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Network-induced oscillatory behavior in material flow networks and irregular business cycles
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Network theory is rapidly changing our understanding of complex systems, but the relevance of topological
features for thedynamicbehavior of metabolic networks, food webs, production systems, information net-
works, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks,
we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and
engineering systems. We find that most supply networks digpdayped oscillationseven when their units—
and linear chains of these units—behave inamoscillatoryway. Moreover, networks olampedoscillators
tend to producgrowing oscillations. This surprising behavior offers, for example, a different interpretation of
business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns
out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.
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[. INTRODUCTION tion of timet. A shareX;;(t)=0 of that output is required as
input for generating or delivering resourge and a share
complex systems. Topological featurg determine inter- Yi(t)zo is absorbed, for example by consumption, deqenera-
esting properties of socioeconomic netwofk$ or the ro- tion, or loss. IfE]-X”-(t)_+Yi(t) does not aF"d up 1Qy(t), this is
bustness of the World Wide WeB], of sensory systenfg], ~ assumed to result in a corresponding chaibit+At)

and food webg7]. Their relevance for dynamic features, ~Ni(t)] of the stock, inventory, or concentratidf(t) of re-
however, is not well understood. Specific network structure$OUrcel per unit imeAt. This assumption implies eonser-
appear to be responsible for the beating of a leech’s figgrt  Vation equatiorfor resourcegwhich can be generalizedn
pumping effects in some slime molf, strong variations in  the limit At—0 it reads

Network theory[1,2] is an important key to explaining

ecosystem§lQ], or glycolytic oscillations in yeast cel[41]. - outflow
Many of those systems, including molecular netwofkg], aNi(t) _ Qilt) — Z“‘fQi(t) + {{(?)] , (1)
can be viewed as particular supply networks. Their function- dt ~ L0

supply )
demand

ing is decisive for natural and man-made systems, but prone
to oscillations: For example, industries often suffer from
over-reactions in productiofil3,14, disaster management considering that the flouX;;(t) of resources from supplier
struggles with a temporary clustering of forces and materialsepresents a shaig;Q;(t)=0 of the entire inputs used by
at some places while they are missing at otHdi§], and  supplierj. In Leontief’s input-output model of macroeco-
national economies are characterized by “booms” and “renomics [18], the m suppliers correspond to different eco-
cessions”[16,17. Based on a simple model of interactive nomic sectors producing one kind of commodiach.Q;(t)
flows, we will show that the likely reason for these instabili- describes the output flow am(t) the inventory of commod-
ties and oscillations is the underlying network structure oﬁty i. The stoichiometric coefficients; <1 define an input
supply systems. This is illustrated with a model of macro-matrix A=(a;) and reflect the technologically determined
scopic commodity flows. o supply network between economic sectbend j. For sim-
_The relevance of our approach for physics is twofold: pjicity, we will treat the input coefficients; as constants.
First, we generalize conservation equations for flows in'" The change of the delivery ra@(t) in time is generally

three-dimensional cont_inuous spaces to network flows. Seg functionW, of the stock levels or concentratiohs, their
ond, we show that chains of damped elements behave quaHémporaI changelN;/dt, and the delivery rate; them-

tatiyely different from m_atworlgs of these elements, if inter- selves:dQ/dt=W({N},{dN,/dt}, {Q;}) with je{1,... m}.
actions are not symmetric. This applies, for example, to somg, our model of macroeconomic output flows, the delivery
networks of electronic components. ratesQ(t) are adjusted in response to two criteria: First, if
the current inventory;(t) exceeds some “optimal” IevNiO,
the delivery rate is reduced and vice versa. A certain inven-
tory level is desireable to cope with variations in the demand.
Our simple model of supply networks describes the genSecond, if inventories are growin@N,/dt>0), i.e., if the
eration or delivery of products, substances, materials, ogurrent supply Q(t) exceeds the current demand(t)
other resources of kindat a certain rat€;(t)=0 as a func-  +2;g;Q;(t), this is an independent reason to reduce the de-

Il. MODEL OF MATERIAL FLOW NETWORKS
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livery rate Q;(t). The following equation for the relative d?} - dN
change in the delivery rate expresses these responses and d—': p(eNO - 1) - ,&id—' (7)
guarantees a non-negativity Qf(t): t t
R d
1 dQ A< N 1) pi dN 2 o
e Y| o gy PR KR ~ ~
. _ . dpP, N dN,
Q|(t) dt Nl(t) Nl(t) dt d_tl - Vi(e—Ni(t) _ 1) _ Mid_tl_ (8)

