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Steady shear flow thermodynamics based on a canonical distribution approach
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A nonequilibrium steady-state thermodynamics to describe shear flow is developed using a canonical dis-
tribution approach. We construct a canonical distribution for shear flow based on the energy in the moving
frame using the Lagrangian formalism of the classical mechanics. From this distribution, we derive the Evans-
Hanley shear flow thermodynamics, which is characterized by the first law of thermodyndf®ddS
- Qdy relating infinitesimal changes in energyentropyS, and shear rate with kinetic temperaturd. Our
central result is that the coefficiei® is given by Helfand’s moment for viscosity. This approach leads to
thermodynamic stability conditions for shear flow, one of which is equivalent to the positivity of the correlation
function for Q. We show the consistency of this approach with the Kawasaki distribution function for shear
flow, from which a response formula for viscosity is derived in the form of a correlation function for the
time-derivative ofQ. We emphasize the role of the external work required to sustain the steady shear flow in
this approach, and show theoretically that the ensemble average of its péwaist be non-negative. A
nonequilibrium entropy, increasing in time, is introduced, so that the amount of heat based on this entropy is
equal to the average alV. Numerical results from nonequilibrium molecular-dynamics simulation of two-
dimensional many-particle systems with soft-core interactions are presented which support our interpretation.
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[. INTRODUCTION simple description can be expected. However, no convincing

thermodynamic description of shear flow has been given.

The great success of thermodynamics as a physical theory gyans and Hanle§30—33 have proposed nonequilibrium
to describe various equilibrium phenomena has stimulatedteady-state thermodynamics to describe shear flow. It ex-
attempts to generalize it to a theory applicable to macropresses the first law of thermodynamics for the shear flow by

scopic time-dependent phenomena, namely to a nonequiligydding the termtdy expressing the response to a shear rate
rium thermodynamics. Many efforts have been devoted to, namely

this subject, and led to some proposals for nonequilibrium
thermodynamics, for example, the classical irreversible ther- dE=TdS + &dy (1)
modynamicg 1], the rational thermodynamidg&,3], and the
extended irreversible thermodynamiey. Recently, a non- as the relation among infinitesimal quasistatic changes of
equilibrium thermodynamics, which tries to give more rigor- internal energy, entropysS, the shear rate at temperature
ous predictions by restricting its applied field into nonequi-T, and the coefficient defined byé= d€/dyls [34]. As a
librium steady states, is also discus$8ééd7). conceptual feature, the Evans-Hanley thermodynamics is
Shear flow is a typical example of nonequilibrium steadycharacterized by the fact that the shear rate is an external
phenomena. For a constant velocity gradient, it has a steagyarameter chosen as an additional variable to describe non-
current(the shear stregsand has many applications in the equilibrium effects. This is analogous to the choice of vari-
investigation of rheological properties of materid,9].  ables in equilibrium thermodynamics where the variables are
Such models have been widely used to calculate the sheahosen as parameters manipulated externally, for example
viscosity, whose shear rate dependence is still actively disthe temperature and volume, etc. This choice of thermody-
cussed10-13. The apparent existence of a critical phenom-namic variables has the advantage that observables are rather
enon, appearing as a transition from a uniform bulk phase teasy to access by experiments and computer simulations.
an organized stringlike phase, is shown at high shear rat€his feature also distinguishes the Evans-Hanley thermody-
[14-149. The phenomenon of shear banding has also beenamics from some other nonequilibrium thermodynamics, in
discussed recently17-19. The nonequilibrium molecular which local quantities related to conserved quantities, such
dynamics of shear flow with thermostatting is widely used asas the local momentum density, are chosen as additional vari-
a method of calculating the shear viscosfB0], and the ables to describe nonequilibrium effects, because they
nonequilibrium properties of such systems exhibit the conju€hange slowly with time and are consistent with the phenom-
gate pairing rule of the Lyapunov spectry@ii—24 and sat- enological equations of hydrodynamics. Compared with such
isfy the fluctuation theorerf25,26. Shear flow has also been general formalisms for nonequilibrium thermodynamics, the
described by the Bhatnagar-Gross-Krook kinetic equationEvans-Hanley thermodynamics gives a much simpler de-
which is a simplification of the Boltzmann equation, and scription, as its applied field is restricted to a steady shear
using this equation, transport coefficients and hydrodynamicate. On the other hand, one of the problems in the Evans-
modes were calculate@7-29. Steady shear flow is a spa- Hanley shear flow thermodynamics was that a clear physical
tially homogeneous and time-independent phenomenon, soraeaning for the coefficiend, especially its microscopic ex-
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pression, was not known, so that one has not had clear exepresented by the distributiqi®) in the case wher@=1,
perimental or numerical evidence to support this thermodywu,(I')=y andA(I')=-Q(T"). HereQ(T') is the Helfand mo-
namics. On this point, Ref.[35] tried to calculate ment of viscosity and its time derivative is connected with
numerically a value of by introducing a nonequilibrium the off-diagonal component of the pressure tensor. The ca-
entropy in a low-density system. Also recently, RE36] nonical distribution given here is different from the canonical
discussed a phenomenological expression&an a linear  distribution based on the local equilibrium assumption, be-
viscoelastic fluid. cause the “nonequilibrium term”yQ(I) in the distribution
Another important aspect of nonequilibrium thermody- f(I') cannot be neglected regardless of the system size. To
namics is its construction from a solid statistical mechanicafjerive the canonical distribution for shear flow, we introduce
foundation. Some attempts in this direction have been disthe Hamiltonian for the moving frame which follows the
cussed using the nonequilibrium canonical distribution apsteady global current, then using the Lagrangian techniques
proach[37-432, the projection operator approag¢h3—48,  of classical mechanics, and the fact that the quartit]/)
and so on. As one such approach, the nonequilibrium canoninﬁ_lﬂa(F)Aa(p) in the distribution(2) should correspond
cal distribution approach justifies a response formula fofy this moving frame Hamiltonian. This procedure gives a
thermodynamic perturbations, which is different from the o ctomatic way to choose the functidifi.,,()A,(T) for

mechanical perturk_Jatmn ex_p_ress_ed asa cha_nge_m an extern L,- canonical distribution approach to nonequilibrium steady
parameter appearing explicitly in the Hamiltoni§49]. It

uses, in principle, the distributiof(I’) of canonical type, Sta;eeséond, we show that our approach is consistent with the
7 so-called Kawasaki distributiofi20,4Q. This implies that
f(0) =2 Yexp) - B| HID) + >, u OAM) | ¢, (2 with the ensemble average of the shear stress using the dis-
a=1 tribution (3), the linear-response formula for viscosity is de-

rived in the form of a correlation function of the time-

whereZ= is a nor?alizatipln constangy fis the inv;arrs]e tim' derivative of the Helfand moment for viscosi. We also
peratureH(I) is the Hamiltonian as a function of the phase- g hpasize the role of the work required to sustain the steady

space vectol', andu,(I") andA,(I') are pairs of conjugate ghear flow in our justification of the first law of the shear
variables whose forms depend on the nonequilibrium phefioy thermodynamics. We introduce a nonequilibrium en-
nomena under consideration. In many cases, the distributiofiopy, which increases in time, and show that the heat based

f(I"), and therefore the functiong(I') and A.(I'), @  on this entropy has the same magnitude as the power needed
=1,2,...n, are introduced based on the “local equilibrium tg sustain the shear flow.

assumption42], although it is not always necessary. Using  Third, we derive the forn(1) of the first law of thermo-
the distributionf(I") and the Liouville operatot, we calcu-  dynamics for shear flow from our canonical distribution ap-
late average quantities as the ensemble average under tipgoach, and show that the quantéiyn the form(2) is given

evolution of the distribution function, by £&=-Q, with Q being the ensemble average of the Helfand
- - moment for viscosityQ(I'). We also discuss the thermody-
f(I',t) = exp- i L(t - o)} (D), (3 namic stability condition for shear flow, which leads to the

which may be regarded as the distribution function at ttime positivity of the correlation function oQ(I") as well as the

evolved from the initial canonical distribution functidqrl’) pOS|_t|V|ty of the specific heat. . .
at timet,. In this way, we can derive the thermal response Finally, we present some numerical calculations of many-

formula for viscosity, thermal conductivity, and so on particle systems with soft-core interactions to support our

n . : ] .. thermodynamic interpretation of steady shear flow. Here, we
[39-43. This approach was generalized to non-Hamiltonian se the Sllod equations with an isokinetic thermostat and

systems such as the Sllod equation for shear flow syste 15 . . .
with isokinetic thermosta50-53, and was used to calculatenlv‘veee'sig\\/lvvatrﬁ: gﬁgg:jfgecggdgfgg'c;n ;p?ﬁg Zl\;gl:;atleorc])?,Hel-
some thermal quantities, such as the specific heat of noneq fnd’s moment of viscosit ii?cs correlation function gand the
librium steady state$53,54. However, it is still an open Y, '

problem to construct the Evans-Hanley shear flow thermody‘-’vOrk needed to sustain the shear flow.

namics from this nonequilibrium canonical distribution ap-
proach based on distributions of this ty@®. Usually, the Il. CANONICAL DISTRIBUTION FOR STEADY FLOWS
thermodynamic relation for the first law of thermodynamics
in the canonical distribution approach is introduced based
upon the local equilibrium assumption, but the fofi for Systems discussed here are steady flows, with the global
shear flow cannot be justified by this assumption, becauseelocity distribution of the flow given by a time-independent
the termédy cannot be attributed to an equilibrium thermo- function V(r) at the positionr in the inertial frameZ(in®
dynamical relation even if we consider a very small portionThe system consists & particles with equal mass and is
of the system. described by classical mechani@gthout magnetic fields

