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Lévy walks in random scattering and growth of waves
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Random spatial wave scattering and stochastic wave growth are studied where one or both of the random
processes can be described by a Lévy walk. This analysis extends previous work on randomly growing and
scattering waves where both the random processes are modeled by Gaussian diffusive statistics. Both random
spatial scattering and stochastic wave growth modeled by Lévy walks are studied separately, together, and in
combination with Gaussian processes. Transmission coefficients, lasing thresholds, and energy densities in the
medium are obtained for the different permutations.
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[. INTRODUCTION no such characteristic length scale. In order for the distribu-

In oropagating throuah a random medium. waves ca tion of step lengths to have no second moment, the distribu-
propagating 9 . ' "ion must have a slowly decreasing tail; e.g., a power law tail

scatter spatially and/or grow with a randomly varying growthWith index a such that & a<3. The lower limit one is

rate. _For strongly scattering media such as b'°'°9'c.a' t|ssu| posed to ensure the probability distribution of step lengths
or paint, the propagation may be so strongly randomized thaCan be normalized

wave scattering can be described by a scalar diffusion equa- Two different superdiffusive Lévy random processes have

tion [1]. Similarly, waves growing with randomly varying been studied in the literature, Lévy flights and Lévy walks.

%ggnuhsiftes?t:;v;sgferr]ol\jvstﬁdtrfg qrgaodg ! ;{;\Ilesscg':tesﬁnaceof ! évy flights were developed first and involve random walks
g 9 - 9P g steps occurring at regular times. Unfortunately, Lévy flights

waves may also occur, cgmblned with either a constant WaVEike arbitrarily large steps in finite times and thus the random
growth or a random varying wave growth rd&4]. In each

of these cases the random brocesses commonly used Oalk involves arbitrarily large velocities. Lévy walks were
P y ._explicitly developed to avoid this nonphysical aspect of Lévy

mod_el the fa”dO’.“ scattering or grovyth are termed Gauss.'al"ﬂghts. In a Lévy walk the time taken to complete each ran-
or diffusive. In this paper these studies are extended to situ;

. e dom walk step depends linearly on the length of that step.
ations where the spatial diffusion or random growth of the.l_he lack of unphysical features makes Lévy walks the natu-

waves, or both, are not Gaussian. Since Gaus’SIan systems 5F choice for modeling superdiffusive random walks in the
diffusive, the underlying random walk process’s mean SAUATR o ntext of random scattering and random growth in waves.

displacement increases linearly with tirfré) ~t. In a super- The purpose of this paper is to apply Lévy walk random
diffusive system the mean square displacement increases S, cesses to random wave scattering and growth. In Sec. |l
per||r.]ear'|y with time(r?~t” for y> 1.,|n this Paper a Su- - the pasic evolution equations for Lévy walks are introduced.
perdiffusive process known as a Leévy walk, is used t0, gec. |1 Lévy walks are used to model wave spatial scat-
analyze random scattering and growth in situations Wher?ering and then combined with wave growth at a constant
Gaussian processes are not applicable. In a similar vein, ”lﬁ'owth rate. In Sec. IV waves with randomly varying growth
transmission probability of light through clouds has previ-ates which can be modeled as Lévy walks in gain are ana-
ously been analyzed as a non-Gaussian wave scattering pigzed, first in the absence of spatial scatterifmllistic
cess[d]. e _ o propagatioi and then with Gaussian diffusive spatial scat-
_The origin of the differing behaviors, diffusive and super-tering. In Sec. V waves are studied which are scattered ac-
diffusive, of Gaussian and Lévy processes is associated W't@ording to Lévy processes while subject to randomly varying

the probability distributions of step lengths which make UPgrowth rates, which can be modeled as Lévy walks in gain.
the respective random walks. If the distribution of step

lengths has a finite second moméeirg., a variancgethen the
central limit theorem guarantees that the process is Gaussian Il. BASIC THEORY
[6]. Processes which exhibit superdiffusion have no second

oo . . : X In this section we give the basic equations for the Lév
moment(i.e., infinite variancgand fail to satisfy the condi- g d y

walk model in particular the so-callectlocity modelwhich

. o ‘e shall use to model both spatial diffusion and/or growth in
of a Gaussian process implies that the modeled system POfsis paper

sesses a characteristic length scale of this order, whereas SYS-The Lé\'/y walk can be visualized by considering a random

tems which can be modeled through Lévy processes possegser whose walk consists of a series of steps between

points known as turning points. In traveling between these

turning points the random walker travels at constant velocity.
*Electronic address: P.Drysdale@physics.usyd.edu.au When the random walker reaches a turning point, the length
"Electronic address: P.Robinson@physics.usyd.edu.au of the next step of the walk is chosen from a jump distribu-
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tion ¢(x). Thus, when the random walker is at a turning understanding the solutions to E¢f) and to avoid other
point, the probability the walker will end up at its next turn- researchers being misled, we show in the Appendix that a
ing point a distance away in a timet, is given by tabulated, purported analytic solution of this eigenvalue
equation is actually incorrect.
YD = g 81X - vt). 1) Despite the lack of closed solutions of the eigenvalue

It should be noted that in one dimensi¢hD) the random €quation, some basic properties@fx,t) have been derived
walker does not necessarily reverse direction at each turnin@y considering the singularities of E¢p) [7]. In particular
point. For symmetric jump distributions, there is a 50% prob-the singularities ofQ(x,s) are simple poles lying on the
ability the next step will be in the same direction as thenegative real axis in the compleslane. Each pole contrib-
walker was traveling when it reached the turning point. Forutes a term exponentially decaying in time @ix,t), so
Lévy walks in spaces of higher dimension, turning points doQ(x,t) and P(x,t) consists of the sum of a number of terms
correspond to spatial turns with unit probability. As stated inexponentially decaying in time. This is similar to Gaussian
Sec. |, the Lévy walk is superdiffusive, so the jump distribu-diffusion on an interval where the probability distribution is
tion ¥(x) has a divergent second moment. Rfx) to be the sum of a number of exponentially decaying eigenfunc-
monotonically decreasing as a power law for lafgeand tions. A crucial difference exists between Lévy walks on an
have a divergent second moment, we chagise to have the interval and Gaussian diffusion on an interval. It should be
form (x) ~ x|~ for large|x|, where 1< «<3. The indexa  noted that Eq(6) is not strictly a single eigenvalue equation,
can then be used to classify Lévy walk processes. but a set of equations, indexed sy Thus each pole of

