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Community structures are an important feature of many social, biological, and technological networks. Here
we study a variation on the method for detecting such communities proposed by Girvan and Newman and
based on the idea of using centrality measures to define the community boundaries[M. Girvan and M. E. J.
Newman, Proc. Natl. Acad. Sci. U.S.A.99, 7821(2002)]. We develop an algorithm of hierarchical clustering
that consists in finding and removing iteratively the edge with the highest information centrality. We test the
algorithm on computer generated and real-world networks whose community structure is already known or has
been studied by means of other methods. We show that our algorithm, although it runs to completion in a time
Osn4d, is very effective especially when the communities are very mixed and hardly detectable by the other
methods.
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I. INTRODUCTION

Network analysis has revealed as a powerful approach to
understand complex phenomena and organization in social,
biological and technological systems[1–5]. In the frame-
work of network analysis a given system is modeled as a
graph in which the nodes are the elements of the system, for
instance the individuals in a social system, the neurons in a
brain and the routers in the Internet, and the edges represent
the interactions, social links, synapses and electric wirings
respectively, between couples of elements. A lot of interest
has been focused on the characterization of various structural
and locational properties of the network[1–5]. Among the
others, an important property common to many networks is
the presence ofsubgroupsor communities.

For instance, insocial networkssome individuals can be
part of a tightly connected group or of a closed social elite,
others can be completely isolated, while some others may act
as bridges between groups. The differences in the way that
individuals are embedded in the structure of groups within
the network can have important consequences on the behav-
ior they are likely to practice. The division of the individuals
of a social network into communities is a fundamental aspect
of a social system. In fact, subgroups in social systems often
have their own norms, orientations and subcultures, some-
times running counter to the official culture, and are the most
important source of a person’s identity[2]. For this reason
one of the main concerns, since the very beginning of social
network analysis, has been the definition and the identifica-
tion of subgroups of individuals within a network. And the
first algorithms to find community structures have been pro-
posed in social network analysis.

Subgroups are also important to other networks. The pres-
ence of subgrouping inbiological and technologicalnet-
works may hinder important information on the functioning
of the system, and can be relevant to understand the growth
mechanisms of such networks. In fact, communities in the
World-Wide-Web may represent pages on common topics,
while community in cellular[6] and genetic networks[7]

might represent functional modules[8]. For this reason, the
techniques to find the substructures within a network provide
a powerful tool for understanding the structure and the func-
tioning of the network.

In this paper we present a new method to discover com-
munity structures that uses the recently introducedinforma-
tion centrality measure[9,10], based on the concept of net-
work global efficiency[11,12]. The information centrality is
here used to quantify the relevance of each of the edges in
the network. The method consists in finding and removing
the edges with the highest centrality score until the network
breaks up into components.

The paper is organized as follows. In Sec. II we review
the definitions of cliques and cohesive subgroups and the
standard methods for finding community structures in net-
works. In Sec. III we propose the new method and describe
its implementation. In Sec. IV we discuss the application of
the algorithm to computer-generated networks for which
there is already a knowledge and control on the existing sub-
groups. We show that the algorithm, although slower than the
best methods on the market, can be extremely effective at
discovering community structures, especially when the com-
munities are very mixed and hardly detectable. Finally in
Sec. V we discuss a number of applications to real-world
networks. In Sec. VI we present our conclusions.

II. DEFINITION OF COHESIVE SUBGROUPS

Social analysts were the first to formalize the idea of com-
munities and to devise mathematical measures of the number
and cohesion of communities. Here we review the most im-
portant definitions developed for social systems. For this rea-
son the discussion of this section will be mainly in terms of
social networks, although, as we will see in the following
sections, the ideas of community structures applies as well to
other networks. Acommunity, or cluster, or cohesive sub-
group is a subset of individuals among whom there are rela-
tively strong, direct, intense ties. The starting point of all the
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definitions and measures is the concept of subgraph. Asub-
graph is any collection of nodes selected from the nodes of
the whole graph, together with a subset of the edges connect-
ing those nodes. A random sample of points in a graph rep-
resenting a social system is for example a subgraph but it is
not likely to correspond to any meaningful social group. The
notion of a meaningful social group is based on the property
of cohesion among the various members of the subgraph.
However the cohesion of a subgraph can be quantified by
using various different properties of the ties among subsets
of nodes. The choice of a particular property instead of an-
other depends on the researcher’s decision that a particular
mathematical criterion can be given a meaningful and useful
sociological interpretation. The general aim is to define a
meaningful social category by investigating the structural
properties of the whole graph and finding the naturally exist-
ing communities into which the social network can be di-
vided.

The literature on cohesive subgroups contains various
ways to conceptualize the idea of subgroups in social net-
works. In particular, there are four main ideas that take into
account four different structural properties[1]. The resulting
four categories of cohesive subgroups are sorted in such a
way that going from the first to the last one we weaken the
properties that the subgroups have to fulfill. We briefly
present these ideas for one-mode, nondirected, nonvalued
graphs.

