameFsined is given by −Tfln J−v ·s] ln J /]vdg and is con-
nected to the moving frame free energyFsmovd as

Fsined = Fsmovd + v · M̄ . sA9d

Using Eq. (A8), we obtain ]fbFsmovdg /]b=Hsmovd and

]fbFsmovdg /]v=−bM̄ , namely dfbFsmovdg=Hsmovddb

−bM̄ ·dv, which leads to

dFsmovd = − S̄dT− M̄ ·dv. sA10d

Noting the relations(A6) and (A9), andHsmovd=Fsmovd+TS̄,
Eq. (A10) is also equivalent to

dFsined = − S̄dT+ v ·dM̄ . sA11d

dHsmovd = TdS̄− M̄ ·dv, sA12d

dHsined = TdS̄+ v ·dM̄ . sA13d

The relation(A13) is the first law of thermodynamics for the
rotating flow, which is well known[58].

APPENDIX B: RESPONSE FORMULA FOR THE
VISCOSITY FROM THE CANONICAL DISTRIBUTION

APPROACH

In this appendix, we give a derivation of the linear-
response formula(28) for viscosity from the definition(27),
as well as a derivation of Eq.(29). We also discuss the two
kinds of nonlinear response formulas forkPxysGdl` with re-
spect to the shear rateg, one of which is a simple generali-
zation of the formula(28).

First we note that the partition functionJ can be rewritten
as

J ;E dG exph− bHsmovdsGdj

=E dG exph− iL̂sinedst − t0djexph− bHsmovdsGdj

=E dG exph− bHsmovdsGdj

3expH− bgVE
t0

t

dsP̃xysG,− s+ 2t0dJ , sB1d

or equivalently

expH− bgVE
t0

t

dsP̃xysG,− s+ 2t0dJ = 1, sB2d

where we used the definition of the average(11) and the

relations exph−iL̂sinedst− t0dj1=1, siL̂sinedd†=−iL̂sined († mean-
ing to take its Hermitian conjugate), and a similar derivation
to that in Eq.(24). Equation(B1) means that both the distri-

butions fsGd and f̃sG ,td are normalized with the same parti-
tion functionJ. The partition functionJ given by Eq.(B1)
must be time-independent, so that we obtain

0 =
]J

]t
= − bgVE dGP̃xysG,− t + 2t0dexph− bHsmovdsGdj

3expH− bgVE
t0

t

dsP̃xysG,− s+ 2t0dJ
= − bgVJE dGP̃xysG,− t + 2t0d

3exph− iL̂sinedst − t0djfsGd

= − bgVJE dG exph− iL̂st − t0djPxysGdfsGd

= − bgVJPxysGd sB3d

noting the average(11). From Eq.(B3) we obtain Eq.(29),
implying that the viscosity calculated from the canonical dis-
tribution fsGd is zero.

On the other hand, using the average(26) from the distri-

bution f̃sG ,td given by Eq.(24) we have
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kPxysGdl` = lim
t→`

E dGPxysGdfsGdexpH− bgVE
t0

t

dsP̃xysG,− s+ 2t0dJ
=E dGPxysGdfsGd − bgVE

t0

`

dsE dGPxysGdfsGdP̃xysG,− s+ 2t0d + Osg2d

= PxysGd − bgVE
t0

`

dsE dGPxysGdf seqdsGdP̃xysG,− s+ 2t0d + Osg2d

= − bgVE
t0

`

dsE dGPxysGdf seqdsGdexph− iL̂sinedss− t0djPxysGd + Osg2d

= − bgVE
t0

`

dsE dGfexphiL̂sinedss− t0djPxysGdf seqdsGdgPxysGd + Osg2d

= − bgVE
t0

`

dskP̃xysG,sdPxysGdlseqd + Osg2d sB4d

with the notationf seqdsGd; limg→0fsGd, where we used Eq.(29), the relationsiL̂sinedd†=−iL̂sined, and exphiL̂sinedss− t0djf seqd

sGd= f seqdsGd. Equation(B4) leads to the linear-response formula(28) for viscosity.
Next, using Eq.(24) we have

] f̃sG,td
]t

= − bgVP̃xysG,− t + 2t0d f̃sG,td. sB5d

The solution of the time-differential equation(B5) of the function f̃sG ,td with the initial condition

f̃sG,t0d = fsGd sB6d

is represented as

f̃sG,td = fsGd + o
n=1

`

s− bgVdnE
t0

t

ds1E
t0

s1

ds2E
t0

s2

ds3 ¯ E
t0

sn−1

dsnP̃xysG,− s1 + 2t0dP̃xysG,− s2 + 2t0d ¯ P̃xysG,− sn + 2t0dfsGd.

