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Network theory is rapidly changing our understanding of complex systems, but the relevance of topological
features for thedynamicbehavior of metabolic networks, food webs, production systems, information net-
works, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks,
we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and
engineering systems. We find that most supply networks displaydamped oscillations, even when their units—
and linear chains of these units—behave in anonoscillatoryway. Moreover, networks ofdampedoscillators
tend to producegrowingoscillations. This surprising behavior offers, for example, a different interpretation of
business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns
out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.
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I. INTRODUCTION

Network theory[1,2] is an important key to explaining
complex systems. Topological features[3] determine inter-
esting properties of socioeconomic networks[4] or the ro-
bustness of the World Wide Web[5], of sensory systems[6],
and food webs[7]. Their relevance for dynamic features,
however, is not well understood. Specific network structures
appear to be responsible for the beating of a leech’s heart[8],
pumping effects in some slime molds[9], strong variations in
ecosystems[10], or glycolytic oscillations in yeast cells[11].
Many of those systems, including molecular networks[12],
can be viewed as particular supply networks. Their function-
ing is decisive for natural and man-made systems, but prone
to oscillations: For example, industries often suffer from
over-reactions in production[13,14], disaster management
struggles with a temporary clustering of forces and materials
at some places while they are missing at others[15], and
national economies are characterized by “booms” and “re-
cessions”[16,17]. Based on a simple model of interactive
flows, we will show that the likely reason for these instabili-
ties and oscillations is the underlying network structure of
supply systems. This is illustrated with a model of macro-
scopic commodity flows.

The relevance of our approach for physics is twofold:
First, we generalize conservation equations for flows in
three-dimensional continuous spaces to network flows. Sec-
ond, we show that chains of damped elements behave quali-
tatively different from networks of these elements, if inter-
actions are not symmetric. This applies, for example, to some
networks of electronic components.

II. MODEL OF MATERIAL FLOW NETWORKS

Our simple model of supply networks describes the gen-
eration or delivery of products, substances, materials, or
other resources of kindi at a certain rateQistdù0 as a func-

tion of time t. A shareXijstdù0 of that output is required as
input for generating or delivering resourcej , and a share
Yistdù0 is absorbed, for example by consumption, degenera-
tion, or loss. Ifo jXijstd+Yistd does not add up toQistd, this is
assumed to result in a corresponding changefNist+Dtd
−Nistdg of the stock, inventory, or concentrationNistd of re-
sourcei per unit timeDt. This assumption implies aconser-
vation equationfor resources(which can be generalized). In
the limit Dt→0 it reads

s1d

considering that the flowXijstd of resources from supplieri
represents a shareaijQjstdù0 of the entire inputs used by
supplier j . In Leontief’s input-output model of macroeco-
nomics [18], the m suppliers correspond to different eco-
nomic sectors producing one kind of commodityi each.Qistd
describes the output flow andNistd the inventory of commod-
ity i. The stoichiometric coefficientsaij ,1 define an input
matrix A =saijd and reflect the technologically determined
supply network between economic sectorsi and j . For sim-
plicity, we will treat the input coefficientsaij as constants.

The change of the delivery rateQistd in time is generally
a functionWi of the stock levels or concentrationsNj, their
temporal changedNj /dt, and the delivery ratesQj them-
selves:dQi /dt=WishNjj ,hdNj /dtj ,hQjjd with j P h1, . . . ,mj.
In our model of macroeconomic output flows, the delivery
ratesQistd are adjusted in response to two criteria: First, if
the current inventoryNistd exceeds some “optimal” levelNi

0,
the delivery rate is reduced and vice versa. A certain inven-
tory level is desireable to cope with variations in the demand.
Second, if inventories are growingsdNi /dt.0d, i.e., if the
current supply Qistd exceeds the current demandYistd
+o jaijQjstd, this is an independent reason to reduce the de-
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livery rate Qistd. The following equation for the relative
change in the delivery rate expresses these responses and
guarantees a non-negativity ofQistd:

1

Qistd
dQi

dt
= n̂iS Ni

0

Nistd
− 1D −

m̂i

Nistd
dNi

dt
. s2d

Here, n̂i is an adaptation rate describing the sensitivity to
deviations of the actual inventoryNistd from the desired one
Ni

0. m̂i is a dimensionless parameter reflecting the responsive-
ness to relative deviationssdNi /dtd /Nistd from the stationary
equilibrium state. Moreover, economic systems have an im-
portant additional equilibration mechanism, as undesired in-
ventory levels and inventory changes can be compensated
for by adjusting the pricePistd of commodityi. If the same
criteria are applied, we find

1

Pistd
dPi

dt
= niS Ni

0

Nistd
− 1D −

mi

Nistd
dNi

dt
. s3d

We will assume thatai = n̂i /ni is the ratio between the adjust-
ment rate of the output flow and the adjustment rate of the
price in sectori. For simplicity, the same ratioai =m̂i /mi is
assumed for the responsiveness.