(1) The mutuality of ties.Cohesive subgroups based on
the mutuality of ties require that all pairs of subgroup mem-
bers choose each other. This idea is formalized in the defini-
tion of cliques. Aclique is a maximal complete subgraph of
three or more nodes, i.e., a subset of nodes all of which are
adjacent to each other and there are no nodes that are also
adjacent to all the members of the clique.

(2) The closeness or reachabilityof the members of the
subgroup. Since the definition of clique is rather strong and
restrictive for real social networks, a number of extensions of
the basic idea have been proposed. Cohesive subgroups
based on reachability require that all the members are reach-
able from each other. Then-cliques extend the notion of
cliques, weakening the requirement of adjacency among all
the subgroup members. Ann-clique is a maximal subgraph
in which the largest geodesic distance between any two
nodes is no greater thann. When n=1 we go back to the
concept of clique. 2-cliques are subgraphs in which all nodes
need not to be adjacent but are reachable through at most one
intermediary. In 3-cliques all nodes are reachable through at
most two intermediaries, and so on.

A definition that will be important in the following of the
paper is that of component. Acomponentis the maximal
connected subgraph, i.e., a subgraph in which there is a path
between all pairs of nodes, while there is no path between a
node in the subgraph and any node not in the subgraph.

(3) The frequency of tiesamong members. This idea of
cohesive subgroups is based on restrictions on the minimum
number of actors adjacent to each other in a subgroup.
Whereas the concept ofn-clique involves increasing the per-
missible path lengths, an alternative way to relax the strong
assumption of cliques involves reducing the number of other
nodes to which each node must be connected. Ak-plex is a

maximal subgraph containingn nodes in which each node is
adjacent to no fewer thann-k nodes in the subgraph. Com-
pared ton-clique analysis,k-plex analysis tends to find a
relatively large number of smaller groups.

(4) The relative frequency of tiesamong subgroup mem-
bers compared to nonmembers. This idea of cohesive sub-
groups is different from the previous three because it is based
on the comparison of ties within the subgroup to ties outside
the subgroup[14]. In this way cohesive subgroups are seen
as areas of relatively high density in the graph, parts that are
locally denser than the field as a whole. TheLS set is the
simplest formal definition of a subgroup in this class. AnLS
setis a set of nodesSsuch that any of its proper subsets(i.e.,
any possible subset of nodes that can be selected from the
nodes inS) has more ties to its complement withinS than to
the outside ofS [15]. The fact thatLS sets are related by
containment implies that there is a hierarchy ofLS sets in a
graph. The definition of lambda sets extends that ofLS sets,
and is based on the concept of edge connectivity. The edge
connectivity of a pair of nodesi and j is equal to the mini-
mum number of edges that must be removed from the graph
in order to leave no path between the two nodes. A set of
nodesS is a lambda setif any pair of nodes inS has larger
edge connectivity than any pair of nodes consisting of one
node withinS and a node outsideS [16]. Lambda sets are
based on the idea that a cohesive subgroup is relatively ro-
bust, namely it is hard to disconnect by the removal of edges.
An alternative approach based on the same idea is to con-
sider if there are edges in the graph which, if removed,
would result in a disconnected structure. This approach is
easy to implement into an algorithmic procedure and allows
to develophierarchical clustering methods. Such methods
rank and remove the edges of the network in terms of their
importance, where the edge importance can be defined in
different ways as will be clear in a moment. By doing this
repeatedly the network breaks iteratively into smaller and
smaller components until it breaks into a collection of single
nonconnected nodes. The resulting hierarchical structure to
clusters can be represented bydendrograms, or hierarchical
trees, as the one reported in Fig. 1, showing the clusters
produced at each step of the subdivision.

Recently, Girvan and Newman have considered two forms
of edge betweenness to measure the edge importance: the
shortest path betweenness and the random-walk betweenness
[17–19]. The edge shortest path betweenness extends to the
edges the node betweenness proposed by Freeman[20] as a
centrality measure for the nodes, and is defined as the num-
ber of shortest paths between pairs of nodes that run through
that edge[17]. The random-walk betweenness does consider
random walks connecting all couples of nodes instead of the
shortest paths(random walks have also been used to quantify
the similarities-dissimilarities between nearest-neighboring
nodes in other algorithms for finding communities[21]).

The algorithms by Girvan and Newman at each step iden-
tify and remove the edges that are the most between couples
of nodes, in the sense that they are responsible for connect-
ing many pairs of nodes. The method for finding community
structures that we present in this paper is a modification of
the method by Girvan and Newman. In our method we pro-
pose to identify directly the edges that when removed mostly
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disrupt the network’s ability in exchanging information
among the nodes. In fact, instead of the edge betweenness,
we adopt a measure of centrality, the information centrality
CI [9,10], based on the concept of efficient propagation of
information over the network[11,12]. The information cen-
trality has revealed as an interesting quantity to characterize
the centrality of the nodes of a network, and gives different
results from the betweenness centrality[9]. For this reason
we think that it might be useful to develop an algorithm of
hierarchical clustering based on the edge information
centrality.

