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Random spatial wave scattering and stochastic wave growth are studied where one or both of the random
processes can be described by a Lévy walk. This analysis extends previous work on randomly growing and
scattering waves where both the random processes are modeled by Gaussian diffusive statistics. Both random
spatial scattering and stochastic wave growth modeled by Lévy walks are studied separately, together, and in
combination with Gaussian processes. Transmission coefficients, lasing thresholds, and energy densities in the
medium are obtained for the different permutations.
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I. INTRODUCTION

In propagating through a random medium, waves can
scatter spatially and/or grow with a randomly varying growth
rate. For strongly scattering media such as biological tissue
or paint, the propagation may be so strongly randomized that
wave scattering can be described by a scalar diffusion equa-
tion [1]. Similarly, waves growing with randomly varying
growth rates have been used to model waves in space plas-
mas using stochastic growth theory[2]. Spatial scattering of
waves may also occur, combined with either a constant wave
growth or a random varying wave growth rate[3,4]. In each
of these cases the random processes commonly used to
model the random scattering or growth are termed Gaussian
or diffusive. In this paper these studies are extended to situ-
ations where the spatial diffusion or random growth of the
waves, or both, are not Gaussian. Since Gaussian systems are
diffusive, the underlying random walk process’s mean square
displacement increases linearly with timekr2l, t. In a super-
diffusive system the mean square displacement increases su-
perlinearly with timekr2l, tg for g.1. In this paper a su-
perdiffusive process known as a Lévy walk, is used to
analyze random scattering and growth in situations where
Gaussian processes are not applicable. In a similar vein, the
transmission probability of light through clouds has previ-
ously been analyzed as a non-Gaussian wave scattering pro-
cess[5].

The origin of the differing behaviors, diffusive and super-
diffusive, of Gaussian and Lévy processes is associated with
the probability distributions of step lengths which make up
the respective random walks. If the distribution of step
lengths has a finite second moment(i.e., a variance) then the
central limit theorem guarantees that the process is Gaussian
[6]. Processes which exhibit superdiffusion have no second
moment(i.e., infinite variance) and fail to satisfy the condi-
tions of the central limit theorem. The finite second moment
of a Gaussian process implies that the modeled system pos-
sesses a characteristic length scale of this order, whereas sys-
tems which can be modeled through Lévy processes possess

no such characteristic length scale. In order for the distribu-
tion of step lengths to have no second moment, the distribu-
tion must have a slowly decreasing tail; e.g., a power law tail
with index a such that 1,a,3. The lower limit ona is
imposed to ensure the probability distribution of step lengths
can be normalized.

Two different superdiffusive Lévy random processes have
been studied in the literature, Lévy flights and Lévy walks.
Lévy flights were developed first and involve random walks
steps occurring at regular times. Unfortunately, Lévy flights
take arbitrarily large steps in finite times and thus the random
walk involves arbitrarily large velocities. Lévy walks were
explicitly developed to avoid this nonphysical aspect of Lévy
flights. In a Lévy walk the time taken to complete each ran-
dom walk step depends linearly on the length of that step.
The lack of unphysical features makes Lévy walks the natu-
ral choice for modeling superdiffusive random walks in the
context of random scattering and random growth in waves.

The purpose of this paper is to apply Lévy walk random
processes to random wave scattering and growth. In Sec. II
the basic evolution equations for Lévy walks are introduced.
In Sec. III Lévy walks are used to model wave spatial scat-
tering and then combined with wave growth at a constant
growth rate. In Sec. IV waves with randomly varying growth
rates which can be modeled as Lévy walks in gain are ana-
lyzed, first in the absence of spatial scattering(ballistic
propagation) and then with Gaussian diffusive spatial scat-
tering. In Sec. V waves are studied which are scattered ac-
cording to Lévy processes while subject to randomly varying
growth rates, which can be modeled as Lévy walks in gain.

II. BASIC THEORY

In this section we give the basic equations for the Lévy
walk model in particular the so-calledvelocity modelwhich
we shall use to model both spatial diffusion and/or growth in
this paper.

The Lévy walk can be visualized by considering a random
walker whose walk consists of a series of steps between
points known as turning points. In traveling between these
turning points the random walker travels at constant velocity.
When the random walker reaches a turning point, the length
of the next step of the walk is chosen from a jump distribu-
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tion csxd. Thus, when the random walker is at a turning
point, the probability the walker will end up at its next turn-
ing point a distancex away in a timet, is given by

Csx,td = csxddsuxu − vtd. s1d

It should be noted that in one dimension(1D) the random
walker does not necessarily reverse direction at each turning
point. For symmetric jump distributions, there is a 50% prob-
ability the next step will be in the same direction as the
walker was traveling when it reached the turning point. For
Lévy walks in spaces of higher dimension, turning points do
correspond to spatial turns with unit probability. As stated in
Sec. I, the Lévy walk is superdiffusive, so the jump distribu-
tion csxd has a divergent second moment. Forcsxd to be
monotonically decreasing as a power law for largeuxu and
have a divergent second moment, we choosecsxd to have the
form csxd,uxu−a for large uxu, where 1,a,3. The indexa
can then be used to classify Lévy walk processes.

We let Qsx,td denote the probability distribution of turn-
ing points of the random walk. For a Lévy walk on a finite
interval f0,Lg with absorbing boundaries,Qsx,td is given by

Qsx,td =E
0

L E
0

t

Qsx8,t8dCsx − x8,t − t8ddx8dt8 + dsx − x0ddstd,

s2d

wherex0 is the starting point of the random walk. Equation
(2) links the current turning point distribution with those at
previous times through the jump distribution. At any time the
random walk is either at a turning point or traveling to the
next turning point, so the probability distributionPsx,td for
the position of the random walker is

Psx,td =E
0

L E
0

t

Qsx8,t8dFsx − x8,t − t8ddx8dt8, s3d

whereFsx,td is the probability of walker being found on the
way to the next turning point and is given by

Fsx,td = dsuxu − vtdE
uxu

`

csx8ddx8. s4d

The Laplace transform of the turning point distribution
will be required in our analysis and is obtained by Laplace
transforming Eq.(2), which yields

Qsx,sd =E
0

L

Csx − x8,sdQsx8,sddx8 + dsx − x0d. s5d

Exact analytic solutions are not known for Eq.(5). However,
since the properties ofQsx,td are dependent on the positions
and types of the singularities ofQsx,sd it is sufficient to
know the solutions of the corresponding eigenvalue equation
of Eq. (5), which is given by

Qsx,sd =E
0

L

Csx − x8,sdQsx8,sddx8. s6d

Like Eq. (5), no analytic solutions for the eigenvalue equa-
tion (6) are known. Given the fundamental importance of

understanding the solutions to Eq.(6) and to avoid other
researchers being misled, we show in the Appendix that a
tabulated, purported analytic solution of this eigenvalue
equation is actually incorrect.