Increased pricesPistd have a negative impact on the con-
sumption rateYistd and vice versa, which is described here
by a standard demand functionf i with a negative derivative
f i8sPid=dfisPid /dPi:

Yistd = fYi
0 + jistdgf i„Pistd…. s4d

This formula takes into account random fluctuationsjistd
over time around a certain average consumption rateYi

0 and
assumes that the average value off i(Pistd) is normalized to 1.
The fluctuation termjistd is introduced here in order to indi-
cate that the variation of the consumption rate is a potentially
relevant source of fluctuations. Nevertheless, we do not fo-
cus on the investigation of noise-induced effects in this paper
as we mainly want to present a model which can reproduce
observed features of macroeconomic dynamicswithout hav-
ing to assume fluctuations to account for unexplained effects
(see Sec. IV).

Inserting Eq.(4) into Eq. (1) results in

dNistd
dt

= Qistd − o
j=1

m

aijQjstd − fYi
0 + jistdgf i„Pistd…. s5d

For certain specifications off isPid and finite fluctuation am-
plitudesjistd one may therefore find phenomena like stochas-
tic resonance[19]. In our simulations, we have applied the
common linear demand function

f isPid = maxs0,f i
0 − f i

1Pid s6d

used by economists, wheref i
0 and f i

1 are non-negative param-
eters.

We would also like to note that Eqs.(2) and (3) may be
simplified by Cole-Hopf transformations, while it does not

help to reduce Eq.(1). Defining Ñistd=lnfNistd /Ni
0g, P̃istd

=lnfPistd /Pi
0g, andQ̃istd=lnfQistd /Qi

0g, we can write

dQ̃i

dt
= n̂ise−Ñistd − 1d − m̂i

dÑi

dt
s7d

and

dP̃i

dt
= nise−Ñistd − 1d − mi

dÑi

dt
. s8d

III. DYNAMIC BEHAVIOR AND LINEAR STABILITY
ANALYSIS

The possible dynamic behaviors of supply networks can
be studied by analytical investigation of limiting cases(see
the Appendix) and by means of a linear stability analysis
around the equilibrium state[in which we haveNistd=Ni

0,
Yistd=Yi

0, Qi
0−o jaijQj

0=Yi
0, and Pistd=Pi

0]. Supply systems
without a mechanism analogous to price adjustment are cov-
ered by cases whereai →` or f isPid=const for alli (no price
sensitivity).

Denoting them eigenvalues of the input matrixA by vi
with uviu,1, the 3m eigenvalues of the linearized model
equations are 0(m times) and

li,± <
1

2
s− Ai ± ÎsAid2 − 4Bid, s9d

where

Ai = mifCi + aiDis1 − vidg,

Bi = nifCi + aiDis1 − vidg,

Ci = Pi
0Yi

0uf i8sPi
0du/Ni

0,

Di = Qi
0/Ni

0. s10d

Formula(9) becomes exact when the matrixA is diagonal or
the parametersmiCi, aimiDi, niCi, and ainiDi are sector-
independent constants, otherwise the eigenvalues must be
numerically determined. It turns out that the dynamic behav-
ior mainly depends on the parametersai, ni /mi

2, and the
eigenvaluesvi of the input matrixA (see Fig. 1): In the case
ai →0 of fast price adjustment, the eigenvaluesli,± are given
by

2li,± = − miCi ± ÎsmiCid2 − 4niCi , s11d

i.e., the network structure does not matter at all. We expect
an exponential relaxation to the stationary equilibrium for
0,ni /mi

2,Ci /4, otherwise damped oscillations. Therefore
immediate price adjustments or similar mechanisms are an
efficient way to stabilize economic and other supply systems.
However, any delaysai .0d will cause damped or growing
oscillations, if complex eigenvaluesvi =Resvid+ i Imsvid ex-
ist. Note that this is the normal case, as typical supply net-
works in natural and man-made systems are characterized
by complex eigenvalues(see the top of Fig. 1). Damped os-
cillations can be shown to result if all values

ni/mi
2 = ain̂i/m̂i

2 s12d

lie below the instability lines,
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ni/mi
2 < hCi + aiDif1 − Resvidgj

