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Kinetics of binary nucleation of vapors in size and composition space
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We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent
variables: the total number of moleculgsand the molar compositior of the cluster. The resulting kinetic
equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian
motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coeffi-
cients in cluster size and composition space are obtained. For characterization of binary nucleation in gases
three criteria are established. These criteria establish the relative importance of the rate processes in cluster size
and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distri-
bution function of the clusters is determined in terms of the variaplesd x. We obtain an approximate
analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary
nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are
found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the
relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time
is affected by processes in both size and composition space, but the contributions from each process can be
separated only approximately.
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I. INTRODUCTION o pi A @
= '
Multicomponent nucleation of particles in gases plays a V2mmKkT

significant and sometimes crucial role in many areas of sci- . .
9 y wherep; andm, are, respectively, the partial pressure of va-

ence and technology, including astrophysics, atmosphengsOr and mass of molecules of kifidT is the temperature

sclence, and nanopart|cl_e production. Binary nucleation i 5 Boltzmann’s constant is the surface area of the cluster,
the simplest case of multicomponent nucleation, but one thal

) ' o i . and B=1/kT. The free energy surfacdd(g,,g,) acts as a
is very important scientifically. The classical equations Ofthermod namic barrier over which the arowing clusters must
binary nucleation kinetics, first obtained by Rei43, de- y 9 9

scribe how clusters containing, and g, molecules of spe- pass. As shown by Reisl], an essential feature of this

ciesa andb, respectively, change in size due to the absorp_surface is a saddle point through which the major nucleation

tion and emission of single molecules of the two condensabl%lgui)s( g:gglgl”y(’)iﬁtlt?sogggng%t SIV\t/ﬁgst'wF:)aZSiZtizzg location of
species. These equations permit one to calculate the tim P y q

evolution of the different cluster concentrations, represented AP IAD
by the distribution functiorf(g,,gy). In the approximation of 5 = N =0, 3
continuous variables, the kinetics equations reduce to a two- Ya b

dimensional Fokker-Planck equati¢2] of the special form  \yhose solution also determines the critical cluster size
(g, .9, ). Attainment of the critical size effectively defines

(92 Opt) = aga[fLaaaga(ln f+ BAD(g,,0p) | nucleation, since only supercritical clusters can grow spon-
taneously. The size of the critical radiRs is typically about
+ 0 [ fLppdg, (In T + BAD(Ga,Gp) ] 109 m, and usually one finds that" +g, > 30, which sup-

- aga[_ J]+ ‘9%[_ 3] (1) ports the continuous variable approximation underlying Eq.

(1). It should be noted that in some cases the solution of Eq.

. . (3) is not unique.

Lt' foII_ows 1;r(k))r_n the phy|3|ca_1l mt_erpretgn(?n of eq) that the_ Here, we will consider the behavior of the kinetic equa-
inetics of binary nucleation is equivalent to the Brownianyjo, (1) in the vicinity of the saddle point of the free energy

T}Ot'on dOf a par]flcle .mlg\cll')ng Ina ;r)]ot?nUal defmedf bly the surface. As a preliminary step, we note that nucleation occurs
thermodynamic functiod®(g,,gy), the free energy of clus- in the free molecular regime when the two Knudsen numbers

ter formation[1]. In Eq. (1) the kinetic coefficientd 5, and (Kni=\//R) are large, Kp>1, as is true in most experi-

Ly have the explicit form ments. This implies that the mean free pattof molecular
species is much larger than the typical droplet radRsand
that, therefore, there is no correlation between the fluxes of

*Permanent address: A. V. Luikov Heat & Mass Transfer Institute, vapor molecules near a cluster. This circumstance greatly

National Academy of Sciences, Minsk, Belarus. simplifies the description of the nucleation kinetics in a bi-
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Let us note that the equilibrium solutidg, of the kinetic 0.25
equation(1), when the fluxes, andJ, are equal to zero, can
easily be found from the right side of EL):

fed 9 Op) = C exp— BAD(J,,0p) ], (4)

whereC is the normalization “constant” which may depend
on the number densities of the condensable vapor molecules.
The determination of the value @fis still an unsolved prob-
lem in the theory of binary nucleation in gag&s. 40
The boundary conditions for Eql) were introduced by ]
Reiss[1]. They are generalizations of the boundary condi- 0.05- 30
A