Despite the lack of closed solutions of the eigenvalue
equation, some basic properties ofQsx,td have been derived
by considering the singularities of Eq.(5) [7]. In particular
the singularities ofQsx,sd are simple poles lying on the
negative real axis in the complex-s plane. Each pole contrib-
utes a term exponentially decaying in time toQsx,td, so
Qsx,td andPsx,td consists of the sum of a number of terms
exponentially decaying in time. This is similar to Gaussian
diffusion on an interval where the probability distribution is
the sum of a number of exponentially decaying eigenfunc-
tions. A crucial difference exists between Lévy walks on an
interval and Gaussian diffusion on an interval. It should be
noted that Eq.(6) is not strictly a single eigenvalue equation,
but a set of equations, indexed bys. Thus each pole of
Qsx,sd converges on an eigenfunction of a different eigen-
value equation. ThusQsx,td is the sum of decaying eigen-
functions from different eigenvalue equations[7]. Unlike the
Gaussian case, the exponential decay constants of each of
these eigenfunctions are not the eigenvalues[7]. The decay
constants are given by the positions of the polessi, where
poles are numbered in order of distance from the origin. To
preserve analogies with Gaussian diffusion, it is convenient
to term the valueLi =−si at each pole a pseudoeigenvalue
and the spatial component ofPsx,td for each decaying term
as a pseudoeigenfunction. The first pseudoeigenvalue scales
with system size ass1~L1−a for 2,a,3 ands1~1/L for
1,a,2 [7].

III. LÉVY SPATIAL DIFFUSION WITH CONSTANT WAVE
GROWTH RATE

Let us now consider a wave traveling through a medium.
In general, the wave may either be scattered by the medium
as it propagates or more simply propagate ballistically; i.e.,
remain unscattered by the medium. Similarly the wave can
be amplified or damped by the medium in addition to its
ballistic or scattered propagation. The scattering process may
be modeled in two ways based on the distribution of scatter-
ing centers in the medium. As large steps between scattering
events are rare, the scattering is most commonly modeled by
Gaussian diffusion[3]. In a medium where large steps can
occur between scattering, such as in clouds, the scattered
path of the wave can be modeled by a Lévy walk. Thus three
forms of spatial propagation can be described: ballistic,
Gaussian scattered, and Lévy scattered. If the wave is ampli-
fied or damped by the medium, more than one model can be
used to describe this process. Most simply, the wave can be
subject to a constant linear wave growth rate. For an inho-
mogeneous medium, the wave growth rate may vary rapidly
as the wave propagates. The variation in the wave growth
rate may then be modeled as a random walk in the gain of
the wave. As with spatial scattering the random walk in gain
can be classified by the distribution of step sizes. A Lévy
walk in gain would correspond to a medium where large
changes in wave gain are relatively more probable than a
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medium which is modeled by a Gaussian walk in gain.
In this section we consider a wave undergoing spatial

scattering modeled by a Lévy walk which is amplified/
damped by either a constant linear wave growth rate or
amplification/damping involving a Gaussian random walk in
gain.

Before considering the above situations, we briefly con-
sider Lévy spatial scattering in the absence of any wave
growth, using a Laplace transform approach. This approach
has the advantage of readily generalizing to a system with
constant wave growth rate.

A. Transmission coefficient without wave growth

The transmission coefficient of a medium for an incident
wave is generally understood to be the fraction of incident
wave energy that ultimately passes out the far side of the
medium. In the random walk model of scattering this corre-
sponds to the fraction of random walkers injected at one
boundary that emerge at the other. For Gaussian spatial scat-
tering the transmission coefficient in the absence of wave
growth is a classical result(see, for example,[3,8]) and
scales with system size as

T ~ 1/L. s7d

For a Lévy walk in spatial scattering in the absence of wave
growth, the transmission coefficient is identical to the trans-
mission coefficient for a Lévy flight, since the temporal dif-
ferences between the two types of random walks do not af-
fect the final numbers of random walkers ejected from each
side of the medium. For a Lévy flight on a discrete lattice(so
that flight lengths have integer values only), Kesten[9] ob-
tained the transmission coefficient. Davis and Marshak[5]
independently obtained the transmission coefficient for a
continuous distribution flight steps in connection with light
transmission through a cloudy atmosphere. The transmission
coefficient scales in the same way in both cases and is given
by

T ~ Ls1−ad/2. s8d

As might be expected, the transmission coefficient falls off
more slowly withL for a,3, than for a Gaussian scattering
medium due to the relatively higher probability of the wave
traveling long distances in the medium without undergoing
scattering.

We now approach this problem from a Laplace transform
approach applied directly to the Lévy walk model. The trans-
mission coefficient for a Lévy walk in the absence of growth
is given by

T =E
0

L

dx8E
0

`

dt8Qsx8,t8dE
L

`

dxE
t8

`

dt Fsx − x8,t − t8d,

s9d

whereFsx,td is defined in Eq.(4). Equation(9) can be un-
derstood as counting the fraction of random walkers which
leave the system on the far side. Thex and t integrals repre-
sent the probability that a walker at a turning point will leave
the medium without further scattering. The integrals overx8

and t8 sum these probabilities over all possible turning
points. This expression can be rewritten in terms of the
Laplace transforms ofQsx,td andFsx,td, giving

T =E
0

L

Qsx8,s= 0dFsL − x8,s= 0ddx8, s10d

whereQsx8 ,s=0d is given by Eq.(5). To obtain the trans-
mission coefficient numerically from Eq.(10), Eq. (5) is dis-
cretized using the Nystrom or product Nystrom methods[10]
and a matrix inversion is performed to findQsx,s=0d, the
quadrature in Eq.(10) then givesT. Figure 1 show numerical
computations of the transmission coefficient using this nu-
merical scheme. The results in Fig. 1 agree with the previ-
ously known analytic form(8) [5,9,11]. Clearly for a system
with no growth, the Laplace transform approach(which in-
volves numerical computations) has no advantage over ana-
lytic solutions derived in the context of Lévy flights. None-
theless, this analysis of the transmission coefficient in the
absence of growth provides a simple illustration of the
Laplace transform method which readily generalizes to sys-
tems with wave growth.