3 S1 +
hCi + aiDif1 − Resvidgj2

faiDi Imsvidg2 D s13d

given by the condition Resli,±dø0. For identical parameters
ni /mi

2=n /m2 and ai =a, the minimum of these lines agrees
exactly with the numerically obtained curve in Fig. 1(d).
Values above this line cause small oscillations to grow over
time. Note that a synchronization of the oscillations is not the
typical case(although it may occur under certain circum-
stances[14]).

In some cases, all eigenvaluesvi of the input matrixA are
real. This applies to symmetric matricesA and matrices
equivalent to Jordan normal forms. Hence the existence of
loops in supply networks is no sufficient condition for com-
plex eigenvaluesvi [see also Fig. 1(f)]. It is also no neces-
sary condition. Asymmetric matrices with real eigenvalues
belong, for example, to sequential supply chains or directed
Cayley trees with equally weighted branches(and some
other symmetric distribution networks). In these cases, Eq.
(9) predicts a stable, overdamped behavior if all values
ni /mi

2=ain̂i / m̂i
2 lie below the lines

ni/mi
2 < fCi + aiDis1 − vidg/4 s14d

defined by minisAi
2−4Bid.0. For identical parameters

ni /mi
2=n /m2 and ai =a, the minimum of these lines corre-

sponds exactly to the numerically determined curve in Fig.

1(h). Above it, one observes damped oscillations around the
equilibrium state, but growing oscillations are not possible.
In supply systems without a price adjustment or comparable
mechanism(i.e., for ai →` or Ci =0), Eq. (14) predicts an
overdamped behavior for real eigenvaluesvi and

n̂i/m̂i
2 , Dis1 − vid/4 s15d

for all i, while Eq. (13) implies the stability condition

n̂i/m̂i
2 , Dif1 − Resvidgh1 + f1 − Resvidg2/Imsvid2j s16d

for all i, given that some eigenvaluesvi are complex.

IV. EXPLANATION OF SOME EMPIRICALLY OBSERVED
FEATURES OF BUSINESS CYCLES

Asynchronous oscillations seem to be characteristic for
economic systems. Due to phase shifts between sectors, they
imply that the aggregate behavior displays slow variations of
small amplitude compared to the single sectors(see Fig. 2).
If the function f isPid and the parametersni /mi

2 are suitably
specified, the nonlinearities in Eqs.(1)–(4) will additionally
limit the oscillation amplitudes, as low inventoriesNistd<0
will cause diverging pricesPistd→`, which in turn implies
vanishing consumptionYistd=0. The resulting equation can
be written

FIG. 1. (Color) Properties of our dynamic model of supply networks for a characteristic input matrix specified as average input matrix
of macroeconomic commodity flows of several countries(top) and for a synthetic input matrix generated by random changes of input matrix
entries until the number of complex eigenvalues was eventually reduced to zero(bottom). Subfigures(a) and (e) illustrate the color-coded
input matricesA, (b) and(f) the corresponding network structures, when only the strongest links(commodity flows) are shown,(c) and(g)
the eigenvaluesvi =Resvid+ i Imsvid of the respective input matrixA, and(d) and (h) the phase diagrams indicating the stability behavior
of the model equations(1)–(4) on a double-logarithmic scale as a function of the model parametersai =a and ni /mi

2=n /m2=V/M2. The
other model parameters were set toni =Ci =Di =Pi

0=Ni
0=Yi

0=1. Surprisingly, for empirical input matricesA, one never finds an overdamped,
exponential relaxation to the stationary equilibrium state, but network-induced oscillations due to complex eigenvaluesvi.
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dNistd
dt

= Qistd − o
j=1

m

aijQjstd, s17d

which implies growing inventories as long as consumption is
absent: Just assume thati was the first sector for which the
inventoryNistd became zero at some point in timet1. Then,
Qistd would diverge at timet1 and Qistd would dominate
o jaijQjstd because ofaij ,1, i.e., dNi /dt would be positive
andNistd would not drop below zero.