sB7d

From Eqs.(29) and (B7), we derive

kPxysGdl` = o
n=1

`

s− bgVdnE
t0

`

ds1E
t0

s1

ds2E
t0

s2

ds3 ¯ E
t0

sn−1

dsnPxysGdP̃xysG,− s1 + 2t0dP̃xysG,− s2 + 2t0d ¯ P̃xysG,− sn + 2t0d.

sB8d

This expresses a nonlinear response formula for an average
of the shear stressPxysGd with respect to the shear rateg in
the form of its multiple time-correlation function. The for-
mula (28) can be derived directly from Eq.(B8), using the
relations uXsGdug=0=kXsGdug=0lseqd in any functionXsGd of G

and siL̂sinedd†=−iL̂sined. It may be noted that the multitime
integral functions on the right-hand side of Eq.(B8) can be
g-dependent because of theg dependence of the function
fsGd, so strictly speaking Eq.(B8) is not an expansion for-

mula for kPxysGdl` with respect to the shear rateg.
It may be meaningful to show another type of nonlinear

response formula for the average of the quantityPxysGd with

respect to the shear rateg, using a Green’s functionĜ de-
fined by

Ĝ ; lim
e→+0

fL̂sined + ieg−1. sB9d

For this purpose, first we note a formal identity
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lim
t→+`

exphiL̂sinedtj = lim
e→+0

eE
0

+`

dt exph− etj · exphiL̂sinedtj

= lim
e→+0

efe − iL̂sinedg−1 = 1 − ĜL̂sined.

sB10d

Equation (B10) is an analogous technique to that used in
quantum scattering theory[76] in which the Hamiltonian op-

erator instead of the Liouville operatorL̂sined is used. Using
Eq. (B10), we have

kPxysGdl` = lim
t−t0→`

E dGfsGdexphiL̂sinedst − t0djPxysGd

=E dGfsGdf1 − ĜL̂sinedgPxysGd

= o
n=0

`
sbgdn

n!
kfQsGdgnf1 − ĜL̂sinedgPxysGdlseqd.

sB11d

This is the formula which we wanted to derive. It may be

noted that the quantitykfQsGdgnf1−ĜL̂sinedgPxysGdlseqd ap-
pearing on the right-hand side of Eq.(B11) is g-independent,
so Eq. (B11) can be regarded as a real expansion of
kPxysGdl` with respect to the shear rateg, different from the
formula (B8). Another merit of the formula(B11) is that we
do not have to calculate a time-integral in the intervalf0,`g,
which is required in the formula(B8). As a special case of
the formula(B11), using Eq.(27) and the fact that zeroth
order of the quantitykPxysGdl` must be zero, we obtain

kf1 − ĜL̂sinedgPxysGdlseqd = 0, sB12d

h = − bkQsGdf1 − ĜL̂sinedgPxysGdlseqd. sB13d

Equation (B13) is another type of the linear-response for-
mula for the viscosity.

APPENDIX C: SECOND LAW OF THERMODYNAMICS IN
THE NONEQUILIBRIUM CANONICAL DISTRIBUTION

APPROACH

In this appendix, we give a derivation of the inequality
(35) satisfied at any timets.t0d.

We start our derivation from the inequality

x ln x − x + 1 ù 0 sC1d

satisfied by any positive real numberx s.0d. The equality in
Eq. (C1) is satisfied only whenx=1. Using the inequality

(C1) in the casex= f̃sG ,td / fsGd, we have

f̃sG,td
fsGd

ln
f̃sG,td
fsGd

−
f̃sG,td
fsGd

+ 1 ù 0, sC2d

which is equivalent to

f̃sG,tdln f̃sG,td − f̃sG,tdln fsGd ù f̃sG,td − fsGd. sC3d

Now we note

E dG f̃sG,td =E dGfsGds=1d, sC4d

E dG f̃sG,tdln f̃sG,td =E dGe−iL̂sinedst−t0dffsGdln fsGdg

=E dGfsGdln fsGd. sC5d

By taking an integral with respect toG on both sides of the
inequality (C3), and by using Eqs.(31), (C4), and (C5) we
obtain

E dG f̃sG,tdSsGd ùE dGfsGdSsGd. sC6d

Using the equationS̄=edGfsGdSsGd=kSlt0
in the inequality

(C6), we obtain the inequality(35).