B. Transmission coefficient with constant wave growth rate

In a system undergoing wave growth, the transmission
coefficient may again be defined to be the relative fraction of
incident energy that escapes on the far side of the medium.
For G.0 we expect the sum of the reflection and transmis-
sion coefficients to exceed 1 as the system amplifies the in-
cident wave. This is expected whether the system is subject
to Lévy or Gaussian spatial scattering. Thus Eq.(65) of [3]
was incorrect and the correction is that the inequalityR
+T,1 only applies for damped systemsG,0. Note, how-
ever, the correct signed resultuR−Tuø1 is implicitly shown
in 2. 2 of that paper.

In a system where wave growth occurs at a constant
growth rate ofG the transmission coefficient is modified to
the form

FIG. 1. Transmission coefficient vsL, as given by Eq.(17).
From top to bottom the lines correspond toa=1.3333, 1.5, 1.6666,
2.05, 2.5.

LéVY WALKS IN RANDOM SCATTERING AND GROWTH … PHYSICAL REVIEW E 70, 056112(2004)

056112-3



TG =E
0

L

dx8E
0

`

dt8 Qsx8,t8dE
L

`

dxE
t8

`

dt Fsx − x8,t − t8deGt0,

s11d

wheret0 is the time before leaving the edge of the medium;
i.e., t0= t8+sL−x8d /v, corresponding to the sum of the time
taken to reach the final turning point atsx8 ,t8d and the time
taken to travel between this turning point and escape at the
medium edge. Equation(11) can be simplified to yield

TG =E
0

L

Qsx8,s= − GdeGsL−x8d/vFsL − x8,s= 0ddx8.

s12d

Wave energy injected into a Gaussian spatial scattering
medium without growth escapes the medium, the energy re-
maining in the medium[survival probabilityQstd] is given
by a sum of exponentially decaying terms, the longest lived
of which decays ase−l1t, wherel1 is the first eigenvalue. If
the system now includes amplification at a constant wave
growth rateG, the longest lived term will decay asesG−l1dt.
The medium will lase ifG.l1, and l1 is thus the lasing
threshold for the system, as found by Letokhov[4]. Similarly
for a spatially Lévy scattering medium, a threshold growth
rate exists beyond which the medium lases. As previously
described, for wave energy injected into a Lévy scattering
medium without growth the survival probability can be ex-
pressed as the sum of a number of exponentially decaying
terms, the longest lived of which has a decay rate equal to
the first pseudoeigenvalueL1. Thus, as for Gaussian scatter-
ing, the medium will be expected to lase when the exponen-
tial growth rate exceeds the longest lived decaying pseudoe-
igenstate; i.e.,

Glas = L1, s13d

whereL1 is the first pseudoeigenvalue of the Lévy scattering
medium. This lasing threshold appears naturally in Eq.(12)
via the divergence ofQsx,sd at its first singularity along the
negative real axis ats=−L1.

Although, formally, the lasing threshold differs little from
Letokhov’s result for Gaussian scattering, we note its scaling
with system size differs markedly due to the different scaling
of the eigenvalues and pseudoeigenvalues withL. For Gauss-
ian scatteringGlas~L−2, whereas for Lévy scattering

Glas ~ HL1−a, 2 , a , 3,

L−1, 1 , a , 2.
J s14d

Having established the location of the lasing threshold,
the properties ofTG can be considered. Trivially, forTG near
the lasing thresholdTG~1/sL1−Gd asymptotically, just as
for Gaussian scattering media. This is the contribution toTG

of the longest lived exponentially decaying first pseudo-
eigenstate decaying with ratesL1−Gd. The first pseudoeigen-
state is the only divergent term contributing toTG. Figure 2
showsTG for different a and L calculated numerically. A
general trend of an approximately exponential increase for
small G before increasing asymptotically near the lasing
threshold can be seen.

C. Wave energy density in medium

We now consider the distribution of photons in the me-
dium subject to continuous injection of photons within the
medium. Continuous injection into a scattering medium in
the absence of growth will be considered first.

For Gaussian scattering the distribution of photons forms
a triangular distribution given by

Psxd =
2L

Dxx
3 5

x0

L
S1 −

x

L
D , x0 , L,

x

L
S1 −

x0

L
D , x0 . L.6 s15d

This is a corrected form of the result stated in Eqs.(30)–(32)
of [3], where the result quoted in that paper has been multi-
plied by a missing factor ofL2 in order to scale correctly
with scattering medium length.

For Lévy scattering, the probability distribution inside the
medium, under continuous injection, is obtained by integrat-
ing over all time the probability distributionPsx,td for a
system which evolves from a single one-off injection of pho-
tons. By Laplace transforming Eq.(3) and noticingPsx,s
=0d corresponds to the integral over all time ofPsx,td, we
have

E
0

`

Psx,tddt = Psx,s= 0d, s16d

=E
0

L

Fsx − x8,s= 0dQsx8,s= 0ddx8. s17d

The asymptotic form forPsx,s=0d asa→1 can be immedi-
ately obtained by observingFsx,s=0d→constant in this
limit, so Eq. (17) predictsPsx,s=0d→constant asa→1.

To obtain Psx,s=0d, Eq. (5) is inverted numerically to
obtain Qsx,s=0d and the convolution in Eq.(17) is per-
formed to yield the probability distribution inside the me-

FIG. 2. Transmission coefficientTG vs G /Glas, as given by Eq.
(12). From top to bottom the lines correspond toL=100, 400 with
a=1.6666;L=100, 400 witha=2.5, csxd=Csads1+x2d−a/2.
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dium. Another method for obtainingPsx,s=0d is a direct
Monte Carlo simulation of the Lévy walk, which is then
integrated over all time. Despite the Monte Carlo scheme
scaling computationally asNb with b=maxs2,ad, while the
matrix inversion in the Laplace space approach scales as
Nlog27<N2.8 [10], the higher computational overheads for the
Monte Carlo approach mean the Laplace approach is signifi-
cantly superior fora,2.8 even for moderately largeL, such
as the range 100,L,800 for which we have performed
computations.

