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The aim of the paper is to study the renormalizations of the charge and screening length that appear in the
large-distance behavior of the effective pairwise interactigp, between two charges, ande, in a dilute
electrolyte solution, both along a dielectric wall and in the bulk. The electrolyte is described by the so-called
primitive model in the framework of classical statistical mechanics and the electrostatic response of the wall is
characterized by its dielectric constant. In a previous pdpéys. Rev. E68, 022133(2003] a graphic
reorganization of resummed Mayer diagrammatics has been devised in order to exhibit the general structure of
the 14?2 leading tail ofw,,(x,x’,y) for two charges located at distanceandx’ from the wall and separated
by a distancey along the wall. When all species have the same closest approach dibtémeke wall, the
coefficient of the 1y tail is the producD (x)D,(x’) of two effective dipoles. Here we use the same graphic
reorganization in order to systematically investigate the exponential large-distance behawigy @f the
bulk. (We show that the reorganization also enables one to derive the basic screening rules in bothteases.
in a regime of high dilution and weak coupling, the exact analytical corrections to the leadingwgj},.oboth
in the bulk or along the wall, are calculated at first order in the coupling parameted in the limit whereb
becomes negligible with respect to the Debye screening lerigtis proportional to the so-called plasma
parametey. The structure of corrections to the terms of ordeis exhibited, and the scaling regime for the
validity of the Debye limit is specified. In the vicinity of the wall, we use the density profiles calculated
previously[J. Stat. Phys105 211(2001] up to ordere and a method devisdd. Stat. Phys105, 245(200D]
for the determination of the corresponding correction in the auxiliary screened potential, which also appears in
the linear-response theory. The first coupling correction to the effective dipgbe is a function(not a mere
exponential decgydetermined by the nonuniformity of the density profiles as well as by three- and four-body
screened interactions im,,. Though the effective screening lengtieyond the Debye valyén the direction
perpendicular to the wall is the same as in the bulk, the bare solvated charges are not renormalized by the same
quantity as in the bulk, because of combined steric and electrostatic effects induced by the wall.
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[. INTRODUCTION positive or negativg.The solvent is handled with as a con-
tinuous medium of uniform dielectric constadt,,. The wall

matter is characterized by a dielectric consigp# e, and

The paper is devoted to the large-distance behavior of thgye |atter difference resuits in an electrostatic response of the
pairwise effective interaction between two charges in anyg|| to the moving charges in the electrolyte. Moreover, the
electrolyte solution, which is confined to the regior 0 by gxcluded-volume sphere of every particle is assumed to be
a plane impenetrable dielectric wall. The electrolyte solution,54e of a material with the same dielectric constant as that
is described by the usugtimitive model[1] with ng species ¢ the solvent(Thereforee= e, whenx>0 ande= ¢, when
of charges which interact via the Coulomb interaction. Everyx<0.) In the framework of statistical mechanics, the effec-
charged particle of speciea is represented as a hard e pairwise interactiomw,(r,r’) between two charges,

sphere—with diametew,—where the net bare solvated gnqe . |ocated at positions andr’, respectively, is defined
chargee,=Z_e is concentrated at the center of the spherefrom the pair correlation functionh,, by (see, e.g

(e is the abolute value of the electron charge andnay be Ref. [2])

A. Issue at stake

1+ haa’ = eXF(_ ﬁ,\Naa’)v (1)
*Laboratoire associé au Centre National de la Recherche Scienti-
fique, UMR 5672. Present address: Institute for Physical Sciencwhere 8=1/kgT is the inverse temperature, in whidq is
and Technology, University of Maryland, College Park, MD 20910, the Boltzmann constant anfl is the absolute temperature.
USA. (w,, is also called potential of mean force, white,, is
TCorresponding author. Laboratoire associé au Centre National dénown as the Ursell functiop.n the vicinity of the wall,
la Recherche Scientifique, UMR 8627. Electronic addresssymmetries enforce that,,(r,r’)=w,,(x,x’,y), wherex
cornu@th.u-psud.fr andx’ are the distances ofandr’ from the wall andy is the
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norm of the projectiory of r —r’ onto the wall plane. Along — 26, € 0D
the wall, contrary to the bulk casey,, (x,x’,y) does not Dy¥)==/—

decay exponentially fast: its leading behavior at large dis-

tancesy takes a dipolar forni,,, (x,x')/y® as a result of the whereG$®(x) tends to zero exponentially fast over a scale of

deformation of screening clouds enforced by the presence frder 1/p. In Gauss units, the Debye length reads
the wall (see Ref[3] for a review or, e.g., Ref4]).

An electrolyte solution can be considered as a dilute a__ [|ATBEG L, s
charge fluid where the closest approach distance between the §p =kp= e ZoPar 5
center of a charge with speciesand the dielectric wall takes ov o«
the same valud for all species. The reason is that the dif- where pS is the bulk density of speciea. Here C, is a
ferences in the various ion diameters are negligible with regonstant which vanishes, as well ggxp(x), in the infinite-
spect to all other characteristic lengtfi,=b for all a's, gijution and vanishing-coupling limit considered hereafter.
whetherb, is only determined by the radius of the excluded-1pe global minus sign in Eq4) has been introduced, be-

volume sphere of speciesor b, involves some other more ¢4se in the latter limit and in the case of a plain wal|
complicated microscopic mechanism for the short-distance 5( )i ted 1o h th . the dibol
repulsion from the wall. For instance, a layer of water moI-‘eSO'V)' ¢\X) 1S Expected o have the same sign as Ihe dipole

ecules, with a thickness of molecular dimensions, may ligl(X) carried by the set made of a positive unit charge and its
between the wall and the electrolyte solution, as has beefcréening cloud repelled from the wall. The sign of
suggested, for instance, for another situation, the mercunyA€P€nds on the temperature, on the composition of the elec-
aqueous solution interfadé].) As a consequence, as shown Folyte, on the value of the closest approach distantethe
in Ref. [4], called paper | in the following, the coefficient Wall, and on the dielectric constandgy and ey ,
f...(x,x') of the 1A2 tail of w,,.(x,x',y) is a product of .In an electrolyte solu'tlon, th,'s of all speciexx’s are of
effective dipolesD,(x) and D, (X'): unit order and the dlameterSra’s_ of excluded-volume
“ “ spheres also have the same typical value, denotedr.by

Moreover, all densitiep®'s are of the same magnitude order.
Thus, if the solution is highly diluted, the Coulomb coupling
between charges of any species separated by the mean inter-
particle distancea is weak: the condition of low densities,
[Therefore the tail ofv,,(x,x",y) between two particles of o/a<1, implies thatBe?/ (es,\a@) <1, if the temperature is
the same speciesis repulsive whex=x', as is the case for high enough forBe?/ (esq0) to be far smaller than 1 or of
identical point dipoles with the same directipn. unit order. Detailed scaling regimes are given in Sec. | B. In

The general resul¢2) arises from a property about the the corresponding limit, denoted by the supersai@pthere-
screened potentiap defined as follows(595q’ / eso) ¢ is the  after, where the fluid is infinitely diluted and extremely
immersion free energy between tvnfinitesimal external weakly coupled, the large-distance behawdf,(r,r’) of
point chargessq and 89’ calculated in the framework of the the effective pairwise interaction,,,(r,r’) is the same as if
linear-response theory as if the radii of the excluded-volumehe chargese, and e, were infinitesimal external point
spheres of the fluid charges were equal to zgpb [The  charges embedded in the infinitely diluted and vanishingly
effect of hard cores is briefly discussed after E8p).] As  coupled fluid:
shown in paper I, when all particles have the same closest

[1+Cy+GSAN], (4

€solv KD

Do(X)D o (X')
W (X XY) ™~ ————. (2
y~>+oc y

approach distancke to the wall, WAt = iz 7,479, (6)
o €solv o
, D 4(X)D 4(X") Moreover, in this limit, the density profiles are uniform at
P(x X' y) ~ —ETEE (3) y p

Yoo y? ' leading order an(ﬂ?f,?)(x) is gi\@n by Eq.4) where the con-
- stant C, and the function G5 "(x) vanish: Cff)=0 and
[In Eq. (3), D4(x) vanishes forx<b.] In the following, a GZXP(O)(X)zo [7.,8]. Then, by virtue of Eqs(2) and(6),
quantity that is independent of charge species denoted

by an overlined letter when it is analogous_to another one D(O)(X) — L_Z 5((;))()()

that depends ow, as is the case fdD (x) andD 4(x). Since “ VéEsoly ¢

¢ obeys an “inhomogeneous” Debye equation where the ef-

fective screening length depends on the distané®m the _ —0 \/TEW g *p(x-b)

wall through the density profile® ,(x) has the same sign at with  Dyg'(x) = - a{ PR (7)

any distancex from the wall, contrarily to the effective di-

pole D(x), the sign of which maya priori vary with dis- As long as the dilution is high enough, the large-distance
tancex. Thus, the 1y3 tail of &(x,x’,y) is repulsive at all behavior w2, (r,r’) of the effective pairwise interaction
distancesc andx’ from the wall. Moreover, tha-dependent W, (r,r’) is expected to have the same functional form as
screening length tends to the Debye lengghat large dis- its expression wii(,))(r ,I’) in the infinite-dilution and

tances, and ,(x) can be rewritten, fox>b, as vanishing-coupling limit. This assuption is supported by two
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reasons. First, since densities are low, the functional form opair interactions between ions, whereas along the wall they
the large-distance behaviaf® ,(r,r’) is ruled by the effect involve also the electrostatic potential and the geometric
of long-range Coulomb interactions, whereas short-rangegonstraint created by the wall. In order to investigate these
hard-core repulsions are only involved in the values of thedifferences, we also determine the bulk pairwise interaction
coefficients of this leading tail. Second, the leading Coulombn,,,, up to the same order in the coupling parameter as for
effects are due to the large-distance nonintegrability of Couthe pairwise interaction along the wall.
lomb interaction, and the leading-order contribution from
any integral involving the Boltzman factor of either the ef- B. Main results
fective interactionw,,, or the bare Coulomb interaction o
e.e, v is obtained by linearizing the latter exponential fac- In the present paper we determimé;a,( r-r’|), (%),
tors. This is the procedure that underlies the Debye-Hiickeind D,(x) up to first order in the dimensionless coupling
approximation for bulk correlations, which was initially de- parameter
rived as a linearized Poisson-Boltzmann theory, whege
is dealt with in a linear-response framework as if chamgges 1
and e,, were infinitesimal external chargd4,9]. [In the €= EKD
Mayer diagrammatic approach of Debye-Hickel theory, the
linearized Boltzmann factor is that of the bare potential andp regimes wheres<1, (o/a)3<1 and kpb<1. Here e
one must also resum the infinite series of the most divergent (ge?/ e, 2)32 and Eq.(11) implies thatBe?/ eg,,<a< &p.
integrals that arise from this linearizatiofsee, .9, (yp to a factor of 1/2¢ coincides with the so-called plasma
Ref. [2]).] The second reason amounts to state that Ieadmgarameter of anelectron gaés shown in Sec. Ill, contribu-
Coulomb effects are properly described in a linearized mean;ons from steric effects involvingr/a are corrections of
field scheme. . higher order with respect to the terms of ordein some

In other words, as long as the dilution and temperature ar€caling regimes of high dilution whete/a)3<e. Moreover,
high enough, i3, the many-body effects beyond the lin- 55 shown in Sec. V C 3, the first corrections involvikgh
earized mean-field structure Only result in the renormalizaappear on|y at ordes |n(KDb)_ In the first Sca“ng regime,
tion of charges and of the screening length with respect tghe density vanishes while the temperature is fixed; then,

their values in the infinite-dilution and vanishing-coupling ge?/ (e, o) and Be?/ (e,,b) are fixed—namely,

limit—namely, with respect to the bare solvated chaiggs

and the Debye screening lengtly. For instance, in the o\3

bulk, w®3%r,r') behaves as the leading-order function (g) xg” and kpbxe<1 regime(l). (12

wza"’,‘io)(r,r’) given by the Debye-Hiickel theory for point

charges, but bare charggg's and the Debye lengtk;' are  In the second case, the density vanishes while the tempera-

replaced by effective chargez'f; ef's and the screening ture goes to infinity, but not too fast in order to ensure that

length k5., respectively: (0/8)*<e; then, bothBe?/ (eson0) and B/ (esopb) vanish.
These conditions can be summarized in the following way:

Be?

€solv

<1. (11)

B
Waa’(|r _r’|) -~
[r=r'|—+ €solv

3
g2 < (g) <e<kpb<1 regime(2). (13

where
7TBO =7  and «9 =« 9) The express_ions at leading ordgra’rand KDb_ in regim§(2)
@ “« B D can be obtained from those derived in regictgfor a fixed
(In the following, the superscript “B” signals all bulk quan- ratio (e/xpb) < Be?/(esob) by taking the limit where
tities)) In the present paper we show that the effective dipoleBe?/(eso) goes to zero whileb is kept fixed.We notice
D.(x) in the large-distance pairwise interaction along a di-that, when the solvent is water, the Bjerrum lengtt/ ey,

electric wall takes the form at room temperature is about 7 A and, for concentrations
o) around 10* mol/liter, ¢ is of order 102 and (o/a)® is of
- _ zﬂ\’ € _effw® expy ordere? for o~5 A. For the sake of conciseness, both re-
D(X) —Z, [1+GAX)], ; : :
€solv \ Esoly K gimes(1) and(2) will be referred to as the “weak-coupling ”

(10) regime and we shall speak only in termssoéxpansions.

Our exact analytical calculations are performed in the
where GZ®(x) is an exponentially decaying function which framework of resummed Mayer diagrammatics introduced in
tends to 0 whemx goes to infinity. At distances from the wall paper I. For the inverse screening length in the bulk we re-
larger than a few screening length3,(x) takes the same trieve[10,1] that, up to ordek,
functional form asD(f)(x), and many-body effects reduce to 5
the intro_dluction of effective chargé’%ff Wand of a screening ke = KD|:1 +8(§> In3 + 0(8)] , (14)
length ™= 2,/ 4

On the other hand, in the bulk many-body effects upon
effective charges and the screening length arise only frorwhere
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Ns density profiles and from screened interactions via two inter-
Sm= pEZ’;‘. (15) mediate charges. These profiles, which have been calculated
a=1 explicitly in the limit of vanishingxpb in Ref. [13], result
from the competition between, on the one hand, the screened
given in Eq.(64). As announced above, only screening of. Self-energy arising both from the electrostatic response of the

fects of the non-integrable long-range Coulomb interactior}’vaII and its steric deforr_natmn of screening .CIOUdS' E.ind’ on
are involved up to ordee; the diametersr,'s of charges the other hand, the profile of the electrostatic potential drop

appear only in higher-order terms. This property holds in thé"’hiCh these two effects induce in the electrolyte. More pre-

bulk as well as in the vicinity of a wallsee, e.g., Ref12]).  CiSely, C(qb}) written in Eq. (146 is the first-order renormal-
More generally, the specific form of the short-distance steridzation of the amplitude oD ,(x) [see Eq(4)], which origi-
repulsion between charges does not appear in the leadintates from the nonuniformity of the density profilg$he
correction of order. The correction of ordeg in the bulk  screened potentia$p appears as an auxiliary object in the
screening Iengtlrrg;1 vanishes in a charge symmetric electro- resummed Mayer diagrammatics, and the expressio@%}bf
lyte, where species with charg& ;e has the same density as gpq sznl)(x,xr) are calculated in Sec. MC and its sign

species with chargé,e (2320)-_1f the fluid is not charge  gepend on the composition of the electrolyte, on the closest

symmetric, the. screening lengify” decreases when the cou- approach distance to the wall[through the parameterg,b

pling strength increases. . _ _ and 8e?/ (es,,b)], and on the parametey,, which charater-
Our main results are the following. First, we find that ;65 the difference between the dielectric permittivity of the

In3 21 In3 wall and that of the solvent:
=z, 1+s{za§—+ <§> (—— —)} +0(e) (,
22 2 22 6 8 €w ~ Esolv
AeI (19)

(16) éw+ €son

where(1/6)-(1/8)In 3>0. In the case of a one-component The second term on the right-hand sid@HS) of Eq. (18)
plasma, formulg16) is reduced to that found in Reffl0] by originates from the renormalization of the screening length
diagrammatic techniquepThe expression given for a multi- and from the difference in the contributions from four-body
component electrolyte in Refll] corresponds to another effective interactions in the bulk and along the wall. The
definition of the effective charge and does not coincide withthree-body effective interactions do not contribute to
our expressiori16).] As in the case of the screening length, y'1'—so thaty/? is independent of the species—because
there is no correction at order if the composition of the  they give the same corrections to the amplitudewgnj, and
elec.tolyt_e.is charge symr_netric. According to tf:feB diagram-waa“ The constanta(Ag) is written in Eq. (169). If
matic origin of this correction, the contribution &y © from €™ €, @S is the case when the solvent is water and the

a screened interaction via one intermediate charge has g, is made of glassa,(A)>(1/2)in 3 and the second
sign of Z,5; whereas the contribution t&@5"® from a (o decreases the ratig® W/7¢"B. We notice that

screened interaction via two intermediate charges always ir&tzxp(l)(x) at first order ine is given in Sec. VI D. Contrarily
creases the effective charge. We notice that the existence o*_ (g . 1) - L
to D,,"(x), the sign ofD"(x) may vary with the distancg,

the nonlinear ternz? in Z%"  implies thatw®, cannot be . Y
written asz whar “W Id be the t ttml lectrostati and it depends on the composition of the electrolyte, on the
en asZqi, Where i, would be the total electrostatic closest approach distance to the whll and on the ratio

i ! i - . .
potent|a| cr eated at by the chargéeZ e atr a_nd ItS SCreen- — potween the dielectric constant of the wall and that of the
ing cloud in the electrolytey,, does not exist beyond the solvent

framework of linear-response theory.