After having described the formal definitions of cohesive
subgroups based on the relative frequency of ties, we need to
give some methods for assessing the cohesiveness of the sub-
groups. This is especially important in hierarchical clustering
methods where one obtains a hierarchy of community struc-
tures, from the original graph to the extreme case in which
all the nodes are disconnected: in this case the number of
communities depends on the level at which the graph is par-
titioned, and we therefore need a criterium to say at which
point to stop. One of the first measures of how cohesive a
subgroup is, was proposed in Ref.[22] and is just the ratio of
the number of ties(or the average strength of ties for a val-
ued graph) within a subgroup divided by the number of ties
from the subgroup to nodes outside the subgroup. This mea-
sure was recently extended in Ref.[18] by the measure of
modularity that we will discuss in Sec. IV and which proves
to be successful to express the degree of cohesiveness of the
communities of many networks. This is why it was recently
proposed in Ref.[23] to adopt the modularity itself as the
quantity to maximize so to identify the best community
structure. The numerical implementation of this maximiza-
tion allows to analyze very large networks because it can be
performed in a time which is by far shorter than the time
required by all the previous algorithms.

III. OUR METHOD FOR FINDING COMMUNITIES

The algorithm for finding structures we propose here
makes use of a recently introduced centrality measure[9,10],
that is based on the concept of efficient propagation of infor-
mation over the network[11,12]. We assume that the net-
work we want to analyze can be represented as a connected,
nondirected, nonvalued graphG of N nodes andK edges.
However, the extension to nonsymmetric and valued data
does not present any special problem and will be considered
in a forthcoming paper[13]. The graphG is described by the
adjacency matrixa, a N3N matrix whose entryaij is equal
to 1 if i and j are adjacent and 0 otherwise. Two nodes in the
graphs are said adjacent if they are connected by an edge.
The entries on the main diagonal are undefined, and for con-
venience they are set to be equal to 0. We now give some
definition that will be useful in the following. Awalk is an
alternating sequence of nodes and edges, where each edge is
linked to both the preceding and the succeeding node. Apath
linking two nodesi and j is a walk fromi to j in which all
points and edges are distinct: the length of the path is the
number of edges traversed to get fromi to j . The shortest
path, orgeodesic, betweeni and j is any path fromi to j
containing the minimum number of edges.

In order to describe how efficiently the nodes of the net-
work G exchange information we use thenetwork efficiency
E, a measure introduced in Refs.[11,12]. Such a variable is
based on the assumption that the information or communica-
tion in a network travels along the shortest paths(geodesics),
and that the efficiencyei j in the communication between two
nodes i and j is equal to the inverse of the shortest path
lenghtdij . Theefficiencyof G is the average ofei j :

FIG. 1. Dendrogram of the communities found by applying our
algorithm to a computer generated random graph with 64 vertices
and 256 edges. The random graph has been obtained by dividing the
nodes into 4 groups of 16 nodes each(respectively circles, dia-
monds, triangles, and squares) and consideringzin=6,zout=2 (see
text). In the top panel the value ofQ corresponding to the various
divisions of the dendrogram is reported.
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EfGg =

o
iÞ jPG

ei j

NsN − 1d
=

1

NsN − 1d o
iÞ jPG

1

dij
s1d

and measures the mean flow-rate of information overG. The
quantity EfGg varies in the range[0, 1], and is perfectly
defined also in the case of disconnected graphs. In fact, when
there is no path betweeni and j , we assumedij = +` and
consistentlyei j =0. Such a property will be extremely impor-
tant for our algorithm.

A measure of node centrality, the so calledinformation
centrality, based on the network efficiency, has been recently
proposed[9]. The same measure can be used to quantify the
importance of groups and classes[9,10].

Here we use such a measure to quantify the importance of
an edge of the graphG. The information centralityCk

I of the
edgek is defined as the relative drop in the network effi-
ciency caused by the removal of the edge fromG:

Ck
I =

DE

E
=

EfGg − EfGk8g
EfGg

, k = 1,…,K. s2d

Here by Gk8 we indicate a graph withN points andK−1
edges obtained by removing the edgek from G. Notice that
this measure is perfectly defined also whenGk8 is a discon-
nected graph.

The method for finding the hierarchy of cohesive sub-
groups inG consists in the iterative removal of the edges
with the highest information centrality, until the system
breaks up into components. We expect that the edges that lie
between communities are those with the highest information
centrality, while those inside communities have a low infor-
mation centrality. The general form of the algorithm is the
following.

(1) Calculate the information centrality score for each of
the edges.

(2) Remove the edge with the highest score.
(3) Perform an analysis of the network’s components.
(4) Go back to point 1 until all the edges are removed and

the system breaks up intoN disconnected nodes.