0.20 4

0.154

\

0.104
40

Cluster composition

I

tions of the classical theory of nucleation kinetics for the {12
unary vapor4,5]. According to Ref[1], the boundary con-
ditions are thaf(g,,gp) is the equilibrium distribution func-
tion for small clusters, and(g,,g,)=0 for relatively large
clusters(in comparison with the critical sizeFor a two- FIG. 1. Contour plot of the dimensionless free energy of cluster
dimensional partial differential equation, like E@), these formation BAd(g,x) for the binary nucleation of a mixture ah-
boundary conditions are not adequate for finding a correcand o-xylene. The saddle point values aBA®(g*, x*)=42.57,
solution of the equation. They must be supplemented by reg*=12.54, x*=0.082; for comparison the kinetic composition is
flecting boundary conditions that prevent the cluster fluxx=0.486. The supersaturations @8¢5, §,=3.75; physical prop-
from spreading into regions of negatigg andg, values. It  erties are taken from Ref12].
should be noted that the correct boundary conditions for Eq.
(1) were given and used for the numerical solution in earlierand one for the composition dynamics, governing the relax-
work [6]. ation to steady state. The analytical evaluation of the steady-
In the past, the kinetic equation for binary nucleation hasstate nucleation rate and some numerical results are pre-
been obtained in terms of the variabl@g,dy) [1,7]. Aswe  sented in Sec. IV. The quantitative estimate of the two
will show, some features of binary nucleation kinetics can bénduction times is made in Sec. V. The main conclusions are
more conveniently investigated by means of the independerfjummarized in Sec. VI. A few preliminary results of this
variablesg, x. Here,g=g,+g, is the total number of mol- investigation have been published alreddg].
ecules in the cluster, and=g,/g is the molar composition of
the cluster. Moreover, the usage of these variables opens up
an alternative to the standard method for the development of
the theory of multicomponent nucleation kinetics.

From the point of view of further theoretical investiga-  To preserve the physical meaning of the distribution func-

tion, it is useful also to separate “unstable” and “stable” vari-tion in Eq. (1), the distribution functionp(g,x,t) relative to
ables[8] in the kinetic equation. In nucleation studies, thethe variablegy andx should be defined g¢]

variableg is the “unstable” variable anxis the “stable” one;
this classification corresponds with the shape of the cluster f(0a 9o, 1) dgadg, = (g, x,t)dg dx. (5)
free energy surfacésee Fig. 1 at the saddle point. The di-
rection of negative curvature is associated with the unstabl&he saddle point on the surface of the free energy of cluster
(or unboundeglvariable, while the direction of positive cur- formation,Ad(g,x) can be found as the simultaneous solu-
vature is related to the stabjer boundegl variable. It is of  tion of the two equation§ll]
interest to note that for many problems of physics, the be-
havior of the stable variable is the most interesting aspect. In JAD  JAD
nucleation studies, we have the opposite situation. a9 ox 0. 6)
Numerical solution of the binary nucleation kinetics equa-
tions is now a relatively facile problem with modern com- We denote the solutions of E@6) as g* and x*. As an
puters for either steady-state or transient kinefi&8], pro- illustration, for a vapor mixture afi- ando-xylene, in Fig. 1
vided the critical size is not too big. The general problem thathe contour lines of constant free energy of cluster formation
remains is how one can extract some physical insight fronare shown near the saddle point of this surfat®]. This
the numerical results. One aim of this paper is to develogaddle point has the lowest value of the free energy of cluster
several criteria that will allow for accurate qualitative de- formation along the ridge of maxima that separates sub- and
scription or classification of the main features of binarysupercritical nuclei.
nucleation kinetics in gases. Such criteria should be useful |f we treatg and x as continuous variables, the kinetic
tools for both computational and experimental research.  equation fore(g,x,t) can be written as
In Sec. Il the explicit form of the kinetic equation of
binary nucleation is presented in the variabjeandx. The ae(9,%,1) = = [9gdg + Ay, (7)
qualitative estimations are made in Sec. lll, where the idea is
introduced of two induction times, one for the size dynamicswhere the flux components are defined as