We let Q(x,t) denote the probability distribution of turn- Q(X,s) converges on an eigenfunction of a different eigen-
ing points of the random walk. For a Lévy walk on a finite value equation. Thu®(x,t) is the sum of decaying eigen-

interval[0,L] with absorbing boundarie§(x,t) is given by  functions from different eigenvalue equatiqir3. Unlike the
Gaussian case, the exponential decay constants of each of

S ' , N At A4 these eigenfunctions are not the eigenvaliids The decay
Qx.0) = fo fo QU)W (x=x", t=t)dxdt’ + 8(x = X)4lt), constants are given by the positions of the paesvhere
poles are numbered in order of distance from the origin. To
2 preserve analogies with Gaussian diffusion, it is convenient
wherex, is the starting point of the random walk. Equation to term the valueA;=-s; at each pole a pseudoeigenvalue
(2) links the current turning point distribution with those at and the spatial component 8fx,t) for each decaying term
previous times through the jump distribution. At any time theas a pseudoeigenfunction. The first pseudoeigenvalue scales
random walk is either at a turning point or traveling to theWith system size as; L' for 2<a<3 ands;*1/L for
next turning point, so the probability distributid®(x,t) for ~ 1<a<2[7].
the position of the random walker is
lll. LEVY SPATIAL DIFFUSION WITH CONSTANT WAVE

L rt
P(x,t):f fQ(x’,t’)CIJ(x—x’,t—t’)dx’dt’, (3) GROWTH RATE
0J0

Let us now consider a wave traveling through a medium.
where®(x,t) is the probability of walker being found on the In general, the wave may either be scattered by the medium

way to the next turning point and is given by as it propagates or more simply propagate ballistically; i.e.,
" remain unscattered by the medium. Similarly the wave can

dx,) = 8(x - vt) | w(x)dx. (4) be amplified or damped by the medium in addition to its
X ballistic or scattered propagation. The scattering process may

. ) ... bemodeled in two ways based on the distribution of scatter-

_The Laplace transform of the turning point distribution 4 centers in the medium. As large steps between scattering
will be required in our analysis and is obtained by Laplacegyents are rare, the scattering is most commonly modeled by

transforming Eq(2), which yields Gaussian diffusio3]. In a medium where large steps can

L occur between scattering, such as in clouds, the scattered

Q(x,s) = f P(x=x,9)Q(X',s)dX + S(x—xg). (5 path of the wave can be modeled by a Lévy walk. Thus three

0 forms of spatial propagation can be described: ballistic,

Exact analytic solutions are not known for Eg). However, Qaussian scattered, and Lé_vy scattered. If the wave is ampli-
since the properties @(x,t) are dependent on the positions fi€d or damped by the medium, more than one model can be
and types of the singularities @(x,s) it is sufficient to used to describe this process. Most simply, the wave can be

know the solutions of the corresponding eigenvalue equatioiSiUbJ(:"Ct to a constant linear wave growth rate. For an |n.ho-
of Eqg. (5), which is given by mogeneous medium, the wave growth rate may vary rapidly

as the wave propagates. The variation in the wave growth
- , , , rate may then be modeled as a random walk in the gain of

Q(x,) :f Wx-x',8)QX',s)dx'. (6)  the wave. As with spatial scattering the random walk in gain

0 can be classified by the distribution of step sizes. A Lévy

Like Eq. (5), no analytic solutions for the eigenvalue equa-walk in gain would correspond to a medium where large
tion (6) are known. Given the fundamental importance ofchanges in wave gain are relatively more probable than a
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medium which is modeled by a Gaussian walk in gain. 1.00

In this section we consider a wave undergoing spatial
scattering modeled by a Lévy walk which is amplified/
damped by either a constant linear wave growth rate or
amplification/damping involving a Gaussian random walk in
gain.

Before considering the above situations, we briefly con-
sider Lévy spatial scattering in the absence of any wave
growth, using a Laplace transform approach. This approach
has the advantage of readily generalizing to a system with
constant wave growth rate.

Transmission Coefficient
o
o

0.01

100 1000
L

A. Transmission coefficient without wave growth
. - . . FIG. 1. Transmission coefficient s, as given by Eq(17).
The transmission coefficient of a medium for an incidentg,q ., top to bottom the lines correspondde 1.3333, 1.5, 1.6666

wave is generally understood to be the fraction of incident g5 2 5.
wave energy that ultimately passes out the far side of the

medium. In the random walk model of scattering this COMme-_ 4t sum these probabilities over all possible turning

sponds to the fraction of random walkers injected at one_ . ; : . .
; . oints. This expression can be rewritten in terms of the
boundary that emerge at the other. For Gaussian spatial scat: o
aplace transforms oR(x,t) and ®(x,t), giving

tering the transmission coefficient in the absence of wave
growth is a classical resultsee, for example[3,8]) and
scales with system size as

To 1UL. 7)

For a Lévy walk in spatial scattering in the absence of wave
growth, the transmission coefficient is identical to the trans

mission coefficient for a Lévy flight, since the temporal d'f'fr_nission coefficient numerically from EqL0), Eq. (5) is dis-

ferences between the two types of random walks do not a . .
fect the final numbers of random walkers ejected from eacr(fretlzed using the Nystrom or product Nystrom methid3

side of the medium. For a Lévy flight on a discrete lattise aEg d?a;{]l?;ni)r(] :Q Vig'?ﬁe: I?\?en;?-m;?durtg I'ggwsigr)n et::::aal
that flight lengths have integer values onliKesten[9] ob- q 910) 9 -9

tained the transmission coefficient. Davis and Marsfk computations of the transmission coefficient using this nu-

independently obtained the transmission coefficient for a{nerlm?(lnsc\:,\r/]:m:.ITtrilefr?suslts éngFl'g' élag::aefvxfth thet pr;ew—
continuous distribution flight steps in connection with light ously known analytic form8) [5,9,11. Clearly for a syste

transmission through a cloudy atmosphere. The transmissio\ﬁIth no growth, the Laplace transform approggthich in-

coefficient scales in the same way in both cases and is givqYlo.lves nu_mencal _comp_utatlo)whas no adv,a ntage over ana-
by ytic solutions derived in the context of Lévy flights. None-

theless, this analysis of the transmission coefficient in the
Toc L-a)2, (8) absence of growth provides a simple illustration of the

) . . Laplace transform method which readily generalizes to sys-
As might be expected, the transmission coefficient falls offs 5 with wave growth.

more slowly withL for <3, than for a Gaussian scattering
medium due to the relatively higher probability of the wave
travt?Iin_g long distances in the medium without undergoing g, Transmission coefficient with constant wave growth rate
scattering.