The principal aim of this paper is to derive the Evans- We use the Lagrangian formalism of classical mechanics
Hanley shear flow thermodynamics based on the canonicab compare quantities in different frames. The Lagrangian
distribution approach to nonequilibrium steady states. Firstormalism is a direct consequence of the frame-independent
we show that the canonical distribution for shear flow isprinciple of least actiorﬁf{idtL=O for fixed values of posi-

A. Moving frame and energy
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tions at timeg; andt,, wherel is the Lagrangian. . ()
In the inertial frameF"®, the LagrangiarL("®=L M IL™X =
(v® q) is given by

JH®(T) X dH™(I) X
I

for any quantityX(I"), wherew=ine for the frameF™® and

(8

Lne)(y(ne) ) = %m[v(ine)]2_ U(q) (4) ~w@=ma for the frameFA™M@), Using the Liouville ope_rator
£ne) (£ma)) the distributione(I",t) of I at timet is given
as a function of vind=(i"® " ) ang g by exd-iLM®(t-to)}e(I',t) [exp{-iLM(t-ty)}o(Ttp)]

=(01,92,...,0n), Wherev}ine) andq; are the velocity and the using th_e distributiono(I",ty) at the initial timet, in the
spatial position of thgth particle, respectively, and(q) is ~ frameF® (Fme),

the potential function. Using the definitiongp™®

=L/ oy and HINI(pin®, ) = p(in®.y(ne— (o) - the B. Canonical distribution

Lagrangian (4) leads to expressions for the momentum
pind=my"® and the Hamiltonian HS(pine q)
:[p(‘”e)]Z/(Zm)+U(q). Here we note that the Hamiltonian
H(® is a function ofp™® andq.

The central assumption of this paper is that in the moving
frameF™®) defined by the global velocity distributiov(r),
the system can be regarded as an equilibrium state. It is
important to note that this assumption is not obvious, be-

We introduce the Ve_|OC|_tV(mw) of the jth particle in .Ege cause generally a global flow causes some local effects such
moving frameF ™), which is connected to the V9|OC“"5? as string phases in shear flojst—16,2Q and possibly tur-
in the inertial frameF"® by Vﬁmw)EV}me)—V(Qj)- The quan-  pulent phases, and so on, which can destroy this assumption.
tity vi™®) is often referred to as the thermal velocity of par- However, these phases generally occur in far-from-

ticle . The positiong is invariant under this frame change equilibrium states so we may expect that our assumption is
Finel _, Hme) 140 57. Inserting the velocityv!"™®=v\™®  satisfied in a regime near equilibrium. Under this assump-
+V(q;) into Eq. (4), the Lagrangiar. ™) =L mahymad q)  tion, we introduce the canonical distribution

of the system in the moving framg&™®) is given by

f(I') = E~* exp[- BH™/(I")} 9
N
) 1
Lme)(y(me) q) = | ("9 = Em-z me) +V(g)1?- U(q) N
j=1 ==texp\ - | HIOT) - > p; - V(a;) (10)
(5 j=1
as a function ofv(™® =™ vi"® v and q.  for steady flow, wheres is the inverse temperature (k4T)
Equation (5) leads to the momentum p™®  with the Boltzmann constarkz and the temperaturg, and
=gLM@)/ py(M@) 5g = is the partition functionZ = [dI" exp{-BH™(I")}. For
(MOo) — e (MOD) o (in®) _ (in®) simplicity, we use units so th&;=1 hereafter in this paper.
Py = mlv "+ V(@)]=mv ™ =p™ (6) |t should be noted that the functidfl) is the distribution of

Therefore, the momentum is independent of the choice of the""® andg in the inertial frame#"®, as well as the distri-
frames F™®) and 7", and hereafter we use the notation bution of p™® andq in the moving frame™®), because
p=(py,Py... P =p™=p@® for the momentum, and the identity of the momenta impliesI'=(p"®,q)
also use the notatiofi = (p,q) for the phase-space vector. =(P™®,q). Also notice that the canonical distributio®) is
On the other hand, the Hamiltoniaf™®) =H™M2)([") jn the  Stationary in time in the moving frameg ™), because

moving frameF ™) is given by i£(M)f()=0. B
N In this paper, we use the notatiot for the ensemble
H(m) () = Hne() — 21 p;-V(g). ) average using the canonical distributit”), namely
J:
using the definitiorHM®(I')=p-v(M®) - (M®) |t is essen- X= f dI'X(Mf(I’) (12)

tial to note that although the momerpd"® and p‘"® are

equal, the Hamiltoniai™®)(I") in the moving frame=™®)  for any functionX(T").

is different from the HamiltoniarH"®(I") in the inertial A typical example of the canonical distributigfO) is in

frame 7" and their difference is proportional to the global rotating flows, as discussed in Appendix A. Applying it to

current distributiorV(q;). The transformation from the iner- rotating flows, we obtain the well known canonical distribu-

tial frame to the noninertial frame of reference, namely thetion for the rotating flow, and therefore its thermodynamics

moving frame, is well known in classical analytical mechan-[58].

ics [57]. The canonical distributioii10) is different from that ob-
We must distinguish the dynamics generated by the inertained from the “local equilibrium assumption,” which is

tial frame HamiltoniarH™®(T") from those generated by the popular in many texts on nonequilibrium statistical mechan-

moving frame HamiltoniarH™®)(I"). To discuss these dy- ics. In this approach, the canonical distribution funciigh)

namics, we introduce the Liouville operator defined by is chosen as
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N1 1M1 au(q)
gl) =E" exp) - B[,El e MV () P+ U(q)] Pap(l) = 1_7,;1 mPiePis ™ s | (14)
N
=_ 1 HereV is the volume of the system, amg, (q;,) is the ath
=51 - (ma) = )12 ) o
= ’B[H ) +1§1 Zm[V(qJ)] ]} component of the momentumy (the positionq;) of the jth

particle. If particle-particle interactions in the system are
given by a two-body interaction only, namely the potential
o~ _ U(q) is expressed in the formd(q)=(1/2)Z.#(|9;—qxl),
with == fdlexp(-B{Z[L,[p;~mV (q)]*/ (2m)+U(a)}). This  then Eq.(14) can be rewritten as
type of distribution was actually used to calculate the shear
viscosity[27,28,37,40,4], and its localized version was used 1N 11 1N
as a canonical distribution under the local equilibrium as- PQB(I‘):]—)El apjapj5+ Ekzl(qjﬁ_qkﬁ)lzjka (15)

J: —

(12)

sumption(see, for example, Ref42]). However, one of the
problems is that the distributio(12) is not consistent with ] .
the thermodynamics of rotating flows. Therefore, the differ-With Fje==0d4(|d; =0}/ 40, interpreted as theth compo-
ence between the two distributio(®0) and(12) is crucial to ~ hent of the force acting on thgh particle due to theth
the subject of this paper, which is a statistical foundation foarticle. The pressure tensBy(I") comes from the balance
steady-state thermodynamics. This problem basically comegguation for the momenturi20].

from the fact that the distributiog(I") does not take into ~_ For the case of the global velocity distributi¢n3), Eq.
account the inertial force. Despite this point, one may alsd?) is given by[56]

notice that the deviation of the distributiaii2) from the (M) — y(ine)

distribution(10) is of order@®(V?) in the global velocity, and HIM(I) = HM9(I) - Q(I), (16)
near equilibrium this term may be small compared with the . '
second term on the right-hand side of K@), which is of whereQ(I') is defined by
orderO(V).

N
Q(F) = 2 qjypjx- (17)
Ill. CANONICAL DISTRIBUTION APPROACH )=

TO SHEAR FLOWS It is essential to note that the quanti®(I") is connected to

In this section, we construct a nonequilibrium statisticalthe shear stresB,(I') as
mechanics for steady shear flows based on the canonical dis- R
tribution (10). Considering the time evolution of the canoni- iLMPQ(I) = VP,(I), (18)
cal distribution (10) in the inertial frameF"®, we get a
nonequilibrium distribution function for shear flows in the namely the quantit(I") is Helfand’s moment for viscosity
form called the Kawasaki distribution. This leads to a linear-[59,60. [In the references, the name “Helfand’s moment of
response formula for viscosity using a correlation function ofviscosity” is used for the quantityTV)"Y2Q(I"), but in this
the time-derivative of the Helfand moment for ViSCOSity. We paper, for convenience we use this name for the quamity
also discuss the work needed to sustain the steady shear flg@elf without the factor(TV) 2] Helfand’s moment of vis-
as well as the viscous heat generated, which is consistegbsity is used to calculate the viscosity by analogy with the
with the second law of thermodynamics. These points will begjnstein formula for the diffusion constaf1,62.
used to interpret the first law of thermodynamics for steady
shear flows. B. Canonical distribution for shear flows

In the case of Eq(13), the distribution functionf(I") is
given by

We consider the shear flow system in which the global
current is a linear velocity profile given by f(I') = 2~ exp{- BHM(T") — yQ(I')]}. (19)

A. Shear flows and Helfand’'s moment of viscosity

V(d;) = Yyix, (13)  This is the canonical distribution function for shear flow in a
nonequilibrium steady state. This distribution can be attrib-

whereq;, is they component of the position of thigh par-  uted to the general forni2) of the canonical distribution
ticle, andi, is the unit vector in the direction. Hereyisthe ~ whenH(I")=H™(I"), i=1, A;(I")=Q(I'), and uy(I") =-7.
shear rate, a position-independent constant. Now we mention some physical meanings for the shear