As in the Girvan and Newman algorithms[17,18], the recal-
culation of the information centrality scores every time after
an edge has been removed appears to be an important aspect
of the algorithm. We will discuss this point in Sec. V. The
calculation of all the shortest paths, necessary to compute the
efficiency of the network, can be performed with a breadth-
first search algorithm in timeOsKNd [24,25]. Then the cal-
culation of the information centrality for all the edges takes a
time OsK2Nd. This time is comparable to the time it takes to
compute the random-walk betweenness for all the edges
[18], but is longer than the timeOsKNd it takes to calculate
the shortest paths betweenness for all the edges used in the
method of Ref.[17]. The algorithm repeats the calculation of
all the information centralities for each edge removed, i.e.,K
times. In conclusion, the entire community structure algo-
rithm based on the information centrality can be completed
in time OsK3Nd, or timeOsN4d for a sparse graph. Although,
as we will show in Sec. IV, the algorithm can be in some

cases better in finding community structures than the algo-
rithm based on shorthest path betweenness, for its poor per-
formance it can be used only for graphs with up to a thou-
sand of nodes. For extremely large networks the best
algorithm to be used is the one proposed in Ref.[23] and
based on the maximization of the modularity that runs in
time OsKNd or OsN2d on a sparse graph, or the one proposed
in Ref. [26] based on the notion of voltage drops across the
network and running in timeOsK+Nd.

IV. TESTING THE METHOD ON COMPUTER
GENERATED NETWORKS

We first applied our algorithm to computer generated net-
works, i.e., random graphs constructed in such a way that
they have a well defined community structure. All graphs
have the same number of nodes, 128, and the same number
of edges, 1024. The nodes are divided into four classes,
which are the groups 1-32, 33-64, 65-96 and 97-128. We
fixed to 16 the average number of edges per node, and we
label the edges according to whether they connect members
of the same group or not. The mixing between the classes is
introduced by tuning the average number of edges connect-
ing nodes belonging to different classes. From a generic ver-
tex of the graph we have on averagezin edges which join it to
other vertices of its group andzout edges connecting it to
vertices of the other groups. The two numbers are not inde-
pendent, as we must of course havezin+zout=16. We remark
that this is the same set of graphs that Newman[23] and
previously Girvan and Newman[17,18] have used to test
their algorithms. In this way we are able to compare directly
the role of edge betweenness and edge information centrality
in determining the community structure. As a practical ex-
ample we show in Fig. 1 the dendrogram corresponding to
the analysis with our method of a graph of this type, where
for illustration purposes we take a smaller network with 64
nodes and 8 edges per node. Here,zin=6 andzout=8−zin=2,
i.e. the network is strongly clustered. The algorithm produces
a hierarchy of subdivisions of the network: from a single
component toN isolated nodes, going from top to bottom in
the dendrogram(left to right in the figure). To know which of
the divisions is the best one for a given network, i.e., where
we have to cut the hierarchical tree, we need to use a mea-
sure of the cohesiveness of the communities. The first mea-
sure of how cohesive a subgroup is, was proposed in Ref.
[22]. If there areN nodes in the graphG andNS nodes in the
subgroupG, the cohesiveness of subgroupS can be defined
as the ratio of the number of ties within subgroupS divided
by the number of ties fromS to outsiders:

o
iPS

o
jPS

aij

o
iPS

o
j¹S

aij

. s3d

This measure was recently extended by Girvan and Newman
in Ref. [18] into the measure of modularity, that allows us to
consider more than a group at the same time and tell us how
good a subdivision ofG in n subgroups is.
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The modularityQ is defined in the following way. Let us
suppose that we want to test the goodness of a subdivision of
the network inn well defined communities. We expect that a
good split is obtained if most of the edges fall inside the
communities, with comparatively few edges joining the com-
munities to each other. For this purpose one introduces an
3n symmetric matrixe whose elementeij is the fraction of
all edges in the network that link vertices in communityi to
vertices in communityj [28]. The trace of this matrix Tre
=oieii gives the fraction of edges in the network that connect
vertices in the same community. To try just to maximize the
value of the trace does not help because by considering the
whole network as a single community we would get the
maximal value 1 without doing any subdivision at all. There-
fore we further define the row(or column) sumsai =o jeij ,
which represent the fraction of edges that connect to vertices
in communityi. If the network is such that the probability to
have an edge between two sites is the same regardless of
their eventual belonging to the same community(random
network), we would haveeij =aiaj. The modularity is defined
as

Q = o
i

seii − ai
2d = Tr e− ie2i, s4d

whereie2i indicates the sum of the elements of the matrixe2.
This quantity then measures the degree of correlation be-
tween the probability of having an edge joining two sites and
the fact that the sites belong to the same community. It now
makes sense to look for high values ofQ. In fact, if we take
the whole network as a single community, we getQ=0 and
we can easily get higher values by choosing subdivisions in
more than just a single class. Values approachingQ=1,
which is the maximum, indicate strong community structure;
on the other hand, for a random networkQ=0. The expres-
sion (4) is not normalized, so thatQ will not reach a value of
1, even on a perfectly mixed network. For networks with an
appreciable subdivision in classes,Q usually falls in the
range from about 0.2 to 0.7.