APPENDIX D: STABILITY CONDITION FOR THE SHEAR
FLOW

In this appendix, we show the equivalence between the
condition(53) and the conditions(54) and(55). We also give
a derivation of Eq.(56).

Noting that the energyHsined is the function ofS̄andQ̄ by
Eq. (52), we have

dT = d
]Hsined

]S̄
=

]2Hsined

]S̄2
dS̄+

]2Hsined

]S̄]Q̄
dQ̄. sD1d

Using Eq.(D1), we also have

dg = d
]Hsined

]Q̄

=
]2Hsined

]S̄]Q̄
dS̄+

]2Hsined

]Q̄2
dQ̄

=
]2Hsined

]S̄]Q̄
S ]2Hsined

]S̄2 D−1FdT −
]2Hsined

]S̄]Q̄
dQ̄G +

]2Hsined

]Q̄2
dQ̄

= S ]2Hsined

]S̄2 D−1]2Hsined

]S̄]Q̄
dT

+ F ]2Hsined

]Q̄2
− S ]2Hsined

]S̄2 D−1S ]2Hsined

]S̄]Q̄
D2GdQ̄, sD2d

which leads to

U ]g

]Q̄
U

T

=
]2Hsined

]Q̄2
− S ]2Hsined

]S̄2 D−1S ]2Hsined

]S̄]Q̄
D2

. sD3d

Using Eq.(D1) and (D3), we obtain
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d2Hsined =
]2Hsined

]S̄2
sdS̄d2 + 2

]2Hsined

]S̄]Q̄
dS̄dQ̄ +

]2Hsined

]Q̄2
sdQ̄d2

= SdT +
]2Hsined

]S̄]Q̄
dQ̄DdS̄+

]2Hsined

]Q̄2
sdQ̄d2

= S ]2Hsined

]S̄2 D−1

sdTd2 + F ]2Hsined

]Q̄2

− S ]2Hsined

]S̄2 D−1S ]2Hsined

]S̄]Q̄
D2GsdQ̄d2

= SU ]T

]S̄
U

Q̄
D−1

sdTd2 + U ]g

]Q̄
U

T

sdQ̄d2. sD4d

The inequality(53) must be satisfied by any infinitesimal

deviationsdT anddQ̄, so using Eq.(D4) we obtain the con-
ditions (54) and (55).

Now, using the canonical distribution(19), we calculate

the derivative ofQ̄ with respect tog at constant temperature
T,

U ]Q̄

]g
U

T
=

]

]g
J−1E dGQsGdexph− bfHsinedsGd − gQsGdgj

= bJ−1E dGfQsGdg2exph− bfHsinedsGd − gQsGdgj

− J−2]J

]g
E dGQsGdexph− bfHsinedsGd − gQsGdgj

= bsQ2 − Q̄2d, sD5d

where we usedJ−1]J /]g=bQ̄. Therefore we obtain Eq.
(56).

APPENDIX E: RELATION BETWEEN THE TWO
AVERAGES

In this appendix we give a derivation of Eq.(58).
Using the expression(24) for the distributionf̃sG ,td used

in the averagekXsGdlt for any functionXsGd, we have

kXlt = X̄ + ksX − X̄dlt

= X̄ +E
t0

t

ds
]ksX − X̄dls

]s

= X̄ − bgVE
t0

t

dskfXsGd − X̄gP̃xysG,− s+ 2t0dls

= X̄ − bgVE
t0

t

dsfX̃sG,sd − X̄gPxysGd

= X̄ − bgVE
t0

t

dsfX̃sG,sd − X̄gfPxysGd − Pxyg, sE1d

where we used Eqs.(29), ksX−X̄dlt0
=0, and siL̂sinedd†

=−iL̂sined. By taking the limit t→` in Eq. (E1), we obtain
Eq. (58). Concerning Eq.(E1), one may notice

fX̃sG,sd − X̄gfPxysGd − Pxyg = X̃sG,sdPxysGd sE2d

because of Eq.(29), so the integral function in the second
term of the right-hand side of Eq.(E1) can be replaced by the
right-hand side of Eq.(E2).

It may also be noted that from Eqs.(29), (E1), and(E2),
we can derive a formula forPxy as

kPxysGdl` = − bgVE
t0

`

dtP̃xysG,tdPxysGd sE3d

which is correct in any shear rateg. The linear-response
formula (28) for viscosity is easily derived from Eqs.(27)
and (E3).
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