The shear flow system is proposed to describe a fluidiow canonical distribution functioril9). For this purpose,
between the two plates which move at different speeds, andle convert the distribution functio(il9) for the canonical
is frequently used to calculate viscosity. The viscosity isvariableI into the distribution functiorf”(v(™®) q) for the
given by the linear coefficient d?,,(I") with respect to the positiong and the velocitw™® in the moving frameF™®),
shear ratey, where the pressure tensey,(I') is defined by  and obtain
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f(vm@), q) malized, namelyfdI'f(I",t)=1, as well asfdI'f(I’)=1.
N Using the distributiorf (I, t) defined by Eq(23), we in-
=Elexp) - B| X Em[vfmw)]z +U(q) +u() | (. troduce the time averagX(I')), by
i=1
(20 (X(T)), = f X,y (26)

where the functioru(q) is defined by
N for any functionX(I') of I'. This averaging is generally dif-
__ 1 2 ferent from the averaging@ll) given by the canonical distri-
u(@ = 2m72]§1 Giy- 21 bution f(I'), except in special systems such as rotating sys-

. . tems whereX=(X), for any X is satisfied. We will discuss the
Hereu(q) can be regarded as a potential corresponding to thg. .
ifference between these two averages more concretely in

inertial force which pushes particles in the direction of larger,

lg,,|, namely the region of larger global currevt In other Sec. l\./ c. . .
Iyl . ) ., Noting from Eq.(24) that the difference between the dis-

words, this potentiali(q) expresses the effect of Bernoulli's " 2 R

theorem in the hydrodynamics. Another important point is,fibution f(I',t) and the distributiorf(I') appears as the fac-

using the distributiorf”(v(™®) q) and the averaging defined tor exp{—,Bny{Odsty(F,—s+ 2ty)}, we will discuss the rela-

by Eq.(11), we obtain tion of this factor to the work needed to sustain the shear
~N - flow in Sec. Il D. One may interpret the canonical distribu-
E lm[v(m"’)]zz dNT (22) tion f(I') as a steady distribution function in the moving
S22t 2 frame 7M@), but in order to calculate the work needed to

5 sustain the steady flow, we have to investigate it in a differ-
for any potentialu(q), whered is the spatial dimension of ent frame]f"“e), because the work to sustain the steady flow
the system. Thereforel can be interpreted as the kinetic is information given by looking at the moving system in the
temperaturg63]. It may be noted that the same relation with inertial frame. Therefore, the canonical distributié(I’)
Eq.(22) is also derived from the distributiay(I') defined by ~ should not be regarded as an artificial test initial distribution,

. : vy like in other canonical distribution approaches for linear-
Eqg. (12) by interpreting the averag¥ of X as the average ) :
ur?dér t)heydistribﬂtiorg(gl“) 0¥ g response theor}39,4Q. The information about the work to
' sustain steady flows is essential to calculate transport coeffi-

It is essential to note that owing to EA8), the distribu- cients such as the viscosity, as will be shown in Sec. Il C.

tion (19) is not stationary in the inertial framgi"®, namely
i £("9f(I") # 0, although it is stationary in time in the moving C. Linear response formula for viscosity

frame 7M@), namely iL(™»f(I')=0. Physically speaking,  To calculate the transport coefficient from the nonequilib-
this difference of the dynamics of the canonical distributionrium canonical distribution approach is beyond the scope of
in the different frames¥"® and 2™ comes from the fact this paper. However, many works have been devoted to this
that we need some work to sustain the steady shear flowsubject[37-42,49, so it may be meaningful to mention the
but the effect of such work is not included in the canonicalconsistency of the nonequilibrium canonical distributi@#d)
distribution f(I"). In order to include the effect of this work, with the linear-response formula for viscosity.

we have to generalize the distributi@t®), and introduce the Using the notation26) and the quantityP,(I") defined

distributionf(T",t) at timet as by Eq.(14), the viscosityz is given as
(T, 1) = exp{— i LMt — to) }(T) (23) y=-im <PXM(YF)>W_ @7
’}/*)

t ~
:f(l“)exp{— ﬂwf dsBy(I',—s+ ZtO)}, (24) Using the distributiorf(I",t) given by Eq.(24), the viscosity
to 7 is represented as

wheret, is the initial time. Here, to derive E¢24) we used %
the relation (18), i£"9HI(M=0, and exp-iL(t n= vit
~tx)}Q(I=Q(I) -V fgods"bxy(r ,—s+2ty), and defined
ny(F,t) by

At(Pyy (T, ) Py (1), (28)
0
where we introduced the notatigX(I"))¢9 as the equilib-
rium average ofX(I') for any function X(I'), namely
Pl = expiLM(t-t}PyT). (25 XD)I=ECI[dIX(D)expi-BH"(I)} with the equi-
librium partition function=€9. The derivation of Eq(28) is
The distribution(23) corresponds to the distributiaB) in a given in Appendix B.[In the same Appendix B, we also
general formulation of the nonequilibrium canonical distri- discuss two kinds of nonlinear-response formulas for

bution approach. Moreover, the form of the distributi@4) (pxy(r))w with respect to the shear rage one of which can
is called the Kawasaki distribution function for shear flowspe regarded as a natural generalization of @8).] Here, it

[20,40. It may be noted that the distributi&njl“,t) is nor- is important to note that
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Py(I) =0, (29) <>
|

at any shear rate, as also shown in Appendix B, so that we
obtain the equation —lig,oP,(I')/y=0, meaning that the
distributionf(I") does not include information about the vis-
cosity. Equation(28) is the well known linear-response for- V(r)
mula for viscosity[49].
The factor exp—ﬁyvﬁodsty(F ,—S+2to)} in the nonequi-
librium canonical distribution(24) gives the difference be-

tween the two distribution$(I") and f(I',t), and plays an
essential role in the derivation of the linear-response formula
(28) for viscosity. It may be emphasized that this kind of
factor can be derived from a different approach using the
Sllod equatior[20,50. The Sllod equation expresses the dy- T d¢S)e/dt

namics of the velocity corresponding ¥8"®), and has been .

used in many numerical and analytical works on shear flow FIG. 1. Schematic illustration of the powgW); required to
systemg20,52. In the canonical distribution approach using sustain the shear flow and the house-keeping ME(S),/dt]. In

the Sllod equations, the time evolution of a canonical distri-this illustration, the powef\)\/)t is represented as the power to move
bution under Sllod dynamics is considered, and it leads to theéhe upper boundary of the shearing system. This power supplies the
distribution evolving a time integral of the shear stress, sucknergy to sustain the steady shear flow, which is eliminated from
as the distributiorf24). These two approaches give the samethe system as the house-keeping heat.

formula (28) for the viscosity. A difference between this ap-
proach and the approach discussed in this paper is that the . Yy - _ ~
Sllod dynamics approach is based on distributions of the typgquathn_s ILOHOI) =0 and  GH™(I, 0/t

(12), so that it does not take into account the inertial force =expi L1 (t=to) VP, ().

This make discussions of thermodynamic relatigios ex- In steady flow systems, the energy added to the system as
ample, the first law of thermodynamjasather more compli-  the work needed to sustain the flow must be eliminated from
cated than the approach used in this paper. It may also e system as hedB3]. This type of heat is called the
noted that the Sllod dynamics is different from the dynamics'house-keeping heat,” and its special role has been empha-
for vi™®) from the HamiltonianH™®)(T") in the moving sized in the construction of a nonequilibrium steady-state
frame F™®), and in the Sllod dynamics approach the distri-thermodyna_mic$5,6]. Figure 1 is a schematic illustration of
bution corresponding t&(I") is just an initial test distribution the power(W), required to sustain the shear flow and the
and cannot be interpreted as a steady distribution in the movrouse-keeping heat. Now we estimate this house-keeping
ing frame M) like the Hamiltonian dynamics approach heat from the nonequilibrium canonical distribution ap-
discussed in this paper. In the Sllod equation approach, thgroach. First, we introduce the observaBi#') correspond-
shear rate dependence appears in the dynamics itself, so thag to entropy as

the response formula for viscosity is treated as a response

formula to a mechanical perturbation. On the other hand, in ST) = - In{f(")}. (31

the Hamiltonian dynamics approach the shear rate depen-

dence appears in the distributiél’), not in the dynamics, [Note thatS(I') is actually used as the observable corre-
and the formula28) for viscosity can be regarded as a re- sponding to the entropy in rotating flows, as shown in Ap-
sponse formula to a thermodynamic perturbation, which doeBe€ndix A] Using this entropy observable we define the non-
not have any potential form in the inertial frame Hamil- equilibrium entropy(S), as the ensemble average $f’)

tonian. under the distributiorf(I",t). A similar kind of entropy to
(9); was used in Refs[37,39 for a different form of the
distribution f(I'). Using Eq.(24), the entropy(S), is repre-

. . L. . sented as
Now we discuss further the information involved in the

(W

il l l H

D. Work needed to sustain shear flows
and the house-keeping heat

distribution ?(F,t), which the canonical distributiori(I") B ~
does not have. It is the information about the work required (9=~ | drf(ID)In{f(I’,—t+ 2to)}
to sustain the steady shear flow. e
First, the poweKW), to sustain the shear flow at tinés =S+ BYVJ Odsﬁxy(l“,—s+ 2t)

estimated by to

L d(H™) M)t _= ‘

<\/\/>t = < p >t = dt( ) =- 7V<ny>tl (30) =S-ByV d-'-:(PXy>s- (32
)

where HM(T" 1) is defined asH™®/(T",t)=expliLM(t  Therefore, the house-keeping hedtl(S)/dt] at time't is
—1o)}H™M@)(T"). Here, in order to derive E¢30) we used the given by
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d<s>t expression for the first law of thermodynamics proposed by
dt ~ Y(Pyht (33)  Evans and Hanley does not include this eff@atherwise it
must include time-dependent terms for the sustaining work
) and the house-keeping hgatloreover, Ref[6] emphasized
=(Wh. (34 that we must subtract the contribution of the house-keeping
E{eat from the entropy in order to obtain an expression for the

This is the balance equation that shows that the powe | £ th q ics f q E
needed to sustain the shear flow must be equal to the hous; st law of thermodynamics for steady states. Equali)