In Fig. 1 we plot theQ corresponding to the classes we
determined after each split. Thex-coordinate represents the
number of steps of the algorithm which end with a split of
the network(or of one of its components, if the network is
not connected). We remark that, sinceQ is always calculated
by using the full network,Q can only vary if, after the re-
motion of one edge, the number of components of the net-
work changes, otherwise it keeps the value corresponding to
the last subdivision. To take for thex-coordinate the number
of removed edges would result in a plot with many intervals
whereQ stays constant and, even if that would not affect our
description, we do not consider it appropriate for a presenta-
tion.

The plot presents a single peak, which exactly corre-
sponds to the splitting of the network into the four groups.
This means that the algorithm succeeds in identifying the
four classes. The height of the peak is 0.499, which indicates
that the network is indeed highly clustered. In Fig. 2 we
show the details of the calculation. We plot the information
centrality CI of the edge removed, the global efficiencyE,
the number of componentsn of the resulting graph and the

value of Q as a function of the number of removed edges,
i.e., as a function of the iterations of the algorithm. Each time
we remove an edge with a high information centrality score,
i.e. each time there is a sharp drop in the network efficiency,
we also observe a sharp increase in the modularity. The
height of the three main peaks inCI is roughly proportional
to the corresponding variations ofQ. The correlation be-
tweenCI andQ is nontrivial, but we can give the following
simple argument to explain it. Suppose that after the removal
of an edge we get a split of the componentA in two classes,
say A1 and A2. We indicate withIA1

,IA2
,IA the number of

edges joining pairs of vertices withinA1,A2 and A, respec-
tively. Furthermore, let us denote withmA1

,mA2
,mA the sum

of the vertex degrees of all the vertices ofA1,A2 and A.
According to Eq.(4), the modularityQb before the split is

Qb ,
IA

K
− SmA

2K
D2

, s5d

whereK is the total number of edges of the network. Notice
that IA/K is exactlyeAA of Eq. (4) and mA/2K roughly aA
(with i =A). On the other hand, after the split, we get the
modularity

Qa ,
IA1

+ IA2

K
− SmA1

2K
D2

− SmA2

2K
D2

. s6d

As just a few edges keepA1 andA2 together inA,mA is
approximately given bymA1

+mA2
. So, we come to the fol-

lowing expression for the modularity variationDQ after the
split:

DQ = Qa − Qb ,
IA1

+ IA2
− IA

K
−

mA1
mA2

2K2 . s7d

The first term on the right-hand side(RHS) of Eq. (7) is
small, becauseIA, IA1

+ IA2
, so the dominant term is the sec-

ond one, which is proportional to the productmA1
mA2

. On
sparse graphs like those we are dealing with here,mA1

mA2
is

roughly proportional to the number of vertex pairs with a

FIG. 2. Information centralityCI of the edge removed, global
efficiency E, number of componentsn and modularityQ for the
resulting graph as a function of the number of edges removed.
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vertex inA1 and the other inA2. This number of pairs equals
the number of paths going fromA1 to A2, which after the
split are of infinite length and give a vanishing contribution
to the global efficiency of the network. The variation of the
information centrality is then due to those paths, so it is
proportional toDQ, as we find numerically.

Our aim is of course to test how the algorithm works for
many different networks, and this is accomplished by con-
sidering many different realizations of the same graph and
checking how many vertices are correctly classified in each
case. We analyzed our artificial networks for various values
of zout, ranging from 4 to 7.5, with a step of 0.25. We did not
do a quantitative analysis of the interval 0,zout,4 because
there the algorithm always finds the right classes(more than
99% of successful attempts). For each value ofzout we pro-
duced from 100 to 500 samples, and calculated the average
fraction of nodes which end up in their natural group. We
plot such averages in Fig. 3 as a function ofzout. In the same
plot we report the results obtained by using the algorithm of
Girvan and Newman on the same network. We see that in the
sector[4, 6] the two algorithms perform equally well; the
algorithm of Girvan and Newman seems to lead in some
cases to slightly better results but they are compatible with
ours within errors except eventually forzout=5.75. This is

also the region of values ofzout which corresponds to net-
works with a clear community structure. In the sector[6,
7.5], where the communities are very mixed and hardly de-
tectable, both algorithms start inevitably to fail, but our al-
gorithm clearly performs better. In[7, 7.5] our results are
even better than the ones obtained through the modularity-
based algorithm recently proposed by Newman[23]. These
results may justify the extra price in terms of CPU time that
we have to pay if we choose to adopt the algorithm based on
the information centrality. As far as the modularity is con-
cerned, we passed from peak values of about 0.65 for the
lowest zout we have taken(2) to about 0.25 for the most
mixed casesszout=7.5d.