Figure 3 showsPsx,s=0d for variousa using the Laplace
space numerical approach described above. Asa decreases
from 3 to 1,Psx,s=0d shows a continuous deformation from
the triangular Gaussian limit to the constant distribution as
a→1. Even ata=2.5 the probability distribution can be well
approximated by a triangular distribution over 80% of its
length. The largest differences between the probability distri-
bution and a triangular distribution occur near the injection
point. At a=2.5 the lowest order pseudoeigenfunctions and
pseudoeigenvalues still closely resemble their Gaussian
counterparts whereas the higher order pseudoeigenfunctions
differ more significantly from the Gaussian limit[7]. Since
the higher order pseudoeigenfunctions, define the shape of
Psx,s=0d near the injection point, it is to be expected that
Psx,s=0d will be similar to the Gaussian limit except near
the injection point.

For a Gaussian scattering medium, the distribution of last
scattering points before the photon leaves the medium is lo-
calized in the vicinity of the edges. For a Lévy scattering

medium, asa decreases the distribution of last scatter points
becomes more concentrated near the injection point as will
now be demonstrated. Asa decreases,Fsx,s=0d takes a
flattened functional form approaching a constant in the limit
a→1. As a consequenceFsx,s=0d dominates the convolu-
tion in Eq. (17), soPsx,s=0d takes a more uniform distribu-
tion and is not strongly dependent on the functional form of
the turning point distributionQsx,s=0d. A number of physi-
cal insights may be deduced from these relationships. Asa
decreases the probability distribution for finding photons
Psx,s=0d becomes more uniform. The dominant contribu-
tion of Fsx,s=0d to Psx,s=0d indicates the probability of
finding a photon at a particular location is dominated by
photons which have left their final turning point(i.e., last
scatter point) and are taking their final walk step that leads
them out of the medium. The scattering in the medium is not
more evenly distributed because of the fact that the turning
point distribution remains strongly peaked. Further, asa
→1, the distribution of last scatter points becomes concen-
trated near the injection point where the turning point distri-
bution is peaked, rather than near the edges, as would be the
case for Gaussian scattering.

Up to this point we have considered the injection of pho-
tons in equal numbers in each direction at the injection point
within the medium. In the Gaussian scattering case, if the
injection of photons is outside the medium, thediffusive ap-
proximation is made where the photons are assumed to
propagate ballistically to a point of first scattering roughly
one mean free path into the medium and then undergo pure
diffusion [3]. Similarly injection in only one direction of
photons within the medium will result in ballistic propaga-
tion followed by pure diffusion. For most purposes it may be
assumed the ballistic propagation distance is small and there
is little difference between the two types of initial conditions
regardless of the injection point. For Lévy scattering sys-
tems, the absence of a characteristic scattering length scale
means no diffusive approximation can be made. For injection
of photons from outside the medium, this can be trivially
accommodated by using the initial condition 2dsx−x0ddstd
for x0→0. Unidirectional injection inside the medium re-
quires changing the initial conditions in Eq.(5) to Hsx
−x0dcsx−x0d whereH is the Heaviside function. The prob-
ability distribution under continuous unidirectional injection
is skewed toward the direction of injection.

Having considering the continuous injection system in the
absence of wave growth, wave growth can be introduced by
analogy to Eq.(17), yielding

Wsx,Gd =E
0

`

Psx,tdeGtdt, s18d

=Psx,s= − Gd, s19d

=E
0

L

Fsx − x8,s= − GdQsx8,s= − Gddx, s20d

FIG. 3. Distribution of wave energyPsxd inside medium with
continuous injection as given by Eq.(17) for L=100,csxd
=Csads1+x2d−a/2. From bottom to top the curves correspond to
sad a=1.15, 1.5, 1.75, 2.05, 2.5, 2.95, 4.0sa=4.0 is truncatedd
andsbd a=2.95, 4.0. The dotted curve insbd is Psxd in the Gauss-
ian diffusive limit ss2!Ld given by Eq.s15d.
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=E
0

L

dx8eGux−x8uQsx8,s= − GdE
ux−x8u

`

csx9ddx9. s21d

Numerically inverting Eq.(5) and performing the convolu-
tion in Eq.(21) enables us to find the probability distribution
inside the medium for each particulara andG. Considering
first Psx,Gd for 2,a,3, Fig. 4 shows the probability dis-
tributions asG is varied from no growth to the lasing thresh-
old. The general trend in this figure is reflected over the
whole range 2,a,3 and shows the probability distribution
starting from the triangle-like distribution in the absence of
growth and smoothly deforming to the sinelike shape of the
first pseudoeigenfunction. This behavior is very similar to
the behavior of Gaussian systems, in whichPsx,Gd varies
smoothly from the purely triangle distribution(15) to the
sine form of their first eigenfunction as the lasing threshold
is approached[3]. The reasons for this behavior are exactly
the same as those for the asymptotic dominance of the first
pseudoeigenfunction in the transmission coefficientTG. The
first pseudoeigenfunction contributes a diverging component
to the overall distributionPsx,Gd asG→L1.

Figure 5 shows a typical set of probability distributions
Psx,Gd as the growth rate is varied fora=1.5. As before, the

probability distribution changes from the no-growth case(in
this case a relatively flat distribution) to approach the first
pseudoeigenfunction which has upturned edges. Physically,
the probability distribution is dominated by photons in the
final walk step out of the medium which are multiplying
exponentially along this final walk step, leading to the up-
turned peaks of the probability distribution approaching the
boundaries of the medium. At this point it is useful to con-
sider the general shape of the first pseudoeigenfunction in the
range 1,a,2. In a paper on Lévy walks[7], we showed a
set of first pseudoeigenfunctions fora=1.75 in Fig. 10(b) of
that paper. Each showed simple concave-down curves. Thus
we can deduce fora=1.75,Psx,Gd would approach these
curves asG→L1. As a decreases, the concavity of the first
pseudoeigenfunction reverses, having upturned edges as in
the casea=1.5. This reversal of the concavity of the first
pseudoeigenfunction asa decreases from 1.75 to 1.5, was
not described in the earlier paper. The reason for the reversal
is due to Fsx,s=−Gd becoming U shaped rather than
strongly peaked as for largera. In particular the shape of
Fsx,s=−Gd depends on the products1L. For 2,a,3, s1L
scales asLa−2 and thus the exponential term inFsx,s=−Gd
remains small andFsx,s=−Gd is sharply peaked aroundx
=0. For 1,a,2,s1L is constant but the constant value in-
creases from near one toward ten, as shown in Fig. 4(b) of
[7]. Betweena=1.75 with s1L<1.4 anda=1.5 with s1L
<2.1, the exponential term dominatesFsx,s=−Gd, which
becomes U shaped. The first pseudoeigenfunction then re-
verses concavity when the U-shapedFsx,s=−Gd dominates
the turning point distributionQsx,s=−Gd.