Second, as expected, the screening length in the direction
perpendicular to the wall proves to be the same as in the
bulk, at least up to first order in. Besides, the renormalized ~ The paper is organized as follows. The large-distance be-
chargez®™ W defined in Eq(10) and the renormalized charge haviors of the effective pairwise interactiong,,, in the
Ziﬁ B'in the bulk do not coincide. However, up to order  bulk or along the wall, are investigated through the large-
their ratio is independent of the species distance decay of the Ursell functidm,,, according to rela-
tion (1). The latter decay is conveniently studied from Mayer

The leading corrections involved in the notatiofe) are

C. Contents

Ziﬁ e[+ 0(8)]Ziﬁ %, (17) diagrammatics generalized to inhomogeneous situations. In

with Sec. Il we recall the resummed Mayer diagrammatics intro-
) duced in paper | in order to systematically handle with the

P = C(l)( BE In(kpb), A ) _ 8(%) [ac(Ael) _ In_3] large-distance nonintegrability of the bare Coulomb potential
?\ e’ D el poo 4 8 (far away or near the wall There appears a screened poten-

(18) tial ¢, which coincides with the interaction defined from the
immersion free energy between two infinitesimal external
[We notice that the notation(e) in Eq. (17) contains both  point chargegsee Sec. Il B In the bulk, ¢ is a solution of
contributions such as those in E@4) and terms of order the usual Debye equation. Near the walbbeys an inhomo-
e X kpb.] As exhibited by their diagrammatic origins, the geneous Debye equation, where the inverse screening length
various terms in/'Y arise both from the nonuniformity of the depends omx. In Sec. Il C a decomposition df,, into four
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contributions enables one to show how the basic internalwe determine the renormalized value of the screening length
and external-screening sum rules arise in resummed Mayén the direction perpendicular to the wall at first orderein
diagrammatics and how they are preserved if only some sulFor that purpose, in Appendix D we show that the
class of diagrams is retained. It also allows one to show thateading term inx at every orders% is proportional to
for a symmetric electrolyte), pa(r)h..(r,r’) decays faster (x—b)dexg-«p(x—b)], and we resum the series of these
thanh,,(r,r’) (see Secs. IV E and VIBWe also recall the |eading terms. Thus, we check that the correction of oeder
graphic reorganization of diagrams devised in paper | for then the screening length is indeed the same in the bulk and in
study of the general structure of large-distance tails in dilutghe direction perpendicular to the wall. Thdd,(x) is deter-
regimes. . . . . mined up to ordee by only two resummed Mayer diagrams.
6Exp|icit calculations are performed in the limit whekgb
vanishes and the expressionsZjf' ® and are com-
ared. Their physical interpretation is given thanks to the
iagrammatic origins of the various contributions.

rameterso/a and e can be performed from resummed dia-
grams. In Sec. Il we exhibit the nature of the first various
contributions. This leads us to introduce the scaling regime
(12) and (13) where the correction proportional to the cou-
pling parametek is the leading contributioniWe also recall

fche expression of the pair correlation at any distance at lead- Il. GENERAL FORMALISM
ing order ing.)
Section 1V is devoted to bulk correlations. We take advan- A. Model

tage of the full translational invariance in the bulk in orderto |, the primitive model defined above, the hard-core effect
resum the four geometric series which appear in the Fouriganveen two species anda’ can be taken into account in
transform of the graphic decomposition bia, recalled in  he pair energy by an interactiang which is infinitely re-
Sec. Il C. Thus, we obtain a compact formula for the largepulsive at distances shorter than the sum+o,)/2 of the
distance behavior oh® ,, where the contributions of both sphere radii of both species. Its Boltzmann factor reads
charges are factorized. This formula is appropriate to obtain ) ,
systematice expansions of the screening length and of theexp{— Boerllr — 1| aa’)] = {O if [r=r'|<(o,+0,)2,
renormalized charge from the expansions of resummed S Y 1 if|r=r'|>(o,+0,)2.
diagrams. (20)

In Sec. IV D, we also show how to retrieve the corre-
sponding corrections of ordet by a more cumbersome Since charges are reduced to points at the centers of
method which will be useful for the calculations in the vi- excluded-volume spheres with the same dielectric constant
cinity of a wall, where the translational invariance is lost in as the solvent, the Coulomb interaction between two charges
the direction perpendicular to the wall. In position space evcan be written in the whole spa¢even forx<0 or x’' <0)
ery convolution in the graphic representationrﬁig, decays as(Z,Z, € e )v(r,r’), wherev(r,r’) is the solution of
exponentially over the Debye screening Ienggjf at large  Poisson equation for unit point charges with the adequate
relative distances, with an amplitude which is proportional electrostatic boundary conditions. Since the half-spac®
to 1/r times a polynomial irr. The resummation of the se- is occupied by a material with a dielectric constas,
ries of the leading tails i at every order ine must be v(r,r’) in Gauss units reads, far>0 andx’ >0 and for any
performed in order to get the exponential decay over thér—r’| >0 [14],
screening Iengtb\cgl calculated up to ordet (see Appendix
B). On the contrary, the correction of orderin the renor- o(r,r') =
malized charge can be retrieved from only a finite number of Ir=r’|

resummed Mayer diagrams. A defined in E . _ .
, el g(19), lies between -1 and 1, amd* is the

In Sec. V we recall @W the screened potendék,x’,y) image of the positiom’ with respect to the plane interface
and the effective dipol® ,(x) in its largey tail are formally  petween the solution and dielectric material. In the bulk the
expressed in terms of the density profiles in the vicinity ofCoulomb potential reads
the wall [4]. Then, thee expansion ofD4(x) can be per-
formed from thes expansion of the density profiles, by ap- ve(Jr=r’) = -
plying the method devised in R€fL2]. The density profiles, r=r'|
which vary rapidly over the Bjerrum lengtBe?/ e, in the The total pair energy).,; is
vicinity of a dielectric wall, have been explicitly determined par
up to ordere in the limit wherexpb vanishes in Ref[13],
and we explicitly calculat® 4(x) up to ordere in the same
limit.

In Sec. VI we recall how the structure of the effective
dipole D (x) in the 1A tail of h,,/(x,x’,y) is given interms  wherei is the index of a particle.
of the graphic representation written in Sec. Il C. We also In the vicinity of the wall, one-body potentials appear in
derive a sum rule fo&,e,p,(X)D,(X). By using the resum- the total energy of the system. For every charge a self-energy
mation method checked for the bulk situation in Sec. IV D,Z2(€?/ exo) Vs arises from the work necessary to bring a

1
r—r’

(21)

_Ael|

(22)

1 1w €
Upair= 52 verri = rif; @i, o) + 52 ——ZoZa (1),

i#] i#j €solv

(23
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chargeZ e from x=+o (in the solvenf to a pointr in the Arp(r,r') = K2X)p(r,r') == 4msr —r'). (28)
vicinity of the wall. According to Eq(21), the wall electro- ] .
static response is equivalent to the presence of an imad8 Ed- (28), x*(x) is defined as

charge A.Z.e at pointr* inside a wall that would have the &2
same dielectric constart,, as the solvent and () = AmB——2, Z2p,(X), (29
solv «
1
Vgei(X) = = Ael&- (24)  where all densitieg,(x)'s vanish forx<b. Here¢ obeys the

same boundary conditions as the Coulomb potential

In the case of a glass wall in contact with water, the relatived(r ,r’) is continuous everywhere and tends to 0 when
dielectric constant,/ €5, of the wall with respect to the -r’| goes to +o, while its gradient times the dielectric con-
solvent is of order(1/80 <1, A, defined in Eq.(19) is  stant is continuous at the interface with dielectric walls. We
negative, and/sysis a repulsive potential. The impenetrabil- recall that particles are supposed to be made of a material
ity of the wall corresponds to a short-ranged potentig{x),  Wwith the same dielectric constant as the solvent.

the Boltzmann factor of which is The two resummed bonds, called F°© and Fg, respec-
o if b tively, are written in terms of the screened potenthahs
if x<b,
exg— BVsdx)] = _ 25 3
A= BVseX)] {1 if x> b, (25 F(n,m) = - p Z nZamqﬁ(rn,rm) (30)

solv
whereb is the closest approach distance to the wall for the

centers of spherical particles, which is the same for all spe2"
cies. The confinement of all particles to the positwieegion
and the electrostatic self-energy may be gathered in a oné=w(N,mM) = exp[ BosdItn=Tm) = =—Zo Zo $(sTi) |~
body potentialV,q: Ssolv
B€?

+—Z, Z r
Viwall = E Vsr(Xi; o) + E ZZ VeeifXi). (26) €solv d)( ) sy
Ssolv wheren andm are point indices in the Mayer diagraniin
the bond notation, the superscript “cc” stands for “charge-
charge” and “R” means “resummed.” Inded€f¢ is propor-
By virtue of definition(1), the leading large-distance be- tional to the resummed interactio#(r,r’) between point
haviorw?®, of w,, is proportional to the large-distance be- chargesFg+F is equal to the original Mayer bond where
havior h®, of h,,, the Coulomb pair interaction(r,r’) is replaced by its re-
summed expressiow(r ,r’), while the short-range repulsion
= —ﬂvviz (27) is left unchanged.The resummed Mayer diagrammatics of
Ny iS
because any powdm?>,]", with n=2, has a faster decay

than w2>,. In an inhomogeneous situatidrf., is conve- X y) =S — f [H drnE P (X)) }[H F]
aa 1 S—[ a a H'

niently studied by means of the Mayer diagrammatic repre-
sentation ofh,,. However, the large-distance behavior of (32)
the Coulomb pair interaction(r,r’) is not integrable, and
every integral corresponding to a standard Mayer diagrant Ed.(32) the sum runs over all the unlabeled topologically
that is not sufficiently connected diverges when the volumdlifferent connected diagrani$ with two root points(r, «)
of the region occupied by the fluid becomes infinite. and (r’',a’) (which arenot integrated oveand N internal
As shown in paper |, thanks to a generalization of thepoints (which are integrated ovprwith N=0,... %, and
procedure introduced by Meerdd5] in order to calculate which are built according to the following rules. Each pair of
h,. in the bulk, the density expansion laf,, in the vicinity ~ points inlII is linked by at most one bonf, and there is no
of the wall can be expressed in terms of resummed Mayearticulation point.(An articulation point is defined by the
diagrams with integrable bonds. Since the procedure for fact that, if it is taken out of the diagram, then the latter is
the systematic resummation of Coulomb divergences reliesplit into two pieces, one of which at least is no longer linked
on topological considerations, the definitions of Mayer dia-to any root poin. Moreover, in order to avoid double count-
grams with resummed bonds are formally the same ones itg in the resummation process, diagrabhsmust be built
the bulk or near the wall. The two differences between rewith an “excluded-composition” rule: there is no point at-
summed diagrams in the bulk and near the wall are the foltached by only two bond&“ to the rest of the diagram.
lowing. First, near the wall the point weights are not constantIIF]y is the product of the bondsin thell diagram ands;
densities butx-dependent density profiles. Second, theis its symmetry factor—i.e., the number of permutations of
screened potentiab arising from collective effects described the internal points , that do not change this product. Every
by the systematic resummation of Coulomb divergences ipoint has a weight equal tp,(x) that is summed over all
no longer the Debye potential, but it obeys an “inhomoge-species. We have used the convention that, i§ equal to 0,
neous” Debye equation no [, dryp, (X,) appears and1/Sy)[IIF]y is reduced to

B. Generalized resummed Mayer diagrams
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F(r,r’) Near the wall, A denotes a finite-size region

bounded by the wall on the left, whereas, in the bulk, fdrE Zopo(NNger(r,r')==2,, (35
stands for a finite-size region far away from the wall. The “

screened potentiap is integrable at large distance#n the  and, by performing the summatid), Z,p,/(r')x Eq.(35),
bulk ¢ decays exponentially fast in all directions; near thethe internal-screening sum rule implies that

wall in the large-distance behavior given in Ed), D 4(x)

has an exponential decay and the/¥tail is integrablel. As f dr C(r,r')=0. (36)
a consequencd] diagrams correspond to convergent inte-

grals in the limit where the volum@ extends to infinity

A . By vir f the linear r n heory, th xternal-
inside the bulk or on the right of the wall. y vitue of the linear response theory, the externa

screening sum rule reads

C. Graphic reorganization of resummed diagrammatics B f dr f dr’ v(re,r')C(r’,r)=1. (37)
€solv

IN h,u(ra,r.,) we can distinguish four classes of dia- ] ] )
grams by considering whether a single bdFfd is attached The I'atter equation, d'erlved for mhpmc_)geneous systems by
to root pointa or to root pointa’. [a anda’ are short nota- C_tarnle and Charﬂ_l_G], is the generalization of the sum rule
tions for the couple of variables ., @) and(r ., a’), respec- first settled by S’Flllmger and Loveftl7] for the second mo-
tively, which are associated with the root points in a Mayerment of C(r,r’) in the homogeneous cageee next para-

diagram] h,,, can be rewritten as the sum graph. As a consequence of the internal screening sum rule,
o Eq. (37) holds whatever short-distance regularization may be

added to the pure Coulomb interactio(ry,r’) [3].

In the bulk, the translational invariance in all directions
implies that sum rule€36) and(37) are relative, respectively,
where inh®®, botha anda’ carry a single bon&®, in h® , g thek=0 value and to the coefficient of th& term in the
(h;‘;,) only a(a’) is linked to the rest of the diagram by a k expansion ofCB(k). Both sum rules are summarized in the
single bondF¢, and inh__, neithera nor a’ is linked to the ~ following smallk behavior:
rest of the diagram by only one bord®.

hpe = hE, +h, +hS, +h (33

aa aa aa’?

€solv
CB(k) ~ ==Xk, 38
( )kﬁo4ﬂ',8 (38)
In the vicinity of a wall, there is translational invariance only
in directions parallel to the plane interface, and the Carnie-

the fact that they are already fulfilled by the diagram made o 3h]z-i§.sum rule37) takes the form of a dipole sum rule
a single bondr°¢ [because of the corresponding sum rules™ '~ "
obeyed by the screened potentiglr ,r’)]. Moreover, since e e Esoly
the sum rules are linked to the large-distance behavior of the f dxf dx’f dy X'C(x,x",y) = - 4np’
charge-charge correlation function, decompositia8) also 0 0
enables one to show that if some diagrams are to be kept fgxs shown in Ref.[19], the first moment ofC(x,x’,y) is
their contributions toh,_°in some dilute regime, then the linked to the amplitudefc(x,x’) of the 143 tail of
corresponding diagrams “dressed” willi® bonds inh®,,  C(x,x’,y):
he",, andh ¢, are also to be retained, together with the bond o0

f dx’f dy x'C(x,x",y) =

0

1. Screening rules

A first interest of decompositio83) is that it enables one
to derive the basic screening rulgecalled hereaftgrfrom

(39

aa'?

+o0
. . . . €
F°C, in order to ensure that the screening rules are still satis- —S°'V27rf dx’ fe(x,x').
€w 0

fied.