0 15 20 25
Total number of molecules

T
5

II. KINETIC EQUATION OF BINARY NUCLEATION
IN VARIABLES g AND x
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Jg = (Laa+ Lbb)':g + a(g,X)FX, JX = a(g!X)Fg + b(ng)FX1 (P(gvx) = Cg eXF{_ BAq)(gyx)]y(glx)v (15)
(8) wherey(g,x) is a function changing in the rang@,1]. Equa-
and the thermodynamic “force” components are tion (15) defines the functioty [4,5].
After substituting Eq(15) into Egs.(8) and(9), we have
Fg=—(0g+ BIAP —g Do, Fy=-(d+BaAD)¢. the following formulas for the fluxes:
© 3g= = $ed (Laa* Lo dgy(9,%) + (g, X03y(g.))], (16)
We also have the following relations among the “new” and
“old” fluxes: Ji=— @ed a(9,X)dgy(9,X) + b(g,x)dy(9,¥)].  (17)
Jg=0Ja+ ), K=(1-XJIp—xJ,. (10) IFor_the functiony(g, x), the boundary conditions are the fol-
owing:
The flux expressiong) have a pleasing symmetry, reminis- g
cent of the Onsager reciprocal relatiqag)]. The cross-effect _]1 forsmall values ofj at all x,
terms that couple the fluxes and forces in gigeand com- ~ |0 for large values of), g>g*.

position (x) space have the same coefficiag,x). In the

previous formulas, we use the notation The total nucleation ratg which is an observable quan-

tity, can be expressed as the integralJgfover all the pos-
_ Lpp(1 =X)2 + LaX? sible cluster compositions
= 7 . )
(11) I:f Jg(g,x)dx. (18)

0

a(g,x) - I‘bb(l+)_xl‘aa' b(g,x)

It follqws from the physical interpr_etation of thg kinetic |, formulas (15)~(18) the time variablet was omitted for
equation(7) that the sum(L,,+L,,) is the coefficient of simplicity.

Brownian diffusion in the cluster size space dd,x) is the For a two-dimensional2D) problem, two supplementary
coefficient of Brownian diffusion in the cluster composition poundary conditions should be added. We follow the ideas
Space. Tge latter is always positive and inversely proporpresented in earlier wor6] and put the boundary conditions
tional tog”. The mean square amplitude of fluctuations in thegy two lines. These lines create a closed domain in cluster

diffusion coefficient in composition space. Therefore, forconditions. We have the following new boundary conditions:
larger clusters the average amplitude of such fluctuations will

be smaller. J-n=0, (19

For binary nucleation, we introduce the additional charac- .. . .
teristic compositionq. The explicit expression fax is wheren is the normal vector to these two lines. The physical

meaning of the new boundary conditions is obviously that
Lbb the particle flux across these lines is zero. For the variables
= m- (12) (g,x) in the general case the equations of these two lines are
x=1 and x=0. It is important to note that for these full
The parameteK, is of a purely kinetic nature because it boundary conditions, the total steady-state nucleationltate
depends only on the partial pressures of the vapors and theyg. (18), does not depend om
molecular masses. For an arbitrary sggef a cluster has a
molar composition equal te,, the coefficienta(g,x,)=0. l1l. QUALITATIVE CONSIDERATIONS

Moreover, at this composition the coefficient of Brownian |t jg very useful to make qualitative estimatds!] of the

diffusion in the composition space is a minimum, yey parameters characterizing the kinetics of binary nucle-

b(g,xJ 0 min. For relatively high vapor supersaturations, it ation. Let us determine the size of the domain in the cluster

is easy to show that the molar composition of a large clustegnd composition space near the saddle point, where the

is about equal to. Brownian motion of newly formed clusters occurs. The basic
Let us now find the equilibrium solution of the kinetic igea is that thermal fluctuations can change the free energy of

equation (7). Substituting the expression ¢(g.X)  cluster formation only by several units kT in this domain.