IV. LÉVY WALK IN GAIN

In this section we consider the case of a Lévy walk in
wave growth in the absence of spatial scattering and then
coupled with Gaussian spatial diffusion. In analyzing sto-
chastic wave growth, Robinson[3] assumed that the growth
rate of a wave can undergo a Gaussian random walk in gain.
Interestingly, such a wave can undergo net wave growth even
if the mean growth rate is negative. In this section we gen-
eralize the theory of stochastic wave growth to a wave un-
dergoing a Lévy walk in gain.

A. Lévy walk in gain with ballistic propagation

Assuming the Lévy walk in gain is unbounded, the mean
energy density in the wave in the absence on spatial scatter-
ing can be given simply by

kWstdl =E
−`

`

eGp„G − kGstdl,t…dG, s22d

wherep(G−kGstdl ,t) is the probability distribution of an un-
bounded Lévy walk centered on a mean gainkGstdl=kGlt.
For Lévy walks in gain, the velocity of the Lévy walk shall
be denotedg to distinguish it from the velocityv of spatial
Lévy walks.

It is preferable to use a Lévy walk rather than a Lévy
flight, not only as it avoids the unbounded velocity which

FIG. 4. Wave energy densityWsx,Gd vs x, as given by Eq.(21),
for a=2.5, csxd=Csads1+x2d−a/2. From bottom to top, the curves
are G=0,0.001, 0.002. The dashed curve shows 0.2Wsx,Gd for G
=0.0035.

FIG. 5. Wave energy densityWsx,Gd vs x, as given by Eq.(21),
for a=1.5, csxd=Csads1+x2d−a/2. From bottom to top, the curves
are G=0,0.001, 0.015, 0.02. The dashed curve shows 0.04Wsx,Gd
for G=0.0225.
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occurs during large steps of a Lévy flight, but also after one
step a Lévy flight in gain results in a divergent wave power
because arbitrarily large steps are allowed in finite times.
Zumofen and Klafter[12] obtained useful approximate forms
for psx,td, the unbounded Lévy walk, in Fourier/Laplace
space and real space. Here these form the basis for obtaining
the mean energy density for waves undergoing a Lévy walk
in gain. These results are then compared tokWstdl for waves
where the Lévy walk in gain is obtained through Monte
Carlo simulations. Given the different functional forms for
the unbounded Lévy walk for 1,a,2 and 2,a,3 we
shall consider each parameter range separately.

For an unbounded Lévy walk with velocity to unity and
index 2,a,3, Zumofen and Klafter[12] showed the prob-
ability distribution was related to the Lévy distribution and is
given by

Psx,td = 5a0t
bexpf− a1hx/tbj2g, x ! tb,

btx−a, tb ! x , t,

0, x . t,
6 s23d

whereb=sa−1d−1. By substitutingPsx,td in a form where
velocity has not been normalized directly into Eq.(22), the
mean energy density for large times can be approximated by
its dominant term as

kWstdl < beskGl+gdtsgtd1−a. s24d

For an unbounded Lévy walk with index 1,a,2, the
probability distribution is not connected to the Lévy distri-
bution. Zumofen and Klafter obtained an approximate ana-
lytic form for the probability distribution for a Lévy walk in
this regime[12]. When expressed in units where velocity has
not been normalized to unity, their Eq.(81) can be written

Psk,sd =
1

g

ss/g + ikda−2 + ss/g − ikda−2

ss/g + ikda−1 + ss/g − ikda−1 . s25d

Except in the special casea=3/2 [12], there is no known
closed analytic form for the probability distribution in real
space. Nonetheless, we can use operator identities to obtain
the asymptotic time behavior ofkWstdl, which is done next.
The justification for this method is given when we compare
our results with Monte Carlo simulations below.

Noting that Eq.(22) may be rewritten formally as

kWstdl = ekGstdlPsk = − i,td, s26d

we require the time asymptotic properties of

Psk = − i,sd =
ss+ gda−2 + ss− gda−2

ss+ gda−1 + ss− gda−1 . s27d

Theorem 13.7 of Doetsch[13], connects the time asymptotic
properties of a function with the form of the Laplace trans-
form near the singular point with the largest real part. The
transformPsk=−i ,sd satisfies the constraints of this theorem
and the asymptotic properties may be deduced by completing
the complex path integral around the singularity ats=g in
the way described by Doetsch. Nears=g , Psk=−i ,sd has the
form

Psk = − i,sd < s2gd1−ass− gda−2, s28d

whence the asymptotic form is

Psk = − i,td <
1

2a−1GEs2 − ad
egtsgtd1−a, s29d

whereGE is Euler’s gamma function(subscripted to distin-
guish it from the wave growth rate). Thus the mean energy
density is given by

kWstdl =
1

2a−1GEs2 − ad
eskGl+gdtsgtd1−a, s30d

which is of the same functional form as the mean energy
density for the range 2,a,3.

As noted previously, fora=3/2 theprobability distribu-
tion has an analytic form in real space[12] and the mean
energy density can be calculating directly from Eq.(22). The
probability distribution is given by

Psx,td = Hp−1fsgtd2 − r2g−1/2, r , gt,

0, r . gt.
J s31d

Thus the mean energy density of the wave is

kWstdl = expskGltdI0sgtd, s32d

where I0 is a Bessel function of imaginary argument. For
large times this approaches the asymptotic form and normal-
ization obtained from by the operator technique for 1,a,2
given in Eq.(30).