The basic screening rules are the following. In a charge (40)
fluid with Coulomb interactions, an internal charge of the ) o ]
system, as well as an infinitesimal external charge, is perfc(X’) coincides with B o EZoZoPolX)

fectly screened by the fluid: each charge is surrounded by &Pa'(X')faa (X,X'), Where Bf,.(x,x)/y* is the large-
cloud which carries exactly the opposite charge. These proglistance behavior oh,(x,x",y). Therefore, the moment
erties can be written in a compact form in terms of therule (39) can be rewritten as a sum rule for the amplitude

charge-charge correlation defined as faa (X,X"), first derived in Ref[20]:
+o0 +0o0 €
Clrr) =€ 2 Z2p, (N8 —1") f de AX 2 622,21 P par (X ) g (X,X') = %
a 0 0 aa’ 8 ﬁ
+ 3 2,20 par (e (1) L. (39) “h
aa [We notice that there is a misprint in paper |, where the

above sum rule is written in Eq4) with an extra spurious
The internal-screening rule reads coefficient 1/, on the RHS]
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OWWO + (Y\/\/\/\/\/*V\/\/\/\/H + (Y\/\/\/\/\/’\/\/\/\/\/0\/\/\/\/\/0 + ..
a a a 1 r a a 1 r 2 2 a

FIG. 1. Representation (bffa,(r ,r'’) as the graph series defined in E§1). A wavy line represents a borif® and a gray disk stands for
a bondl. A couple of variablegr;, ;) is associated with every circle. For a white cirake(r ,«) [ora’=(r’",a’)], r and« are fixed, whereas,
for a black circlei=(r;, ), r; and v, are integrated over with the measuidr; Eaipai(ri)'

Now, we show how the combination of decompositionEa,za,ps,hyz,(k:O):—ZV,Zy,pi,h;;,(k:O), so that the part
(33) with sum rules obeyed by enables one to derive the of thek? term inh®®~F ° that comes from th&? term inF
two basic screening rules. A key ingredient of the derivationjg opposite to the part of the term in h®™ that is generated
is the relations betweetf®andh™, on the one hand, artf™ by thek? term inF . We notice that the present argument is
andh™ on the other hand, which arise from their dEfinitionS.anak)gous to that found in RQQ]_] for an ana|ogous decom-

In the bulk, because of the full translational invariance,position in a quantum charge fluid.

the latter relations take simple forms in Fourier space. They |n the vicinity of the wall, the derivation of screening

read rules (35) and (41) also relies on the analog of decomposi-
cc _—cc B~ cc —c tion (45 and on two sum rules derived fap in paper
haa’(k) =F aa’(k) + ; p71F a71(k)hyla’(k) (42) |—name|y, if X' > b,
1
and f dX KA(X) f dy ¢(x,x',y) = 4 (47)
c— _ B —= 0
ho (k) =2 5 F 55, (0N, (K). (43)
" and
(For the sake of clarity, in the present paragraph, we forget +o0 +o0 e
the superscripts “B”, except in the densities,hig,, and in f dxf dx’ ?(X)Ez(x’)f(,,(x,x’) =% (48
C.) On the other hand, by virtue of the explicit expression 0 0 €solv
(59 of &, The Fourier transform of a functiof(y) at wave vectot is
D ZpPFC (k=0)=-2Z,. (44)  defined asf(l)=[dy exp(il-y)f(y). Thanks to the transla-
« “ tional invariance in the directiog parallel to the plane in-

| h ds. th £ccin h® . already fulfills th terface, the relations, which arise from their definitions, be-
n other words, the par N N, already fulfills e\ eenpee andh, on the one hand anf~ andh™ on the

internal-screening sum rule. When relati¢A®) and(43) are  gther hand, take the simple form
inserted in decompositio(83) of hia,,

cc ’ — cc !
B _pcc B - cc -C -c haa’(x’x 1)=F aa,(X,X 1)
Mo (K = F 50, (K + | 2 p3 F 65, (02, (K) +h g (K)
"1

+o
- + f 0% py, OWF (633 DS, (3, X'
+ [2 P F % 0 (k) + hw,(k)} . (@9 o

n (49

Then property(44) implies that, inX,, ZathSa,(k:O), the  and
contribution fromh®-F ¢¢ given in Eq.(42), cancels that
from h™¢, and the contribution froni®", given in Eq.(43), c- D - cc — ,
compensates that from™~, so that the internal-screening rule N (X1 = 0 dxl% p*/l(xl)F an(x'xl'l)hna’(xl’x -
is indeed satisfied. '

In the case of the bulk external-screening r(88), the (50

same mechan*iBsm operates when khgerm in the smallk Equationg47) and(48) imply thatF ° saturates the internal
expansion ofC®(k) is considered. The charge-charge corre-g rule(35) and the external sum rul@l), respectively.

. B B . .
lation Cg .., whereh, , is replaced byF o', fulfills the The external-screening sum rukl) in the vicinity of the
second-moment sum rule: wall is studied again in Sec. VI B. We show that, in the case
e where all species have the same closest approach distance to
CE oK) ~ 45—0"’k2. (46)  the wall, decompositior{33) enables one to derive a sum
koodmf3 rule fulfilled by the effective dipole amplitud® ,(x).
Again, by virtue of Eq(44), decompositior{45) implies that
the k? term inh™¢ is canceled by the part of tHe term in 2. Large-distance tails
CC_ [ CC— B - cc —C ; 2
h*-F _271 pnF a71(k)h71‘l/(k) that arises from the” term Another interest of decompositiof33) is that the large-

in h™°. Similarly, thek? term inh" " is canceled by the part of - distance behavior of the Ursell functidn,, can be conve-
the k* term in h®"=X, pJF ar (O, (K) that arises from niently analyzed from this decomposition, after a suitable
the k? term inh™". Moreover, Eqs(43) and(44) imply that  reorganization of resummed Mayer diagrams, which has
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been introduced in paper I. The resummed Mayer diagramgrams involved inl implies thatl decays faster thah °¢ at
matics (32) for h,, is reexpressed in terms of “graphs” large distances in a sufficiently dilute regime. Since the re-
made of two kinds of bonds: the borfd°® and the bond organization is purely topological, it is valid for correlations
that is defined as the sum of all subdiagrams that either conn the bulk as well as in the vicinity of the wall. According to
tain noF °® bond or remain connected in a single piece wherthe excluded-composition rule obeyed by resumrhledia-

a bondF ¢ is cut. Fy falls off faster thanF ¢ at large dis- grams, the functions on the RHS of E§3) are equal to the
tances(namely, as[F ¢°J?/2) and the topology of subdia- series represented in Figs. 1-3, respectively,

hZZ,(r,r’)=F°°(a,a’)+fdrldr12 Py, (r)py (r)F “(a, DI(L,1)F “(1',a")

e

+fdr1dr12 pyl(rl)pyi(ri)fdrzdréﬁ P (r 2P yy(rHF @ DI(L,1)F 1, 2)1(2,2)F (2 @) + -,
Y7 Y273

(51)

hi;/(r,r’)zfdrC,E p,(re)F “a,c)l(c’,a)

Y
+fdrc,2 py,(rcr)fdr1 dri > Py, (r)py(r)F “a, DI, 1)F A(1',¢)l(c",.a’) + -+, (52
Y "

while h™¢ is defined in a symmetric way, and

h, . (r.r’)= I(a,a’)+JdrCJdrc,E prodp,(re)l(a,c)F “c,c)l(c’,a’)
24

. j dr f dry S p,(ropy(re) f A1 dry S py, (o (rDI@CF (e, DIL,1)F (LI @) + -+
Y

Y

(53

In the previous definitiong is a short notation fokr, y), comparable, and the typical interparticle distance does not

andi stands for(r;, «;). depend on species: it is denoted &yFirst, we assume that
We notice that, according to previous section, any contrithe densities are so low that the volume fractieria)® of

bution to | automatically generates a changelhip, that  particles is small;

preserves the two basic screening sum rules. In the bulk, the

external-screening ruled8) is also retrieved from the com- 3
pact formulas obtained by resummations in the graphic ex- (2) <1. (54)
pansion(51)—«53), as shown in Sec. IV E. a

ll. WEAK-COUPLING REGIME Our second assumption is that the temperature is high

enough for the mean closest approach distance between
charges of the same sign at temperatdre of order

Now we take into account the fact that in an electrolyte allge?/ e,,,to be small compared with the mean interparticle
species have charges and diameters of the same magnitudistancea. In other words, the Coulombic coupling param-
orderse and o, respectively. Moreover, all bulk densities are eterI” between charges of the fluid is negligible:

V\/\/\/\/\/‘ )+ ( Y\/\/\/\/\/‘\/\/\/\/\/‘ ) + ( Y\/\/\/\/\/'\/\/\/\/\/‘\/\/\/\/\/‘ )
a c a a 1 I ¢ a a 1 I 2 2 c a

FIG. 2. Graphic representation of definiti¢b2) for hz_a,(r ).

A. Small parameters
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( . ) + ( ‘/\/\/\/\/\/“O + ( &\/\/\/\/\/"\/\/\/\/\/‘ )+
a a a c ¢ a a c 1 r c a

FIG. 3. Graphic representation of definiti¢s3) for h__,(r,r’).

2
,862 o <i> <1. (55)
€sonA

D
[The proportionality relation in Eq.55) arises from defini-
tion (5).] The high-dilution conditior{54) implies the weak-
coupling condition ™3 < 1, if Be?/(e,0) is of order unity or
smaller than 1.
In fact, conditions(54) and (55) can be realized in two

diagrams—uwill be calledl. The Ursell functiorh,, is rep-

resented in terms dfl diagrams by the same formula2) as
in the case ofll diagrams. The splitting58) has already
been used for a classical plasma in the vicinity of a dielectric
wall in Ref.[12], and its use was detailed for quantum plas-
mas in the bulk in Refd.22,2§.

For the sake of simplicity, the scaling analysis of dia-

different kinds of expansions in the density and temperatur«grams is now di_scussed in the case of the bulk. The bulk
reened potentiadhg obeys Eq.(28) far away from any

parameters. In the first situation, the density vanishes at fixe, oundary, whera(x) no longer depends arand coincides
temperature; then, the ratio between the pair energy at con-: Y. ger dep
tact and the mean kinetic energBe?/(eso), is also W'th the inverse Debye screening Iengtb. Then, _Eq.(_28)
fixed—namely SOV is reduced to the usual Debye equation, and si#gds a

function of|r —r’| that vanishes whejn —r’| goes to infinity,

I'=

3 it is equal to the well-known Debye potentiah:
(g) «I[® case(l). (56) a yep b
—rplr=r’|
In the second situation the density vanishes while the tem- de(r=r')=g¢p(r-r')) = i - (59
perature goes to infinity, so th8e?/ (es,0) also vanishes— Ir=rl
namely,
3 The integrals of the diagrams with a single bond can be
< (E) case(2) (57) calculated explicitly, and their orders in and o/a are the
a ' following:
B. Expansions of resummed diagrams J dr’ pBF (r,r') = O(I‘O) (60)
The discussion of thé' and (o/a) expansions of the in-
tegrals associated with resummHdddiagrams is easier if we
split the bondFg into two pieces and
_1 2 1
Fr= E[F e+ Fry. (58 J dr’ pEE[F ct,]z(r )= O(FBIZ), (61)

(The notatiorFgt refers to the truncation with respectfg.)
Diagrams built with bondsF ¢, [F °]2/2, and Fg—and  whereO(I'°) and O(I"* denote terms of orders unity and
with the same exclusion rule for bonds® as in II '3 respectively. According to Eq31),

1 .
—1=F () = IR ) I —r| < (oo + 0u)l2,
Fre(r.r';a,a’) =4 + ©2

> %[Fcc]”(r,r’) if [r=r'| > (0% 0g)/2.
n=3 n:

If we assume, for the sake of simplicity, that all particles have the same diameber expressioP?ET of Fgrin the bulk leads
to [23]

7 g BEZ,Z,

4 2,2, \°> 2w BEZ, 2y
Jdr’ FET(r,r’;a,a’):—?a +2m B—) o+—77('6—

3
3 ) [C+In(3kpo)]

o - 277(

€solv €solv €solv

) 477( BEZ, Zy )3“” (- 1" (ﬁezza Zo

n
+ Rrarz, (63)
m1(M+3)!n €solvT ) "

€solv

whereRps2 denotes terms which are of relative ord&? with respect to those written on the RHS of K§3). Therefore,
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sincepE is of order 143, at leading ordefdr’ pSFRT(r ,I'") is a sum of terms with respective orders
3 2 2 e2
(5) , <g> r, Irz 3, r%[(g) r], F3f<'8—>, (64)
a a a a EsohT

where B€*/(e,0)=I'/(c/a) and the function f(u) the correction of ordeF?? arising only from Coulomb inter-
=37 (-1)"u"/[(n+3)! n] vanishes foru=0. The last term actions for point charges in the Debye approximation. More-
in Eq. (64) arises from the short-distance behavior of theover, we notice that in this regime, where the temperafure
Boltzmann factor, the explosion of which for oppositely is fixed, T2 is proportional to\=,, pZ2: the density expan-
charged species is prevented by the cutoff distanqmo-  sions prove to involve powers of the square root of a linear
vided by the hard-core repulsion. combination of densities(The appearance of such square
As already noticed in paper |, the contributions from roots instead of integer powers in density expansions is an
excluded-volume effects in the primitive model are not in-effect of the long range of Coulomb interactions, which
volved in F ¢ but they are contained iRg. Indeed,the po- makes the infinite-dilution and vanishing-coupling limit sin-
tential ¢ solution of Eq.(28) describes resummed interhyac- gular)
tions between point charges at the centers of penetrable In the second casg7), Be?/ (eso0) Vanishes, and terms
spheres, because it corresponds to the integral equation in Eq.(64) are of order§o/a)® and(o/a)? times a function
B of B’/ (egop0) which tends to zero wheﬁezl(esoh,cr)_goes
or.r)=v(r,r)y-— f dr>, Z2p (X)u(r,r ") (r",r'). to zero. The explicit calculations will be performed in a sub-
a case where the leading coupling correction of orbig? is
(65) large compared with all corrections involving steric effects.
This property is fuffilled if(o/a)%/T"®? goes to zero, and the
We notice that, in the bulk, for the primitive model again, in corresponding subregime reads
a linearized mean-field Poisson-Boltzmann theory where 3
exclu_ded-volum_e spheres are taken into accpitan extra I3 < (2) <T% subcasd?). (66)
Heaviside functiond(|r”-r’|-(o»+0,/)/2)) appears in an
equation analogous to Eq65), and the effective inter-
action between two chargeg, and e, behaves as
e.e, expgl—kplr—(o,+o )2 H{[1+Kkp(o,to,) 2]} at
large relative distances The latter interaction is equal to 32 g, (67)
e, ¢s(r) up to a steric correction of ordefkpo)?
«I'(o/a)? This is also the case in the so-called Derjaguin-
Landau-Verwey-OverbeekDLVO) theory [24,25 for an-
other model where every charge is spread over the surface B% 2 S
the excluded-volume sphere instead of being concentrated ﬁ%f('g / €s0r07), and the whole dqublg expansion In powers
its center. In the corresponding effective interaction at largé! € @nd o/a proves to be a series in integer powerseof

distances, the denominator of the steric factor which multiimes some possible powers of dnat fixed B/ (€5o10). In

plies exg—«or)/r takes the slightly different form{1 ~ the second regime, conditias7) rgad382<(o/a)3 and the

+kp(0,+0,)/4]2. The orderT(a/a)? of this steric correc- €Xtra condition in Eq(66) is (o/a) <e. o

tion is one among the contributions listed in E64). In the following, the so-called “weak-coupling” regime
By using the variable change=T/xp, it can be shown refers to the scaling limit12) or (13). Moreover, the term

. . . “& expansions” refers t@ and o/a expansions, as if they
that, when the number of internal points inlh diagram . : :
S S ; were always performed in the scaling regifi®).
increases, then the lowest orderlinat which it contributes ysp g reginie)
to various integrals also increaséSee, e.g., Ref[22] or
26]. D. Pair correlation at any distance in the weak-coupling limit
[26].)

€solv

In place ofl", we shall use the parametedefined in Eq.
(11), because the first coupling correction is of order

[See Eq(55) and the definitior{5) of xp.] In the first scaling
regime, relation’56) can be written ago/a)3= 2. Then all
rms in Eg. (64 are of order £, £?Ine, and

The scaling analysis o expansions for resummeld
C. Scaling regimes diagrams(see Sec. Ill B shows that thes expansions of
integrals involvingl start at least at relative order As a

Asl_ shown i”t, pre.viOL;s Z‘;C}is?zn’ i”d ttrr‘]e bU|kt the Ie‘:?dingconsequence, at any relative distance, the pair correlation
coupling correction is of or , and the next correction (0 . P, . : L
h, in the infinite-dilution and vanishing-coupling limit

without any steric contribution is of ordé®. The orders of 4 . . .
y arises only from the sum dfl diagrams with a single bond

the first corrections induced by steric effects invotvia and ; , ;
T through the combinations written in E4). and where the screened potentiais replaced by its leading

RO 0
In the first scaling regimes6), all terms in Eq(64) are of ~ value ¢©: hi,., =F©+F. [In other words, only the graph
orderI'3, and the leading correction is indeed provided bywith one bondF<° in h°® and the graph in h__, wherel is
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cc(0)

aa’

c—(0) _.—¢(0) _ ——(0) _ (0)
h.’=h_"7=0, and h ~=(1/2)[F02+F;

aa o'

replaced byFr do contribute at finite distancesh
:FCC(O),

=F§f).] At any finite distancdr —r’|, h(f;, reads

0'a+0'a,>
2

hfi,(r,r’):0<|r—r’|—

xexp[— fezzaza,¢<°>(r,r')] -1. (69
solv

In the bulk the inverse screening lengthin Eq. (28) does
not depend orx, k=«xp and qﬁ(E?):qﬁB given in Eq.(59),

PHYSICAL REVIEW E70Q, 056117(2004

Before going into details, we introduce the following defi-
nitions. Letf(r) be a rotationally invariant function that de-
cays exponentially fast at large distanaed et «p be the
smallest inverse screening length in the exponential taifs of
f may contain several tails eprpr]/r” with various expo-
nentsy’s, which may be negative. We define the slowest of
the exponential tails of, denoted byf $°%(r) hereafter, as the
sum of all tails exp-«pr)/r?, with any exponenty. In other
words, f $°Yr)is the large-distance behavior with the largest
screening length in the exponential and all possible powers
of r. The notationf 2r) will be restricted to the leading tail
in the large-distance behavior &r): f2r) is the leading

where ¢y obeys the Debye equation with the same boundaryerm in f $°%r)—namely, the contribution irf S°(r) with
conditions as the bare Coulomb potentigl far away from  the smallest exponent For instance, as argued in Appendix
any vessel surface. Near the wall, since the density profiles, if f=¢p*[¢pl? f5°r)=a exp(—«pr)/r and f a=f slow,
created by interactions depend on the coupling strengthwhereas, iff=¢p*[dp]> dp, fSr)=[b+crlexp(—«pr)/r

«?(x) has ane expansion and hag(x,x’,y). In the infinite-
dilution and vanishing-coupling limit?(x) tends tox3 and

¢ obeys Debye equation with the same boundary condi-

tions as the bare Coulomb potentigl which take into ac-
count the dielectric response of the wall.
ag0)

The large-distance behavior bf,, at leading ordefy_ ",
is equal to the large-distance behavioriéqi,—namely,

ﬁzaza' ¢(O) aS(r T ’) .