K heat. U Eag27). (33 d (34). the h implies that the entropy minus the contribution from the
eepfng eat. Using Eqé27), (33, and (34), the house- house-keeping heat is given W) - [} dd(S)/ds]=(S)
keeping heat and the ensemble averaged pgWerto sus- . — ] ) 0 _

tain the shear flow are connected to the viscosiyas AV dSPy(IN)s=S, which is the entropy defined

T

T[d(S}t/dt]:<V\/>t:V7]y2+O(y3) through the canonical distributioifI"), not through the dis-
The entropy(S), satisfies the inequality tribution f(I',t). For these reason@lthough it may be pos-
o sible to construct a nonequilibrium steady-state thermody-
(S = <5>t0:S (35) namics explicitly including the effect of the house-keeping

heay, in this section we construct a shear flow thermody-
at any timet(>ty). The detail of the derivation of the in- namics based on the canonical distributit{f’) excluding
equality (35) is given in Appendix C. Noting thatlS); the effect of the house-keeping heat, and show that it is con-
—<S>t0:f{0dt[d<s>t/dt] and assuming thad(S),/dt is time-  sistent with the Evans-Hanley thermodynamics.
independent in a steady state, we obtain

bk S s the first thermodynamic property of the shear flow

&Sk _ (36 As the first thermodynami f the shear fl
dt ' system, we consider the first law of thermodynamics. In the

shear flow system, using E¢L6) we obtain the relation

A. First law of thermodynamics

This is the expression of the second law of thermodynamlcs
in the nonequilibrium canonical distribution approach. The M) = {ine _ 76 (39)
inequality (36) means simply that the shear flow system pro- ' —

duces a positive house-keeping heat constantly in time. Iwhich connects the average energ@%W andH"® in the
this sense, the total entropy producti@ (S, diverges as  two different framesFM® and Fi"®, respectively. The en-
time t goes to infinity, because the total amount of heat protropy Shased on the canonical distributié”) is given by
duced by the steady viscoelastic shear flow in the infinite _

time interval is infinite[64]. In other words, the system is S=InE + BHM®) (39
kept as a nonequilibrium steady state by discharging an
amount of entropy constantly, which is transferred from the — o~
external work. Therefore, the inequalit$6) must be distin- =In = +ﬁ[W—5 7] (40)
guished from another type of second law of thermodynamicsusing Eqs(11), (19), and(31). The free energfF™®) in the
meaning that an entropy increases in time and approachesnaoving frameF™®) is introduced as

stable value in a relaxation process. This type of the second

law of thermodynamics, or the thermodynamical stability Fme) = @) _ Tg (41
condition, will be discussed in Sec. IV B. By combining the
inequality (36) and T>0 with Egs.(33) and(34), we have =—TInE, (42)
(W)OC where we used Eq39) to derive Eq.(42). [Here, it may be
== Y(Py(IN). = 0. (37 noted that the free energy™®) can also be expressed as

Fma)=(HMa)(1)), -T(S), using the averaged energy

Namely, the averaged powegiV),. needed to sustain the (H™®)(T")), and entropyS) related to the distributiof(I",t)
shear flow must be positiveor zerg. This is one of the which includes information about the house-keeping heat.
results, which can be checked by numerical simulation, aSimilarly, the free energ¥#"® in the inertial frameF"® is
will actually be shown in Sec. V A. It may be noted that the also introduced as

inequality (37) implies the non-negativity of the viscosity _

as a special case. Flne — {ine _ Tg (43)
IV. THERMODYNAMICS FOR SHEAR FLOWS =FM) 4 4Q (44)
As discussed in Sec. llID, the factor Ins
exp[—,Byvf{OdSPXy(F,—s+ 2ty)}, which gives the difference :—T(In B - y& ; ~> (45)
Y

between the distributio?(l“ ,t) and the canonical distribution

f(I'), includes the effect of the work needed to sustain theusing Eqs(40) anddIn E/ﬂyzﬁa- Equation(44) connects
shear flow, or the house-keeping heat. On the other hand, thiee free energieE™® andFi"® in the two different frames
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Fma) and A9, respectively. Using Eqg42) and (45), the

free energie§ ™ andF"® can be calculated directly from

the partition functiorZ.

Noting the definition of the partition function=
= [dI' exp{-BH™@1 = [dI" exp{-B[H"®-Q]} including
the two parameter§(=£"1) andy explicitly, Eq.(42) implies
that the free energlF™® is a function of the temperatufe
and the shear ratg: F(M® =fF™m)(T 1) Actually, by Eq.
(42) we obtain

PHYSICAL REVIEW E70, 056124(2004)

tropy S= -gF™M)/4T|,, and their relations including the
equation of state are as in equilibrium thermodynamics.

B. Thermodynamic stability conditions

As the second thermodynamic property of the shear flow
system, we consider a stability condition for shear f[68].
We consider a small pattl of the macroscopic shear flow
system, in which averages of energy, entropy, and Helfand’s

— moment of viscosity in the inertial fram&‘"® are given b
ABF™)]  9InE _ @ Y 9 Y

(46) H™ S andQ, respectively. The other paR of the system,
p Ip which is much bigger than the systerh and is called the
F(ma) n= “environment” or “reservoir,” has the thermodynamic values
48 J = Jin = =- ,36, (47) To, S, andy, of the temperature, the entropy, and the shear
dy dy rate, respectively. Now, we consider moving an infinitesimal
which are summarized as amount of energy as heaflzdS, from the reservoifR into
— the small systemA4. In this process, the total entropy must
d[BF™)] = H™dB - BQdy. (48) S+ds

increasedS+d&,=0. By combining this inequality with the
first law of thermodynamicdH™® =-T,dS,+ y,dQ based on
Eq. (52, we have dH™-T,dS-y,dQ=d(H™-T,S
—'yoa)SO, using the fact that the reservdi is so big that
T, and y, do not change in this process. This inequality
means that the quantitW—Tog— y06 always decreases

Inserting Eqs(41) anddB=-T"?dT into Eq.(48), we obtain
dF(M®) = — 4T - Qdy, (49

where the free energy™®) is an explicit function ofT and
v. Equationg(44) and (49) lead to

dFEin® = _ 54T + 'yda_ (50) and reaches a minimum in a stable state. In other words, if
a9 s o
Equations(49) and (50) are also equivalent to we force .a Cha”_g‘? o the valueildf 'S .andQ at the
_ stable point bysH'", S, and 8Q, respectively, then the
dH™®) = TdS- Qdy, (51)  inequality SH™¥-T,6S- v,60=0 must be satisfied as the
_ stability condition for the shear flow system. This simply
dH™® = TdS+ dQ, (52 leads to

using the relationg41) and (43). The second term on the H®™E = o
right-hand side of Eq(51) can also be derived from the

relation gH™®)(I")/9y=-Q(I') from Eq. (16), therefore

AH™)/ 9y[5= —6 under an adiabatic process. It is clear that!
the Evans-Hanley expressigf) for the first law of shear [

(53

for any infinitesimal deviation§§and65. By a well known
echnique used in thermodynami¢tsee, for example, Ref.
58] or Appendix D, the condition(53) is equivalent to

flow thermodynamics is the relatiof1), where £=H™®) Py

and £=-Q. —|_>0, (54)
From Eg.(51), the energymmT)) in the moving frame ITlq

Fm®) is regarded as a function &fand v, while the energy _

H in the inertial frameF™ is a function ofS andQ by Rl o (55)

Eq. (51). The two energie$i™® andH™®) in the different aylt

frames are connected by a Legendre transformation, name
Hne'= Hm@)— yHMD)/ 94/o as well as the two free ener-
gies in the different frames. Using E@52), we obtain

aglr?H“ﬂg:l/T and ¢S/ dQlme=—v/T by regarding the
entropyS as a function oH"® and Q. Therefore, the ther- aQ
modynamic variable conjugate to the averaged Helfand mo- (9_7

ment of viscosityQ is the minus inverse temperature times . . o .
the shear rate y/T, like the fact that the thermodynamic &S Shownin Appendix D. Therefore, combining ) with
variable conjugate to the energf™ is the inverse tempera- the inequality(55), we obtain

ture 1/T. After all, thermodynamic functions such as the free -
energyF™®) gre calculated from the partition functids, Q*-Q°>0. (57
and by combining them with the first law of thermodynamicsNamely, the stability conditiori55) means the positivity of
we can calculate thermodynamic quantities, for example thehe correlation function for Helfand’s mome@T") of vis-
Helfand moment of viscositR= —dF™®)/34|; and the en- ~ cosity.