Here, 7, is an adaptation rate describing the sensitivity to
deviations of the actual inventoiy(t) from the desired one
NP. 4 is a dimensionless parameter reflecting the responsive- !Il: DYNAMIC BEHAVIOR AND LINEAR STABILITY

ness to relative deviatior(sIN;/dt)/N;(t) from the stationary ANALYSIS

equilibrium state. Moreover, economic systems have an im- The possible dynamic behaviors of supply networks can
portant additional equilibration mechanism, as undesired inpe studied by analytical investigation of limiting cagese
ventory levels and inventory changes can be compensatefle Appendiy and by means of a linear stability analysis
for by adjusting the pricé(t) of commodityi. If the same  around the equilibrium statin which we haveN;(t)=N?,

criteria are applied, we find Yi()=Y?, QiO_EjaiijO: 9 and P;(t)=P"]. Supply systems
1 dP O dN without a mechanism analogous to price adjustment are cov-
L yi(—' - 1) e b (3)  ered by cases wheeg — o or f;(P;)=const for alli (no price
Pi(t) dt Ni(t) Ni(t) dt sensitivity).

Denoting them eigenvalues of the input matri&k by o;
with || <1, the 3n eigenvalues of the linearized model
equations are 0m time9 and

We will assume thaty, =7,/ v; is the ratio between the adjust-

ment rate of the output flow and the adjustment rate of th

price in sectori. For simplicity, the same ratia;= i/ w; is

assumed for the responsiveness. 1 R
Increased price®,(t) have a negative impact on the con- Ni+= 5(— A £1\(A)*-4B), 9)

sumption rateY;(t) and vice versa, which is described here

by a standard demand functidpwith a negative derivative where

fi(P)=dfi(P)/dP; A = wilCi+ aiDi(1 - wy)],
Yi(1) = [Y2 + &) Ifi(Pi(1).
(0 =[Y?+ & (Py(D) (4) B = 1[G, + aDy(1 )],
This formula takes into account random fluctuaticfii)
over time around a certain average consumption Yatand C, = P2YY|f/ (PY)|/N?,
assumes that the average valud;(®;(t)) is normalized to 1.
The fluctuation tern¥(t) is introduced here in order to indi- D; = QYN?. (10)

cate that the variation of the consumption rate is a potentiall){: o
relevant source of fluctuations. Nevertheless, we do not foEormula(9) becomes exact when the matAxis diagonal or

cus on the investigation of noise-induced effects in this papei® Parameterg,iC;, «wD;, »C;, and ;1 D; are sector-

as we mainly want to present a model which can reproducé'dépendent constants, otherwise the eigenvalues must be
observed features of macroeconomic dynamiitaout hav- numerically determined. It turns out that the dynamic behav-

H 2
ing to assume fluctuations to account for unexplained effect!r mainly depends on the parameters »/w;", and the

(see Sec. IY. eigenvaluesy; of the input matrixA (see Fig. 1 In the case
Inserting Eq.(4) into Eq. (1) results in a;— 0 of fast price adjustment, the eigenvalugs are given
by
dN(©) S yo 2\ = - wCi £ V(1 C)? - 4nC (11)
at =Qi(t)_21a‘iQi(t)_[ P +&EOIR(PD). (5 i+~ T MG E NG iCis
J:

i.e., the network structure does not matter at all. We expect
For certain specifications df(P;) and finite fluctuation am- an exponential relaxation to the stationary equilibrium for
plitudesé (t) one may therefore find phenomena like stochasO< i/ u° < Ci/4, otherwise damped oscillations. Therefore
tic resonancg19]. In our simulations, we have applied the immediate price adjustments or similar mechanisms are an

common linear demand function efficient way to stabilize economic and other supply systems.
However, any delayq; >0) will cause damped or growing
fi(P) = max0,f? - fP;) (6)  oscillations, if complex eigenvalues=Re(w;) +i Im(w;) ex-

ist. Note that this is the normal case, as typical supply net-
works in natural and man-made systems are characterized
by complex eigenvalugsee the top of Fig. )L Damped os-
cillations can be shown to result if all values

used by economists, Whef%andfil are non-negative param-
eters.