It is important to consider the accuracy of the mean en-
ergy densities obtained above. The major difficulty with the
above analysis is that the Lévy walk distributions used are
only approximate forms, which provide a good approxima-
tion of the Lévy walk distributionPsx,td over much of its
range[12], but are not exact. For the purposes of calculating
the mean energy density of a wave undergoing a Lévy walk
in gain, only the vicinity ofx=gt contributes significantly to
the mean energy density. This is exactly where the approxi-
mate forms are known to deviate form the true distribution,
and thus the use of these approximate forms for the Lévy
walk distributions is not ideal in these circumstances. The
mean energy densities calculated above were compared to
mean energy densities calculated by numerically integrating
Eq. (22) where the Lévy walk distribution was obtained from
Monte Carlo simulations. The comparison showed that the
functional form of the asymptotic scaling in Eqs.(24) and
(30) is correct but the proportionality constants disagree. For
2,a,3, a further refinement to the analytic proportionality
factorb=1/f2zsa−1dg [wherezsxd is the Riemann zeta func-
tion] can be made by recognizing atx=gt the Lévy distribu-
tion has sharp ballistically propagating peaks which includes
walkers which have never been scattered. These peaks are
not included in the estimate ofPsx,td given in Eq.(23). The
ballistic peaks can be seen in simulations ofPsx,td such as
Fig. 9 9 of [7]. Incorporating the walkers which have never
been scattered yields a refined estimate for the proportional-
ity factor of
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1/f2zsa − 1dg + b/sa − 1d. s33d

This refinement provides only moderate improvement in the
agreement of the proportionality factor.

Figure 6 shows the ratio of the analytically obtained pro-
portionality factors given in Eqs.(24) and (30), divided by
the observed proportionality factor of the asymptotic form
obtained from Monte Carlo simulations yieldingkWstdl. Al-
though other refinements for approximating these propor-
tionality constants have been considered, the large overheads
that such techniques require and the relatively small im-
provements gained, suggest that Monte Carlo simulations are
the most efficient method for obtaining accurate values of
these constants if required.

Some conclusions regarding wave growth involving Lévy
walks in gain can now be drawn. As with waves growing
with a Gaussian random walk in gain, the wave may undergo
net wave growth even though the mean wave growth is nega-
tive if g. kGl. For a Gaussian diffusive random walk in gain,
the wave grows exponentially in time with a mean wave
growth rate given byGeff=kGl+s2sGdtG [3]. For a Lévy walk
in gain, the mean energy density increases asymptotically as
kWstdl~ sgtd1−aexpskGlt+gtd, rather than exponentially. In
the Gaussian case the effective wave growth rate depends on
the width of PsG,td through the standard deviations, a
much smaller parameter than the velocity of the Lévy walk
g. As expected, the mean energy density for a Lévy walk in
gain still increases faster than the Gaussian case despite the
power law weighting termsgtd1−a since the coefficient
within its exponential term is larger than the coefficient in
the Gaussian case. For Lévy walks the term expskGlt+gtd in
the asymptotic form depends on the velocity of the Lévy
walk, not the behavior of the rest of the probability distribu-
tion. Not unexpectedly it is the largest steps of the Lévy walk
that determine the dominant evolution ofkWstdl.

The Gaussian walk in gain based on the velocity model
where csxd has a power law tail of indexa.3 must be
considered carefully. This system is different from the
Gaussian diffusive random walk in gain analyzed in[3] as
velocity model Gaussian walks are not equivalent to Gauss-

ian diffusive random walks. For a velocity model Gaussian
walk with a power law tail, the mean energy density has a
term sgtd1−aexpskGlt+gtd which increases faster than the
term expfkGl+s2sGdtGg. Gaussian random walks with power
law tails sa.3d have slow convergence to behavior pre-
dicted by diffusion equations for points far from the center of
the walk. This yields discrepancies such as observed here.

B. Lévy walk in gain coupled with Gaussian spatial
scattering

We turn now to waves which undergo a Lévy random
walk in gain and Gaussian spatial scattering. In the absence
of the random walk in gain, the probability distribution is
well known (e.g.,[3,14]) with:

PGsx,td = 2o
n=1

`

e−lntsinsnpx0/bdsinsnpx/bd. s34d

The situation of a Gaussian random walk in gain coupled
with Gaussian spatial scattering was considered by Robinson
[3] and in this subsection we shall term this the “Gaussian”
case for comparison purposes. With the Lévy random walk in
gain coupled to Gaussian spatial diffusion, the mean energy
densityWsxd in the scattering medium is given by

Wsxd =E
0

`

dt PGsx,tdE
−`

`

dG eGP„G − kGstdl,t…. s35d

Qualitatively several properties ofWsxd can be deduced
by considering Eq.(35). The integral in Eq.(35) converges
only below a lasing thresholdkGl+g,l1, just as the Gauss-
ian case has a lasing thresholdkGl+s2sGdtG,l1 [3]. The
lasing threshold for the Lévy case is independent ofa, the
index of the Lévy walk over the whole range 1,a,3.

In the Gaussian case, the mean energy densityWsxd
smoothly changes from the triangular energy density profile
(15) in the no growth case to the first eigenfunction of the
diffusive system, sinsnpx/bd, as the lasing threshold is ap-
proached[3]. For Lévy walks in gain, qualitatively different
behavior forWsxd is expected for each of the cases 1,a,2
and 2,a,3. The longest lived term and thus the term with
the largest contribution to the time integral in Eq.(35) is due
to the first eigenfunction of the diffusive system, whose time
dependent component for large times is asymptotically

Tl , sgtd1−aeskGl+g−ldt. s36d

For 1,a,2, integrating this term over all time contributes
a diverging term as the lasing threshold is approached. Like
the Gaussian case,Wsxd for 1,a,2 smoothly changing
from the triangular energy density profile(15) in the no-
growth case to the first eigenfunction as the lasing threshold
is approached. The divergent contribution of the first eigen-
function term impliesWsxd diverges asymptotically as the
lasing threshold is approached. For 2,a,3 the situation is
very different, the integral over the term(36) does not di-
verge and so the contribution of the first eigenfunction can
never become dominant. Thus it can be concluded the mean
energy density does not asymptotically diverge as the lasing

FIG. 6. The ratioR of the proportionality constants of the ana-
lytic time asymptotic form to the numerically evaluated mean en-
ergy density for a Lévy walk in gain. The ratio shown in diamonds
incorporates the refined analytic approximation given by Eq.(33)
which includes the effect of the ballistic peaks for 2,a,3.
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threshold is approached andWsxd does not approach the first
eigenfunction in this limit.