1P/he condition(54) simply means that the specific heat at

constaniQ is always positive at a positive temperatdrero
understand the conditiofb5) we note

(56)

=BQ@-P
i
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Based on Eq(l), Evans and Hanley claimed the inequal- particle-particle interaction is given by the isotropic soft-core
ity 0é/dyly>0 as a stability condition for shear flows pair potential
[31,32. This inequality is incompatible with the inequality

. . . 1 1
(55) in the case of¢é=-Q. This difference comes basically K(Tz - Tz) inr<rgy
from the fact that they discussed a thermodynamic stability B(r) = r o (59
condition using the energi™®), whereas we discussed it 0 inr=rq

sing the energid"®. Obviously, the correlation function of . . .
using oy viously 1on AINce with ry=1.5 and k=1. The particle number density

Q cannot be negative because @f-Q*=(Q-Q)*=0, SO —N/) is 0.8. The massn of the particle and the kinetic
noting Eqg. (56) we cannot justify the stability condition temperaturer are both chosen as 1. The number of particles
claimed by Evans and Hanley in the canonical distributionjg N=450, except in Sec. V D, where tié dependence of
approach. quantities will be discussed. We use the Sllod equations with
Lees-Edwards boundary conditions and the Gaussian isoki-
netic thermostat so that the kinetic temperafgigen by Eq.
(22)] is kept constan20]. A fourth-order predictor-corrector
__So far we have introduced two types of canonical averageénethod[66] is used to carry out these numerical simulations
X and({X);, and in Sec. V we introduce the usual time aver-with a time step ofAt=0.001. In this algorithm, the sum of
age. It is very important to distinguish between these averthe “thermal momentum’ﬁjzpj—mv(qj) is zero in both
ages. The thermodynamic relations discussed in Secs. IV Boordinate directions.
and IV B are the relations for the ensemble averxgef We use the notatiokiX) for the time-averaged value of
observableX(I') using the canonical distributiof(I'). On  any quantityX given by this numerical simulation. To calcu-
the other hand, in numerical simulations using the Sllodate this average, we used data over more thartit® steps
equations with an isokinetic thermostas in Sec. V, the  omitting the first 10 time steps(We checked that Qtime
values obtained are the mixed ensemble-time avetXpjje steps is much longer than the relaxation time of the time-
for the distributionf(I, t) in the limit t—co. Therefore, it is correlation function for the thermal momentyriihis should
important to obtain an explicit relation between these twocorrespond to the ensemble averd¥p. used so fa_\r. Th!s IS
different ensemble averages. supppsed by the fact _that we can ce}lculate the viscosity from
For any functionX(I'), the relation between the two en- € t|m_e;|\;er>ag(é<FI;(y>> |r\1Nth|s Is'mlwtat'?jn’ bazed on E?Ztr—?

= . assumingPy,)..=(P,,). We calculatey dependences of three

semble average¥ and(X).. is quantities(Py), (Q), and{(Q?. We use(Py,) to discuss the

C. Relations between canonical averages

— © = = — power to sustain the flow and the house-keeping heat given
X)oe =X=ByV | dIX(I',1) = X][P,(T) = Py, (58) by Eq.(33). The quantitiesQ) and(Q?) are used to discuss
fo the behavior of Helfand’s moment of viscosity and the ther-

where?((I‘,t) Eexp[iﬁ(ine)(t_to)}x(l")' The derivation of Eq. modynam_ip stability conditioti55). Here, it is assum_ed that
(58) is given in Appendix E. A similar equation for the ca- the quantitie®) andP,, are not strongly correlated with each

nonical distribution approach using the Sllod equations i§t2her because of the relati¢n8), and in the case of=Q or
shown in Ref[53]. Q- the second term on the right-hand side of E®) may be

. . Y v . small compared to the first term in the small shear rate case.
From relation(58), if the fluctuationX(I",t)-X of X is P

This implies that the behavior of the time averages of Hel-
weakly correlated to the shear streBg(I'), then the en- b 9

— fand’s moment of viscosity and its correlation function are
semble averagk can be nicely approximated by the average, s 5o different from the ones fdg and @_62’ respec-
(X)... However, notice that the justification for such an aP-tively, near equilibrium.
proximation strongly depends on the choice of the quantity
X. A typical example is the case of=P,(I"), in which we A. Work needed to sustain the shear flow
must not neglect the second term on the right-hand side of

Lo : ; The first numerical result is for the powlév/v per unit
Eq. (58), because in this case the first term on the right-hand ) X
sige( of)Eq.(58) is zero, nameI)P_Xy=O, as shown in A%pen- volume (V=562.499--) for the work required to sustain the

dix B. One should also notice that the second term in EqShear flow, or equivalently, the house-keeping heat per unit

(58) is small near equilibrium, because it includes the nonvolume. It is given as the time average\W V=—yP,(T’),
equilibrium parametely as a factor. based on Eq¥33) and(34). Figure 2 shqws the shear rage
dependence of the time-averaged po&}/V per unit vol-
ume. The inset is the same graph except showing it in a
V. NUMERICAL SIMULATIONS OF SHEAR FLOW wider shear rate regioiiNote that we used a linear-log scale
In this section, we show numerical results for some quanin this inset, whereas we use a linear-linear scale for the main
tities which have appeared in the preceding Secs. Il and Migure) Following from the inequality(37), the power to
and we check the results obtained there. sustain the flow shown in Fig. 2 is always positie zerg.
For this numerical calculation, we use a two-dimensional It may be noted that the average pow#Y) needed to
square system ofl particles with side Iengtm(:\r’TJ). The  sustain the shear flow should be an even functiory,dbe-
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FIG. 2. The average power per unit volurti&)/V needed to FIG. 3. Time average of Helfand’s moment of viscosity per unit

plot. The solid line is the fit to a quadratic function and the dashedyg gz jinear function. Inset: the same graph including a wider range
line is the fit to a linear functioivalid for y>3). Inset: the same ¢ ,,

graph as a linear-log plot including a wider rangeyof

) . . o is extremely smalllor zerg compared to the value of its
cause it should pe invariant under a changg in sign of thgecond term, namelﬁjNﬂ(qij),—x)zO. Moreover, using a ho-
shear ratey. In Fig. 2, we fitted the numerical data t0 a oyeneous continuum assumption for the fluid, the value of
quadratic functiony=apx" with the fitting parametefap e quantity=" (g2 ) appearing in the second term on the
=1.513 09. Near equilibriury<0.5, the graph is nicely fit- . X a4 ; N 2
ted by this quadratic function. As the shear rate increases, rzlight-[\and side of Eq(60) can b? es_tlmated a0

SN —NI 2
region in which the value ofP,(I")) is almost independent ~NL fotiyyz—NL /3. These estimations lead tQ)/V
of y (namely the region fitted by a linear functione ajx =~ (N/3)y=150y, which explains the value of the fitting pa-
with the fitting parameter,=2.000 05 appears[15], and rameteray. , .
after that the string phase region appdar-1§ (the region The time-averaged Helfand's moment of viscos{ty)
y>8 approximately in the inset to Fig).2The string phase should be at least an odd function of shear ngteecause the
can be checked not only by the string-type arrangement ahfinitesimal deviationydQ giving the energy changaH™®
particle positions, but also by the strong time-oscillating be-in the inertial frame by Eq(52) must be invariant under the
havior of the time-correlation functions for quantities such aschange of sign of the shear rate. It may be noted that this
the potential energy, the shear stress, and spl6h For an  linear dependence for the time average of Helfand’s moment
isokinetic thermostat, the house-keeping heat is also given &3 of viscosity with respect to shear rate is satisfied not only
the time average of the thermostat term. We checked numerin the near-equilibrium region but also even in the string
cally that this quantity is equal to the time average ofphase region, shown in the inset to Fig. 3, possibly because
—yPy(I). the Sllod equations are a homogeneous shear algorithm.
It may be noted that in our simulations, Helfand’s moment
of viscosity can change discontinuously in time, when a par-
B. Helfand’s moment of viscosity ticle steps over a boundary in the direction orthogonal to the
,Sglobal shear flow. However, it should be a small boundary
effect which can be neglected in the thermodynamic limit
N—oo and p=const, and our numerical calculations gave a
good convergence for the long time average of Helfand’s
moment of viscosity.

Figure 3 shows the graph of the time average of Helfand
moment of viscosity per unit volum@)/V as a function of
shear ratey. It (almos) takes the value 0 at equilibrium
=0, and increases linearly as a functionyofin this figure,
we also give a fit to a linear function=aqy, with the pa-
rameter valueng=150.043.

To explain this linear behavior for Helfand’s moment of
viscosity as a function of shear rate, we simply note that ~ As the last example, Fig. 4 shows the shear rate depen-

N " dence of the correlation functio(Q?-(Q)?)/V of Hel-
B ~ 5 fand’s moment of viscosity divided by the volumé This
Q= Zl (Gjy Py + 7’% (cjy) (600 figure shows that this correlation function is always positive
. : at least fory<< 10, consistent with the thermodynamic stabil-
with the x componeni;, = pj,—q;, of the thermal momen- ity condition (55).
tum of thejth particle. Our numerical calculations show that  The correlation function for Helfand’s moment of viscos-
the value of the first term on the right-hand side of E&f)) ity should be an even function of the shear rate. Noting this

C. Correlation function for Helfand’s moment of viscosity
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value of shear stress predicted by a canonical distribution
approach51], and succeeded to reproduce some real experi-
mental value$12]. However, we note that, strictly speaking,
the time average from Sllod dynamics with the isokinetic
thermostat does not always reproduce the ensemble average
for the nonequilibrium canonical distribution used in this pa-
per, even in the equilibrium state wheye 0 after taking the
thermodynamic limitN— oo (and p=consj. Now we discuss
a couple of examples illustrating these ensemble differences.
First, in the numerical simulations used in this section, the
sum of the thermal momentui,= (Pj,P;,) =p;—mMV(q;)
over particle numbeyj in each direction is zero at all times,
meaning that there is a constraint on the values of the ther-
mal momenta, that isZ}\‘:l"pszo. On the other hand, in the
canonical distribution approach, all components of momenta
Y can be treated as independent variables. This difference, for
example, causes the different averaged values for

N ¢N =~ = N gN ==

ment of viscosity per unit volume as a function of shear rate a E}\lek:1<bjxka> and Zl,flzkzlp'ﬁpkx' ACtua”y' the value of

- - A - : SN SN (PP =(EN1Pi) (SR Pi)) is zero as each brack-

linear-linear plot. The solid line is the fit to a quadratic function. <j=1=k=1\FjxFkx/ = \=j=1Fjx/A=k=1Fk N

The inset: the same graph except that it includes a wider region d¢téd sum is individually zero. The value Bt- 2\ PjxPx

v and is a linear-log plot. however, is given bynNT in the canonical distribution be-
cause oM Py=mTd.