=w(g,x)ex-pAD(g,x)] into Eq.(8), it is easy to see that Therefore, in the cluster size space, the characteristicssize

to satisfy the conditiond,=J,=0 as well as Eq(5), we must  of this domain can be estimated as

put

Xk

Ag ~ V1Bl AD(GH x*)

: (20)

and, in the composition space, the characteristic Aizef
Therefore, the equilibrium functiomeq(g,x) has the form this domain can be estimated as

w(g,x) = Cg. (13

E—
Ped9,X) = Cgexd— BAD(g,X)]. (14 AX ~ 1/BAAD(G¥, x*). (21)

Based on the form of Eq14), we can represent the nonequi- From the analysis of the expressions for flo@@6) and(17),

librium distribution function[4,5] as let us obtain two dimensionless parameters characteristic of
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the binary nucleation kinetics. These parameters involve bothluster size space is a relatively slow process. For the ther-
the kinetic and thermodynamic properties of the system. Thenodynamic conditions used for creation of Figisbipersatu-
first parameter, denoted &s arises from the comparison of ration S,=5, §,=3.75 the paramete¥W=0.05. If the param-
terms in Eq.(16). It can be written as eter W>1, we can expect some effects directly related to
> ridge crossind15,164. Indeed, for the numerical results that
_a@nx)Ag _ (X x) | GAP(GhXT) (22)  exhibited ridge crossing nucleation kinetif®, the param-
(Laa+ LppAx g - aSgAdD(g*,x*)' eter W=161. Formal mathematical analysis of expressions
o i o (16) and(17) leads to the same result concerning the param-
If Z<1, it is possible to neglect the contribution of the sec-giar\w. For the domain defined by the condition d¢T3dif-

ond term in expressio(L6). _ ference between the saddle point and the domain boundaries
As an illustration, it should be mentioned that for the;

. . A, in Fig. 1, the characteristic nucleation time~2x107°s
thermodynamic conditions shown in Fig. 1, the parameteq “correspondinglyr, is about 20 times smaller. We will
Z=2.85, mainly due to the large value af,AD (g, ¥*) in

J ) discuss this problem in more detail below.
comparison withdg Ad(gf, x*). We can expect that when — go¢ qualitative estimation of the binary nucleation kinet-
Gl D(g, X) ~ JgAD(g, x), the parametel will be much jcs, it is also useful to estimate the ratio of the fluxgal,.
smaller than unity. In the general case, this ratio can be expressed as
The second parameter, denoted Hy arises from the
b(g*,x*)* Ag(1+H) Z(1+H)Ax

qualitative analysis of expressigf7) and is written as _
alg x)Ax (Laa+LopAX(1+2) ~ H(1+2)Ag’

B b(g*, x*)Ag For the free energy surface plotted in Fig. 1, we have that
Jy/Jy<1, so the flux, viewed as a vector, is practically par-

23) allel to theg axis. We can expect that in the majority of cases
the inequalityJ,/Jy<1 is valid, because usuallfAx/Ag)
<1.

WhenZ<1 andH<1, it is possible to neglect the cross-  sing Eqs.(10) it is also easy to find the formally exact

effect terms in the right-hand sides of Eq46) and (17).

343, (28)

_ (Laa* Lo (%=X )G = BAP(GHX*)
(Lpp(1=x*)%+ LX) V BAAD(G,x*)

; % expression
These cross-effect terms are responsible for the coupling be-
tween the kinetic processes in the two spaces. For the ther- Jddg= (X4 —X)/Q, (29
?giﬁnamlc conditions used for Fig. 1, the parameter where x,=tan/(1+tanp). The angles, defined by tanp

Let us demonstrate the origin of the third parameter for:‘Jb/‘Ja’ Is itself a function oi andg that can be determined

: : : T to at least a good approximation using the theory of Li and
binary nucleation more physically. The characteristic tige .~ - . - .
of binary nucleation in the cluster size space can be esti’-\IIShIOka [17]. At the saddle point, this angle defines the

direction of the principal nucleation flux in accord with
mated now as Stauffer’s well-known result§18]. Beyond the critical size,
Ag? along the principal growth path¢ will equal Stauffer’s
9 m (24) growth angley. For clusters much larger than the critical
size, Stauffer showed that the limiting compositirg at-
The characteristic timey is the exact analogy of the charac- tained by the growing droplets under conditions of constant

teristic time for unary nucleation. For binary nucleation, wevapor supersaturation would satisfy the equation
have to introduce the additional characteristic tirgewhich
Lol - 15(%a)] _ Xg

defines the temporal scale of the Brownian process in the —
Lad1-18(xg)] 1-Xg

composition space
AX? whereS,(x) andS,(x) are the supersaturations with respect to

tany = (30)

e b(g*, x*) (25) a liquid mixture of compositiox. Thus, for largeg, we have

_ o _ the asymptotic resubtg=x,4(Xg,g) for all g. In the limit of

The ratio between characteristic timeg 7 is equal to high supersaturations, it is easy to see from @@) thatxg
7 AX(Laq+ Lip) _H reaches the limiting valugr,, defined earlier. It follows from