As a further evidence of the similarities and differences
between edge information and betweenness centrality we re-
port in Fig. 4 a scatter plot of the two measures for each of
the 1024 edges of the initial network, i.e., before we start the
first iteration of the edge removal process. The figure shows
that, as expected, the two measures are correlated, although
there are some important differences. In particular we notice
that the edges with the higher information are not always
those with the higher betweenness. This is more evident
when the communities are mixed and hardly detectable. For
instance in the casezout=7 the edge with the largest informa-
tion, i.e., the one that will be removed by our algorithm is
not the one with the largest betweenness.

V. APPLICATIONS TO REAL NETWORKS

After the first experiments on artificial networks, we can
say that the algorithm seems promising. However, if our
method is any good, it must work as well for real networks,
which actually represent the systems we are mostly inter-
ested in. We present here the analysis of four networks, al-
though we analyzed more. The first three of them, i.e., the
Zachary’s karate club, the network of the American college
football teams and the food web of the Chesapeake Bay,
have also been studied by other authors, with other hierar-
chical clustering methods. In this way we can better under-
stand what the differences between the various approaches
are. The last network studied represents the interactions
amongst a group of 20 monkeys.

A. Zachary’s karate club

The first example we considered is the famous karate club
network analyzed by Zachary[27]. It consists of 34 persons

FIG. 3. Average fraction of correctly identified vertices as a
function of zout. Each point represents an average over 100 to 500
graphs. The comparison with the analogous results of Girvan and
Newman shows that our algorithm performs better when the com-
munities are very mixed and hardly detectable.

FIG. 4. Correlation between edge information
centrality and betweenness centrality. Each point
of the scatter plot refers to an edge of an artifi-
cially generated network with 128 nodes and
1024 edges. We consider the two valueszout=4
and zout=7, respectively representing a case in
which the communities are clearly separated and
a case in which the communities are mixed and
hardly detectable.
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(78 edges) whose mutual friendship relationships have been
carefully investigated over a period of two years. Due to
contrasts between a teacher and the administrator of the club,
the club split into two smaller ones. The questions we want
to answer are the following: Is it possible, by studying the
network community structures before the network splitting,
to predict the behavior of the network and in particular to
identify the two classes? Moreover, according to the network
structure will a possible conflict most likely involve two fac-
tions or multiple groups? The network is presented in Fig. 5,
where the squares and the circles label the members of the
two groups. The results of our analysis are illustrated in the
dendrogram of Fig. 6.

The first edge which gets removed is the one linking node
12 to the rest of the network. This edge corresponds to the
edge between node 12 and node 1, an edge having the largest
information centrality(0.024) and a medium value of be-
tweenness(66) as shown in the scatter plot reported in Fig. 7.
Notice also that the edge with the highest betweenness
(142.79) is the edge connecting node 1 with node 32. The
removal of the first edge then leads to the isolation of node
12. This is a feature that we encountered other times in our
analyses. The early separation of a single node or of a small
group is due to the fact that a system often looses more
efficiency because of such splits than through the removal of
intercommunities edges.

To see why this is so, let us consider the simple example
of Fig. 8, describing a networkG with N nodes composed by
two cohesive subgroups, namelyG1 with N1 nodes, andG2
with N2 nodessN1,N2!1d, and by the two nodesk, which
is joined to the network via a single edge(like node 12 in the
karate club) and i, bridging G1 to G2. In such a case the
separation of the nodek leads to a decrease of efficiency
proportional to the number of remaining nodes, i.e.,
DEk-split~OsNd. In fact, because of the single edge, the short-
est paths between pairs of nodes different fromk are not
affected by the removal of the edge, so the only contributions
come from the paths fromk to the rest of the network, which
areN−1. On the other hand, the removal of the edge linking
i to G1 influences the lengths ofN13N2 shortest paths, so
that DEint-comm~OsN2d. In such a case, the edge standing
between the two communitiesG1 andG2 will be the first one

to be removed. But this is not always the case, since a simple
modification of the network considered in the figure would
lead to a different result. In fact, if we now suppose that node
i is connected toG1 through two edges(as for the connection
between nodei and G2) instead of a single one, then the
algorithm will see the graph composed byG1,G2 and i as a
more cohesive structure than before and the first edge to be
removed will be the one connectingk to G1.

Going back to the dendrogram of Fig. 6, we see that after
node 12 is removed from the network of the karate club, also
the loosely bound node 27(just two edges) isolates from the
rest. The third split finally separates the two big groups. At
this stage we have four components, two isolated nodes(12

FIG. 5. The karate club network of Zachary(figure taken from
Girvan and Newman[18]).