€solv

& (rr) == (69)
In other words, sinc&g decays only as the squarefefe, in
the diagrammatic representatib@if0> arises only from the
diagram with one bondF °¢, where ¢ is replaced by$©.
(The diagram with one bonH ¢ is caIIedea in the follow-
ing and is shown in Fig. Y.Subsequently, the first term in
the ¢ expansion ofk is

© = (70)

K Kp-

IV. BULK CORRELATIONS

In the bulk, the Ursell functio,,,, decays exponentially
fast in all directions[27]. In the high-dilution and weak-

andf @=c exp(—«pr).

A. Resummations of geometric series in Fourier space

The translational invariance in the bulk implies that the
graph series in the decompositi@8)—(53) of h,, are sums
of convolutions. In Fourier space, they become geometric
series which are resummed into compact formut@%‘?(k)
merely reads

he®(k) = - ﬁzaza,—d’D(k)_ , (71)
Esolv 1+ ¢p(K)I(K)
where
4
¢p(K) = k2+—;<% (72
and
— e?
0=L2S 28z, z,000y). (73
Esolv%),/
hZZB,(k) is reduced to a fraction
heB(K) = — B AU (74)

aa

. : . . . . €solvk? + k2 + 47l (K
coupling regime, the leading tail at large distances is a mono- o g+ 4ml (k)

tonic exponential decay over the screening lengtk®l(see  The same geometric series appears in the cash%;Bfand
Ref. [28] for a review, while damping might become oscil- ©~B ith the results
latory in regimes with higher densities, as expected from “*
various approximate theorig¢see, e.g., Ref411,29). hC"B(k) __ Be? A1 2 E B ko )
The resummed Meeron diagrammatic expansions used in ~«a’ Esolvi® + 12 +477|_(k) e Py &y ITGY
the present paper enable one to retrieve the existence of an P 4
exponential decay in the dilute regime. Indeed, all resummed
Mayer diagramdl are built with bonds- ¢, Eq. (30), and and
Fr: EQ.(32), the large-distance decays of which are ruled by
the screened potentialg that is the solution of Eq(28) in
the bulk. By virtue of Eq.59), ¢z falls off exponentially
over the length scale kf defined in Eq(5). The monotonic
exponential decay dfi,,» over the length scale k4 in the
dilute regime is expected to be given by partially resumming
the tails ofIl diagrams, which decrease exponentially over
the scale 1«p, though the convergence of the corresponding
series is not controlled.

(75

Be? 4

€solv k2 + K% + 47T|_(k)

x>, p5Z,1(k;y, )X ps/Zyrl (k;y',a').
y ’y,

howr (0 =1(k;a,a’) =

(76)

Finally, hia,(k) takes the half-factorized form
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h8 LK) = I(K: ) — BE 4w 1D is calculated from the definitiot73) of 1(k) with 1Y in
aa! Y €sonk? + 13 + Al (K) place ofl. By using
4 k
X|Z,+ 2 p5Z,1(k; v, @) [¢3](k) = —”arctar(—) (81)
b% k 2KD
x[za, +2p3,zyrl(k;y',a’)]. (777 and
4 1(,862>3 83\2_ 3 [33)
. . . BLB ._ - 47T2p2)=K8_ , (82
From this expression we readily get tiatZ,p h_ (k=0 2\ egon ( RS P™\ s,
=-Z,, which is another writing of the internal-screening ) i .
sum rule(35) in the bulk casefWe also notice that the writ- WhereZy, is defined in Eq(15), we get
ing of h® (k) in Eq. (77) is analogous to Eq2.110 of Ref. _ 3.\2 K
o : . : W) = e 2| =8| X0 =
[30], where the authors consider the Feynman diagrammatics 4mlV(k) = 8KD<2 ) K arctar( o ) (83
for a field theory, with some short-distance regularization, - 2 D
which modelizes a charge fluid. 1D and 1U(k) have a branch point at=2ixp, while [k?
+ i3 +4m D(k) ] has a pole at the value &fequal to
B. Large-distance behavior of bulk correlations 5
. T -
When the bulk Ursell functiom,,,(r,r’) is only a func- |KD|:1 +7|<1)(IKD) + 0(8)}- (84)
D

tion of [r—r’| and decays faster than any inverse power of
[r=r’| when|r—r’| becomes infinite, its large-distance be- The leading corrections involved in the notatiofe) are
haviorhii,(r ,r'") is determined by the general formulas re- given in Eq.(64). The latter pole is closer to the real axis
called in Appendix A. As checked at first orderénin next  than the branch point &=i2«p. Therefore, at first order in
section, the singular points of(k;y,y’) in the weak- &, the singular point irhia,(k) that is the closest one to the
coupling regime are more distant from the real axis in thereal axis in the upper complex half-planelofs the pole of
upper complex half-plank=k’ +ik” than the polek, of the 1/[k2+K%+47TFl)(k)].

fraction 1[k%+ K%'H(k)] that has the smallest positive  The scenario of Sec. IV B does happen at leading order in
imaginary part. Moreoverk, is purely imaginaryk,=ixg, ¢ and the large-distance behavhﬁfjs(r) up to ordere takes

andky is a pole of rank 1. _ _ the form (79) wherek,=i[ kp+ox5’] with

Therefore, in the weak-coupling regime, the slowest ex-
ponential tall ofhia, is a purely exp-«gr)/r function, as i) = 2_7771)(“( ) 85)
well as the slowest exponential tails 6>, h %, h® >, and B ko o
h..c- By inserting the property According to Eq.(83) we find

— -1
1 a1(k Sk 2In 3
Res| —————— :[2k0+477 AL ] O _ (23 (86)
k2 + K% + 47T| (k) k=ko d k kO Kp 22 4

(78 We retrieve the formula of Refl11] obtained from integral

equations. It is reduced to the results obtained by Mitchell

into the general formulgA2) applied tof=h,, givenin Eq.  and Ninham through diagrammatic techniques for the one-
(77) with ko=ixg, we find that the large-distance behavior component plasmgl0] or for a two-component electrolyte

h? 23r) of hE,.(r) takes the form [31]. (The formulas for the one-component plasma can be
2 et derived from those calculated for a two-component plasma
hB ) = - :B_Zeff Bzeff Be_, (79) with chargese, ande_ and densitiep, andp_ by taking the
aa €ov ©© r limit where e_ vanishes whilep_ diverges under the con-

straint e_p_=-e,p,.) The correctionéxgl) vanishes in the

. . 2 2 ./ . .
whereixg is the pole of 1[k“+xp+1(k)] with the positive  aqe of 2 1:1 electrolyte. If the electrolyte is not charge sym-

imaginary part and metric, the expressio(86) shows that the screening length
. 1/«B is a decreasing function of the coupling parametet
B .
21 B _ Za* 27’3727 \(ixg; v.0) (80) first order ine.

The bulk effective chargfégff B up to ordere is calculated
by formula(80). The explicit result is written in Eq16). In
view of the discussion of next section, we rewtg' ® as

) \/1 —i(2mlKkg) &l_(k)/ﬁ l; KB.

B _ 1
C. Large-distance tail at order & " B=7,[1+A0 +0(e)]. (87)

According to the scaling analysis of Sec. Ill B, the first The amplitudg79) of hjf(r) up to ordere can be rewritten
term in thee expansion ofl (k) is ID(k) with IV=[F°°]?/2.  as
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FIG. 4. Diagrams irhffa,(r ,r'") that contribute to the correction of orderin the screening length. A double wavy line denotes a bond
(1/2)[FCC]2.
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finite seriesf=hcB h¢B h™B and h B that definehia,
through the graphs shown in Figs. 1-3, and we got a compact
formula for hia,(k) from which we calculated the large-
distance behavioh® 5%r) of h°_,(r). Here, on the contrary,

To our knowledge, the amplitude &f r) for a multicom-  in each series we formally calculate the slowest exponen-
ponent plasma has not been calculated in the literature préial tail f,ST',OW(r) of everygraphf,,,, with m bondsF°, directly
viously. In the limit of the one-component plasma, it is thein position space by using the residue theorem, and the large-

2.7
1 350 = - BE 2L 1y | D 4 Ao 4 (o),

€solv

(88)

same as that found by Mitchell and Ninham in Ra&0] by a

diagrammatic method. - -
We notice that the use of E¢0) with IV in place ofl is

equivalent to replacing the diagrammatic series%f, h° %,

and h;f shown in Figs. 1-3 by the corresponding series
represented in Figs. 4—6. As shown in Appendix B, the cor

rection 54’ to the screening length ih®8, h*"8, andh~"8

arises from the whole series in Figs. 4—6, respectively.
On the contrary, the first corrections to the effective bul

charges can be seen as arising from only a finite number

diagrams in Figs. 4 and 5. This will be shown in next section!

The property relies on the following rewriting bﬁj,‘s(r):

2 Z oLy
/S’e aa
hLBma/s(r) =- = 1+ AD + Afll,) - Sk r]e o + o(s)}.

€solv

(89)

We point out that Eq(89) is valid for any distance. Indeed
ext—(kp+ okS)r]=(1-8kyr)exp(- kpr) +0(e) for any dis-
tance, whereas ekp(kp+ &cg))r] =[1- 5K§>r +0(e)]
Xexp(—«pr) only for distances r<L.=§&/e" with
v<<1/2. The conditiorw<<1/2 ensures that far<<L . ev-
ery nth term withn=2 in the expansion of the exponential
exr{—(SK(Bl)r] is indeed a correction, of orde™* ) =0(¢),
with respect to thed(s1™) term 5Kf31)r.

D. Alternative derivation of the bulk large-distance tail
at order &

In view of calculations in the vicinity of a wall, where the
infinite series inf=hc8, h®B or h™® can no longer be re-

distance behaviof 2 of f=h¢, h®", h™, or h™ is given by
the sum(over m) of the slowest taiIsme'OW(r)’s in each case.
(The slowest exponential tail is defined in the introduction of
Sec. IV)

series sums(k)'s have a pole of rank 1 d=i«g and their
inverse Fourier transform decay as éxggr)/r, whereas
each ternf (k) in the series has a multiple pole of ramkat

kk=if<D and its inverse Fourier transform behaves as

Xp(—xpr)/r times a polynomial inr of degreem-1. We
point out that, in the presestexpansion of 2{r) around its
exd—«pr]/r limit behavior in the infinite-dilution and
vanishing-coupling limit(where only the bond-¢ contrib-
uteg, for every graphf,, we must retain the entire slowest
tail ffr'fw—namely, the entire polynomial in—and we only
disregard tails efp-lxpr]/r with |=2. [See the example in
Eqg. (A5).] The procedure is legitimate as long as dilution is
sufficiently high. Details are given in Appendix B and we
give only a summary in the present section.

1. General structure of thee expansion of f§°,

As long as densities are low enough, the gramtecays
faster than the bon# ¢, and as shown in Appendix B, the
slowest tailf f’#"“’(r) of f,(r) is equal to exp-«pr]/r times a
polynomial inr of rank m-1, Emgol Fmpf . As a conse-
quence, thes expansion of the rarge-distance behavior of
h® . reads

a

5 e_KDr +0o0

a —_ .
haa’s(r) - 2 r PHp(a'aI 18)1
p=0

(90)

The second procedure is more cumbersome, because the

summed in Fourier space, because of the loss of translation@lhere the coefficienti (e, @’ ;e)—which is the sum of the
invariance in the direction perpendicular to the wall, wecontributions fromh®®®, h¢™8 h=B and h~B—arises only
show how to retrieve the expressig88) for h° 3°in a less  from thegraphd,, with m=p+1 in the series representations
systematic way than the method involving the resummed forshown in Figs. 1-3[We recall thate is a short notation for
mulas(79) and(80). (For the sake of simplicity we omit the parameters ando/ain the scaling regime6) and(66), as
indicesa and &’ for charge species in the notatién explained at the end of Sec. IlIC.

In the general method of Secs. IV A and IV B, we per- Moreover, according to the scaling analysis foexpan-
formed Fourier transforms; then, we resummed the four insions in Sec. IlI B, all coefficients,, in the polynomial in

ovwwvel) 0« ol evivivel o+ ol eell ienve D v
a ¢ a a 1 r 4 a a 1 r 2 2 c a

FIG. 5. Diagrams irh® ,(r,r’) that contribute to the correction of orderin the screening length.
g aa g leng
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drtp + diewvel o« dlewel el T -
a a a 1 c a a c 1 r c a

FIG. 6. Diagrams irh__,(r,r’) that contribute to the correction of orderin the screening length.

the slowest tail of every graph, with m=1 start at order
gho*™1 whereny=0 if f=h®B, ny=1 if f=h°B or h™°B, and
no=2 if f=h""B. Therefore, the: expansion oHy(a,a’;e)
starts at ordeeP, and after reversing the summation orders,

+oo

g *Dr a
h2 3 =—2 e rPH(a,a"), (91)
g=0  p=0
with
H (@, a") = Fely o(F = 30, (92)

Equation(91) displays that, in the: expansion ofh® 3r)
around its exp-«pr]/r behavior in the limit where: van-
ishes, the leading tail dﬁia"’,‘s(r) at ordere? behaves as @
times exp-«pr]/r. Moreover, by virtue of Eq(92), it coin-
cides with the first term in the expansion of the leading tail
in the slowest exponential decei)g'ﬂ”(r) of the graphf.,

with (q+1) bondsF®in f=h°".

2. Renormalization of the screening length

As shown in Appendix B, for each=h°°B, h®™B h™B or
h™B, the sumf@*(r) of the leading tails at every ordefo*d
in the £ expansion of f3r) around its lowest-order
e exgd-«pr]/r limit can be performed explicitly(Indeed,
the coefficienta"*¥e"0*d of the leading 9 exd—«pr /1 tail
at ordere™*d in the ¢ expansion off @ coincides with the
first term in thee expansion of the coefficieri,, 4 of the
leadingr 9exd —«pr]/r term in the slowest exponential de-
cay f a'ﬂ”(r) of the graphf.; with (q+1) bondsF ¢, and the
formal expression of ;4 in terms ofl is given in Eq.
(B7).) f 2*(r) proves to be equal to efpsx} r] times 3",
the value at the first order™ of the large-distance behavior
of the graphf; with only one bondr°©. As a consequence,
the sumh® 3%(r) of the leading 9 ex—«pr]/r tails at every
order €9 in the £ expansion ofhgaa,s(r) around its lowest-
order exp—xpr]/r limit, namely,

+oo —Kpr

e
o™ (r) = 2 Hgl (e )eri——, (93)
a=0
reads
hE 2% (r) = FO(r)e & 1, (94)

ccB
aa’

It arises from the leading 9exd—«pr]/r tails of h
only.

FIG. 7. Diagramﬁa.

Moreover, Skg coincides with the first-order correction
5K(Bl) to the bulk screening lengtfsee Eq.(85)] calculated
from the exact procedure of Sec. IV B:

Skl = Sk, (95)

Eventually, the resummation of the series of leading tails at
every order ine for h°® proves to be a way to retrieve the
value of 5K(Bl).

3. Diagrams with slowest exponential tails of order

As already seen in Sec. Il D, diagralt, in Fig. 7 is the
only diagram whose slowest exponential fgitoportional to
exp(—kpr)/r] has an amplitude of orde X Be?/ e, Dia-
grams whose slowest exponential tails have amplitudes of

ordere are diagramsﬁb, ﬁb*, andﬁC shown in Figs. 8 and 9
(which come from the seriels®”, h™¢, and h¢, respectively,
wherel is replaced by, as shown in Figs. 4 and)5The

contribution ofIT,, to hza"’,‘s(r) reads

e? In 3e7*0"
B, g 2en3e (96)
€solv 22 2 r
while the contribution oiﬁC is
e? ’In 3 2
—ﬁ—ZaZa/|:—s<%’> _KDr+28<§>
€solv 2 4 p
1 In3)\|e*o
X|==——||— 97
(6 8 )] r 97

Indeed, the contribution of diagraﬁhb is proportional to the
convolution ¢p*[ ¢p ]2 calculated in Eq(A3), while the dia-
gramIl, involves the convolutiorpp*[ ¢p 1%+ pp, Whose ex-
pression at any distance is given by EA5). We notice that
the diagramdly, I1,., andIl. have already been calculated
in the case of the electron gfE0].