We now approach this problem from a Laplace transform |n a system undergoing wave growth, the transmission
approach applied directly to the Lévy walk model. The trans—coefficient may again be defined to be the relative fraction of
mission coefficient for a Lévy walk in the absence of growthincident energy that escapes on the far side of the medium.

L
T:f Qx',s=0)d(L - x',s=0)dx’, (10
0

where Q(x’,s=0) is given by Eq.(5). To obtain the trans-

is given by ForI'>0 we expect the sum of the reflection and transmis-
L - o w sion coefficients to exceed 1 as the system amplifies the in-
T:f dx’f dt’Q(x’,t’)J dxf dtd(x-x',t-t), cident wave. This is expected whether the system is subject
0 0 L t' to Lévy or Gaussian spatial scattering. Thus &) of [3]

(9) was incorrect and the correction is that the inequaRty
+T<1 only applies for damped systerh’s<0. Note, how-
where®(x,t) is defined in Eq(4). Equation(9) can be un- ever, the correct signed resliR-T|<1 is implicitly shown
derstood as counting the fraction of random walkers whichin 2. 2 of that paper.
leave the system on the far side. Thandt integrals repre- In a system where wave growth occurs at a constant
sent the probability that a walker at a turning point will leave growth rate ofl” the transmission coefficient is modified to
the medium without further scattering. The integrals oxer the form
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100.00 Although, formally, the lasing threshold differs little from
Letokhov's result for Gaussian scattering, we note its scaling
10.00 with system size differs markedly due to the different scaling
of the eigenvalues and pseudoeigenvalues litkor Gauss-
£ 100 ian scattering’j,s* L2, whereas for Lévy scattering
= .
r L, 2<a<3, (14
oC
0.10 ST, 1<a<2.
Having established the location of the lasing threshold,

0.01 ' ' ' : the properties off- can be considered. Trivially, foFy near
06 02 O‘;/F 06 08 10 the lasing threshold=1/(A;-T) asymptotically, just as
tas for Gaussian scattering media. This is the contributiofijto
FIG. 2. Transmission coefficier vs I'/T,, as given by Eq.  Of the longest lived exponentially decaying first pseudo-
(12). From top to bottom the lines correspondlte 100, 400 with  €igenstate decaying with ratd,-I"). The first pseudoeigen-
@=1.6666;L=100, 400 witha=2.5, y(x) = C(a)(1+x?)~*2, state is the only divergent term contributingTp. Figure 2
shows Ty for different « and L calculated numerically. A
L o % o general trend of an approximately exponential increase for
Trzf dx/f dt’ Q(x’,t’)f dxf dtd(x—x',t—t")e'lo, small I' before increasing asymptotically near the lasing
0 0 L t/ threshold can be seen.
(11)
C. Wave energy density in medium
wheret, is the time before leaving the edge of the medium;

.e., tp=t"+(L—x')/v, corresponding to the sum of the time y;,,, shject to continuous injection of photons within the

taken to reach the final turning point & ,t’) and the time  maqiym. Continuous injection into a scattering medium in
taken to travel between this turning point and escape at thg,e apsence of growth will be considered first.

We now consider the distribution of photons in the me-

medium edge. Equatiofil) can be simplified to yield For Gaussian scattering the distribution of photons forms
) a triangular distribution given by
Tr= x',s=-T)e' XL - x' 5= 0)dx’ .
T LQ( ) ( ) N Xfol_f’ Xy <L,
(12) P(x) = o « %o (15
. : . . . Ol =1-=, x> L.
Wave energy injected into a Gaussian spatial scattering L L

medium without growth escapes the medium, the energy re- = | )
maining in the mediunjsurvival probability® ()] is given  1hiS is a corrected form of the result stated in EG&)H32)
by a sum of exponentially decaying terms, the longest lived! [3], where the resuilt quoteg in that paper has been multi-
of which decays as™, where\, is the first eigenvalue. If Plied by a missing factor oL* in order to scale correctly
the system now includes ampiification at a constant wav&/ith scattering medium length.
growth ratel’, the longest lived term will decay a2t F(_)r Lévy scatterm_g, the pr(.)ba.blllty.d|str|b_ut|on |n§|de the
The medium will lase iff>\,, and \; is thus the lasing _medlum, undt_ar continuous injection, is ob.talned by integrat-
threshold for the system, as found by Letokjdy Similarly 1N over all time the probability distributioP(x,t) for a

for a spatially Lévy scattering medium, a threshold growthSYStém which evolves from a single one-off injection of pho-
rate exists beyond which the medium lases. As previousljonS- BY Laplace transforming E¢3) and noticingP(x,s
described, for wave energy injected into a Lévy scatterin%:o) corresponds to the integral over all time Bfx,t), we
medium without growth the survival probability can be ex- have

pressed as the sum of a number of exponentially decaying o

terms, the longest lived of which has a decay rate equal to f
the first pseudoeigenvaluk;. Thus, as for Gaussian scatter-

ing, the medium will be expected to lase when the exponen-

tial growth rate exceeds the longest lived decaying pseudoe- fL

P(x,t)dt=P(x,s=0), (16)
0

igenstate; i.e., =] ®(x-x',5s=0)Q(x',s=0)dx . 17

0
Nas= Ay, (13)  The asymptotic form foP(x,s=0) asa— 1 can be immedi-
ately obtained by observin@(x,s=0)— constant in this

whereA is the first pseudoeigenvalue of the Lévy scatteringlimit, so Eq.(17) predictsP(x,s=0) — constant agr— 1.