We would also like to note that Eq&2) and(3) may be
simplified by Cole-Hopf transformations, while it does not

help to reduce Eq(l). Defining Ni(t)=In[N(t)/N°], Pi(t) vilw? = eyl fy? (12)
:In[Pi(t)/Pio], anin(t):In[Qi(t)/Qio], we can write lie below the instability lines,
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FIG. 1. (Color) Properties of our dynamic model of supply networks for a characteristic input matrix specified as average input matrix
of macroeconomic commodity flows of several count(iep) and for a synthetic input matrix generated by random changes of input matrix
entries until the number of complex eigenvalues was eventually reduced tghodtom). Subfigurega) and(e) illustrate the color-coded
input matricesA, (b) and(f) the corresponding network structures, when only the strongest(lboksmodity flows are shown(c) and(g)
the eigenvalues;=Regw;)+i Im(w;) of the respective input matri&, and(d) and(h) the phase diagrams indicating the stability behavior
of the model equationél){4) on a double-logarithmic scale as a function of the model parameters and vi/,uiz:v/,uZ:V/MZ. The
other model parameters were seb/tgcizDizP?:Nf’:Yf’:l. Surprisingly, for empirical input matrices, one never finds an overdamped,
exponential relaxation to the stationary equilibrium state, but network-induced oscillations due to complex eigesyvalues

Vi/,U«iZ ~{C+ aDi[1 - Rdw)]} 1(h). Above it, one observes damped oscillations around the
) equilibrium state, but growing oscillations are not possible.
% (1 + {Ci + aDi[1 - Rew)) ]} ) (13) In supply systems without a price adjustment or comparable

[a;D; Im(w;)]? mechanism(i.e., for a;— or C;=0), Eq. (14) predicts an

given by the condition R@,; .) <0. For identical parameters overdamped behavior for real eigenvalugsand
Vi/,ui2=V/,u2 and a;=a, the minimum of these lines agrees
exactly with the numerically obtained curve in FigcdyL
Values above this line cause small oscillations to grow over
time. Note that a synchronization of the oscillations is not the
typical case(although it may occur under certain circum- ) )
stanceq14)). Vi/Mi < Di[l - Re(wi)]{l +[1- Rdwi)] /Im(w;) + (16)
In some cases, all eigenvaluesof the input matrixA are o _
real. This applies to symmetric matricés and matrices for all i, given that some eigenvalueg are complex.
equivalent to Jordan normal forms. Hence the existence of

'°|°ps In S“pﬁ"y networks I'S ”E.S”fif'c'el?t. Corl‘d'“on for com- \, Expl ANATION OF SOME EMPIRICALLY OBSERVED
plex eigenvaluesy; [see also Fig. d)]. It is also no neces- FEATURES OF BUSINESS CYCLES

sary condition. Asymmetric matrices with real eigenvalues
belong, for example, to sequential supply chains or directed Asynchronous oscillations seem to be characteristic for
Cayley trees with equally weighted branchemd some economic systems. Due to phase shifts between sectors, they
other symmetric distribution networksin these cases, Eq. imply that the aggregate behavior displays slow variations of
(9) prEdiCtS a Stable, Overdamped behavior if all ValUESsma” amp"tude Compared to the Sing|e Sec(m F|g 2_
vl w?= il iv? lie below the lines If the function f;(P,) and the parameters/ ;> are suitably
2 specified, the nonlinearities in Eqd.)—(4) will additionall

wlw” =[G+ @Dl = w))/4 (14) Iirglit the oscillation amplitudes, gs I)o_\fv )inventoriw(t)zg
defined by mir(Ai2—4Bi)>0. For identical parameters will cause diverging price®;(t) — o, which in turn implies
vl w?=vl u? and ;= @, the minimum of these lines corre- vanishing consumptiofY;(t)=0. The resulting equation can
sponds exactly to the numerically determined curve in Fighe written

ol % < Di(1 - wyp)/4 (15)

or all i, while Eq.(13) implies the stability condition
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A difficult task, as the time derivatives of empirical measure-
ments are considerably fluctuating quantities. The use of ex-
ponentially smoothed data, however, would cause delayed
reactions,

(i) More importantly, our theory explains irregular, i.e.,
nonperiodic oscillations in a natural wagee Fig. 2 For
example w-shaped oscillations result as superposition of the
asynchronous oscillations in the different economic sectors,
98 T I —> while other theories have to explain this observation by as-