Analytic approximations toWsxd are difficult to obtain as
these require accurate forms forkWssdl the Laplace trans-
formed mean energy density of a Lévy walk in gain in the
absence of spatial scattering, the situation analyzed in Sec.
IV A. For 1,a,2, Zumofen and Klafter’s approximate
form for Psk,sd can be used to estimateWsxd. Equation(35)
may be rewritten as

Wsxd < 2o
n=1

`

sinsnpx0/bdsinsnpx/bd

3 Psk = − i,s= ln − kGld, s37d

=2o
n=1

`
sln − kGl + gda−2 + sln − kGl − gda−2

sln − kGl + gda−1 + sln − kGl − gda−1

3 sinSnpx0

b
DsinSnpx

b
D . s38d

This approximate expression is the Lévy walk analogy to Eq.
(72) in [3]. Qualitatively this expression shows the expected
trends described in the previous paragraph. However, the ca-
veats on the asymptotic forms derived in Sec. IV A apply to
this expression, which is thus not a satisfactory method for
obtaining quantitatively correct values forWsxd.

Numerical calculations are the preferable way of obtain-
ing Wsxd, which can be obtained by calculatingPsG,td via
Monte Carlo simulations and then direct integration of Eq.
(35). For 1,a,2, Fig. 7 showsWsxd obtained from Monte
Carlo simulations and is consistent with the qualitative
trends described above. The qualitative similarities in the
trends forWsxd for 1,a,2 and the Gaussian case can be
seen by comparison with Fig. 4 4 of [3]. For 2,a,3, Fig.
8 showsWsxd obtained from Monte Carlo simulations. As
expected from the qualitative discussion,Wsxd does not di-
verge asg approaches the lasing threshold and does not ap-
proach the first eigenfunction. The growth ofWsxd as g in-
creases is also reduced relative to the range 1,a,2,

reflecting the reduced probability of large steps in gain for
the range 2,a,3. At first sight it may seem counterintui-
tive thatWsxd does not asymptotically diverge near the lasing
threshold for 2,a,3 even though it does diverge in the
Gaussian case. This is not a contradiction as the lasing
threshold discontinuously changes from dependence on the
velocity of the Lévy walk to dependence on the width of the
probability distributions in the Gaussian case. This ensures
that, for eachg , Wsxd is larger for the Lévy walk than for a
Gaussian system, in accordance with intuitive expectations.

Similar numerical calculations can be used to obtain the
transmission coefficientTG for different a, as shown in Fig.
9. As with Wsxd, the transmission coefficient diverges near
the lasing threshold for 1,a,2 but remains finite for
2,a,3.

V. LÉVY SPATIAL DIFFUSION WITH A LÉVY WALK
IN GAIN

This section combines Lévy processes in scattering and in
random wave growth. The wave entering the scattering me-
dium is spatially scattered through a Lévy process while si-

FIG. 7. Wave energy densityWsxd vs x, as given by Eq.(35).
PsG,td was obtained by Monte Carlo simulations, fora
=1.5, csxd=Csads1+x2d−a/2, x0=3.3, andkGl=0. From bottom to
top, curves areg /l1=0, 0.3, 0.6, 0.99.

FIG. 8. Wave energy densityWsxd vs x, as given by Eq.(35).
PsG,td was obtained by Monte Carlo simulations, fora
=2.5, csxd=Csads1+x2d−a/2, x0=3.3, andkGl=0. From bottom to
top, curves areg /l1=0, 0.3, 0.6, 0.99.

FIG. 9. Transmission coefficientTG vs G /Glas. From top to bot-
tom the lines correspond toa=1.5, a=1.75,a=2.25, anda=2.5.
PsG,td was obtained by Monte Carlo simulations, withcsxd
=Csads1+x2d−a/2.

LéVY WALKS IN RANDOM SCATTERING AND GROWTH … PHYSICAL REVIEW E 70, 056112(2004)

056112-9



multaneously being subject to randomly varying wave
growth as it propagates through the medium. This random
variation in wave growth is modeled as a Lévy walk in gain
which was introduced in Sec. IV A.

The chief difficulty of analyzing Lévy walks in gain
coupled with Lévy spatial diffusion is that exact analytic
forms for the probability distributions are not available for
either the Lévy walk in gain or the Lévy scattering in the
medium. Nonetheless, the essential properties of both these
distributions are sufficiently well understood to build a clear
picture of this system by considering aspects of previously
analyzed cases in this paper.

The longest lived term of the Lévy spatial scattering is an
exponential decaying terme−L1t. By analogy to Sec. IV B the
system has a lasing threshold given bykGl+g=L1, whereL1

is the first pseudoeigenvalue of the spatial scattering me-
dium. The lasing threshold is independent of the indexagain
of the Lévy walk in gain but indirectly dependent on the
Lévy index of the spatial scatteringaspatial which enters the
threshold throughL1=−s1.

The nonexponential nature of the wave growth from the
Lévy walk in gain prevents the use of the Laplace operator
approach of Sec. III for determining the transmission coeffi-
cients and mean energy density in the medium. In the asymp-
totically large time limit, the functional formt1−aet for the
growth of the Lévy walk in gain[Eqs.(24) and (30)] might
suggest fractional differentiation in Laplace space to obtain
the growth weighted probability distributions(see [15] for
properties of fractional derivatives in Laplace space). This
approach is not considered here as the nonlocal nature of
fractional derivatives requires multiple numerical inversions
of Eq. (5) which would be computationally inferior to Monte
Carlo simulations unless an analytic solution to Eq.(5) can
be found.

For 1,a,2, the transmission coefficient for the system
rises from the no-growth case, diverging near the lasing
threshold with an asymptotic scalingTG~1/sL1−kGl
−gd2−a. The behavior of the transmission coefficient is quali-
tatively similar to that of Lévy spatial diffusion coupled with
a constant wave growth rate shown in Fig. 2. Similarly the
mean energy density in the medium varies from the no-
growth case shown in Fig. 3 asymptotically diverging and
approaching the first pseudoeigenfunction in a qualitatively
similar way to Fig. 5. For any given growth parameterskGl
+gd /Glas, Wsxd will have approached the first pseudoeigen-
function less closely than for the corresponding value of the
growth parameterG /Glas, in the constant growth case.