medium. This lasing threshold appears naturally in @&) To obtain P(x,s=0), Eq. (5) is inverted numerically to
via the divergence of(x,s) at its first singularity along the obtain Q(x,s=0) and the convolution in Eq(17) is per-
negative real axis a=-A;. formed to yield the probability distribution inside the me-
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medium, asx decreases the distribution of last scatter points
becomes more concentrated near the injection point as will
now be demonstrated. Aa decreasesd(x,s=0) takes a
flattened functional form approaching a constant in the limit
a—1. As a consequenc®(x,s=0) dominates the convolu-
tion in Eq.(17), soP(x,s=0) takes a more uniform distribu-
tion and is not strongly dependent on the functional form of
the turning point distributior®(x,s=0). A number of physi-
cal insights may be deduced from these relationshipsaeAs
0 20 40 60 80 100 decreases the probability distribution for finding photons

x P(x,s=0) becomes more uniform. The dominant contribu-
tion of d(x,s=0) to P(x,s=0) indicates the probability of
finding a photon at a particular location is dominated by
photons which have left their final turning poifite., last
scatter pointand are taking their final walk step that leads
them out of the medium. The scattering in the medium is not
more evenly distributed because of the fact that the turning
point distribution remains strongly peaked. Further, @as
—1, the distribution of last scatter points becomes concen-
trated near the injection point where the turning point distri-
, , , , \ bution is peaked, rather than near the edges, as would be the
0 20 40 60 80 100 case for Gaussian scattering.

x Up to this point we have considered the injection of pho-
tons in equal numbers in each direction at the injection point
within the medium. In the Gaussian scattering case, if the

=C(a)(1+x2)-al/2. From bottom to top the curves correspond to m]ec.t'on .Of p.hOtons is outside the medium, digusive ap-
(@ a=1.15, 1.5, 1.75, 2.05, 2.5, 2.95, 4@=4.0 is truncateyl  Proximation is made where the photons are assumed to

and(b) @=2.95, 4.0. The doed curve in(b) is P(x) in the Gauss- propagate ballisticall_y to a point _of first scattering roughly
ian diffusive limit (<L) given by Eq.(15). one mean free_pa_lth into _the_meqllum and then_und_ergo pure
diffusion [3]. Similarly injection in only one direction of
dium. Another method for obtainin@(x,s=0) is a direct photons within the medium will result in ballistic propaga-
Monte Carlo simulation of the Lévy walk, which is then tion followed by pure diffusion. For most purposes it may be
integrated over all time. Despite the Monte Carlo schemeassumed the ballistic propagation distance is small and there
scaling computationally als” with B=max2,a), while the s little difference between the two types of initial conditions
matrix inversion in the Laplace space approach scales aggardless of the injection point. For Lévy scattering sys-
N'°%’~N>8[10], the higher computational overheads for thetems, the absence of a characteristic scattering length scale
Monte Carlo approach mean the Laplace approach is signifineans no diffusive approximation can be made. For injection
cantly superior folx<2.8 even for moderately lardg such  of photons from outside the medium, this can be trivially
as the range 100L <800 for which we have performed accommodated by using the initial conditiod(2—xg)S(t)
computations. _ _ for x,— 0. Unidirectional injection inside the medium re-
Figure 3 shows>(x,s=0) for variousa using the Laplace quires changing the initial conditions in E@5) to H(x
space numerical approach descrik_)ed aboveaAkec_reases —Xo)(X—X,) whereH is the Heaviside function. The prob-
from 3 to 1,P(x,s=0) shows a continuous deformation from apijity distribution under continuous unidirectional injection
the triangular Gaussian limit to the constant distribution ass skewed toward the direction of injection.
a—1. Even atw=2.5 the probability distribution can be well Having considering the continuous injection system in the

length. The largest differences between the probability distriynalogy to Eq(17), yielding

bution and a triangular distribution occur near the injection
point. At «=2.5 the lowest order pseudoeigenfunctions and .
pseudoeigenvalues still closely resemble their Gaussian _ t
counterparts whereas the higher order pseudoeigenfunctions WOx.T) _J P(x.e'dt, (18)
differ more significantly from the Gaussian linfif]. Since
the higher order pseudoeigenfunctions, define the shape of
P(x,s=0) near the injection point, it is to be expected that =P(x,5=-T) (19)
P(x,s=0) will be similar to the Gaussian limit except near ’ '
the injection point.

For a Gaussian scattering medium, the distribution of last L
scattering points before the photon leaves the medium is lo- :J
calized in the vicinity of the edges. For a Lévy scattering

FIG. 3. Distribution of wave energf(x) inside medium with
continuous injection as given by Eql17) for L=100, ¢(x)

0

O(x-x",s=-T1"Q(x',s=-1")dx, (20
0
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20 ' ' ' ' probability distribution changes from the no-growth céise
this case a relatively flat distributiprio approach the first
pseudoeigenfunction which has upturned edges. Physically,
the probability distribution is dominated by photons in the
final walk step out of the medium which are multiplying
exponentially along this final walk step, leading to the up-
turned peaks of the probability distribution approaching the
boundaries of the medium. At this point it is useful to con-
sider the general shape of the first pseudoeigenfunction in the
. . ‘ ‘ range < «<2. In a paper on Lévy walkg7], we showed a
o 20 40 60 80 100 set of first pseudoeigenfun(_:tions fe=1.75 in Fig. 1Qb) of
X that paper. Each showed simple concave-down curves. Thus
we can deduce fow=1.75,P(x,I') would approach these
FIG. 4. Wave energy density(x,T') vsx, as given by Ed21),  cuyrves ad’ — A ;. As a decreases, the concavity of the first
for a=2.5, §(x)=C(a)(1+x?)"%. From bottom to top, the curves e doeigenfunction reverses, having upturned edges as in
arel'=0,0.001, 0.002. The dashed curve showsMB2I) for ' he caseq=1.5. This reversal of the concavity of the first
=0.0035. pseudoeigenfunction as decreases from 1.75 to 1.5, was
not described in the earlier paper. The reason for the reversal
is due to d(x,s=-I") becoming U shaped rather than
strongly peaked as for larger. In particular the shape of
®(x,s=-T") depends on the produsiL. For 2<a<3, s|L
Numerically inverting Eq(5) and performing the convolu- scales as.* 2 and thus the exponential term @(x,s=-T")
tion in Eq.(21) enables us to find the probability distribution remains small andb(x,s=-T") is sharply peaked arounxl
inside the medium for each particularandI’. Considering =0. For 1<a<2,s,L is constant but the constant value in-
first P(x,I") for 2<a <3, Fig. 4 shows the probability dis- creases from near one toward ten, as shown in Rig). &f
tributions adl is varied from no growth to the lasing thresh- [7]. Betweena=1.75 with s;L~1.4 anda=1.5 with s,L
old. The general trend in this figure is reflected over the=2.1, the exponential term dominatdsx,s=-I"), which
whole range 2~ a<'3 and shows the probability distribution becomes U shaped. The first pseudoeigenfunction then re-
starting from the triangle-like distribution in the absence ofverses concavity when the U-shap&éx,s=-T") dominates
growth and smoothly deforming to the sinelike shape of thehe turning point distributiorQ(x,s=-T).
first pseudoeigenfunction. This behavior is very similar to
the behavior of Gaussian systems, in whietx,I") varies .
smoothly from the purely triangle distributiofl5) to the IV. LEVY WALK IN GAIN
sine form of their first eigenfunction as the lasing threshold | this section we consider the case of a Lévy walk in
is approached3]. The reasons for this behavior are exactlyave growth in the absence of spatial scattering and then
the same as those for the asymptotic dominance of the firgloypled with Gaussian spatial diffusion. In analyzing sto-
pseudoeigenfunction in the transmission coefficigatThe  chastic wave growth, RobinsdB] assumed that the growth
first pseudoeigenfunction contributes a diverging componenfate of a wave can undergo a Gaussian random walk in gain.
to the overall distributiorP(x,I') asI'— A;. Interestingly, such a wave can undergo net wave growth even
Figure 5 shows a typical set of probability distributions if the mean growth rate is negative. In this section we gen-
P(x,T’) as the growth rate is varied far=1.5. As before, the  eralize the theory of stochastic wave growth to a wave un-
dergoing a Lévy walk in gain.