0 10 20 30 suming external perturbatiorie.g., due to technological in-

Time (years) novations.
(iii) Although our model may be extended by variables

FIG. 2. Typical simulation result of the time-dependent grossgych as the labor market, interest rates, etc., we consider it as
domestic pr.oducEiQi(t.)Pi(t) in percent, i.g., rglative to the ini(t)ial a potential advantage that we did not have to couple vari-
value. The input matrix was chosen as in Fig@31(d), but Y7 gpjes in our model which are qualitatively that different. Our
was determined from averaged input-output dgiawas obtained o ef rather focusses on the material flows among different
from the equilibrium condition, and the fluctuatiodgt) were sectors. In this sense, it approaches the problem from a phys-
specified as a Gaussian white noise with mean value 0 and varian(izgs point of view. However, it remains to be investigated in

B : : e and \
0=10.000(about 10% of the average final consumpliorhe initial -y 1+ e how successfully our model can forecast the mac-
pricesP;(0) were selected from the intervg0.9;1.1. Moreover, in . T L

roeconomic dynamics in this simple form.

this example we have assuméltﬂPi):ma){O,1+d(Pi—Pi0)] with
d=f'(P%)=-10 and the parameter$=0.1, x;=0.0001,a;=1=P?,
andN?=Y?. Although this implies a growth of small oscillatiofe. V. SUMMARY AND OUTLOOK
Fig. 1(d)], the oscillation amplitudes are rather limited. This is due . . . .
to the nonlinearity of model equatioii$)—(4) and due to the phase . While prewous.stughes have focused on the synchroniza-
shifts between oscillations of different economic sectoidote that tion of oscillators in different network tqpolog|¢$,20], we )
irregular oscillations with frequencies between 4 and 6 yr and amP@ve found thamany supply networks display damped oscil-
plitudes of about 2.5% are qualitatively compatible with empiricallations, even when their units—and linear chains of these
business cycles. Our material flow model can explaishaped, ~Units—behave in an overdamped way. Furthermore, net-
nonperiodic oscillations without having to assume technologicaWorks of damped oscillators tend to produce growing (and
shocks or externally induced perturbations. The long-term growtimostly asynchronous) oscillationBue to the sensitivity of
of national economies was intentionally not included in the modelsupply systems to their network structure, network theory
in order to separate this effect from network-induced instability[1,2,8 can make useful contributions: On the basis of Egs.
effects. (13) and (14) one can design stable, robust, and adaptive
supply networkg“network engineeringj. For example, it is

102

100

Gross national product (%)

d m possible to identify structural and control policies which
dNi() =Qi(t) - > a; Qi (1), (17)  have a dampening effect. However, in systems with compet-
dt =1 e ing goals(such as intersecting traffic streamsescillatory

solutions can be favorable. The results presented in this study

which implies growing inventories as long as consumption isand the applied analytical techniques could be also used and
absent: Just assume thawas the first sector for which the generalized to model the dynamics in metabolic networks
inventory N;(t) became zero at some point in tihe Then,  [11,12 to enhance the robustness of production processes, or
Qi(t) would diverge at timet; and Q,(t) would dominate to optimize disaster managemdb].
2;a;Q;(t) because of;; <1, i.e.,dN,/dt would be positive
and N;(t) would not drop below zero. ACKNOWLEDGMENTS

Our business cycle theory differs from the dominating one

[17] in several favorable aspects: tion (DFG research projects He 2789/5-1 and)@et partial

(i) Although finite perturbations may actually occur in financial support of this project. S.L. appreciates his scholar-
economic systems, our theory does not have to assume ex 7ip by the Studienstiftung des Deutschen Volkes.

geneous shocks in order to explain business cycles. In the
case of growing oscillations they would rather emerge with-
out any external driving, just on the basis of decentralized APPENDIX: MATHEMATICAL SUPPLEMENT
adjustments in the different sectors of an economic produc-
tion network. It is, by the way, surprising that increasing ] - o o
oscillation amplitudes are found if the adaptation ratesre The linear stability analysis is based on the following lin-
large. Nevertheless, many common production strategie8arized equations for the deviations(t)=N;(t)=N?, p;(t)
suggest to keep constant inventorid$ which potentially  =P;(t)=Pf, andg(t)=Q;(t)—=Q?, from the equilibrium state:
destabilizes economic systems. Ideal values, Q&iz should dn

I!el below the instability ling(13); see Fig. @). (Thg sta}b|— —=qgq-> a;q; - Y/ (PO)p; - &(1), (A1)
lizing adjustment to changedN;/dt in the inventories is a dt j