point, in the small shear rate region of Fig. 4 we give the fit S¢cond, the isokinetic thermostat used here keeps the ki-

of numerical data to the functiog=acy+acX® with the netic energy constant so that the distribution of kinetic en-

fitting parameter valuesq,=46.749 andu,=1349.38. The €9y is ad function. This is different from the distribution of

graph is nicely fitted by this quadratic function in the small KIN€tic energy in the canonical distribution, where there is
shear rate region. This point may be explained by noting always a nonzero fluctuation of the kinetic energy around its
mean value. Referencd67,68 modify the distribution to

give consistency with the isokinetic thermostat, but it is not
(@) =(Q? =~ 2 X (Uiy iy PixPir obvious that we can justify the shear flow thermodynamics
=1kl based on such a modified distribution.
N N As a concrete example of these ensemble differences, let
+ ¥ 2 > (a0 — (a3 Xaky))  (61)  us consider the first termby, = SN S 0y OkyPixPio =0
=11 appearing on the right-hand side of H§1) at equilibrium
using the thermal momentum compongit. Here we as- y=0. Assuming that the variableg, andp are indepen-
sumed that the time average of the linearly dependent ternéent, and thatg;,qy,) only depends upon whethgrk or |
for the thermal momentum can be neglected. As the two# K, then
terms =L, SpL (0, O PixProd and =L SRS (o of, ) can be
consideredy-independent, the correlatid®? —(Q)? can be N .
fitted by a quadratic function of. Z 2 Gy yPjPro
In the inset to Fig. 4, we give the shear rate dependence of =
the time average of the correlation function for Helfand’s 5 N ) _
moment of viscosity per unit volume in a much wider region ~ ()2 P+t 2 (Pibio- (62)
of shear rate on a linear-log scakote that we used a =1 j=1 =1k ))

linear-linear scale in the main figure of Fig.) 4t should be . . - 5
noted that a rapid drop of the value of this correlation func—hc q21y i uniformly dlstr2|buted bet\(veep 0. ard then(q1y>
~L°/3 and(d,0,,) =L*/4. Now, if this time average ap-

tion occurs in the string phase region. In the intermediate "
region, which is approximately the region 2:5/<8 in Fig. ~ pearing in the quantity?’,, in Sllod dynamics could be re-

4, between the region fitted by the quadratic functionyof placed by its ensemble average in the canonical distribution
and the string phase region, fluctuations in the valg&)  I), then the average valu®,, should be equal tob,,
-(Q)? become much larger than in the other regions, and= mTEJN:l <q_2>|F0 because 0P;P,=0 in j#k for the ca-
their values in Fig. 4 are less reliable. o

7000
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(<Q'>-<Q>M) /v

1000 r

FIG. 4. Correlation functior({Q%»-(Q)?/V of Helfand’s mo-

N N

N
k=

N N

nonical average. However, the quantitﬁ!%, and \I_fxy actu-

ally take different values, because the time average

D. Remarks in connection with the isokinetic thermostat 3;{ByPid is not zero but takes the valueSft (pj). It
dynamics and the canonical distribution approach follows that W, ~ mNTL2/3 and Wy~ mNTL2/12, so Dy,

Sllod dynamics with the isokinetic thermostat is regularly = |‘1’Xy—\ny|/‘PXyz3/4. Figure 5 is the graph of the normal-
used to simulate shear flows. It is supposed to reproduce ttieed differenced,, as a function of system si2¢ for square
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09— L A the shear flow and the house-keeping heat is always non-
0s | | negative. Our first law of thermodynamics for steady shear
® ® & ® {’—e flows does not include the effect of the house-keeping heat.

o7 r We discussed the thermodynamic stability condition for the

06 | . shear flows, one of which is equivalent to the positivity of
the correlation function of Helfand’s moment of viscosity.
Our results were investigated in numerical simulations of
04} 1 two-dimensional many-particle systems with soft-core inter-
actions, with Sllod equations and an isokinetic thermostat.
Our interest in this paper was to apply the canonical dis-
021 1 tribution approach using the moving frame Hamiltonian to
04 | | steady shear flow systems. On the other hand, this approach
is also applicable to rotating systems, as briefly discussed in
0 6o 100 200 e00 1000 2000 Appendix A. We summarize the similarities and differences
between these two systems in the canonical distribution ap-
N proach. Both of these systems are steady flows whose mag-
nitude is proportional to a component of position vector: the
distance from the rotating axis in the rotating system or the
position component orthogonal to the flow in the shear sys-
tem. Both systems have parameters to characterize their cur-
N N e - T, rents: the angular velocitw in the rotating flow and the
=221 31 (O PixPiol =0 and Wiy =mTE, (0))|,=0. r€SPEC-  ghear ratey in the shear flow. In the rotating flow, the re-
tively. The length of error bars in this figure is given byd2, sponse function for the internal energ)(/”_jo" with respect to
-®,,|. The solid line is the value 3/4, which is explained in the the angular velocitys is minus the average of the total an-
text. gular momentuniM, while in shear flow the response func-
tion of the internal energy with respect to the shear raie

minus the averaged Helfand moment of visco§ityOn the
other hand, we must also emphasize some differences be-
tween these two systems. The biggest difference is that the
total angular momentunM of the rotating flow is a con-
served quantity, whereas Helfand’s moment of visco§lty

VI. CONCLUSION AND REMARKS appearing in the shear flow is not constant in time and its
. . _ ... time derivative gives the shear stre3g, (times volume of

In this paper, we have discussed a canonical dlstrlbutlorllhe system Physically speaking, this difference comes from

approach to noneqwllbrlum steady-floyvs anq f_:Onstructed the fact that we need work to sustain the steady current in the
steady-state thermodynamics from solid statistical mechan shear flow, whereas such work is not necessary in the rota-

cal foundations. Using the Lagrangian technique of classic onal system. Because of this conserved total momentum in

mechanics, we introduced the energy in the moving frame by,\o 1otating flow, the nonequilibrium canonical distribution
separating the velocity of the global steady flow. A canonicak

distribution based on this internal energy was introduced! (!'+t) coincides with the canonical distributidfl’) itself. In

Our special concern was to describe steady shear flows arfidition, the relatioqX(I")=X(I') for any functionX(I') is
their thermodynamics based on this canonical distributiorpatisfied. This means that the nonequilibrium canonical dis-
approach. Evans and Hanley proposed a first law of thermaribution f(I',t) is stationary in time, not only in the moving
dynamics of the forndE€=TdS- Qdy relating energyt, tem-  frame but also in the inertial frame. In shear flow systems,
peratureT, entropyS, and shear ratg. Here we derived this  such simple relations are not satisfied. In shear flow, the non-
shear flow thermodynamics based on our canonical distribusquilibrium canonical distributiofi(", t) is not stationary in
tion approach, and shoywed that the quan@yis given by  {ime in the inertial frame, and is given by a Kawasaki distri-
the average of Helfand's moment of viscosity, the temperap, tion, which is the canonical distribution functiéfi”) mul-

ture T is the kinetic temperature derived from the thermal . ~ .
kinetic energy, and can br(Ja interpreted as an internal energy.t'pl_'ed by the factor Iex{)—,B 7W EodSPXY(F ’__S+ 2t} This

We show the consistency of our approach with the Kawasakpoint plays an ess_en_nal role in a derivation of the response
distribution from which the linear-response formula for vis- formula for viscosity in the shear flow. Moreover, this mul-
cosity is derived. The work required to sustain the shear flovtiplicative factor in the distribution functiof(I",t) includes

and the heat removed to compensatéthie house-keeping information about the work needed to sustain steady flow
heaj were discussed. We introduced a nonequilibrium en-and the house-keeping heat. The comparison between rotat-
tropy, and showed that it increases in time and the housdng systems and shear flow systems in the canonical distri-
keeping heat based on this entropy has the same magnitutiation approach is also summarized in Table I.

as the power needed to sustain the steady flow. This discus- One may notice that the canonical distribution approach
sion led to the non-negativity of average ofP;,, whereP,,  discussed in this paper can be generalized to more general
is the shear stress, meaning that the power needed to sustaieady flows than the rotating system and the shear flow

05

D,y

03

0

FIG. 5. Time-averaged quantity, = \ﬁ'xy—\iy\/ \I_fxy as a
function of particle numbeN for Sllod dynamics with an isokinetic
thermostat in a square at equilibriupw0 with the particle density

p=0.8 as a log-linear plot. Her@ﬂ and ¥, are defined byffxy

systems at fixed density=0.8. The length of error bars in
this figure is given by @, —®,,J, which must be zero in the
square cases. Figure 5 suggests dhgtis in excellent agree-
ment with the value of 3/4 given above.
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TABLE |. Comparison between rotating flows and shear flows in the canonical distribution approach.