w(x,I’)

o

L
= f dx e >IQ(x’,s= -1 HxNdx'. (21
0

x=x'|

15
N - A. Lévy walk in gain with ballistic propagation
10k Tt -— - - 4 Assuming the Lévy walk in gain is unbounded, the mean
o energy density in the wave in the absence on spatial scatter-
\;; ing can be given simply by
5 - - e}
] (W(t) = J e%p(G - (G(1),)dG, (22
A -
0 : : . s wherep(G-(G(t)),t) is the probability distribution of an un-

0 20 40 60 80 100 bounded Lévy walk centered on a mean géBit))=(I')t.
X For Lévy walks in gain, the velocity of the Lévy walk shall
FIG. 5. Wave energy density(x,I') vsx, as given by Eq(21), be denotedy to distinguish it from the velocity of spatial
for a=1.5, $(x)=C(a)(1+x? 2. From bottom to top, the curves Lévy walks.
areI’'=0,0.001, 0.015, 0.02. The dashed curve shows\W(RQ4) It is preferable to use a Lévy walk rather than a Lévy
for ['=0.0225. flight, not only as it avoids the unbounded velocity which
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occurs duringllarg.e ste_ps of a Lé.vy flig_ht, but also after one P(k=-i,5) = (2y)1™%(s- y)* 2, (28)

step a Lévy flight in gain results in a divergent wave power

because arbitrarily large steps are allowed in finite timeswhence the asymptotic form is

Zumofen and Klaftef12] obtained useful approximate forms

for p(x,t), the unbounded Lévy walk, in Fourier/Laplace P(k=—i,t) ~

space and real space. Here these form the basis for obtaining 2 Te(2 - a)

the mean energy density for waves undergoing a Lévy walk . . . -

in gain. These ?gsults ar)é then compare(i\/tgl]()t)) ?or W&VZS Wh.ere.FE is Euler’s gamma functiofsubscripted to distin-

where the Lévy walk in gain is obtained through Monte gu'Sh.t't .f“’m thebwave growth rateThus the mean energy

Carlo simulations. Given the different functional forms for 9€"S!Y 1S 9IVEN by

the unbounded Lévy walk for < <2 and <a<3 we

shall consider each parameter range separately. W) =g
For an unbounded Lévy walk with velocity to unity and 27 Te(2-a)

index 2< &< 3, Zumofen and Klaftef12] showed the prob- —\yhich is of the same functional form as the mean energy
ability distribution was related to the Lévy distribution and is density for the range 2 a< 3.

e (), (29)

e ()t (30

given by As noted previously, for=3/2 theprobability distribu-
Bayr — 2 S tion has an analytic form in real spa¢&2] and the mean
aotjxp[ X/t Xﬁ<t ’ energy density can be calculating directly from E2R). The
P(x,t) = bt <x<t, (23  probability distribution is given by
0, X>t,
» | {w-l[(th— I <,
where 8=(a-1)"1. By substitutingP(x,t) in a form where P(x,t) = (31
velocity has not been normalized directly into £82), the 0, r="n
mean energy density for large times can be approximated by, ;s the mean energy density of the wave is
its dominant term as
(W(D) = exp((T)Dlo( 1), (32)

(WD) = b7 (24
where |, is a Bessel function of imaginary argument. For

For an unbounded Lévy walk with index<la<2, the , ) :
probability distribution is not connected to the Lévy distri- 12r9€ times this approaches the asymptotic form and normal-

bution. Zumofen and Klafter obtained an approximate analzation obtained from by the operator technique fer & <2
lytic form for the probability distribution for a Lévy walk in  9Iven in Eq.(30).

this regime{12]. When expressed in units where velocity has !t IS important to consider the accuracy of the mean en-
not been normalized to unity, their E(81) can be written ergy den3|t|e§ o_btalned above. The major Q|ﬁ|§:ulty with the
above analysis is that the Lévy walk distributions used are

1(sly+ik)* 2+ (gy—ik)*? only approximate forms, which provide a good approxima-
P(k,s)=— a1 a1t (25) tion of the Lévy walk distributionP(x,t) over much of its
y(sly+ik)* "+ (sly-ik) .
range[12], but are not exact. For the purposes of calculating
Except in the special case=3/2 [12], there is no known the mean energy density of a wave undergoing a Lévy walk
closed analytic form for the probability distribution in real in gain, only the vicinity ofx=t contributes significantly to
space. Nonetheless, we can use operator identities to obtaime mean energy density. This is exactly where the approxi-
the asymptotic time behavior ¢¥\(t)), which is done next. mate forms are known to deviate form the true distribution,
The justification for this method is given when we compareand thus the use of these approximate forms for the Lévy

our results with Monte Carlo simulations below. walk distributions is not ideal in these circumstances. The
Noting that Eq.(22) may be rewritten formally as mean energy densities calculated above were compared to
P mean energy densities calculated by numerically integrating
(W(t)) =e™VP(k=-i,1), (26)  Eq.(22) where the Lévy walk distribution was obtained from