For 2,a,3, the transmission coefficient rises from its
no-growth case but does not diverge near the lasing thresh-
old. The mean energy density also does not diverge near the
lasing threshold and does not approach the first pseudoeigen-
function. This is similar to the wave modeled in Sec. IV B
with Gaussian spatial scattering and a Lévy walk in gain
which shows an increase inWsxd over the range of the pa-
rameterskGl+gd /Glas but does not diverge and the shape
Wsxd changes only modestly compared toWsxd for 1,a,2.

VI. SUMMARY AND CONCLUSIONS

We have studied random wave scattering and random
wave growth using Lévy walks to model each case sepa-

rately, in combination with Gaussian processes, or with both
cases modeled with Lévy walks. Previous modeling of such
processes using Gaussian statistics has been extended using a
combination of analytic, numerical inversion and Monte
Carlo techniques to systems where Gaussian statistics are not
applicable.

The main results of this paper are as follows.
(i) For a system with Lévy spatial diffusion and a con-

stant wave growth rate, transmission coefficients were ob-
tained from a Laplace space method, bypassing the need for
Monte Carlo simulations to obtain Lévy walk probability
distributions. The use of operator shortcuts for obtaining
properties allows both more efficient numerical computation
and clearer qualitative understanding of the properties under
investigation. As with Gaussian spatial diffusion subject to a
constant wave growth rate, this system has a lasing threshold
Glas=L1. The transmission coefficient increases from its
value in the absence of growth, diverging asymptotically as
TG~1/sL1−Gd near the lasing threshold.

(ii ) For a system undergoing continuous injection with
Lévy spatial diffusion and no wave growth, the mean energy
density has been found. This smoothly varies witha from
the triangular form in the Gaussian case to the constant dis-
tribution asa→1.

(iii ) When a constant wave growth rate is added to the
system in(ii ) the mean energy density in the medium was
obtained. As the wave growth rate varies, the mean energy
density inside the medium varies from the no-growth case to
asymptotically diverging near the lasing threshold. The mean
energy density smoothly changes from the no-growth case to
the first pseudoeigenfunction of the Lévy walk on a finite
interval as the wave growth rate increases.

(iv) At some point belowa=1.75, the concavity of the
first pseudoeigenfunction reverses which was not described
in our earlier work[7].

(v) A wave with a randomly varying wave growth rate
where the variations in growth can be modeled as a Lévy
walk in gain was analyzed in the absence of spatial scatter-
ing. The mean energy density of this wavekWstdl scales
asymptotically at large times askWstdl,sgtd1−aeskGl+gdt for
the entire range 1,a,3. This is in contrast with Gaussian
diffusive random walks in gain, whose mean energy density
remains exponential with redefined effective growth rates. A
Gaussian walk based on the velocity model with a jump
distribution with power law taila.3, anomalously has a
mean energy density with the same asymptotic functional
form as Lévy walks. The exponential mean energy density of
Gaussian diffusive random walks is only found for jump dis-
tributions with tails that fall more rapidly than any power
law.

(vi) Gaussian spatial scattering is introduced to the wave
undergoing random variations in its growth rate described by
(v). For the entire range 1,a,3 the lasing threshold is
given bykGl+g=l1 and is independent of the Lévy indexa.
The mean energy density takes qualitatively different forms
in each of the ranges 1,a,2 and 2,a,3. For 1,a,2
the mean energy density in the medium as a function of
position varies from the triangular no growth case, asymp-
totically diverging near the lasing threshold and approaching
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the first eigenfunction. This is qualitatively similar to the
case of Gaussian spatial scattering coupled with a Gaussian
random walk in gain. For 2,a,3 the mean energy density
does not diverge near the lasing threshold and does not as-
ymptotically approach the first eigenfunction. Similarly the
transmission coefficient for the system diverges near the las-
ing threshold for 1,a,2 but not for 2,a,3.

(vii ) Finally, Lévy spatial scattering is introduced to the
wave undergoing random variations in its growth rate de-
scribed by(v). The lasing threshold is given bykGl+g=L1

whereL1 is the first pseudoeigenvalue. The transmission co-
efficients and mean energy densities in the medium are quali-
tatively different in the two ranges ofa. For 1,a,2 the
transmission coefficient rises from the no-growth case di-
verging asymptotically asTG~1/sL1−kGl−gd2−a near the
lasing threshold. The mean energy density in the medium
varies from the no-growth case described in(ii ) diverging
near the lasing threshold and approaching the first pseudo-
eigenfunction in a manner qualitatively similar to the waves
described in(iii ). For 2,a,3 the transmission coefficient
does not diverge as the lasing threshold is approached and
the mean energy density in the medium neither diverges near
the lasing threshold nor approaches the first
pseudoeigenfunction.
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APPENDIX: NOTE ON INCORRECT RESULT
IN STANDARD INTEGRAL EQUATIONS HANDBOOK

In the relatively recently published and invaluableHand-
book of Integral Equations[16] the authors have written and
collated an encyclopedic collection of solution techniques
and exact solutions to integral equations. In Eq.(21), p. 317,
the handbook states

fsxd = lE
−p

p

+ Ksx − tdfstddt, sA1d

for an even kernelKsxd=Ks−xd for −p,x,p, can be
solved with eigenfunctions fsxd=1, fn

s1d=cosnx, fn
s2d

=sinnx. This is incorrect as can be shown by simply substi-
tuting the purported solutions into the integral equation. The
result was collated from Kransovet al. [17] where the solu-
tion was justified by substitution back into the integral equa-
tion. Unfortunately this substitution was in error. An analytic
solution to this class of integral equations would be of par-
ticular interest in the study of Lévy flights as these equations
are connected with the eigenvalue equations of the turning
point distributions. However, from the analysis in[7], which
considers eigenvalues and eigenfunctions of the equation for
the special class of kernels corresponding to those found in
Lévy walk turning point equations, it is not anticipated a
simple universal set of eigenfunctions exists for the broad
range of kernel types which the tabulated result attempts to
encompass.
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