A =5 (26)  expression(29) that the path defined by the equation
g Agib(gxt)  Z =X4(X,0) is the “attractive” asymptotic line for all growing
This ratio of time scales determines the third parameter obinary clusters.

binary nucleation, denoted By, as

H (Lop* Laa) (0)* G5 AP(GS x| 2
=5 " : In this section we consider the special case of steady-state
—y*x )2 * 2 *
Z  (Lpp(L=x* )2+ Lax*?) L AD(GHX*) kinetics of binary nucleation, taking into account the results
If W<1, we have the following picture of the binary nucle- of our qualitative analysis. While a full solution of Eq@3)
ation kinetics. The Brownian diffusion in the composition and(8) is actually more difficult in terms of thex,g) vari-
space is the fastest process. The Brownian diffusion in thables than with thég,,gy) variables, our formulation readily

IV. STEADY-STATE NUCLEATION RATE
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motivates a simple and useful approximation that is sug-
gested by the qualitative physical difference betweenxthe
andg variables. We consider the case for whikk/x* is so
small that the inequalityvV<1 is valid. In this case, we use
the following approximation for the distribution function

#(g,X):
@(9,x) =h(g)8(x - x*). (31

Expression(31) is a good approximation when the pass on
the free energy surface is very narrow near the saddle point.
Then, after integrating Eq(7) over all the possible x
values and neglecting a small term proportional to
a(g,x*)aAd(g,x*), which vanishes at the saddle point, we
obtain a one-dimensional kinetic equation. This equation co-
incides exactly with Zeldovich’s kinetic equatiqd]. After
calculations that are standard for nucleation theory, the ex-
pression for the total nucleation ratean be written as

o a FIG. 2. A three-dimensional view of the dimensionless function
| =Cy(Laa+ Lopexd— BAD(gY, X*)] s (32)  y for the conditions of Fig. 1.

where BIAD(g% %) — AD(gr x*)]=3, i=1,2. (34

w=— E&ggAQD(g*, X*). (33)  The boundaries parallel to theaxis to the right and left of
2 the saddle point are specified by the two lirggsg; andg

Note that ifp,—0 or py— 0 (implying x—0 or x— 1) ex- =g,, whereg,; andg, are constants defined by the equation

pression(32) reduces to the classical rate expression for BIAD(g*, x*) - AdD(g;,x*)]=3, i=1,2. (35)

unary nucleation kinetics. For the approximati(81), the - ] ] )

fluxes in the composition and cluster size spaces satisfy the The boundary conditions on this rectangle were defined in

relationshipd,/ J;=0. the manner proposed previoud§]: For g=g;, y(g;,X) =1,
For the domain with the 3T difference and for the con- and forg=g,, y(gz,x)=0. Along the linesx=x, andx=x, the

ditions presented in Fig. Ax/x* is equal to 0.6; although following conditions hold:

the width of the valley is not as narrow as the approximation PO

assumes, Eq32) still has considerable practical utility. We aly(@.x)]=0, i=1,2. (36)

compared the values predicted using KE82) with those The boundary conditiong36) mean that clusters cannot

given by Stauffer’s rate formulgl8], which is known to be leave this region during nucleation. From the mathematical

quite accurate, except in the unary lirf8f. The calculations point of view, these boundary conditions permit the function

were made for the ethanol-hexanol systg®h for a wide y to change continuously from 0 to 1 along these domain

range of vapor partial pressures. We found that rates frorboundaries. The relaxation method was used for solving this

Eqg. (32, 1(32), were usually greater than or equal to boundary problem. We emphasize that the grid scheme of the