Monte Carlo simulations. The comparison showed that the
functional form of the asymptotic scaling in Eq&4) and
(S+)* 2+ (s—y)*2 (30) is correct but the proportionality constants disagree. For
(s+ 7)1+ (5= 5« (27) 2<a< 3, afurther refinement to the analytic proportionality
factorb=1/[2¢(a-1)] [where{(x) is the Riemann zeta func-
Theorem 13.7 of Doetsd 3], connects the time asymptotic tion] can be made by recognizingat yt the Lévy distribu-
properties of a function with the form of the Laplace trans-tion has sharp ballistically propagating peaks which includes
form near the singular point with the largest real part. Thewalkers which have never been scattered. These peaks are
transformP(k=-i,s) satisfies the constraints of this theorem not included in the estimate f(x,t) given in Eq.(23). The
and the asymptotic properties may be deduced by completinigallistic peaks can be seen in simulationsRgk,t) such as
the complex path integral around the singularitysaty in ~ Fig. 9 9 of[7]. Incorporating the walkers which have never
the way described by Doetsch. Nesary, P(k=—i,s) hasthe been scattered yields a refined estimate for the proportional-
form ity factor of

we require the time asymptotic properties of

P(k=-i,s) =
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4 ' ' ' ian diffusive random walks. For a velocity model Gaussian
walk with a power law tail, the mean energy density has a
3F ] term (yt)1?exp(I')t+4t) which increases faster than the

term ex(I')+ o?(I")t;]. Gaussian random walks with power

x of a ] law tails («>3) have slow convergence to behavior pre-
s dicted by diffusion equations for points far from the center of
the walk. This yields discrepancies such as observed here.

(24

B. Lévy walk in gain coupled with Gaussian spatial
scattering

a We turn now to waves which undergo a Lévy random

FIG. 6. The ratioR of the proportionality constants of the ana- walk in gain and GaU.SSIar? spatial Scatte.”.ng' !n the absgnce
o ) . of the random walk in gain, the probability distribution is
lytic time asymptotic form to the numerically evaluated mean en-

ergy density for a Lévy walk in gain. The ratio shown in diamondsW(':'II known (€.g.,[3,14)) with:

incorporates the refined analytic approximation given by B8) £
which includes the effect of the ballistic peaks fox2<3. Ps(x,t) = 22 e‘)‘ntsin(mrxolb)sin(nwx/b). (34
n=1
N2¢(a=-1)]+bl(a-1). (33 The situation of a Gaussian random walk in gain coupled

) ) ) ) ) with Gaussian spatial scattering was considered by Robinson
This refinement provides _only_moderate improvement in thqg] and in this subsection we shall term this the “Gaussian”
agreement of the proportionality factor. _ case for comparison purposes. With the Lévy random walk in

Figure 6 shows the ratio of the analytically obtained pro-gain coupled to Gaussian spatial diffusion, the mean energy
portionality factors given in Eqg24) and (30), divided by  gensityW(x) in the scattering medium is given by
the observed proportionality factor of the asymptotic form

obtained from Monte Carlo simulations yieldidgv(t)). Al-
though other refinements for approximating these propor-
tionality constants have been considered, the large overheads
that such techniques require and the relatively small im- Qualitatively several properties &f/(x) can be deduced
provements gained, suggest that Monte Carlo simulations atey considering Eq(35). The integral in Eq(35) converges
the most efficient method for obtaining accurate values obnly below a lasing threshold™) + y<\, just as the Gauss-
these constants if required. ian case has a lasing threshdld)+c?(I')tr<\; [3]. The
Some conclusions regarding wave growth involving Lévy|asing threshold for the Lévy case is independentpthe
walks in gain can now be drawn. As with waves growingindex of the Lévy walk over the whole range<in< 3.
with a Gaussian random walk in gain, the wave may undergo |n the Gaussian case, the mean energy dengity)
net wave growth even though the mean wave growth is negasmoothly changes from the triangular energy density profile
tive if y>(I'). For a Gaussian diffusive random walk in gain, (15) in the no growth case to the first eigenfunction of the
the wave grows exponentially in time with a mean wavediffusive system, sitnmx/b), as the lasing threshold is ap-
growth rate given by'¢=(I")+ o*()ty [3]. For a Lévy walk  proached3]. For Lévy walks in gain, qualitatively different
in gain, the mean energy density increases asymptotically dsehavior forW(x) is expected for each of the cases &< 2
(W(t)) = ()" *exp((T')t+ ), rather than exponentially. In and 2< o< 3. The longest lived term and thus the term with
the Gaussian case the effective wave growth rate depends ¢ine largest contribution to the time integral in E85) is due
the width of P(G,t) through the standard deviatiom, a to the first eigenfunction of the diffusive system, whose time
much smaller parameter than the velocity of the Lévy walkdependent component for large times is asymptotically
v. As expected, the mean energy density for a Lévy walk in o
gain still increases faster than the Gaussian case despite the Ti~ ()t @, (36)
power law weighting term(y)'™ since the coefficient For 1< <2, integrating this term over all time contributes
within its exponential term is larger than the coefficient ing diverging term as the lasing threshold is approached. Like
the Gaussian case. For Lévy walks the term(@Xji+) in  the Gaussian cas&V(x) for 1<a<2 smoothly changing
the asymptotic form depends on the velocity of the Lévyfrom the triangular energy density profild5) in the no-
walk, not the behavior of the rest of the probability distribu- growth case to the first eigenfunction as the lasing threshold
tion. Not unexpectedly it is the largest steps of the Lévy walkis approached. The divergent contribution of the first eigen-
that determine the dominant evolution @#(t)). function term impliesW(x) diverges asymptotically as the
The Gaussian walk in gain based on the velocity modelasing threshold is approached. Fox 2 < 3 the situation is
where ¢(x) has a power law tail of indexx>3 must be very different, the integral over the ter(86) does not di-
considered carefully. This system is different from theverge and so the contribution of the first eigenfunction can
Gaussian diffusive random walk in gain analyzed[3 as  never become dominant. Thus it can be concluded the mean
velocity model Gaussian walks are not equivalent to Gaussenergy density does not asymptotically diverge as the lasing

W(x) = f ’ dt Pg(x,1) f : dG €P(G-(G(1)),1). (35)
0 —
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FIG. 7. Wave energy densitW(x) vs x, as given by Eq(35). FIG. 8. Wave energy density(x) vs x, as given by Eq(35).