Our business cycle theory differs from the dominating one
[17] in several favorable aspects:

(i) Although finite perturbations may actually occur in
economic systems, our theory does not have to assume exo-
geneous shocks in order to explain business cycles. In the
case of growing oscillations they would rather emerge with-
out any external driving, just on the basis of decentralized
adjustments in the different sectors of an economic produc-
tion network. It is, by the way, surprising that increasing
oscillation amplitudes are found if the adaptation ratesni are
large. Nevertheless, many common production strategies
suggest to keep constant inventoriesNi

0, which potentially
destabilizes economic systems. Ideal values ofni /mi

2 should
lie below the instability line(13); see Fig. 1(d). (The stabi-
lizing adjustment to changesdNi /dt in the inventories is a

difficult task, as the time derivatives of empirical measure-
ments are considerably fluctuating quantities. The use of ex-
ponentially smoothed data, however, would cause delayed
reactions.)

(ii ) More importantly, our theory explains irregular, i.e.,
nonperiodic oscillations in a natural way(see Fig. 2). For
example,w-shaped oscillations result as superposition of the
asynchronous oscillations in the different economic sectors,
while other theories have to explain this observation by as-
suming external perturbations(e.g., due to technological in-
novations).

(iii ) Although our model may be extended by variables
such as the labor market, interest rates, etc., we consider it as
a potential advantage that we did not have to couple vari-
ables in our model which are qualitatively that different. Our
model rather focusses on the material flows among different
sectors. In this sense, it approaches the problem from a phys-
ics point of view. However, it remains to be investigated in
the future how successfully our model can forecast the mac-
roeconomic dynamics in this simple form.

V. SUMMARY AND OUTLOOK

While previous studies have focused on the synchroniza-
tion of oscillators in different network topologies[1,20], we
have found thatmany supply networks display damped oscil-
lations, even when their units—and linear chains of these
units—behave in an overdamped way. Furthermore, net-
works of damped oscillators tend to produce growing (and
mostly asynchronous) oscillations. Due to the sensitivity of
supply systems to their network structure, network theory
[1,2,8] can make useful contributions: On the basis of Eqs.
(13) and (14) one can design stable, robust, and adaptive
supply networks(“network engineering”). For example, it is
possible to identify structural and control policies which
have a dampening effect. However, in systems with compet-
ing goals (such as intersecting traffic streams), oscillatory
solutions can be favorable. The results presented in this study
and the applied analytical techniques could be also used and
generalized to model the dynamics in metabolic networks
[11,12] to enhance the robustness of production processes, or
to optimize disaster management[15].
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APPENDIX: MATHEMATICAL SUPPLEMENT

1. Linearized model equations

The linear stability analysis is based on the following lin-
earized equations for the deviations:nistd=Nistd−Ni

0, pistd
=Pistd−Pi

0, andqistd=Qistd−Qi
0, from the equilibrium state:

dni

dt
= qi − o

j

aijqj − Yi
0f i8sPi

0dpi − jistd, sA1d

FIG. 2. Typical simulation result of the time-dependent gross
domestic productoiQistdPistd in percent, i.e., relative to the initial
value. The input matrix was chosen as in Figs. 1(a)–1(d), but Yi

0

was determined from averaged input-output data.Qi
0 was obtained

from the equilibrium condition, and the fluctuationsjistd were
specified as a Gaussian white noise with mean value 0 and variance
s=10.000(about 10% of the average final consumption). The initial
pricesPis0d were selected from the interval[0.9;1.1]. Moreover, in
this example we have assumedf isPid=maxf0,1+dsPi −Pi

0dg with
d= f8sPi

0d=−10 and the parametersni =0.1, mi =0.0001,ai =1=Pi
0,

andNi
0=Yi

0. Although this implies a growth of small oscillations[cf.
Fig. 1(d)], the oscillation amplitudes are rather limited. This is due
to the nonlinearity of model equations(1)–(4) and due to the phase
shifts between oscillations of different economic sectorsi. Note that
irregular oscillations with frequencies between 4 and 6 yr and am-
plitudes of about 2.5% are qualitatively compatible with empirical
business cycles. Our material flow model can explainw-shaped,
nonperiodic oscillations without having to assume technological
shocks or externally induced perturbations. The long-term growth
of national economies was intentionally not included in the model
in order to separate this effect from network-induced instability
effects.
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dpi

dt
=

Pi
0

Ni
0S− nini − mi

dni

dt
D , sA2d

dqi

dt
=

aiQi
0

Ni
0 S− nini − mi

dni

dt
D . sA3d

This system of coupled differential equations describes the
response of the inventories, prices, and production rates to
variationsjistd in the demand. The corresponding eigenval-
ues are shown in Eq.(9).