By virtue of Eqgs.(96) and (97), the sum of the slowest
exponential tails of diagranid,, 11, andll, coincides with
the expressior(89) of h® 3° up to orders, where 5k} is
given in Eq.(86) and

AY = Z A+ A, (99
with
>:In 3
(1y_ . =32
b] ~ 822 2 (99)
and

a

FIG. 8. Diagramslﬁi,3 (on the lefy and ﬁb* (on the righj.
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O’\/WWW/\M/O phase transition gave rise to nonintegrable algebraic tails in
f , I(r) and subsequent nonanalytic terms of oré&rwith %

a 1 1 a -
~ <0 in the Fourier transform(k), then CB(k) would still
FIG. 9. DiagramlL. vanish atk=0, but the coefficient of th&? term would be
different from the universal value in E¢38), as exhibited in
L S5\3(1 In3 the exactly soluble spherical model of RE32].]
AP =8<2—) (5 - ?> (100 We stress that th&? term in the Fourier expansion of
2 CB(k) is independent of the short-range potentiglg|r
The —5K§)r term in Eq.(89) comes from diagranil,. The -r'|;a,a’), which must be introduced in three dimensions

AL~ A ; LA in order to avoid the collapse under the attraction between
term %“A[E](Z“'A[b]) proportional toZ, (Z.s) in A, coines charges with opposite signps. This property is a consequence
from I, (Ily), whereas the other terw{g arises fromll..  of the internal screening rulg], and it is retrieved from the

Therefore, the constans” and A" are determined by Structure of expressiofi04). On the contrary, th&? term in
“ “ S .aP2pohe () given in Eq.(102) does not have any uni-
versal value: it depends on the short-distance repulsion in the
generic case. However, this is not the case for a symmetric

the exponential tails of only three diagraﬂﬁg, ﬁb*, andﬁc.
[See the comment after E¢B9) for a comparison with the

exact method of Sec. IV CMoreover, as a consequence of 1:1 electrolyte in two dimensionf83,34, where the pure

the an?]ySIS summanzed in Sec. IVD 2’. the cfoeffpen.t of thqogarithmic Coulomb interaction needs not be regularized at
rtermccln the amplitude of the slowest tail of diagrafpwith  short distances and is scale invariant. Then, for point
two F*bonds(see Fig. Qmus('i)cqmmde with the opposite of charges, scale-invariance arguments lead to a value of the
the first-order correctiondkg” in the inverse screening dimensionless second momentf . p2p%,h () that de-

a PalF o aa’

length. pends only on the coupling parametge®. We also notice
that formulag102 and(104) enable one to retrieve the lead-

E. Density-density and charge-charge correlation ing low-density values of the coefficients of tihé and k*
terms in the Fourier transforms of the density-density corre-
lation and of the charge-charge structure factor derived for a

D e,p®=0, (101) symmetric 1:1 electrolyte in Ref35].
— e When there is no charge symmetry in the composition of
) ) ) ) the electrolyte, the same argument as that used in Sec. IV B
t_he Fourier transform of the density-density correlation fU”C'impIies that, according to Eq§102) and (104), the large-
tion takes the form distance behaviors of the density-density and charge-charge
B B LB _ BB,.. correlations in the high-dilution and weak-coupling regime
> pSpo e (K =2 pSpc I (K;a,a) . . o 2 T
o o are determined by the zekg=ixg of k*+«g+1(k): they de-
' cay over the same screeninglength as the correldiﬁ(gn

By virtue of the bulk local charge neutrality,

2
_Be 4—77_ In the case of a symmetric electrolyte made of two species
Esolvk? + K% + 47l (k) with opposite chargesze and Ze and with the same radii,
bo & _ ) 3, po, p5Z,)(K;y,@) vanishes by virtue of the local neu-
X[E Paz Py Z (K, “)] ' trality (101) and of the symmetriefl (k; ++)=I(k;——) and
a Y

I(k;+-)=I(k;-+)]. As a consequence3, p°h,, (r) and
(102 »_ pBp® h,.(r) decay as(r;a,a’) by virtue of Eq.(102).
while the charge-charge structure factor, defined from Eql(r;a,a’) is expected to decay over the length(24g), by
(34), analogy with the infinite-dilution and vanishing-coupling
limit where it behaves as the diagrgi®]?/2, which falls
CB(k) = eZ{E P72+ > pipi,ZaZa,haa,(k)}, off over the scale 1(2«p). Therefore, in this peculiar case,
« aa’ the “screening” length of the density-density correlation is
(103 expected to be 2«g) at low density, in agreement with the
result of Ref.[35].
reads

— V. SCREENED POTENTIAL ALONG THE WALL
[K% +47(K) ]2

€solv v
CB(k) = g K3 + 4l (K) @+ 2+ 4ml(K) A. Formal ex?ressioh of the screened poténtial |
(104) Near the plane d!electrlc wall Iocgted>a§0, interactions
create density profiles and E@8) is an inhomogeneous
As announced in Sec. Il C 1, the express{@04) of the = Debye equation, where the inverse squared screening length
charge-charge structure fact6B(k) indeed obeys the sum «? depends on the distaneeto the wall. Moreoverg(r ,r’)
rule (38), which summarizes both the internal-screening sunobeys the same boundary conditionsésr’) [defined after

rule (36) and the external-screening sum rul&7). [If a  Eq.(20)]:
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J Jd
lim W —d)(r,r’) = lim —¢(r,r’) (1095
x—0~ €Esolv x—0* 0 X
and
J J
lim —(ﬁ(r,r’) = lim —d)(r,r’), (106
x—b~ x—b*

PHYSICAL REVIEW E 70, 056117(2004)

singular whenx=x" and which is calculated in terms of
andh™ by the so-called Wronskian meth¢d6]. In the fol-
lowing, h* (h7) is chosen to be a solution which vanishes
(diverges whenx tends to +¢. In the bulk,«(x) is a constant
equal to the inverse Debye lengif,: h* and h™ can be
chosen to be equal to &)@xy1+g%].Whenk depends o,

we look for the solutionsh* and h™ in terms of the bulk
solutions as

since particles are made of a material with the same dielec-

tric constant as the solvent. In order to take advantage of the
invariance along directions parallel to the wall, we introduce

the Fourier transform with respect to tlevariable, and we
write

d’q
(2m)?

&9 (oY ed( kpX, kpX' ).

(107)

d)(XlX’!y) = Kp J

In the following, the tilde index denotes dimensionless quan-

tities, such as the Fourier transfofﬁﬁKDx,KDx’ ;q) and the
dimensionless coordinabe= kpx.
The solution of the inhomogeneous Debye equatiz)

requires one to distinguish only three regions: region | for

x<0, region Il for 0<x<b, and region lll forb<x. In
regions | and 11,x(x) vanishes by virtue of Eq29). Accord-
ing to Eq. (28), the dimensionless Fourier transform
$(%,X';q) obeys a one-dimensional differential equation.
Whenx' > b it reads

-

=
The solution with boundary conditiorf405) and (106 is
BX',|a)(1 -Axe™ if %<0,
B(X',|q))[€9% - A,e ] if 0 <X <b.
(109)

[A similar equation is solved in Ref12] with a misprint in
Eq. (4.20.] -

In region 1, whenx goes to +°, «(x) tends to the inverse
Debye lengthkz!, Eq. (5), and we rewrite the Fourier trans-
form of Eq.(28) as

2
{% -(1+g)- UO‘()}&&R’ )

qZ}Z{)G(,i’;q) =0 ifx<Db. (108

X Ja)) ={

—4ms%-X) ifX>D, (110

with
41 B€?
TBE S 22053 - pE].

€sovKD «

Ux = (111

The solution of the one-dimensional equatidiO) can be
written in terms of the solutionk of the associated “homo-
geneous” equatiowith a zero in place of the Dirac distri-
bution) which is valid for -=o<x< +. Indeed, the general
solution of Eq.(110) for x>b and x’ >b is the following
sum: a linear combination of two independent solutibiis
andh” plus a particular solutiorbs;,, of Eq. (110), which is

ei?(\fl+q2[1 +H*(>“<,q2)]. (112)

Moreover, the particular solutiorts™ andH™ can be chosen
to vanish afx=bh. As shown in Ref.[12], whenX>b and

X' > D,

BEX ) = Bangd %X, q7) + Z(qhe L+ HR )]
X[1+H*&,q7)] (1139

and

~ _ 41
¢sing()~(axlvq) = W(qz)

X[1+H*(sup%,X"),09)],

where infx,X’) [supX,X’)] is the infimum[supremurh of X
andX’. SinceH* andH™ vanish atkx=b, dH™/ X, is also
equal to zero, as can be checked from the formal solutions
given in next paragraph. Therefore the Wronskhfig?)
takes the simple form

e "X NB 4 H(infRX), 02)]

(114

IH"(%,9°)

W(@%) == 201 +q%+ —

(119

X=b

For the same reasons, the valueZgfq|) depends only on
dH*1 IXlz=. Indeed,Z(|q]) is entirely determined by the ratio
of the continuity equationgl05) and(106) obeyed by?is and
dpbld% at X=b, and the amplitudeB(X’,|q|) in region

0<%<b [see Eq(109)] disappears in the latter ratio.
As shown in Ref[12], H* can be represented by a formal
alternating series, which will be used in the following:

H*(X,0%) = - 7 [11(%;9°) + T[T 11199 = -+,
(116)

where the operatd? * acting on a functiorf(X) reads

Similarly H™(X,g?) is equal to the series

H (%09 =7 [1](;0%) + 7 [7 1] q9) + -+,
(119

dt €217 (Y (1)f(t).

b

T 0°) = f " o @ o
(117

with
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X R v ‘ - - 2
T‘[f]()"(;qz)zﬁ dp 62V v it 21 VD). Z(|q)) = Z(q = 0) + BZ|q| + O(|q[*). (124

b b We notice that, as shown in paper I, sum rules obeyed by
(119 ¢(x,x’,y) imply thatD 4(x) has the same sign for alls, and
In the infinite-dilution and vanishing-coupling limit, den- the 147 tail of ¢(x,x’,y) is repulsive at all distancesand
sity profiles become uniform anef(x) tends tox3. The cor- X’ from the wall. In Eq.(123) the minus sign in front of the
responding screened potentis?’ obeys the Debye equation SAuare root i priori arbitrary. It has been introduced, be-
and satisfies the same boundary conditions as the bare Cot@use in the infinite-dilution and vanishing-coupling limit
lomb potentialv. In other wordsH* andH~ in expressions and in the case of a plain walky=e€q), D,4(X) is expected
(113 vanish forgsw)(;(;(r,q) according to their definitions to have the same sign as the dipdl) carried by the set
(112, while the expressiofil15) is reduced to -1 +q? for made of a positive unit charge and its screening cloud re-
\N(O)(qz)_ Z(O)(|q|) is then determined by the Continuity equa- peIIed from the wall, an(H-I*()"(,q2=O) vanishes in this limit.

tions (105) and (106). The result reads The large-distance behavior ¢fx,x’,y) at leading order,
, ¢*©, is equal to the leading taip® 2 of ¢©: ¢2s©

HO(x,x',y) = ¢(Q) (r=r')+ KDJ dq e ia:(kpy) :Dg’)(x)D(;)(x’)/y3 with Dg’):D¢<o>. Here D 40(x) is given
sing (2m)? by Eq. (123, \(N)here H* vanishes and; is calculated for

o OF ly,B is equal to the coefficient of the| term in

0)(| gy F& )1+ ¢ namely,B; " is eq o
XZ(|qfye (120 the smallg expansion oZ 40(q) =Z%(q). According to Eg.
where (12D,
1 _ A 20l 2 2 i €
20(q) = 27T ~Aee UL 47+ fa)? Z<°>(|q|)=2we2b{1—zew |q|] +0(af), (129
V1+0° (V1 +02+ [g)? - Age 0 o

(121)  and the resulting expression f6_7¢<o> is written in Eq.(7).
The expression of the distangé))(x) at which the 1y° tail

The particular S‘?lUtiO”f’(s?r)mg(r'r/) that is singular whem i, 40 gyercomes the exponential tails #° has been esti-
=r' cqlnmdes with the bulk screened potential in Debyemated in paper I. In the case where the solvent is water and
theory: where the dielectric wall is made of glassy/ s~ 1/80

@q S and yO(x=b)=7&, Y (x=b+£)=108, Y. (x=b+3%)

d;(s?%g(r -r')= KDI 2e_'q'("Dy)—,—ze_&_x i+ =15¢p, andy(*o)(x:b+5§D):ZO§D.
(2m) V1+q
=¢p(r —r’), (122 C. Large-distance tail of the screened potential up to order

where ¢, is written in Eq.(59). 1. Formal & expansion of the tail

Because of the nonuniformity of the density profiles in the
B. Large-distance tail of the screened potential vicinity of the wall, ¢ has ane expansion. More precisely,
Whenx>b andx’ >b, ¢(x,x’,y) falls off as 143 be- thee expansion of the screened potengabriginating from
cause of the boundary conditions at the interfacé. The €& expansion of density profiles can be determined by Eq.
reason is the following. The appearance of ag®tdil in the (113 from the & expansion of the functionsi” and H",
largey behavior of a functiorf(y) corresponds to the exis- Which themselves are derived from the formal se(ts)

) L . d(118), respectively.
tence of a term proportional {g|, which is not analytical in an . . .
the Cartesian components of in the smallg expansion of According to Eq(123) and with the notations of Eq4),

2 : @y i - -
f(q) [37]. Functions different fronz(q) in $(%,% ,q) [see the flrst correctL(()lr)lD¢ (;() in the & expansion ofD¢(x) is
Eq. (113)] prove to be functions ofj, but the boundary °btained fromH""(X,q°=0) and from thes expansion of
conditions af&=b imply that, as well as the smadj-expan- the coefficient ofq| in the smallq expansior(124) of Z(|al).

~ o~ T B,=BY+B"+0(e). It read
sion of (X, X’ ,q) whenX<b (andX>b) [see Eq(109)], the z=B; +B; +0le). It reads
smallgq expansion ofZ(q) contains a term proportional to
lal.
As shown in paper |, the 37 tail of ¢ takes the product
structure(3) where

D00 =D ([CY + G X, (126)
where the constarﬂ:g) is equal to
@

> B
_ (—B )eX . (1) - Z . +(1) 2_
Dy ==\ 5, T [ H R a?=0]. (123 Co'=ogp * M HT @20, (127

27

In Eq. (123 B, is the coefficient of thég| term in the small- and the functiorgjj‘p(l)&), which vanishes exponentially fast
q expansion ofZ(|q|): whenX goes to infinity, is
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azqu)(;() - H+(1)(>“<,q2 =0)- lim H+(l)('>"(,q2= 0). 2. £ expansion of density profiles
Koo The density profiles in the vicinity of a dielectric wall
(128 have been calculated in the high-dilution and weak-coupling
) ) regime in Refs[12,13. (The systematic approach 2] is
If we write the e expansion on(|q|)Oup to ordere 85 based on the Mayer diagrammatics for the fugacity expan-
Z(la))=2(q))+Z¥(|al)+o(e), then BY=B,o and B~(z) sions of density profiles. Resummations of Coulomb diver-
=B . By virtue of Eq.(125), B0 =—4m(ey/ eso)eXxp(2b).  gences are performed along a scheme which is similar to—
As already mentioned in Sec. V &(|q|)—and subsequently but more complicated than—the procedure used in Sec. Il B,
B,—is entirely determined from the expressiondf*/ X at gecause of dirfferences in the topological def]icr}ition 0(; Mayer
~_7 . - : iagrams in the two casedJp to corrections of first order in
CVhbegytrgZi ;a:(tg;g;t :ﬁscgzn(tfgﬁ'gn%%i%t;cgﬁoiigd;é%% the coupling parameter, for kpb and Be?/ (es,,0) fixed, the

~_ density profile reads
are introduced in the expressi@hl3) of ¢(X,X’,y), the con- P

tinuity equations ak=b lead to po(X) = pE exp[ Zz ﬁez VB B sc(x; KD)i| {1 —Zisf(KDx; xob)
€solv
IH* %, q?) | ¢ 1
7 70 e
(Jal) =22al) =25 ;zbz\u v - 2,860 X ko, kob, Lo | + 0 | (139
_ solvb
"— —_ ,—
y 3V1+q%+ || - Age®9(3V1 + g%~ ) In Eq. (133, O(£?) is a short notation for terms of orders
V1+02+|q] - Age (V1 + 2 - |q|) ' written in Eq.(64) with T"oc2/3,