P(G,t) was obtained by Monte Carlo simulations, fox P(G,t) was obtained by Monte Carlo simulations, faw
=1.5, () =C(a)(1+x3) ™2, x,=3.3, and(I")=0. From bottom to  =2.5, (x)=C(a)(1+x?)~*2, x,=3.3, and(')=0. From bottom to
top, curves arey/\1=0, 0.3, 0.6, 0.99. top, curves arey/\;=0, 0.3, 0.6, 0.99.

threshold is approached alld x) does not approach the first reflecting the reduced probability of large steps in gain for
eigenfunction in this limit. the range Z «<<3. At first sight it may seem counterintui-
Analytic approximations t&\(x) are difficult to obtain as tive thatW(x) does not asymptotically diverge near the lasing
these require accurate forms fOM(s)) the Laplace trans- threshold for 2<a<3 even though it does diverge in the
formed mean energy density of a Lévy walk in gain in theGaussian case. This is not a contradiction as the lasing
absence of spatial scattering, the situation analyzed in Se#reshold discontinuously changes from dependence on the
IVA. For 1<a<2, Zumofen and Klafter's approximate Velocity of the Levy walk to dependence on the width of the

form for P(k,s) can be used to estimat¥(x). Equation(35) probability distributiono in the Gaussian case. This ensures
may be rewritten as that, for eachy, W(x) is larger for the Lévy walk than for a

Gaussian system, in accordance with intuitive expectations.

< Similar numerical calculations can be used to obtain the
W(X) = 22 sin(nmxy/b)sin(nrx/b) transmission coefficienf. for different a, as shown in Fig.
n=1 9. As with W(x), the transmission coefficient diverges near
X P(k=-i,s=\,—(I"), (37)  the lasing threshold for € @<<2 but remains finite for
2<a<3.

_o3 Q= (D) + 924 (4= (1) = )2

A= D)+ P+ (A= (D) — )™ 2 V. LEVY SPATIAL DIFFUSION WITH A LEVY WALK
IN GAIN
[ NTXg\ . [ NmX . . . . . . .
X sin b sin W ) (39 This section combines Lévy processes in scattering and in

random wave growth. The wave entering the scattering me-

This approximate expression is the Lévy walk analogy to Eq_dium is spatially scattered through a Lévy process while si-
(72) in [3]. Qualitatively this expression shows the expected

trends described in the previous paragraph. However, the ca- 8 roToorTTrTer T
veats on the asymptotic forms derived in Sec. IV A apply to
this expression, which is thus not a satisfactory method for 6

obtaining quantitatively correct values fav(x).
Numerical calculations are the preferable way of obtain-

ing W(x), which can be obtained by calculatif®fG,t) via AT
Monte Carlo simulations and then direct integration of Eq.
(85). For 1< a< 2, Fig. 7 showsMx) obtained from Monte 5f

Carlo simulations and is consistent with the qualitative
trends described above. The qualitative similarities in the
trends forW(x) for 1<a<2 and the Gaussian case can be 0 . . . .
seen by comparison with Fig 4 of [3]. For 2< a <3, Fig. 00 02 O‘; - 06 08 1C

8 showsW(x) obtained from Monte Carlo simulations. As /Tias

expected from the qualitative discussio(x) does not di- FIG. 9. Transmission coefficiei vs I'/T'j,s. From top to bot-
verge asy approaches the lasing threshold and does not agom the lines correspond t0=1.5, a=1.75,a=2.25, anda=2.5.
proach the first eigenfunction. The growth\W{x) asy in-  P(G,t) was obtained by Monte Carlo simulations, wit(x)
creases is also reduced relative to the rangeak 2, =C(a)(1+x3)~*2,
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multaneously being subject to randomly varying waverately, in combination with Gaussian processes, or with both
growth as it propagates through the medium. This randoncases modeled with Lévy walks. Previous modeling of such
variation in wave growth is modeled as a Lévy walk in gainprocesses using Gaussian statistics has been extended using a
which was introduced in Sec. IV A. combination of analytic, numerical inversion and Monte

The chief difficulty of analyzing Lévy walks in gain Carlo techniques to systems where Gaussian statistics are not
coupled with Lévy spatial diffusion is that exact analytic applicable.
forms for the probability distributions are not available for ~ The main results of this paper are as follows.
either the Lévy walk in gain or the Lévy scattering in the () For a system with Lévy spatial diffusion and a con-
medium. Nonetheless, the essential properties of both thesgynt wave growth rate, transmission coefficients were ob-
distributions are sufficiently well understood to build a clear;zined from a Laplace space method, bypassing the need for
picture of this system by considering aspects of previouslyonte Carlo simulations to obtain Lévy walk probability
an;i_lr):zeld caS(isllm éht's pap]f.‘tr.h P tial scattering is apdistributions. The use of operator shortcuts for obtaining
exp or?er?tri]zgledse cg/)?in g?[grne?Al‘ gy g\r?élzg?/ It?) ;gi ﬁ;'%gtﬁ]seanproperties allows both more efficient numerical computation

; ) and clearer qualitative understanding of the properties under

system has a lasing threshold given(by+y=A,, whereA; . A , i ) ! :
is the first pseudoeigenvalue of the spatial scattering me%ngfsig%?w;\}ﬁsrgx?h?;[Lési;ﬁg :p:}[te'ilq ?}'ggi?g;:bﬁigg d
dium. The lasing threshold is independent of the indgx, 9 ’ y 9

of the Lévy walk in gain but indirectly dependent on the I';s=A,. The transmission coefficient increases from its
Lévy index of the spatial scatteringspas Which enters the value in the absence of grpwth, diverging asymptotically as
threshold through, = -s;. Tpocnll(Al—l") near the lasing .threshol-d. o _