The authors are greatful to the German Research Founda-

1. Linearized model equations
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dp, piO dn network-induced oscillations. Interestingly enough;
e @(‘ ﬁMiE), (A2)  >1 implies(dP,/dt)/(u;P,) =0, so that Eq(3) reduces to
' dN/dt= [N°=N;(t)]/ wi. ThereforeN;(t)=N° and dQ /dt
0 ~0 (i.e., Q=Q)). Inserting this into Eq.(1) yields an
dg :“i_Qi(_ N _Md_“) (A3) implicit equation for the priceP;(t) as a function of the
dt  N? b dt fluctuations &(t) in the consumption rate, as usually as-

This system of coupled differential equations describes théumed in economics. It reads

response of the inventories, prices, and production rates to 0L &M 1F(D.(H)) ~ 0 — 0=
variations&(t) in the demand. The corresponding eigenval- [YP+ 60IF(P0) = Q ;a”QJ const.  (A8)
ues are shown in Eq9).

3. Boundary between damped and growing oscillations

2. Dynamic behavior in limiting cases Starting with Eq.(9), stability requires the real parts

Despite th_ei_r mathematical similarity, Eq&) and (3) “Re(\) of all eigenvalues,; to be nonpositive. Therefore the
have a surprisingly different impact on the macroeconomistability boundary is given by maRe(\;)=0. Writing
dynamics:

(i) In the caseq;— 0 of fast price adjustment, one can Ci+aDi(l-w)=6+ip (A9)
eliminate Eq.(A3) by assumingy(t)~0 andQ;(t)=~Q?, so with C,=P°Y9|f/(PY)|/NC and defining
thatdn/dt=Y°|f'(PY)|pi(t) - &(t). Inserting Eq(A2) into the Lo

time-derivative of this equation finally results in the equa- 6,=C;+ aDj[1 - R w;)],
tions
&n dn, dé Bi= F o;D; Im(w;) (complex conjugate eigenvalyes
W"'Micia""’icini =~ (A4) ,
v =4vl S, (A10)

of damped harmonic oscillators with eigenfrequenaié’s

=yy,C;, damping constants;=u;C;/2, and external driv-

ing —d¢;/dt due to variations in the consumption rate. 2\l == 6 —iB + \m (A11)
(i) In the casey;>1 of slow price adjustment or in sup-

ply networks for which a price variable is not relevant, oneWith

can eliminate Eq(A2) by assumingp;(t) =0 andP;(t) =~ P?,

so thatdn,/dt~q;—2;a;q;—§. Deriving this with respect to

time and inserting EqA3) delivers

we find

R =67 =%~ %6,

li =268~ 7B (A12)
dn; dny dé . .

) + (8 —a)eD;| » m +yni(t) | =~ - It (A5)  The real part of Eq(A11) can be calculated via the relation
j

. , S 1 57,2
where §;=1 for i=], otherwised;=0. If we assume sector- Re(VR £ilj) = E(\rRi +1“+R). (A13)

independent constantgu;D;=M and a;»,D;=V, the 2n ei-
genvalues\; , are given by The condition R&\;/ u;)=0 is fulfilled by 3,=0 and

2Ni:=-M(1-0) +\[M1-0)P-4V(1-w). (A6) ¥ =46(1+6%B2), (A14)

For empirical input matrixes\, one never finds an over- j.e., the stable regime is given by
damped, exponential relaxation to the economic equilibrium,

but network-induced oscillationgsee Fig. 1 An over- ﬁ_i_ai_ffi <0 1+9_i2 A15
damped behavior is only possible if all eigenvalugsare 4 p2 2 2 (AL5)
p y p g ue; Mmoo ,

real numbers. ) )

(i) If (A)?/B;>1, the eigenvalues become for all i, corresponding to Eq13).

Boundary between damped oscillations and overdamped
Ni-=-—A and\; .= -Bi/A =- vl (A7) behavior: For ;> 0, the imaginary parts of all eigenvalues
' o ey _ R =0. Thi ;

(where we have used the Taylor expansidite~1+e/2 A vanish if Im(w) =0 (i.e., £=0) and if R =0. This requires
+---). This situation corresponds to a relaxation to the 4y, ,3i2
equilibrium state in the case of a large responsivengss —SE=nNS6- i 6=Ci+aDi(l-w) (Al6)
>1. An overdamped behavior is found if all eigenvalues i !

w; are real numbers or if all;=0, otherwise one expects for all i, corresponding to Eq14).
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