Rotating flow Shear flow
Nonequilibrium parametef angular velocityw shear flowy
Response function t6 angular momentum M Helfand moment of viscosit®

[i£mM (T)=0] [iL"9Q(I) = VP,(I)]

Global currentv(q;) ©X(q Yjyix
Canonical distributiorf(T") Etexp{-AHMT) - w-MT)]} E-texp{-BHMN(T) - QM) ]}
Nonequilibrium distributionf (T, t) f(I) f(I) exp{-B,V {Ods"bxy(l“,—s+2to)}
First law of thermodynamics dHM) =TdS-M -dw dH™M®) =TdS-Qdy

system. One of the restrictions in our canonical distributiongec. v give the average6) under the distributiorf(I", ).
approach is that we have to know the global velocity distri-athough these two averages are related by(&8), it is still
butionV a priori. In this sense, this approach is not appro-an gpen question to calculate the canonical averdde
priate to determine the global velocity distribution underyeqyired for the thermodynamic relations, from the dynami-
some external constraints, etc. It is also crucial that we knowg| evolved canonical averag@6) in numerical calculations.
a priori an external parameter that specifies the amount of - griginally, Evans and Hanley introduced their shear flow
the global flow, like the angular velocity or the shear rate.thermodynamics to discuss the nonanalytical properties of
This parameter is treated as a thermodynamic quantity in thgye pressure, viscosity, and the internal energy as functions
expression for the first law of thermodynamics. of the shear rate. Such nonanalytical properties are predicted
ics using this approach is to discuss the changes in the prefumerical calculation$20,70,71. However, recently some
sure. Referencef30-33 introduced the pressur@ simply  numerical works suggest that the shear rate dependence of
by adding the term PdV on the right-hand side of Eql).  the pressure is analytic near equilibrium, except close to the
For this term, it was conjectured that the pressBrevould  triple point [12,13. Moreover, even at the triple point, the
be equal to the minimum eigenvalue of the pressure tensartonanalytic dependence of the pressure is not completely
[35]. However, one should notice that nonequilibrium sys-convincing[10]. It may also be noted that some theories that
tems such as the shear flow system are not generally isotrgredict an analytic dependence of the pressure and the vis-
pic, so that the pressure defined byé+9) may depend on cosity with respect to the shear rate have been proposed
the direction in which we change the voluiWeActually, as  [4,10,73. In this sense, it is still an interesting problem to
shown in Fig. 6, the numerical simulations using Sllod dy-discuss shear rate dependences of the pressure, the viscosity,
namics in Sec. V show that the time average®gfI'’) and  and so on using shear flow thermodynamics.
P,(I'") are different from each other at nonzero shear rate.
[HereI'" is the “thermal phase-space vector” given by re-
placing the momentunp; with the thermal momenturp; T T y
=p;—mV(q;) in the phase-space vectbr] Noting that usu- 74 | ,o matt
ally the pressure is calculated by the arithmetic average of R
these time averagg®r ensemble average¢ésee Ref[20], 72 [=0 -
o0
°e
8

<Py (l')> © <P, (C')> &

(0]:4
-

also Ref.[42] for its justification using the microcanonical 10 *
distribution), this suggests that if the pressures in xhand TT g ®tioee, .
the y directions are given by averages &, (I'") and 4
P(I'"), respectively, then the pressure is direction- 681 o 2 2 s
dependent in shear flow systems. The quantPy(I"'))
—(Pyy(I'")) is called the “normal stress” and a nonzero value ™ [ 6
is one of the important properties of viscoelastic fluids 4, | 6 o)
[9,20,73. Therefore, it is important to understand whether 8
such a property is compatible with the thermodynamicg, | o é
framework discussed in this paper, in other words to discuss ¢ @ 6 . . .
the first law of thermodynamics in which the averages o 0.5 1 1.5 2
P(I'") andPy,(I"") are included as the andy components v
of the pressure, respectively. It may be noted that a similar
question can be asked for rotating flows. We leave discussion i, 6. Time averages of the diagonal componeifs(I""))
of these points for the future. (circles and (P,,(I"")) (triangleg of the pressure tensor with the
As mentioned in Sec. IV C, the thermodynamic relationsthermal phase-space vec®r as functions of shear ratgin Sliod
Egs.(52) and(57) derived in this paper, are relations for the dynamics with an isokinetic thermostat in a linear-linear plot. The
ensemble averagdl) under the canonical distributidifl’).  inset: the same graph except for including a wider region of shear
On the other hand, the numerical calculations discussed irate and in a linear-log plot.
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<T(I')> o <Ty(T')> a mostat. Checking the shear flow thermodynamics for such
1.03 ' ' ' types of thermostat remains an open problem.
op009
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A A APPENDIX A: CANONICAL DISTRIBUTION APPROACH
0.98 | Aa 1 TO ROTATING FLOWS
A A A
A . . . L
0.97 . ) ) Af A Aa In this appendix, we give a derivation of the well known
T 05 1 15 2 canonical distribution and the thermodynamics for uniformly

Y rotating flows, based on the formalism given in Sec. Il. The
detailed derivation of them is quite similar to that for the
FIG. 7. x component(T,(I'")) (circley and y component shear flow system discussed in Secs. lll A, [l B, and IV A in
(T(I'")) (triangley of the kinetic temperature with the thermal the text of this paper, so it is given rather briefly.
phase-space vectdr’ as functions of shear rate in the Sllod We consider a rotating flow with a constant angular ve-
dynamics vyith thg isokiqetic thermostat. The inset: the same graprbcity vector w. We assume that the Hamiltonidi-ﬁi“e)(I‘) is
except for including a wider range of shear rate. invariant under rotation about the axis of rotation. In this
i , ) . appendix, the origin of the spatial coordinates and the axis of
There are also questions about the numerical simulationgation is taken at the center of mass of the system. Under

of shear flow themselves, from the point of view of the ca-ihese conditions, the global velocity distribution functign
nonical distribution approach. Some such problems were aly given by

ready mentioned in Sec. V D. As another potential problem,

we mention the direction dependence of the thermal kinetic V(g)) = w X g, (A1)

energy. To discuss this point, we introduce the quantities

T, I'") and Ty(F’) as Tk(rf)z(z/N)lezlﬁjzk/(zm) with the Whe_re>< is_the usual vector product. Using E@\1), relation
thermal momentum componepk = py—mVi(q;), whereV,  (7) is rewritten ag§57,58

is thek component of the global current density The arith- -

metic average of ensemble averages{BiI'’)}, over the HM(I) = H"(0) - @ - M(I') (A2)

componenk gives the kinetic temperature, so we may inter-,,; _ <N _

pret ‘t)he quar?tit)ﬂ'k(F’) as the oszrvabIe for thek‘t:om):)o- with the total angular momenturh(I')=2;.,g, xp;. In -
- A comparison with shear flow systems discussed in Sec. Il itis

nent of the temperature.” The canonical distribution aPmportant to note that the total angular momentMhiI’) is

proach discussed in this paper claims that the ensembkeonserved in the inertial fram&™®, namely

averageT,(I'’) of the quantityT(I'’) is k-independent, in '

other words the kinetic temperature is direction-independent,

although we should note a difference in the two averages

T(I'") and(Ty(I""))... Figure 7 shows the graphs OR(I'"))  Because of this conserved property of the total angular mo-

and (T,(I'")) as functions of shear rate from numerical  mentum, this global velocity distributio can be sustained

simulations using the Sllod dynamics with an isokinetic ther-without any external effect in isolated systems. Using Egs.

mostat, used in Sec. V. This figure shows that the kinetiq10) and(A2), the canonical distribution for the rotating flow

temperature is direction-dependent at least in large shear rajg represented 4§8]

cases. As a related point, we note that the isokinetic thermo-

stat removes heat from any component of kinetic energy of fr) =2 Yexpl- BIHMT) - w-MD)]}. (A4)

any particle uniformly. This is a great simplification in the R

formula and numerical calculations and preserves a similafhe distribution (A4) is stationary, namelyi£"®f(I")

dynamical structure to Hamiltonian dynamics leading to the=j z(ma)¢(1)=0, in both framesF™® and F("®. The distri-

E;;npirrz%?/l ggzgnga;{(;% OLLTeitgog‘A‘;gitgl ﬁ?é:gga;%ﬁ ]:sr ;hebution (A4) has the general forrt2) of the canonical distri-
mechanical thermostat is not completely convincing. For exbution in the case thail(I‘):H('“?(F), n=d, andAy(I') is the
ample, one may use other types of thermostats in which th8°mponent oM (I), and x;(I") is the component of o in
heat is removed from the particles near the walls or from théhe d-dimensional system. It is valuable to note that from the
kinetic energy component orthogonal to the wdlf&,75.  canonical distribution(A4) we can derive the distribution
These different thermostats might give, for example, differ-function f'(v(™@) q) for the positiong and the velocity
ent values of T,(I'")) and(T,(I"")) from the isokinetic ther-  v(™®) in the moving frameF™®) as

i LM (T) = 0. (A3)
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f'(v"® q) First we note that the partition functid can be rewritten
N as
=E"exp| - ﬁLEl Smv™ P+ UGa) + uc(q)]
(A5)

EEJdF exp(- BH™)(I")}
using Eq. (6), where ucq) is given by u.Qq)

E—Eri“:]jmwzrszZ with rj=|wXqj|/|w|. The function e )
f'(vm@) q) is the distribution for a rotating flow including = | dI' exp{=iL™(t - to) }exp{~ BH™*'(I")}
explicitly the effect of the centrifugal potentiai.(q). We
cannot derive the distributio5) from the distribution(12). _ _ op(ma)

Now we discuss the first law of thermodynamics for ro- = | dI' expl= BHTID)}

tating flows. Using Eq(A2), we obtain the relation ;
— xexp = ByV | dsRy(T,—s+2t) ¢, B1
) = {0 ¢y . M. (A6) p{ by f ol 0)} (BY

The entropygz —log{f(I')} is given by

S=InE + gH™®) (A7)  or equivalently
using Eqg.(A4). Using Eq. (A7), the free energyF(m®)
=H™M®)-TSin the moving frameF g, is given by

t

FmM)=—TIngZ. (A8) exp{— ,Bny dsB(I',—s+ ZtO)} =1, (B2)

to

Similarly, the free energyF® =HMI—_TS in the inertial
frame F"® is given by -T[In E-w-(dIn E/Jw)] and is con-
nected to the moving frame free energy"® as

where we used the definition of the averadd) and the
Eine) = F(ma) 4 () . M . (A9)  relations exp-iL"(t-ty)}1=1, (iL"®)T=~i£("® (+ mean-

) ) _Tm®) ing to take its Hermitian conjugateand a similar derivation
Using Eq. (A8), we obtain JSF™]/9=H™ and  5thatin Eq.(24). Equation(B1) means that both the distri-
ABF™™/dw=-pM,  namely  d[BF™]=H™dB | ionsf(I") andf(T',t) are normalized with the same parti-
- BM -dw, which leads to tion function=Z. The partition functiorE given by Eq.(B1)

_ _ must be time-independent, so that we obtain
dFM) =~ 4T-M - do. (A10)

Noting the relationgA6) and (A9), and Hm@) = F(me) 4 TS

Eqg. (A10) is al ivalent t = ~
g. (A10) is also equivalent to OZE :—BVVf drP, (T, - t+ 2tg)expl- BHM)(T)}

dFin® = - 4T+ - dM . (A11) t
o Xexp — ,Byvf dsNPXy(F,— s+ 2to)}
dH™) = TdS- M - de, (A12) p{ t
dH™ = TdS+ @ - dM . (A13) ==BVE f dl'Py(I', ~ t+ 2to)
The relation(A13) is the first law of thermodynamics for the X expi- iﬁ“”e)(t —t)}f(I)

rotating flow, which is well knowr{58].