The nonexponential nature of the wave growth from the (i) For a system undergoing continuous injection with
Lévy walk in gain prevents the use of the Laplace operatot-€Vvy spatial diffusion and no wave growth, the mean energy
approach of Sec. Ill for determining the transmission coeffi-density has been found. This smoothly varies wittirom
cients and mean energy density in the medium. In the asymghe triangular form in the Gaussian case to the constant dis-
totically large time limit, the functional form' €' for the tribution asa— 1.
growth of the Lévy walk in gaifEqgs.(24) and(30)] might (i) When a constant wave growth rate is added to the
suggest fractional differentiation in Laplace space to obtairsystem in(ii) the mean energy density in the medium was
the growth weighted probability distributionsee[15] for  obtained. As the wave growth rate varies, the mean energy
properties of fractional derivatives in Laplace spackhis  density inside the medium varies from the no-growth case to
approach is not considered here as the nonlocal nature @kymptotically diverging near the lasing threshold. The mean
fractional derivatives requires mUltlple numerical inverSionSenergy density Smooth|y Changes from the no_growth case to
of Eq. (5) which would be computationally inferior to Monte the first pseudoeigenfunction of the Lévy walk on a finite
Carlo simulations unless an analytic solution to Ef).can  jhterval as the wave growth rate increases.
be found. o . (iv) At some point belowa=1.75, the concavity of the
~ For 1<« <2, the transmission coefficient for the system st pseudoeigenfunction reverses which was not described
rises from the no-growth case, diverging near the lasing, gur earlier work[7].
threshold with an asymptotic scalinge1/(A,~(T') (v) A wave with a randomly varying wave growth rate
- )%™ The behavior of the transmission coefficient is quali-where the variations in growth can be modeled as a Lévy
tatively similar to that of Lévy spatial diffusion coupled with walk in gain was analyzed in the absence of spatial scatter-
a constant wave growth rate shown in Fig. 2. Similarly theing_ The mean energy density of this wagé/(t)) scales
mean energy density in the medium varies from the nousymptotically at large times a&V(t))~ (yt)1 @+t for
growth case shown in Fig. 3 asymptotically diverging andy,e entire range 4 a< 3. This is in contrast with Gaussian
a_pp_roaching thg first pseudoeigenfunction in a qualitativelyyit sive random walks in gain, whose mean energy density
similar way to Fig. 5. For any given growth parametdf)  yemains exponential with redefined effective growth rates. A
+7)/Tias, W(X) will have approached the first pseudoeigen-Gayssian walk based on the velocity model with a jump
function less closely than for the corresponding value of thejistribution with power law taila>3, anomalously has a
growth parametel’/I',s, in the constant growth case. mean energy density with the same asymptotic functional

For 2<a <3, the transmission coefficient rises from its form as Lévy walks. The exponentia| mean energy density of
no-growth case but does not diverge near the lasing threslsayssian diffusive random walks is only found for jump dis-
old. The mean energy density also does not diverge near thfiputions with tails that fall more rapidly than any power
lasing threshold and does not approach the first pseudoeigepyy.
function. This is similar to the wave modeled in Sec. IV B (Vl) Gaussian Spatia| Scattering is introduced to the wave
with Gaussian spatial scattering and a Lévy walk in gainyndergoing random variations in its growth rate described by
which shows an increase W(x) over the range of the pa- (v). For the entire range € a<3 the lasing threshold is
rameter ((I")+7)/T',s but does not diverge and the shapegiven by(I')+y=\; and is independent of the Lévy index
WI(x) changes only modestly comparedix) for L<a<2.  The mean energy density takes qualitatively different forms
in each of the rangesda<2 and < a<3. For 1< a<?2

VI SUMMARY AND CONCLUSIONS the mean energy density in the medium as a function of

We have studied random wave scattering and randorposition varies from the triangular no growth case, asymp-

wave growth using Lévy walks to model each case sepatotically diverging near the lasing threshold and approaching
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the first eigenfunction. This is qualitatively similar to the APPENDIX: NOTE ON INCORRECT RESULT
case of Gaussian spatial scattering coupled with a GaussianIN STANDARD INTEGRAL EQUATIONS HANDBOOK
random walk in gain. For & <3 the mean energy density

does not diverge near the lasing threshold and does not ag: ) .
: : . . L ook of Integral Equation the authors have written and
ymptotically approach the first eigenfunction. Similarly the collated an gencyt?lopedic{ﬂcﬁt])llection of solution techniques

};znthQZﬂglg (;gff;cfztgoglfr ﬁost)gsgrerzl(il\f;ges near the IaSaInd exact solutions to integral equations. In &), p. 317,
(vii) Finally, Lévy spatial scattering is introduced to the the handbook states

wave undergoing random variations in its growth rate de- m

scribed by(v). The lasing threshold is given By’ )+y=A; P(X) :)\J + K(X—1)p(t)dt, (A1)

whereA is the first pseudoeigenvalue. The transmission co- -

efficients and mean energy densities in the medium are qual}- _

tatively different in the two ranges af. For 1<a<2 the 10 @n €ven ker.neIK(x)-!((—x) for _7T<(1))(< m, can (lg)e

transmission coefficient rises from the no-growth case disolved with —eigenfunctions ¢(x)=1, ¢ =cosnx, &,

verging asymptotically agp=1/(A;—(I')-y)2™ near the :s_in nx. This is incorrect as can be sh(_)wn by simply_ substi-

lasing threshold. The mean energy density in the mediuntuting the purported solutions into the integral equation. The

varies from the no-growth case described(iin diverging result was collated from Kransct al. [17] where the solu-

near the lasing threshold and approaching the first pseudd©n was justified by substitution back into the integral equa-

eigenfunction in a manner qualitatively similar to the wavestion- Unfortunately this substitution was in error. An analytic

described in(iii ). For 2< a<3 the transmission coefficient Solution to this class of integral equations would be of par-

does not diverge as the lasing threshold is approached afi§ular interest in the study of Levy flights as these equations

the mean energy density in the medium neither diverges ne&® connected with the eigenvalue equations of the turning

the lasing threshold nor approaches the firstPoint distributions. However, from the analysis[ifi, which

In the relatively recently published and invaluabland-

pseudoeigenfunction. considers eigenvalues and eigenfunctions of the equation for
the special class of kernels corresponding to those found in
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