More precisely, in EQ.(133) (Z2€%/ eson)VE34X; kp),
(129 called the bulk-screened self-image interaction in the follow-
Then the coefficienB,w of the |q| term in theq expansion  INY; iS the part of the screened self-energy that is reduced to

of ZW(|q)) is determined by using E¢125), and the expres- & mere_bulk De_bye exponential sc_reenir!g of the bare self-
sion OfC(;) is given by Eq.(127) where image interaction(24) due to the dielectric response of the

wall. For two charges separated by a distangetBe bulk

BY  gH'(xq2=0) Y screening factor at leading order is €x@xpx). After multi-
o= - B (130 plication by 3,
. . (Z.8% g s 2, BE €2
The expression oH*Y(kpx,q?=0) is calculated from B~ Vim (X;kp) = = Z;Aq
€solv €soly  4X

S, Z2p,(x) as the term of ordes in the & expansion of the

formal serieq116). The first term in the latter series reads _ Z(Zy fim<KDXr B ol (134)
€sol

+ v\1+02 —2 tV1+
71195 = | dv e f dte® i The other part of the screened self-energy comes from the
b v deformation of the set made by a charge, its screening cloud
K2(t/kp) inside the electrolyte, and their images inside the wall, with
X K—zD -1 (131 respect to the spherical symmetry of a charge and its screen-

ing cloud in the bulk. The deformation stems both from the
As shown in the next section, the contributionsix) from  impenetrability of the wallsteric effect and from the con-
each species varies over two length scageg/ e, (times tribution of its electrostatic responseAf,# 0 (polarization
Z%) and 1lyp. Therefore, 7*[1](X;q), as well as all other effec). When it is multiplied bys, one gets

terms in the seriegl16), can be expanded in powers of the (20?1 —
ratio 2¢ = kpB€°/ €5, Of these two lengths. As shown in Ref. ﬂ—EKDL(KDX kpb) = Z2 SL(KDX kph). (1395
[12], for an operatofl * associated with a function similar to €solv

K(x), the e expansion of7*[1](X;q) starts at ordee (for @@ is the electrostatic potential created by the charge-
anyvalue o), and thes expansions of the next terms in the density profile at first order ie. It is given by

formal serieg116) are of larger order im. ThereforeH™ ™ is B e (*
reduced to the contribution from*[1] (D(l)(X;KD,KDb,_> = —f dx’ f dy
€sonD €solv
H*W(X,9%) = - T 1] )| ™. (132

><¢(°>(x,X’,y)E Z,0°
Similarly, aH*/d‘f(|(1) =-g7*[1](X;q)/ox|'Y. We notice that

the latter derlvatlve originates both from the derivative of p[ ZZ’B VB B Sy s )}
T 1](%;q)|Y and of T*[1](X;q)|?, because the latter term

can be written ag times a function of the two argumerits 5 . n
andX/e (see Appendix ¢ Similar results hold forH™, X{l_zv‘gL("DX kb)),
with H"M(X,q%) =7 [1](%; q)|?. (136)

€solv
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where¢%(x,x’,y) is written in Eq.(120) and|'"Y) means that  (135), and the other terms originate from the bulk-screened
the integral must be calculated at first ordersiwith xpb  self-image interactioV, *(x), Eq.(134). If Ag=0 ®M(x) is

and Be?/ (esopb) kept fixed. As a consequence, reduced te(34/S,)M(X). In Eq. (139),
pe pe — ToeogeX 1-A2
Z, Beq)(l)(X;K K b,—)=Zasf (K X; kpb,—— |. = el
T b PP b MO ), IS e proa, M0

(137

andC is the Euler constant,

L and ®® are functions ofk which are bounded in the in- A "
terval 0<x< +o0 and which decay exponentially fast over a g,= (-e' §L> (141
few K‘Dl’s whenx goes to +. In the case of an electrolyte 4 Tesonb
confined between two walls, the density profile exhibits anyhere
analogous structurg38].
-1 (Y -1
3. Explicit results in the limit kpb<€1 at fixed Be?/ (esob) gluy=-1+ 9y —f dt ot (142
0

Density profiles have been explicitly calculated at leading _
order in a double expansion mnand xpb with 8e?/ (e ) S is defined by
fixed in Ref. [13]. Indeed, in regimes wherepb<1 the — 3uEi(_ Ui
density profile written in Eq(133) can be explicitly calcu- Su(U) = eBi(=3u) + eRI(- W), (143
lated at leading order by considering the limit of where E{-x) is the exponential-integral function: for>0,

SL(KDX; KDb) and OfS fq)(KDX; KDb, ﬂez/(esoh,b)) When KDb +00 —t e—t -1
Ei(-x) =- j f

X
vanishes at fixe@e?/ (e, 0) and by keeping only the terms dte— =C+Inx+ | dt )
of ordere In(kpb) ande. The corresponding expressions are t 0 t
valid in regime(1) where the temperature is fixddee Eq. (144)

(12)]. In regime(2) [see Eq(13)], the temperature goes go ) )
infinity, and the density profiles are obtained from those of>-(4) decays proportionally to 1/whenu goes tox, since

regime (1) by taking the limit whereBe?/ (esb) vanishes Ei(-u) behaves as expu)/u for Igrge u.
while «pb is kept fixed. We notice that, in the calculation of the partd?(x) that

We notice that the corresponding results enable one t§omes from the bulk-screened image contributidpy™, a
calculate the surface tension of the electrolyte-wall interfac&e€y ingredient is the decompositio@13) combined with the

at leading order iz andkpb at fixed Be?/ (esopb) xelb [39]. eXlBrzsriSS'gg ;)éctgjszxponentlal—lntegral functigi4). Here
From the generic expression, one retrieves results alreacgf

known in some special cases. o0 7 7
f do| €7V -1-=|=-1g =) (145

X

In regime(1), xpb vanishes at fixegBe?/ (e,,b), and the »

explicit expressions of functions in E¢L33) are b

o % o ~ We point out thag(u=0)=0.
L(x;b)=(1 —Aé)f dt — + O(b) In regime(2) [see Eq(13)], Be?/ (es,,0) vanishes, what-
1 (-1 Ay ever the sign of\,, is, becauséBe?/ e,,,) <b< &p. In this
(138 regime,e vanishes faster than ande/b must be set to zero
and while b is keEt fixed in Inb+g,(e/b); then, the latter sum is
2 reduced to Irb. The result is the same as if the exponential
—,8e<I>(1)(x;KD,B,’B—> involving the bulk-screened self-image interactigf) *(x’)
€sond in the expression(139) ®Y(x) had been linearized at all
distances<’, as is the case in the second integral in decom-
- %M&) n £[2—3<C+ |”_3 + InB) position (C13). In the following, we wriie expressions only
2, 2 L3 for the more general regime wheteandb vanish with their
D 7308 ratio kepﬁ fixed. o
ek Ak = ﬁ%e_gy&&) +O(eh) In regime(1) [see Eq(12)], Be?/ (esub) is finite. For an
3, pI ' electrostatically attractive wallA¢>0), we cannot consider

(139  the limitb< (,Be_zleso,v)ﬁgD, whereA, 8%/ (e, b) tends to
5 5 +oo: there is an irreducible dependencelmr©On the contrary,
whereO(eb) stands for a term of orderb. By virtue of Eq.  for an electrostatically repulsive wall\e<0), we can take
(136), the electrostatic potential profieY(x) at first order  the previous limit, wheré\y5e?/ (esob) goes to <. In this
in & arises from the screened self-energy: the term With  limit, b vanishes faster thas, and we must sekp;b=0 at
comes from the deformation of screening clouds with respedixed ¢ in the term Inb+ gy(g/B) in Eq. (139); then, this term
to the bulk spherical symmetry, which is describedlpy¥eq.  becomes equal to qme.|z§g/2)+c—1.
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From the expression of the density profiles up to order riyed in Sec. V C 1. The calculations of the zéydimits of

in the vanishings limit, wel) explicitly calculate the  p+)x ¢2=0) andgH*/ XV (b,q2=0) are performed in Ap-
vamshmgb limit of the termD (x) of ordere in the coef- pendix C.CE;) and gzxm)&) in Eq. (126) are given by
ficient D 4,(x). The formal expressmn dZD(l)(x) has been de-

%’1—) e'k‘z‘(m S+ Inb) 2, ’;8224 ] (1463
+ z—‘z‘ f :c dt(t " V’tlz :i)% - Ai 2tt::[ i/i) ] (146b
z@—zr{f:%l sl )
'@z) { 21 2-1n 3] (1469

and

aexril)(‘;() :ﬁé

- 1 22{eTXEi(— 4%) - Ei(- 2%)} (1473
) E_:J :O s V/tlz :i)% - Ag 4t((et_ i) narm
%(%)z{fdt(tﬂl i)zz e 11/4{2&_?_4;(9:?1)” (aro
el
@z)[ e”Ei(- &) + Ei(- 2)'()——e'XE|( %) - Ei(- 3>‘<)] (147¢
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The expressiongl46g and (1479 arise from the contribu- Eventually, as shown in paper I, when all species have the
tion of the screened self-image interactmi&sc, Eq. (139), same closest approach distance to the wall,
to the density profilg(133). The terms(146b and (147b D.()D..(x')
originate from the deformation of screening clouds described / @ @
g g Noo (X X'Y) ~ =B—— 35— (148

by the functionfgiven in EQ.(138), which does not vanish y—ee y
even wheney=¢€g,,. The three last lines irC(;)/s and  gnd

G¥MV(X)/e come from the contribution of the electrostatic
potential ®(x) to the density profile. More precisely, Egs. D, (x) = ;{Za[5¢(x) +CC(X]+C (W}, (149
(1460, (1470, (1460, (1479, (1468, and (1478 originate Veson

from the functionaM (X), exp(=X), and exp-2X)S.(X), in Eq.

__ _C— _ c— _
(139, respectively. whereC (x) and C“(x) are related tch, , andh re

spectively, by

VI. CORRELATIONS ALONG THE WALL c— fd)(’E nz 5 nh , 0

A. Tails at large distances along the wall « ) Y p}//(x ) 7 d)(x ) a},,(x,x 04 =0)

The Ursell functionh,,,, cannot decay faster than y&/ (150
Indeed, by an argument based on linear-response theory and
screening in macroscopic electrostatics, the correlation be!
tween global surface-charge densities at points separated by __ _
a distancey is shown to decay as 7 with a universal Z,C%(x) = f dx’>, p},,(x”)Z),,DQS(x”)hz_y,(x,x”,KDq =0).
negative amplitud¢20]: f,, in the amplitude Bf,,. of the y'
1/y?® tail of h,, obeys sum rulg41). The latter sum rule (151)
holds whether all species have the same closest approach
distanceb,, to the wall or not. We recall that it is a conse- ~ An advantage of the resummed Mayer diagrammatic rep-
quence of external screening, as sum I3@). resentation is that the contribution from every diagiddroan

On the other hand, as a consequence of thé décay of  be associated with some physical effect. For instance, dia-
the screened potgntia&l, according to Eqs(:30) and(31), the gram ﬁa made of the single bon& describes Coulomb
bondsF*® and Fr in resummed Mayer diagrams behave asscreening at leading order, and the sum of the two diagrams
1/y* and 14°, respectively, at large distancgsSinceh,.:  made of bond§Fe<J2/2 andFy, respectively, contains the
does not fall off faster than ¥#, no compensation mecha- short-distance repulsion, while diagrarfi, T, and i,

nism destroys the ¥? tail arising from the slowest one h in Fios. 8 and 9 invol bod " to th
among the algebraic bonds in the Mayer diagrammatics§ ownn FIgs. & and 9 Involve many-body corrections to the

Thereore, in a regime where only a finite number of Mayermean-field contribution fronl,, _

diagrams—or only some infinite class of diagrams— In order to trace back the physical effects, we have to

contribute to the large-distance behavioihgj,, h,, indeed  identify the contributions td,(x)D(x’) from the various

decays as M. This is the case in the dilute regime studied diagramdlI defined in Sec. Il B. In other words, we have to

hereafter[We notice that if, in some regime, the summationrecognize in Eqg(148) and(149) the tails ofh‘;i” hz;” h;iw

?r];bsu?[irgr? lgf;nite(xsc)a(r,i)est hognsf?bdi\?v%rj??alﬁiftfo r:(;‘rén;ilrg\tﬁyconand h__,, the sum of which is equal t,,,. As shown in the

a2 e’ T - >~ Appendix of paper I, the latter tails read

than 14°. However, sincé,, is integrable by definition, it ppendix ot pap I

cannot decay more slowly than y#/] cc , B€
As shown in paper |, the largg-behavior ofh,, along P (6XY) ~ =

ZZo[D4(¥) + C()][Dy(X')

the wall is conveniently studied from the decomposition de- o Ssol

scribed by Eqs(33)—«(53), as in the case of bulk correlations. + 6:_(X')]£ (152)
In the latter graphic representation lof,/, the topology of v’

diagrams involved ifl implies that the bond decays alge-

braically faster tharF°¢ at large distanceyg (see Sec. Il ¢ B Be?_ — _ - 1
Moreover, as exhibited in Figs. 1-3, all graphshi§, h™, he L (xXy) ~ = =—Z,[Dyx) +C"(x]C,, (x') =,
h¢~, andh™ are chain graphs, and because of the translation yore Esolv y’
invariance in the direction parallel to the wall, the chain (153
graphs can be seen as multiple convolutions with respect to

the variabley. Therefore, every term, excetin the graphic _ , pe .1
representation ofi®, h™¢, h®~, andh™ has 14?3 tails arising P (XX ’Y)y:m - EsoIvC « XC /(X )F- (154

from all its F° bonds. The 1y® tail of every graph inh®,

h¢", h™¢, andh™ (see Figs. 1-Bis a sum of contributions,
each of which is determined by replacing one of the bonds
F°¢ by its 1/y® behavior at largg, while the other part of the According to Eq.(149), f ./ (X,x")=D_(X)D,(x") so that
graph is replaced by its Fourier transform at the vaju®.  the sum rulg4l) for f,,/(x,x’) can be rewritten as

B. Sum rule for the effective dipoleD ,(x)
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o0 w in the direction perpendicular to the wall, the ser&s(x)
JO dXEa €aPa(X)Da(X) = 822 (159 andz,Ct(x) cannot be expressed as sums of geometric se-
ries that could be calculated by such a simple formula as Eq.
Similarly to what happens for the internal-screening rule(77). Therefore, the expression (fof Y k)exd—«k(x=b)]in
(35), the latter external-screening sum rule can be derivedhe large-distance behavigt0) of D,(x) cannot be calcu-
from the decompositioig149), the integral relation50) be-  lated by the mere determination of the pole of an analytic
tweenh®™ andh™, and two sum rules obeyed ly¥—namely, function and the calculation of a residue.