= - ByVE f dl’ exp{- i £(t - to) }P(D)f(I)
APPENDIX B: RESPONSE FORMULA FOR THE
VISCOSITY FROM THE CANONICAL DISTRIBUTION == BYVEP/(I') (B3)
APPROACH

In this appendix, we give a derivation of the linear-
response formul&28) for viscosity from the definition27), ~ hoting the averagéll). From Eq.(B3) we obtain Eq(29),
as well as a derivation of E¢29). We also discuss the two implying that the viscosity calculated from the canonical dis-
kinds of nonlinear response formulas f@,,(I)).. with re-  tribution f(I') is zero. o
spect to the shear ratg one of which is a simple generali-  On the other hand, using the averagé) from the distri-
zation of the formulg28). bution f(I',t) given by Eq.(24) we have
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(P = lim f dr ny(r)f(r)exp{ - ByV ft : dsR(I',- s+ 2t0)}
= f dIP,(D)f(T) - ByV ft “ds f AP, (D) f(D)Pyy (T, = S+ 2to) + O(1?)
0
= Py(T) - ByV ft " ds f dUP,y(1) fE() P, (T, - 5+ 2t) + O(7?)
0
== By ft “ds f APy (D) e(D)exp(~ i LM(s - to) }Py(I) + O(¥)
=—Bwﬂ?d§fdﬂbmﬁﬁ“@@—m»m¢nﬂwaﬂPwav+Ouﬁ
0

== ,BYVJ dS(P(T, 9P, (1)) + O(5) (B4)
fo
with the notationf®¥(I")=lim,,_,f(I"), where we used Eq29), the relation(i £n®) =i £(® and exgi £1M®(s—t,)}f(d

(") =f€9(T). Equation(B4) leads to the linear-response form8) for viscosity.
Next, using Eq(24) we have

% = = BYVP(I,— t+ 2t f(I,1). (B5)

The solution of the time-differential equati@gB5) of the function?(l“,t) with the initial condition

(It = (D) (B6)
is represented as
?aw>=nrr+§¥eﬁywjfdajﬁd%f%d%~-f%ﬂdaﬁwavﬂa+m&ﬁwat—%+2m»~ﬁwat—%+2mﬁav
n= t 1, 1 t
0 0 0 0 (B7)

From Egs.(29) and(B7), we derive

Sy

* o S1 S -1 — — —
<ny(F)>oc = E (= B'VV)HJ dslf dszf ds-- f dSWny(F) ny(F-_ S+ 2to) ny(Fa_ S+ 2y ny(F,— Sht 2to).
n=1 to to to t

0

(B8)

This expresses a nonlinear response formula for an averageula for (P,(I")).. with respect to the shear rate

of the shear stres8,(I') with respect to the shear ragein It may be meaningful to show another type of nonlinear
the form of its multiple time-correlation function. The for- response formula for the average of the quarféityT") with
mula (28) can be derived directly from E¢B8), using the
relations X(I')|,=o=(X(I")|,=0)®? in any functionX(I") of I
and (i£M9)T=—j£0® |t may be noted that the multitime R o
integral functions on the right-hand side of E&8) can be G= lim[£™ +iel ™. (B9)
y-dependent because of thedependence of the function 0

f(I'), so strictly speaking EqB8) is not an expansion for- For this purpose, first we note a formal identity

respect to the shear rate using a Green’s functio® de-
fined by
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(0N T, - F(C,0In £(D) = (L1 - f(T). (C3)

Now we note

= lim e e- i£<ine)]—l =1 -Gpne

e—+0
(B10)

Equation(B10) is an analogous technique to that used in
quantum scattering theofy6] in which the Hamiltonian op-

erator instead of the Liouville operattﬁﬂi”e) is used. Using
Eq. (B10), we have

(Pyy(I))-= lim

t—toHOO

f dIf(I)expli L7t - to) P, (T) By

= J drf(r)[l—é2<‘”e>]ny(F)

> B2 Q)T - G2 7ep, (1) .

(B11)

f drf(r,t) = J drf(r)(=1), (C4)

(ine)

f drf(r,oinf(r,1) = J dre £ COLE ()i £(I)]

= J drf(I)In f(I). (CH

taking an integral with respect 8 on both sides of the

inequality (C3), and by using Eqs(31), (C4), and(C5) we
obtain

f drf(I',H)ST) = f drf(r)S(r). (C6)

Using the equatiorgzfdl“f(l“)S(l“)=<S>tO in the inequality

(C6), we obtain the inequality35).

This is the formula which we wanted to derive. It may be
noted that the quantity[Q(I')]T1-GLM]P, (")) ap-
pearing on the right-hand side of E&11) is y-independent,
so Eq. (B11) can be regarded as a real expansion of
(Py(I')). with respect to the shear raje different from the
formula (B8). Another merit of the formul@B11) is that we
do not have to calculate a time-integral in the intef\gkbe],
which is required in the formuléB8). As a special case of
the formula(B11), using Eq.(27) and the fact that zeroth Eq
order of the quantityP,,(I")).. must be zero, we obtain

APPENDIX D: STABILITY CONDITION FOR THE SHEAR

FLOW

In this appendix, we show the equivalence between the

condition(53) and the conditiong54) and(55). We also give
a derivation of Eq(56).

Noting that the energfi™® is the function ofSandQ by
.(562), we have

JHMe  @2pine . p2pine _
2~ (ine) (€9 =0——=—"7"065+——4/Q. (D1)
([1-GL"M]P,(I"))*?¥ =0, (B12) S 0F 50Q
an Using Eq.(D1), we also have
7=-BQI[1-GLMP (). (B3
JHT™
Equation(B13) is another type of the linear-response for- dy=d6——
mula for the viscosity. Q
aZH(me) _ &ZH(IHE) _
APPENDIX C: SECOND LAW OF THERMODYNAMICS IN - (95(96 oS+ (?62
THE NONEQUILIBRIUM CANONICAL DISTRIBUTION
APPROACH PHME [ 2Hne) -1 FHMI | ZHMT
= — — OT — —— ﬁQ + — ér?
In this appendix, we give a derivation of the inequality ISQ \ IS 9S9Q aQ?
(35) satisfied at any tim&(>t). FHMe \ -1 2me
We start our derivation from the inequality = ( — ) —
0 IS9Q
xInx-x+1=0 (C) A e P

satisfied by any positive real numbef>0). The equality in
Eq. (C1) is satisfied only wherx=1. Using the inequality
(C2) in the casex=f(I",t)/f(I"), we have

?(F,t)l Ty Ty
fr) R f(I)

which is equivalent to

+1=0, (C2)

Usi
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2] _
) ]5(?. (D2)

2
) . (D3)
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AR 2Re g APPENDIX E: RELATION BETWEEN THE TWO
FHME = = (59)2 + 2——5S5Q + ———(5Q)? AVERAGES
0 ISIQ 9Q?

In this appendix we give a derivation of E¢S).

= 5T+ P 56 5S+ PH (56)2 Using the expressio(24) for the distribution?(F,t) used
- Te) O in th éX(IN)), for any functionX(I'), we have
959 IQ? in the averag ¢ y ,
I o X)= X+ (X=X
:< il ) <5r>2+[ - OO=XHX=X)
o8 Q o [C KX = X))
(m@-l&zwz _ BN B
— — —— ( )2 0
oS ) ( asaQ) — t .
] e o =X- W f dS([X(F) = X]Py(I',~ 5+ 2t9))s
=( = ) (@m2+ L (52 (D4) X
S| g, J — — —
@ ! =X- By J d{X(T,9) - X]P(T")
The inequality(53) must be satisfied by any infinitesimal tf
deviationssT and 5Q, so using Eq(D4) we obtain the con- =X - W’f dgX(T,s) _Y][pxy(r) _p_xy], (E1)
ditions (54) and (55). to

Now, using the canonical distributiof19), we calculate — et
the derivative ofQ with respect toy at constant temperature Whefe we used Eds(29), <(X_X»to_o' and (i£™")
T, =-i£n® By taking the limitt—o in Eq. (E1), we obtain

Eq. (58). Concerning Eq(E1), one may notice

[X(T,8) - X][Py(T") - P, ] =X(I',s)P,(T)  (E2)

because of Eq(29), so the integral function in the second
: term of the right-hand side of E¢E1) can be replaced by the
= BE_lf dr[Q(I") Pexp(- AH™(I") - yQ(I")]} right-hand side of Eq(E2).
It may also be noted that from Eq9), (E1), and(E2),
we can derive a formula foP,, as

)
dy

= L= [ aromext- (T - 5o}
T Y

-2 J drQ(Iexsi- AIHI™(I) - 4Q(N)} ;

_ (Po()).: = = BYV f dtPy(T,OP(T)  (E)
=B(Q*-Q, (D5) fo

which is correct in any shear ratg The linear-response

where we usecE‘laE/ayzﬂa. Therefore we obtain Eq. formula (28) for viscosity is easily derived from Eq$27)
(56). and(E3).
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