2. Dynamic behavior in limiting cases

Despite their mathematical similarity, Eqs.(2) and (3)
have a surprisingly different impact on the macroeconomic
dynamics:

(i) In the caseai →0 of fast price adjustment, one can
eliminate Eq.(A3) by assumingqistd<0 andQistd<Qi

0, so
thatdni /dt<Yi

0uf8sPi
0dupistd−jistd. Inserting Eq.(A2) into the

time-derivative of this equation finally results in the equa-
tions

d2ni

dt2
+ miCi

dni

dt
+ niCini < −

dji

dt
sA4d

of damped harmonic oscillators with eigenfrequenciesvi
0

=ÎniCi, damping constantsgi =miCi /2, and external driv-
ing −dji /dt due to variations in the consumption rate.

(ii ) In the caseai @1 of slow price adjustment or in sup-
ply networks for which a price variable is not relevant, one
can eliminate Eq.(A2) by assumingpistd<0 andPistd< Pi

0,
so thatdni /dt<qi −o jaijqj −ji. Deriving this with respect to
time and inserting Eq.(A3) delivers

d2ni

dt2
+ o

j

sdi j − aijda jDjFm j
dnj

dt
+ n jnjstdG < −

dji

dt
, sA5d

wheredi j =1 for i = j , otherwisedi j =0. If we assume sector-
independent constantsaimiDi =M andainiDi =V, the 2m ei-
genvaluesli,± are given by

2li,± = − Ms1 − vid ± ÎfMs1 − vidg2 − 4Vs1 − vid. sA6d

For empirical input matrixesA, one never finds an over-
damped, exponential relaxation to the economic equilibrium,
but network-induced oscillationsssee Fig. 1d. An over-
damped behavior is only possible if all eigenvaluesvi are
real numbers.

(iii ) If sAid2/Bi @1, the eigenvalues become

li,− < − Ai andli,+ < − Bi/Ai = − ni/mi sA7d

swhere we have used the Taylor expansionÎ1+e<1+e /2
+¯d. This situation corresponds to a relaxation to the
equilibrium state in the case of a large responsivenessmi
@1. An overdamped behavior is found if all eigenvalues
vi are real numbers or if allai =0, otherwise one expects

network-induced oscillations. Interestingly enough,mi
@1 implies sdPi /dtd / smiPid<0, so that Eq.s3d reduces to
dNi /dt<nifNi

0−Nistdg /mi. ThereforeNistd<Ni
0 and dQi /dt

<0 si.e., Qi <Qi
0d. Inserting this into Eq.s1d yields an

implicit equation for the pricePistd as a function of the
fluctuationsjistd in the consumption rate, as usually as-
sumed in economics. It reads

fYi
0 + jistdgf i„Pistd… < Qi

0 − o
j

aijQj
0 = const. sA8d

3. Boundary between damped and growing oscillations

Starting with Eq. (9), stability requires the real parts
Reslid of all eigenvaluesli to be nonpositive. Therefore the
stability boundary is given by maxi Reslid=0. Writing

Ci + aiDis1 − vid = ui + ibi sA9d

with Ci =Pi
0Yi

0uf i8sPi
0du /Ni

0 and defining

ui = Ci + aiDif1 − Resvidg,

bi = 7 aiDi Imsvid scomplex conjugate eigenvaluesd,

gi = 4ni/mi
2, sA10d

we find

2li/mi = − ui − ibi + ÎRi + iI i sA11d

with

Ri = ui
2 − bi

2 − giui ,

I i = 2uibi − gibi . sA12d

The real part of Eq.(A11) can be calculated via the relation

ResÎRi ± iI id =Î1

2
sÎRi

2 + I i
2 + Rid. sA13d

The condition Res2li /mid=0 is fulfilled by gi =0 and

gi = 4uis1 + ui
2/bi

2d, sA14d

i.e., the stable regime is given by

gi

4
=

ni

mi
2 =

ain̂i

m̂i
2 ø uiS1 +

ui
2

bi
2D sA15d

for all i, corresponding to Eq.(13).
Boundary between damped oscillations and overdamped

behavior:For ai .0, the imaginary parts of all eigenvalues
li vanish if Imsvid=0 (i.e.,bi =0) and if Ri ù0. This requires

4ni

mi
2 = gi ø ui −

bi
2

ui
= ui = Ci + aiDis1 − vid sA16d

for all i, corresponding to Eq.(14).
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