Eq. (47) and a sum rule fob. (x) in the f 4(x,x")/y3 tail of Though the loss of translational invariance in the direction
¢ o perpendicular to the wall prevents one from performing sys-

POGXY): tematic resummation®) ,(x) can be determined up to order
o0 _ 2ew e at any distance [in the sense of the comment after Eq.
f dX kX(X)D 4(x) = . (1560  (89)] by the alternative procedure derived for bulk correla-

0 Esolv tions in Sec. IV D. In a first step, the correction of orden

the screening lengtk™ of the leading exponential decay of
D,(x) has to be calculated by the partial resummation
i = — ] mechanism whose validity has been checked in the case of
that f,(x,x’) takes the factorized forn 4(x)D4(x’) in the  pyk correlations(see Sec. IVD R In a second step, the
case where all species have the same closest approach dignplitude factor inD_(x) up to ordere is determined as
tanceb to the wall. o _ follows. First, we calculated'”(x) in a form analogous to
More precisely, the derivation of EGL59) is as follows.  gq. (89), which arises from the contributions of only a few
The integral relatior{50) betweerh® andh™ and sum rule  diagrams whose amplitude is of ordemnd which decay at
(47) imply that the contributions fron€ ;" (x) and Z,C(x) largex as exp-«p(Xx—b)] times a possible linear term i in
to the integral in Eq(155) cancel each other. On the other @ second step, we check that the coefficient of tke
hand, sum rule(156) ensures that the contribution from —b)exgd—«p(x—b)] term, which arises from the second dia-

Z,D 4(x) to the integral in Eq(159) is already equal to the gramﬁ'C in h®¢, indeed coincides with the opposite of the first
constant in the RHS of the equation. In other words, the bongorrection to the screening length in the direction perpen-
Fe_namely, diagranil,—already fulfills sum rule155). dicular to the wall, which has already been calculated inde-

As a consequence, if some diagrams are to be kept forgendently. . ~ ,
their contributions taC () in some dilute regime, then the The & expansions ofI diagrams are more complicated
corresponding diagrams “dressed” with a bdfimust also  han in the case of the bulk, because the screened poténtial

i e i also has are expansion when the vicinity of the wall is

be ret.allne.d irZ,C°(x) in order to ensure that screening rule studied. The first correction t6© yields D(l)(x) in the ex-
(155) is still obeyed. ; @ i ¢

In the case of a symmetric electrolyte made of two Speciegressmn(l49) of D, (x). The leading term in the expan-
with opposite chargesze and -Ze and with the same radii, Sion of C,(x) or Z,C°7(x) is obtained as follows: densities
3. ¥, (r,r') decays faster than,, (r,r’) in they di-  pySare replaced by their bulk valugé’s and both functions
rection, similarly to what happens in the bulkee Sec. #(X.X',d=0) and I(x,x’,q=0) are replacied by their
IV E). Indeed, symmetries enforce that the local neutrality is€ading values ¢O(x,x’",q=0) ~and I )(_X’X/ ,q=0)
satisfied not only in the bulk, wherg=pB, but also in the =(1/2[F° “”1%(x,x',q=0), respectively. As in the bulk
vicinity of the wall, wherep,(x)=p_(x). As a consequence, Case, only the subseries shown in Figs. 4—6 do contribute to
by vitue of Ed. (149, p.(XD.(0+p(D(x D X.
=(e/Veson)Z 4 pa(X)C, (X). Symmetries also imply thdt,,

=h_- andh,_=hC,, and the definition150 of C, () yields We recall that, in the bulk case, the leading tail at orefer

p+(X)D(X)+p_(x)D_(x)=0. Subsequently, p,h,, +p_h_, . . ! B as
decays faster than §J. The latter property has been exhib- |r1CtBhe e expansion of the large-distance behawif; of

ited in Eq.(3.4) of Ref. [40], where the density-density cor- Neo @round its exp-«pr]/r limit decays asr4 times
relation =, . pa(X)pa(X)hae(r,r') in the infinite-dilution  exd-xpr]/r, and the sunh™ * of the latter tails decays as
and vanishing-coupling limitwherep,(x)=p%) is shown to  exgd—(xp+ Skg)r], with Sxy=ok;;’ (see Sec. IVD 2 In the
decay as eXp-2xp(x+x')]/y°. vicinity of the wall, the contribution fromh’., to D,(x) is
equal toZ,[D 4(x) +C“(x)] according to Eq(152). As shown
in Appendix D, in the & expansion of Z,C°(x), at

1. Method order &% the leading term at largex is proportional to

— (x—b)%exd —«p(x—Db)]. The sum oveq of the latter leading
In the general formulal49) for D (x), Z,C°(x), as well  (arms is proportional to exp(xp+ ok’ ) (x—b)] with
asC, (x), is a series of functions, each of which decays as a

polynomial inx times ex@—«pX), plus functions which van- oK' = 5Kfal)- (157)

ish faster{see the general structu) of D,(x) in the Intro-  According to the discussion of Sec. IV D 2, the latter partial
ductiori. However, since there is no translational invarianceresummation determines the correctid® of ordere to xp

The latter equation arises from the sum r(#&) obeyed by
the amplitudef ,(x,x") (derived in paper)land from the fact

2. Renormalization of the screening length

C. &€ expansions
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in the x direction, 8«" = 6xY. According to Eq.(157), the interact through screened interactions via one or two other
correctiondx'Y to the screening length in the direction per- charges.(The € expansions of the contributions from the
pendicular to the wall coincides at first order drwith the  latter diagrams to the v? tail of h,,/(x) start at the ordes,

value found for bulk correlations: because they all involve a borid/2)[F°¢]2.) The contribu-
sk = 5K§31)_ (158 tion to Eq.(160) from diagramlI,, reads
e
(0) —=(1) 1
3. Renormalization of the amplitude of P(x) esouvZ“D"’ ()C, " (x"), (162

According to the general method summarized above, the
amplitude ofD Y(x) can be determined from only a few d|a—
grams mC;‘(x) and ZC,CC (x). Before turning to the explicit
calculations in the regimé<1, we interpret the various ¢ 2,2, [C:*Px)DO(x) + DOx)C P (x)].
contributions inD (x)D,,(x’)/y® in terms of diagrams which €solv “ ¢ ¢ “
are representative of physical effects. The diagrams that are (163
involved in the determination of the §7 tail of h,,/(x,x’,y)
up to order ine are the same as in the case of the bulk. Explicit results in the limit o b<<1 at fixed Be?/ (e b)

D|agramH in Fig. 7 describes the leading screening effect
and therefore gives the zeroth-order contribution

while Hb leads to a symmetric term in the variabbesnd
, andHC yields

1. Separate contributions
2 - In the limit b<1, D'%(x) is given by Eq.(7) where the
Dfxo)(X)D(CS)(X') = _Zaza’D((;)))(X)D(g)(X,)- (159  exp(kpb) term disappears in the expressmn[ﬁ(f)(x) Here

€sol
Contrary to the bulk Sovb fth ormit fD(1 (x) is calculated from formula149). | D™ (x) has been
ontrary 1o the bulk case, because of the nonuniformity of ' ey iy sec. v, and in the limii<1, DI¥(x) is given by

the density profiles in the vicinity of the wallp has ane
expansion, and the first correctigf’) to ¢© gives a correc- Eqs 1(126) (146, and (147). The other contributions
~ )(x) and Z,C*"M(x) are obtained by replacing,(x")

tion of ordere in the 147 tail of ﬁa.The contribution from
by py,, ¢ by qb(o h™ and h®™ by the graphs with oné in

diagramll, to the correction of ordes,
a9 @ I their series representations, ahdy [F qu)]2/2 in the ex-
’ — 1 ’ ! —
[D,(¥D,(x)]¥=DP(x)DY(x") + DL (DI (x), pressiong150) and (151) for C, (x) and Z,C°(x), respec-
(160) tively. The contribution fronC " (x) is

reads C, P =DPZBH+GHY®], (164
e —o — = here
2,2, [DPDP(x) +DPXDO(x)]. (16D
6-SO|V _(l) |n 323
- Bib = 872_ (165
The other contributions to E@160) arise from diagramsl,, 2
ITy, andIl., shown in Figs. 8 and 9, where fixed chargesand
|
— S.1) ” -2
G =221 —e¥S.(®) +f dt ; 2(1-Ay)?
[b] (~ 22 2 (~ 1 [t + V/tz -1 _Ael(t _ \’rtz _ 1)]2 ( el
ZA V21— 97Xy — 2_ _ %
. (1 -Ag)H(1—-267) - BA,(t - 1)(1 -€™) ’ (166
t+1/2
with S_(X) defined in Eq(143). The contribution fromZaEC‘(x) reads
—_ — 3(%
z2,C" () = zaD;‘P(x)[ (i) Bie] + GLef"” ®} (167
In Eq. (167) the coefficient of the linear terfx coincides with —6K(Bl) given by Eq.(86), while
11 In3 afAs) ( )
BU=g-| =2 _ el 1
el ™ 2{3 2 2 S,/ (168

with
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o0

a(Ae) = f ) {

If eson/ €n=80,a:,=1.2, and ifeg,,= &y, a.=0.84. HereGeXp(1 (X) is the exponentially decaying function:

CAg(t-1)(4tP+2t+1)
t(t— 1/2)(t + 1/2)?

1
[t+\t2 1-Ay(t—\t2=-1)7?

(1-Ag)q16t%t+1/2) - 1]
8t(t— 1/2)%(t + 1/2)%(t + 1)

(169

3 ~ (7 gl1-2% AA,(P—1) - (L -Ag%(t+1) -
GoPy) = — E[ 23] | S el el S
Giel " (22) { © f I A E D Gwdrier e TSRS
" e [(1-Ag)? - 4A(t? - 1)]

(170

|

2. Global results Since Gex”(l)(i) tends to zero at large, the effective

Eventually, the sum of the various contributions at order charge near the walty" %, defined from the dipolar interac-
reads tion by Eq.(10), reads

[ a
1t

(t+ D+ 12t + 12— 1 - Ag(t— V2= 1)]?

1)

Ok
1+BP +—-+o0(e) |,
KB

In3(%;

) X + B(l) + Gexp(l)(')v() O)(X), Zeff w_z {

2

(171 where the termvk}’/ kg arises from the 14 coefficient in
. ) the definition(10). By virtue of Egs.(172) and(86),
whereB " is the sum of the various constants: ,
In 3% a(Ay) 11(2
_ eff W _ (1) 953 eV _—|f=3
I I e D e |
and +0(e) (176
Gexril)(;() exp(l (3-'() + Z G x;il)()v() + Gex;il)(')v()
(0] As exhibited by their diagrammatic origins, the various terms
173 Z%"W arise both from the nonuniformity of the density

profiles described by diagral’rtia at ordere and from the

Gi"“l)(i() is a bounded function of order which decays to ! ) J ]
leading screened interactions via one or two other charges

zero at least as expx) whenX goes to infinity. The coeffi- ~ o
cient of the term(-x)exd—«px] in D'”(x) indeed coincides that appear in diagramid,, andTl,: (Fig. 8) and in diagram
with the first-order correctiodx” to the screening length in 1. (Fig. 9). If €™ €, ac(Ae)>(2/3) and the four-body
the direction perpendicular to the wall calculated in Appen-effective interactions tend to decreazféT W with respect to
dix D with the result(158). Therefore thes expansion of its bulk value.

D,(x) can be rewritten in terms of the explicit express{@n
of D(f)(x) as

The comparison of the effective chargéffw near the
wall with its vaIueZ’sff B in the bulk given in Eq(87) leads
to

2€W e Z
Da(¥) =~/ = v Sy
Esoly \ sy KD Jerg =1+B A+ = 2 role), (177
(kg +oxD)x 1), ~expl) “
x{eTr et X1 +B, + GV (X)] + o(e)}. where
(174 B(l) _A(l) — C(l) + B(l]) _Aﬁ' (178
The effective dipole associated with a charge at leading
order ine, D(O (x), is proportional to the mere exponential Indeed, according to Eq&99) and(165), 7“15 A[D- the con-

function exyi- KDX) Equation(174) shows that, when first- tributions in the bulk and along the wall from d|agrdfh,

order corrections are taken into account, the effective dipo'%ompensate each other and there is no term proportional to
varies with the distance from the wall in a more compllcatedzz in the ratio 22" W/7¢" B The final result is written in

way described byG* (%), the value of which is derived Eq (18)
from Eq. (173. The sign ofB”+G>*" (%) may vary with T
the distancex from the wall and depends drastically upon the
composition of the electrolyte, the value of the closest ap-
proach distancé, and the relative dielectric constant of the
wall with respect to that of the solvent.

VII. CONCLUSION

In the present paper we have introduced the renormalized

chargeziff W associated with the large-distance dipolar-like
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effective interaction between two charges along an insulatingank m, f3°(r) is equal to exp-«pr)/r times a polynomial
wall, when all charges have the same closest approach dig r of rankm—1. For instance, if is equal to the convolu-
tance to the wall. This charge has been explicitly calculatedion ¢p*[¢p]% the complete contour integral which deter-
up to ordere in some limit of infinite dilution and weak mines the RHS of EqA1) gives the expression @fD*[qu]z
coupling when the wall is neutral. at any distance. According to Eqs(72) and(81), ¢p has a
The renormalized charge could also be calculated in thgole atk=ixp, while [¢p]? has a cut that starts &t 2ixp

case of an insulating wall with an external surface charge ognd goes along the imaginary axis up tbo+As a conse-
it, as is the case for instance when the wall mimicks a celyence,

membrane. Indeed, the general method presently devised for _ e et ot
the calculation oZ" " holds for any density profiles when e *(e o ) () =2mIn 38 oL e
the & expansions of the latter are known. On the other hand, r

Fp(kor),

Kpl Kpl
suche expansions could be obtained by a generalization of (A3)
the method presented in Refd2,13, where the external
one-body potential created by the surface charge would behere the first term comes from the residue of{@«dkf(k)
incorporated in the fugacity. at the polek=ixp of ¢p(k), while the second term arises
from the cut in the definition ol[d;%](k). At large distances
the first term falls off asp, and the second term &g3],

The present appendix is devoted to the determination dpecausé-p(«pr) decays as a constant times(&4r). Indeed,
the large-distance behaviors of exponentially decaying func- +o onpr t
tions, such as those which appear in the resummed Mayeg, (,r) = _87.,f dt————— = - 2] €30'Ei(- 3kpr)
diagrammatics for bulk correlations. When a function o AL+t)?-1
f(r) is rotationally invariant, its Fourier transfornfi(k) -
= [dr exg-ik -r]f(r) depends only on the modulisof k. ~ &0RI(= xpn)], (A4)
On the other hand, whef{r) decays faster than any inverse where E{-X) is the exponential-integral function defined in
power law of the modulusof r, then its Fourier transform is  Eq. (144). (The large-distance behavior of the convolution
an analytic function of the components kf When both  ¢p*[¢p]? is indeed dominated by the pole @fy(k) at k
conditions arefulfilled byf(r), thek expansion off(k) con-  =ixp and not by the branch point of the Fourier transform of
tains only powers ok2. Then the analytic continuation of [¢p(r)]? at k=2ikp.) In the case ofgp*[$p]?, the corre-
f(k)=f(k) to negative values ok is an even function ok  sponding slowest exponential tdif°"(r) is exactly propor-
and its inverse Fourier transform can be rewritten as the foltional to ¢p=exd—«pr]/r, since the pole ak,=ixp is of

APPENDIX A

lowing integral: rank 1.
g For the convolutionpy*[ ¢p % ¢p, [ (k) ]? has a pole of
f(ry=- '—ﬂz-f dk é<kf(k), (A1) rank 2, and a calculation similar to the previous one gives
4 M e—KDr e—KDr 2 e—KDr
wheref(k) is a derivable function ok. The one-dimensional [ ; *( p ) R }(r)
integral in Eq.(Al) can be performed by the method of
contour integrals in the complex plakek’ +ik”. [We notice _ 16772i{|n—3;< - (In_3 _ })]
that, whenf(r) decays algebraically, then the smialexpan- K% 4 P 4 3
sion off(k) contains nonanalytic terms involving eithet ki P
or odd powers ofk| [37], and the present method does not Xe + e—FC(KDr), (A5)
hold ] Kpl Kpf

The slowest exponential tafls°"(r) of f, defined at the
begining of Sec. IV, is determined by the singular point of
f(k) that is the closest one to the real akis=0 in the upper
complex half-plane. If the latter singular point is a pkjeits
contribution tof(r) is given by the residue theorem

whereF («xpr) decays as a constant times(&jr), since

+oo e—2KD rt

1
Folkpr) =327 | dt

2)y Maaezop A°

The slowest exponential tafls°(r) of f(r)= ¢p*[ dp]> dp
f slow(r) = iReS{eikrkf(k)]k_k . (A2)  isgiven by the pole of (k) atk=ixp, which is of order 2, and
2t 0 f slov(r) is equal to exp-«pr]/r times a polynomial i of

In the present paper we consider functidiie) that contain "2k 1: it is not merely equal tg.

no exponential term and such thigf is purely imaginary, APPENDIX B
ko=ixp. In that case the inverse decay lengthf&P"(r) is
equal to the imaginary part of the pdig [If there were two In the present appendix we study theexpansion of the
poles with the same imaginary part and opposite real partdarge-distance behavitf®,. The meaning ot expansions is
thenf $°Yr) would be an oscillatory exponential t3il. detailed in Sec. Il C.

Moreover, wherky=ixp is a pole of rank 1f $°%(r) is a First, we calculate the expression of the slowest exponen-

pure exp—«pr)/r function, whereas iky=ixp is a pole of tial tail of the graphf,, with exactly m bondsF in the

056117-26



CHARGE RENORMALIZATION AND OTHER EXACT...

definitions(51)«53) of f=h®B, h®B h=°B or =B, (For the

PHYSICAL REVIEW E 70, 056117(2004)

The large-distance behavié@gr) of f(r) is the sum of

sake of simplicity we omit the indices for charge spegies. the slowest exponential tails of all graphs
The slowest exponential tail has been defined at the begin-

ning of Sec. IV. Foh®®B andh® B, f; corresponds to the first
graph in Figs. 1 and 2, respectively, whereas, in the case of

h™B, f, corresponds to the second graph in Fig. 3. SiAte

decays slower thah(at least in the high-dilution and weak- |t reads

coupling regimg,

fi(k) = (B1)

S — . 29K,

where the poles or branch points gfk) in the upper com-

fagr) =2 f3r). (B8)
m=1
fagr) = E Frnp: (B9)
m=p+1

and the large-distance behavioia"’,‘s of h° , takes the form

plex half-plane are more distant from the real axis than thd90)-

pole k=ixp of 1/(k?+«3). [For h*®, g(k)=1, while, for
h®™B, g(k) is given by Eq.(75) with 1(k)=0 and, forh™8,
9g(k) is given by the second term in the RHS of E@6) with
I(k)=0.] Subsequently, the slowest exponential fa}'f"”(r)
of f4(r) is obtained from Eq(A2) by calculating the residue
of exdikr]kf,(k) at k=ixp, with the result

1 . .
£ = S kLR k- inp) )i, (B2)
f $°%r) takes the form
slow, — e_KDr
f1oMr) = Fio (B3)

According to definitions(51)«53) and (73), the Fourier
transform of the grapffi,, with m bondsF*“(m=1) reads

- m-1

=4l (K

fm(k>:[ k2+K(2)] 100,
D

(B4)

According to the argument leading to E&2), k=i«p is the

singular point off (k) that is the closest one to the real axis
in the complex upper-half plane, and the slowest exponential

tail f3°%r) of f(r) is given by the residue of
exdikr]kf(k)/(2m) at k=ikp according to Eq(A2). Since
k=ikp is a simple pole foff,, it is a multiple pole of rankn
for f,,, and the latter residue is equal to

m-1

(9 km-l

1 1
27 (M- 1)!