Stauffer’s ratelg, 0.5<1(32)/1g<15, for conditions under equation was created in such manner in order to maintain the

which unary nucleation would not predominate. When unaryconservative nature of E¢7). The result of this calculation,

nucleation does predominate, E§2) has the merit of re- a 3D plot of the slowly changing functiow(g,x), is pre-

ducing properly to the correct unary rate. Thus, this relasented in Fig. 2. Fox=x* and g=g*, the valuey=0.5 is

tively simple expression may have some utility for estimat-found[19,2Q. A contour plot ofy(g,X) is shown in Fig. 3.

ing nucleation rates in binary systems to within an order of It can be concluded from Fig. 2 that establishment of the

magnitude of the correct numerical value. steady-state regime is faster for small values of the variable

X. We see that the functiopdecays to zero at smaller values

of g whenx is smaller than wheRr is larger. Since more time

is needed to produce larger cluster sizes, the transition to the
For the thermodynamic conditions used for the creation okteady state will be shorter for smaller valuesgofrhe cal-

Fig. 1, the numerical solution of the 2D kinetic equati@  culation of a characteristic time of steady-state binary nucle-

with full boundary conditions was obtained by the relaxationation is presented in the next section.

method for the rectangular domagh With reference to the

geometry of Fig. 1, the boundaries of this domain are defined V. CALCULATION OF RELAXATION TIME

as follows. The boundaries parallel to tgeaxis above and OF BINARY NUCLEATION

below the saddle point are specified by the two lines;

andx=x,, wherex,; andx, are constants defined by the equa- Qualitative estimates of the characteristic times needed to

tion establish steady-state binary nucleation have been made in

A. Numerical simulation of the steady-state kinetics
of binary nucleation
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8 10 12 ko
010+ / T 2k + Kt k) R
l _ where the following definitions apply:
£ ko= (SIFL YIS (], (a9
g
E 0084
g o = 8 oSy @lsilua), 49
g 0.07- )
ko = +5(b(g.0sIM{ 1 @)Isin n(9]cosTu()]D,  (46)
0.06- 0,10 4
8 10 12 14 16 18 1
Total number of molecules 2AXAg<a(gyX)Sirfz‘}’(g)]Sir{,U«(X)]Sir{ZM(X)D-

FIG. 3. The same dimensionless functigras in Fig. 2, but (47)

shown as a contour plot. . ) .
All integrals are nonlinear functions @x and Ag. We em-

axPhasize that the cross effect between spaces, related to the
coefficienta(g,x) in the kinetic equatiori7), gives the con-
tribution to the relaxation time described ky.

Let us introducery, which describes the main contribution
for relaxation in the cluster size space

ke
g Wzkly

and in the limit of unary nucleation we must have the equal-
ity 7=74. Correspondingly, the relaxation timg for compo-

Sec. lll. Here we make quantitative calculations of the rel

ation times of the binary nucleation kinetics by the Galerkin

method[21]. The full boundary conditions are used below.
For our purpose, the slowly changing functigly, x) may

be represented as

¥(9,%) = Ys(9,X) + AM)si (@) Isinf{u(x)]  (37)

where y4(g,x) is the steady-state solution of E¢f) with
boundary condition$36) and

(48)

¥(g) = (g - g*+ 0.5Ag)/Ag, (38) sition space igcf. expression25)]
w(X) = (X = x*+ 0.5A%)/AX. (39 T = % (49)
2

The second ter.”? in expressi@8ir) exactly satisfies the'z.ero and in the limit of unary nucleation, we must have the result
boundary conditions for small and largeand the condition r.— . This follows because the relaxation time is inversely
J-i=0 for the other two boundaries of the domain, which weproportional to the collision frequency of the dilute compo-
consider as straight lines. nent. As this species concentration is reduced to zero, the
Following the application of Galerkin’s methd@1], we  collision frequency vanishes, ang diverges. If we neglect
define the inner product of functiorf¢g,x) andh(g,x) as  the small contribution from thie; term, which vanishes any-

follows: way in the unary limit, we can use the definitiog#8) and
(49) to rewrite Eq.(43) as
<fh>:ff9¢eqfh dg dx (40) 1 1 1
Sz, (50)

The domain() was described in the previous section. After
substituting expressioB7) into Egs.(7)~9), we multiply which has the familiar structure for parallel relaxation pro-
both sides of Eq. (7) by the control function cesses. Interestingly, the ratia/k,=7./7, can be repre-
siny(g)]sinf ()], and integrate each side of the equationsented by means of the parametérdefined in Sec. Ill. This
over the domair). As a result of this standard procedure for allows the alternative expressiorr7W/(1+W). We can

Galerkin’'s method, we find the following equation for the consider the expressiqa3) for 1/7 as an approximation of
evolution of the amplitudeé\(t): the lowest eigenvalue of Eq7) with full boundary condi-

tions.