FIG. 6. Dendrogram of the communities of the karate club. Ini-
tially one has the split of two loosely bound nodes, 12 and 27, from
the rest of the network. After that the two communities, with the
exception of node 10(and of the two above-mentioned nodes), are
correctly identified. The separation of the two communities corre-
sponds to a peak in the modularityQ.
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and 27) and two larger groups which are homogeneous ex-
cept node 10 which is misclassified(curiously enough, this
node is also misclassified by the fast algorithm of Newman
[23]). The separation of the four above mentioned clusters
corresponds to a peak in the plot ofQ. However there is a
second higher peak which is obtained for a split of the net-
work into seven communities. This double peak structure is
present as well in theQ-plot of the Girvan-Newman analysis
[17,18].

As for the computer generated networks, we report in Fig.
9 the information centralityCI of the edge removed, the glo-
bal efficiencyE, the number of componentsn of the resulting
graph and the value ofQ as a function of the number of
edges removed from the network of the karate club. The
figure is analogous to Fig. 2. We observe again a correlation
between the peaks ofCI and the jumps ofQ (here we have
two). Moreover, like in the previous case, the absolute maxi-
mum of Q corresponds to the lower of the two peaks ofCI.

We remind that the variation of the efficiency correspond-
ing to the remotion of one edge is calculated by taking into
account the structure of the network at the current stage, i.e.,
without considering the edges which were eliminated in the
previous steps. For the algorithm of Girvan and Newman this
condition of recalculation turns out to be crucial, because
removing the edges according to the(decreasing) values of

FIG. 9. Information centralityCI of the edge removed, global
efficiency E, number of componentsn and value ofQ for the re-
sulting graph as a function of the number of edges removed for the
karate club network.

FIG. 10. Dendrogram of the communities of the karate club
obtained by our method if we calculate the information centrality
according to the initial structure of the network. This version of the
algorithm fails to detect the communities.

FIG. 7. Correlation between edge information centrality and be-
tweenness centrality for the karate club network. Each point of the
scatter plot refers to an edge of the network.

FIG. 8. A graphG composed by a nodek and two cohesive
subgroups,G1 andG2, connected by nodei.
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the betweenness as calculated from the original configuration of the network leads to very poor results. We wanted to check
whether this is also true for our method. Indeed, Fig. 10 clearly shows that this is the case: the dendrogram does not reveal the
real splitting of the network into the two classes, which instead look quite mixed up, and the modularity, whose values are
quite low all over, presents a rather flat profile.

FIG. 11. Dendrogram of the
communities found in the college
football network. At some stage
we get to the highlighted struc-
ture, which shows a split into ten
main groups and few isolated
nodes. The ten groups coincide,
up to eventually a team, with ten
of the conferences listed above the
figure.
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B. Network of the American college football teams

The second network we have investigated is the college
football network, representing the schedule of games be-
tween American college football teams in a season. The
teams are divided into well known “conferences,” which are
the communities, with a higher number of games between
members of the same conference than between teams of dif-
ferent conferences. There are altogether eleven conferences
plus few other teams which do not belong to any conference.
Figure 11 shows the dendrogram we have derived with our
method. The pattern of the modularity looks similar to the
one we have shown for the karate club, and it again presents
two peaks, the higher of which reaches the valueQ=0.485.
The corresponding subdivision of the network is the one we
highlighted in the figure. We identify ten groups which coin-
cide with ten conferences(either exactly or up to a team).
The teams labeled as Sunbelt are not recognized as belong-
ing to the same group. This group is misclassified as well in

the analysis of Girvan and Newman. There is however a
reason for that, namely the fact that the Sunbelt teams played
basically the same number of games against Western Athletic
teams as they did among themselves. The independent teams
(labeled as IA Independent) show indeed no relationship to
each other nor to a particular conference and they appear as
truly independent nodes.

C. Food webs

We have also applied our algorithm to several food webs.
Here we mainly discuss the analysis of the food web of ma-
rine organisms living in the Chesapeake Bay, which is situ-
ated on the Atlantic coast of the United States. This special
ecosystem was originally studied by Baird and Ulanowicz
[29], who carefully investigated the trophic relationships
(i.e., the predatory interactions) between the 33 most impor-
tant taxa, which are the vertices of the network; a taxon is a
species or a group of species. Baird and Ulanowicz studied