[k (k) (k - iKD)m]:|

k=ixp
(B5)

The expressioriB5) is equal to exp-«pr] times a polyno-
mial in r of rankm-1, Eg‘_'ol Fm prp, so that

—KDl'
f slow I’) —

E Finf P (B6)
The leading ternF, ,-r™* exp{—KDr] in the residug(B5)
arises from thém-1)th derivativeof exfikr]. Relation(B4)
and comparison of Eq$B2) and(B5) imply that

1 l_z
m-11] "

|_(i Kp)
Kp

mm-1=

m-1
} Fi0- (B7)

We now turn toe expansions of the previous slowest tails.

The ¢ expansion ofi (k), written aSKD times a function of
k/ kp [see Eq(83)], generates an expansion foif,,, through

Egs.(B1l) and(B4). We recall thatf,(k) is the generic nota-
tion for the Fourier transform of the graphs with only one

bondF*¢in Figs. 1-3. Since the expansion of (k) starts at
order ¢ [see EQ.(83)], the ¢ expansion off;(k) begins at
order "0 with ny=0 if f=h°B, ny=1 if f=h¢"8 or f=h"°B,
andny=2 if f=h""B. For the same reason, theexpansion of
f, starts at the ordes™*™* and so does the expansion of
the coefficient~,, of r P in Eq. (B6):

+o0

Fmp—sno E F(n°+q

g=m-1

(B10)

As a consequence, the large-distance t&fr) of f(r) de-
fined in Eq.(B8) has ans expansion of the form

fagr) = noE r pz a(“0+q)
p=0 o=

g ol

(B11)

nOE SqE a(n0+q
a=0

with a(”°+q) Eﬂ,’;lp+l F(”°+q) and thes expansion 01hB 2
has the structur€9l). In Eqg. (B11) the coefﬂmenla(”0 a of

£"0*9r 9 has a simple expression

ag]n0+q)

The leading tail at ordee™*d in the e expansion off @S is
proportional tar 9 exd —«pr]/r. It comes from the leading®
term in the slowest tail Z'fr’(r) of the graph withg+1 bonds
calculated at its lowest order #g—namely,"0*9,

The sumf @(r) of the leading tails at every order inin

the & expansion off ®reads

Fod. (B12)

~Kpl

Fas(r) =1

e, alod(er)d, (B13)
q=0

It can be calculated explicitly by virtue of E(B12), because

Efquofg) is given by Eq.(B7), where I(k) is replaced by

1D(k), while Fi0 is replaced by the first term in its

expansion—namely;; 3 ”0) . We get

056117-27



J.-N. AQUA AND F. CORNU

1 1%ikp) |
8“°+“Fé’l°f,3):a[—2wﬂ sOF.  (B14)

Kp

Equation(B14) implies that the coefficient af 9 in the defi-
nition (B13) of f 5(r) is indeed such that3¥(r) coincides
with the series of an exponential:

l)(|KD)

Kp
(B15)

fas(r) —% ~(kp+org)r eFY  with kg =2m

According to Eq (85), 5KB coincides with the correction of
ordere in «B 5;<B 5K(Bl. By comparison with Eq(B3), the
reIation(BlS) can be rewritten as

e—&xB aS(no)(r)

fa%(r) = (B16)

where f 2%=f %) js proportional to exp-rprl/r. In
other Words the suni @(r) of the leading tails at every
order in ¢ in the & expansion of f2{r) around its
exg—«pr]/r behavior in the vanishing-limit is equal to

exp{—éx(sl)r] times the large-distance behavior of the graph

f; with only one bondF¢ calculated at the first ordes™.
When f=h8, n,=0 andf 2" coincides with the diagram
[1,=F  shown in Fig. 7. Wherf=h®8 or h°8, n,=1 and
f"f(”f’) is the exp—«pr]/r tail of diagramll, or Il,:, respec-
tively (see Fig. 8 the amplitude of which is of order with
respect to that oF®. Whenf=h""8, n,=2 andf "f“‘O) is the
exd-kpr]/r tail of the diagram built with (1/2)
X[F ©€%F % (1/2)[F°°]?, the amplitude of which is of order
&2 with respect to that oF°,

APPENDIX C

In the present appendix, we consider the limi€ 1 at
fixed Be?/ (esob) and we calculate the explicit values@ﬁ‘”

and G"'Xp(l (X) [see definition(126)] up to terms of ordee

times Inb plus a function ofBe?/ (es,b). According to Eqs.
(127), (128), and (130, the values are determined from
H*(X,q?=0) and from its derivative with respect ¥oat point
X=b.

First, we calculatéd*Y(x,q2=0). According to Eq(132),
at first order ine, H*®==7"1]|V. In the following, the
definition (131) of 7*[1] is rewritten forq?=0, thanks to an
integration by parts, as
0) =K(b) ~K®),

71X 9% = (C1)

with
K(X) = ifwdu[l _e—z(u—i)]z szz Po{U/kp) 1
23, )% ~ e pz
(C2)

With these definitions,
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lim H'®W(X,q?=0) = - K®(b), (C3)
X—+0o
and Eq.(128) is rewritten as
GHH®) = KY®). (Ca)

From now on, we consider the regirrfeél at fixed
B (esoib). KV(X) is determined from the density profiles
up to ordere given in Eq.(133). At leading order in the limit

whereb vanishes, by virtue of Eq$138) and(139),

,—ez) = &R, (X) + O(eb),

- Z2eL(X;b) - Z, BedV (x Kp,b
soIvb

(CH

whereR,(X) is a linear combination of functions &f where

one coefficient involves Ib plus a function ofBe?/ (esqb)
in such a way that the limit of this sum is finiteAf, <0 and

b=0. HereO(s~b) is a short notation for terms of ordeb.

Then, the expression of the density profiles at oilean be
rewritten at leading order ib as

—1—{ p{ Vi S%x)] }+8Ra®
+ {exp[ 72— pe (Vi SC(x)} }
€solv

XeR,(X) + O(s b,&?),

pa(X)
B
Pa

2B

€solv

(Co)

where O(s?) stands both for terms of orders written in Eq.
(64) with I" <23 [as in Eq.(133)], and for terms of ordes?
times a possible sum of a lnterm and a function of
(B€/ eso), Which is similar to the coefficient iR, (X) [see
the comment after EqC5)]. eR,(X) is a bounded integrable
function of onlyX=x«px, while (8€?/ eso,) V2, 54x) is a func-
tion of both x/(B€*/ e5,) and kpx. As already noticed in
Sec. 3.3 of Ref. [13], an integral where
{exd-Z2(Be?/ eson)VE ()]~ 1} is multiplied by & times a
bounded integrable function @fis of ordere? times a func-
tion of b and Be?/(es,b), Which has a structure similar to
R,(X) in Eq.(C6). Thus, according to Eq§C2) and(C6), the
expression oK(X) at ordere, KY(X), can be written at lead-
ing order inb as the sum of only two contributions

KO®) = K} (X) + eKp(X) + O(eb), (C7)
where K;,(X) and Kg®X) are defined asK(X) by
replacing [pu(u/kp)/p2]-1 in  Eq. (C2 by
{exd-Z2(Be?] esop) VE (Ul kp)]- 1} andR,(u), respectively.
R,(u) defined in Eq(C5) is given by the explicit expressions
(138 and(139). Kg(X) is calculated by reversing the order of
the integrationg'du from the definition ofKg and fdt from

the expressions df and®® in R (u/ xp). Eventually,
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Kr(X) = KLX) + Ky(X) + Kego®) +Kg (X),  (C8) (B e ) £ > paZed.
V€, =eb——— o —
where the four contributions aiising_from the terms in the Q €Esond 2 3,

density profiles involving eithek(x), M(x), exad-X), or S whereg, has been defined in EqeL41)~(145), andO(s?) is
are written in Eqs(147b—(147s, respectively, by virtue of  equal toe? times a function with a structure similar to that of

+0(¢?), (Cl19

Eq. (C4). R,(x) in Eq. (C5). The resuli{C14) combined with inequali-
Now we show that ties (C11) leads to EQ.(C9). Eventually Eq.(C7) can be
written as
KWX) = KIN%) + O(eb), (C9) ~
K(®) = Kin(®) + eKg(®) + O(eb).  (C19)

whereK!"(%) is deduced fronK;,(X), defined after E(C7),
by linearizing the exponential that contains the bulk-screenefg(X) is given in Eq.(C8) and, according to its definition,
self-image interaction Z2(€?/ e;,) V2% Indeed, Kin(X)

-Kih(X)=Q(X) with KIN%) = & e'2“[e2“XE| (- 4%) - Ei(- )], (C16)
Q) = f du1-e2u > pBZZ{eX,{ﬁzife—Zu) where E{u) is the exponential-integral function defined in
23, 2 “u Eq. (144).
A e The derivativedH* (X, q%=0)/ X at first order ine must be
-1--47 e‘zu} (C100  performed more carefully. The reason that leadsHté" =
2 -7*1[1] also implies that
Since the functions in the square brackets are positive and JHY| @ gk|®
1-exg-2(u-%)]<1-exi-2(u-b)] for x=b, penl (C17)
~ ~ 92 .
0= 0% < o) :Q(b,s; B ) (©19) and, similarly to Eq(C7),
Esond dk | @ _dKy, @ dKg ~
- —| = ——| +e—= +0(eb). (C18
The double expansion @(b, e ; 6%/ (esb)) in powers ofe dx dx dx

andb at fixed BE% (esoyb) can be calculated thanks to the The decompositioiC13) leads to
following formula (already used in Ref[12]). We sete,

Enyelz. The functionf in the integrand of Eq(C10) is a dKi, |© Ay > P7 ygy S
function ofu that depends os,, as if f were a function of the & -T2 2— - —[C+ In(4b)]
two independent variablasandu;=u/e,. We write it as x=b 2
(C19
u .
f(U,s—) =0g(e4lUg,Up). (C12  We notice that
e N . i | i 20
Since b<~|1, the integral[;  can be split into the sum of e o
. +oo L T T g
integrals/ and fj - with b<l ande,<l<1. Then, The reason is that, though(l) is only a function ofx, K(Z)
+o0 involves a contribution that is equal 3 times a functlon of
Exp{J du f(u _” the two variable& andx/e, and the derivative of the latter
ea—0| Jb € contribution with respect to the second argumeht is of

1 ordere. The existence of such a contnbuuonKﬁi is due to
= Exp ( Saf du EXD[Q(S U1, Up)]) the fact that the functioZ?(B8e?/ esq,) V2, %(X; kp) In the ex-
(e ,)—+er ble,, pression(134) of the density profile varies both over the

U Bjerrum lengthBe?/ e, and over the screening lengép.
+ Ex f duExp )] , (C13 (This structure arises directly when the equation obeyed by
£q—0 8:1/ H* is solved by a multiscale expansion method.

where Exp_,o denotes ans expansion. The |dent|ty holds,
because wheul<I/s thene u; <1, and wheru>T, then APPENDIX D

/u)<<1. When Eq.(C13) is applied to the calculation of
(8~ )_ a(C13 pp ) ] In the present appendix we consider the laxgeehavior
Q(b,&; Be?/ (e5qnb)), the second integral in EQC13) gives a D¢ 3x) of the dipoleD®(x) that appears in the largetail
term of orders’oc&?, while Exp, _o{1-exd-2(s,us~b]} D°(x)D °(x")1y® of h,. Calculations are not as straightfor-
behaves as -bZ so that the first integral provides a contribu- ward as forhCCB in the bulk, and we calculate only the sum
tion which starts at ordesb; more precisely, DS 2¥(x) of the leading largecterms at every ordet9 in the
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e expansion ofD¢ (x) around its infinite-dilution and
vanishing-coupling I|m|tD° 2a%0)(y) . According to Eq(152),

D(X) = ———=Z,[D4(x) + C~(x)].

Vésoly
After insertion of the graphic representati@®) of h°” in the
definition (151) of C°(x), the latter can be written as

400

C(X) = In(),
m=1

(D1)

(D2)

where J,(x) is the contribution taC®(x) from the graph in
hZ;, with m bondsF° (see Fig. 2
The graph withm bondsF¢¢in hZ’V also containsn bonds

I. Therefore, according to
Sec. 1l B, thes expansion ofJ(X) starts at ordere™,
JIm(X)= EQ m m (x) whereJ (x) denotes the term of order
4. Therefore, the Ieadlng tail at ordef in the large-x
behaviorC®2{x) of C°®(x) can arise only from the leading
tails of the J,(x)’s with m=q. Though we are not able to
derive the leading tail of,,(x) systematically, we expect, by

analogy with the=,'s in the bulk case, that the leading tail of
Jm(X) has the same dependence as the leading tail of the

first termJ m)(x) in the e expansion ofl(x). As shown here-
fafter, the leading tauJ(m *x) of J(m (x) is proportional to

eM(X-b)™exd~(X-b
ordere? in the large-x behaviorC®~3{x) of C*(x) coincides
with the leading tail?’ *(x) of J¥(x), and the sunC®~2%(x)
of the leading tails at every ordef in Cc73{x) is C®7@%(x)
=357, 39 *x). Similarly, for DS(x) defined in Eq(D1),

[Dg?(x) +2 39 as(x)} . (D3)
g=1

The termJ(q)(x) of ordere? in the & expansion ofl4(x) is
obtained by replacing every bord by its zeroth-order ex-
pressionFc®?  everyl by its lowest-order valugFea912/2,
and every weighp,(x,) by its bulk valuepS. Inspection of
J9(x) for small values ofg shows that only the par&b(s?;g

=¢p of ¢ does contribute to the leading tdﬁ’) %x). Let
us denote by] (x) the corresponding part Lﬂt (x). For the
sake of S|mpI|C|ty, we relabel point pairs{p,p’}
={(rp, vp), (rp, yp)b, With p=1, ... @, X=X/, @andxg=x", in
the opposite sense and we S8EXy-(p-1) and uy=X_(,-1)-

By lﬂg Eqgs.(7) and (122 and the change of varlable
=2V1+q?% we get

i‘lzew 1 Z}qu_tqf ~%=ug|
Kp 6solv[ ‘4 (22) duq © ’
XJ+oo

b

+o0
dut'1 e’tq‘uq_ué‘ e J %ﬁ dul e_‘ué_ull
2 1Jb

xf du; € ~talus-ug|g (Ui—B)'
b

—
Vésoly

DC as<(x) —

3?(1)()() =

(D4)

the scaling analysis of

)]. As a consequence, t the leading tail at

PHYSICAL REVIEW E70Q, 056117(2004

The next steps of the calculations involve the following for-
mulas:

+oo -
|(ul) = f du e ~tylup— U1| (Ui—b)
b
- Zzie—(ul-g) - e-tl(ul-B) (D5)
tl - 1 tl - 1

and

LU= B)e D + Ry(uy ),

400 , 2
ﬁ du, 2% (uy) = 2

b 1
(D6)

where Ry(u) denotes a function whose slowest exponential
tail is equal to exp-u) times a polynomial of rank in the
variablex. More generally, we find

+oo
f du’ ~tplup— up\(u _b)p 1 u b)
b

2t
= t—P—(up— b le WD +R ,u,-b) (D7)
p
and
+o0 , _ ~
ﬁ du, e +17%l(uy, — b)P~Le (U
b
_l " _PP —(u'+l—B)+R S D8
= p(up+1 )Pep p-1(Ugs1 = D). (DY)

Eventually, the multiple integral in EqD4) is equal to

+oo 2 q - -
( f dt5 ) by e ® P +R4(X-b), (DY)
2 t - 1 q
where [37dt 2/(t?*~1)=In 3 and
2@ agy) = - 1 N Zew{_ 8In_3<§>2] q(;(__t))lle—&—?))_
a Kp V Esolv 4 \3, q!
(D10)

Therefore,D #%(x), given by Eq.(D3) with 5((2)(x) written
in Eq. (7), proves to be the series of an exponential whose
argument is proportional te(X—b):

, e [26,, € (<o* oK )x-b)
D¢ ¥ (x) =~ —Z,\—  ——————, (D1))
V650|V ESO|V Kp

with
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o

_n3 %)2
P = 7 (EZ . (D12

By virtue of Eq.(86), d«* coincides with the first-order cor-

PHYSICAL REVIEW E 70, 056117(2004)

DS *(x) =D (e 2 b, (D13)

rection 6Kf31) to the screening length in the bulk. We notice Equation(D13) corresponds to the relatiqi94) in the bulk

that Eq.(D11) can be rewritten as

case.
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