KodA = — 2A[Ky + ko + Kg]. (41) It is useful to obtain approximate, analytical results for the
integrals(44)—«47). Obviously, the value of the free energy
of cluster formation at the saddle point does not explicitly
A(t) = A exd - t/7], (42) affect the value ofr as given by our expressions, although
there is an implicit relationship since from classical theory

whereA, is the initial value of this amplitude, which can be A®* is proportional tog* and a nonlinear function ok*.

arbitrary. The relaxation time is equal to Hence, small values af®* imply small values ofg*, etc. If

The solution of Eq(41) has the form
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the integrals are estimated very roughly using the mean valugefined by purely kinetic factorsy =L,/ (LaatLpp)-
theorem(e.g., with mean values of sirand co$ equal to Three independent dimensionless parameters useful for
0.5, we have the characterization of binary nucleation kinetics in gases
have been obtained in the frame of our approatihndH,
r~ 1 ~ —. (51 expressiong22) and (23), and their ratioW=H/Z. These
ﬂz( LaatLop 2[LgaX* <+ Lpp(1 —x*) ]) parameters include both thermodynamic and kinetic factors
Ag? Ax?g*? and permit one to identify the main physical characteristics
_ of any gas phase binary nucleation process.
We see that the approximate forii#) and(S1) separate the oy the case whel<1 (i.e., Brownian diffusion in the
relaxation processes in the cluster size and compositiogymposition space is much faster than Brownian diffusion in
spaces. In previous analytical woik2—24 on this problem,  he cluster size spageanalytical expressions for the total
such a separation was not considered, although, in retrospe¢,cleation rate were obtained with roughly the same accu-
there is clear evidence for the two processes in numerica],laCy as the classical ongs,15,18. Note that if the partial
simulations of transient binary nucleation kineti@%]. For pressure of either component goes to Z@mgplying x— 0 or
practical purposes, it is possible to use the following formu-x_,l)’ our simple expression, E¢32), reduces to the clas-
las for Ag and Ax (obtained for 8T difference from the  gjcq| rate expression for unary nucleation kinetics. In other
saddle point in the parabolic expansion of the free energy ofyords, in our approach the common failure of binary nucle-
cluster formationt ation kinetics to convert smoothly to unary nucleation does
not arise. For steady-state binary nucleation kinetics, a nu-

Ag= \"6/’8|‘9§9A(D(g X)) (52) merical solution was found using the full set of boundary

and conditions. Numerical results of the full 2D calculation of
—_— binary nucleation kinetics were presented in Figs. 2 and 3.

Ax= V6IBHLAD(GH X*). (53 The characteristic relaxation times for binary nucleation

kinetics in cluster size spaeg and in composition space,
have been estimated in expressi¢?¥) and(25). For the full
VI. CONCLUSIONS boundary conditions in the cluster size and composition
space, the calculation of the relaxation time of binary nucle-

For the theoretical investigation of some features of bi- i d ina Galerkin’ thod. Th tributi
nary nucleation kinetics in gases, the transformation to a gifdlion was made using alerkin's metnod. The contributions
f the relaxation processes in cluster size and composition

ferent set of natural variables, the total number of molecule§ X )
g and the compositiorx, was made. This transformation, Space can be separated approximately in expresff)s
which has a clear physical meaning, helps to separate th%nd(sl)'
processes in the cluster size and composition space. In par-
ticular, we obtained expressions for the coefficients of
Brownian diffusion in both the composition and cluster size  This work was supported by the Engineering Physics Pro-
space, respectively, k(1 -X)?+L,x?]/g? and(Laa+Lpy).  gram of the Division of Materials Sciences and Engineering,
The coefficient of Brownian diffusion in composition space Basic Energy Sciences, U.S. Department of Energy. G.W.
has its minimum value wher=x,. This compositionx, is  thanks Paul Parris for several helpful discussions.
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