FIG. 12. Dendrogram of the communities of
the Chesapeake Bay food web. The modularity
peaks for the highlighted partition of the network.
The two largest clusters are quite homogeneous,
reflecting approximately the division between pe-
lagic and benthic organisms.
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the exchanges of carbon among the taxa and in this way they
compiled the matrix of their thophic relationships, specifying
the percentage of carbon assimilated in each interaction. So,
strictly speaking, the network is directed(A feeds onB but
the opposite is not true), and valued(due to the different
percentages of carbon exchanged in the interactions); never-
theless, we took it nondirected and nonvalued, following Gir-
van and Newman[17]. Figure 12 shows our analysis, which
is quite similar to the analysis of Ref.[17]; the optimal split
(peak of the modularity) is obtained for a separation in two
large classes and four small ones. One of the big groups,
with a few exceptions, contains pelagic organisms(which
live near the surface or at middle depths), the other one
mainly benthic organisms(which live near the bottom). Our
classification of the taxa thus favours the habitat versus the
trophic levels, in contrast to other methods used to study
food webs. We must be careful, however. On the one hand,
the mixed pattern of Fig. 12 suggests that one should prob-
ably take into account other criteria as well. On the other
hand our analysis of a similar food web, relative to the sea-
grass ecosystem of St. Marks National Wildlife Refuge[30],
shows different results. This network is larger than the pre-
vious one(48 vertices versus 33) and has several species in
common with the ecosystem of the Chesapeake Bay. The
presence of terrestrial species and birds enlarges the variety
of possible habitats and the spectrum of the trophic levels;
the latter allowed us to identify in[30] five clusters of taxa.
Nevertheless, our study did not reveal any particular subdi-
vision of the species. Repeating the analysis with the algo-
rithm of Girvan and Newman led essentially to the same
results. We had similar problems by analyzing other food
webs; the reason may be the fact that these networks often
contain many edges, and our algorithm is probably not suit-
able for the analysis of dense graphs.

D. Primate network

In this section we consider a data set collected by Linda
Wolfe [9,31], recording 3 months of interactions amongst a
group of 20 monkeys, where interactions were defined as the
joint presence at the river. The dataset also contains informa-
tion on the sex and the age of each animal. Monkeys 1–5 are
males; monkeys 6–20 are females. In increasing order of
age: monkeys 7, 14, 18, 20 belong to the first age group(the
youngest), monkeys 4, 5, 9, 10, 15, 17 to the second, mon-
keys 2, 3, 8, 12, 16 to the third and monkeys 1, 6, 11, 13, 19
to the fourth and oldest group. A detailed analysis of the
individual and group centrality of this network can be found
in Refs. [9,31]. The total number of links is 31, i.e., of the
order of magnitude of the nodes. Indeed, six out of twenty
monkeys did not actively participate in the social life of the
group; the resulting nondirected nonvalued graph thus con-
sists of 6 isolated points(labeled by the numbers 2, 6, 16, 18,
19, 20) and a connected component of 14 points. The results
of our analysis are illustrated in Fig. 13, where we reported
as well for each primate both sexsM =male,F=femaled and
age (in years). The modularity of the subsequent subdivi-
sions of the network in components is very low, which shows

that there is no appreciable community structure; neverthe-
less, two peaks are clearly visible, the higher of which is
obtained when the nodes 5, 8 and 9 separate one after the
other from the network. One gets then a major community of
eleven elements and nine isolated monkeys. We do not find
any sensible relationships between our partition and the di-
vision of the primates in age groups. We analyzed the net-
work as well with the method of Girvan and Newman and
the results are essentially the same: one gets again two peaks
for the modularity(whose values remain low) and the best
partition of the network corresponds to a separation in the

FIG. 13. Dendrogram of the primate network. The circles rep-
resent the asocial monkeys, the squares the social monkeys(see
text). There is no separation in classes; our procedure leads to a
progressive isolation of the nodes. The modularityQ is very low,
the higher peak is relative to a partition in a large group and the
isolated nodes 5, 8 and 9(besides the asocial primates).
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same large community we found before without node 11,
which is now isolated, plus isolated sites except the pair 5-8.

VI. CONCLUSIONS

We have presented a new algorithm to identify the subdi-
visions of complex networks in cohesive groups of vertices,
or communities. The algorithm is based on a recently intro-
duced centrality measure, the so-called information central-
ity, and consists in classifying all edges according to the
value of this measure, so to determine which edge is most
central: the latter edge is then removed from the network.
One then recalculates the information centrality of the re-
maining edges and again removes the most central edge; the
procedure is repeated until all edges are removed. The hope
is that this sequential removal of edges looses the bonds
between tightly connected groups of vertices, so that, at
some stage, they eventually separate from each other.

For the quantitative evaluation of the goodness of the suc-
cessive splits, which is necessary in order to identity the best
subdivision of the network, we adopted the modularityQ
introduced in[18]. Our algorithm runs to completion in time
OsK3Nd (K andN are the number of edges and vertices of the
graph, respectively) and therefore is not so fast as other
methods; because of that, networks with thousands of verti-
ces are unreachable. The aim of the paper, however, was to
check whether the information centrality is relevant in the
search of the communities.

The results of the application of our method both to com-
puter generated networks and to real networks clearly show
that the algorithm is indeed able to detect the real communi-

ties in most cases. This implies the existence of a correlation
between the information centralityCI

k of an edgek and the
fact that the edge joins two different communities; the higher
CI

k, the more likelyk is a tie between groups. This is con-
firmed by the correlation we observed between the peaks of
CI and the jumps in the modularity(see Figs. 2 and 9). We
stressed the importance of the recalculation of the informa-
tion centrality step by step; without it the algorithm is not
able to distinguish the communities. Our method was espe-
cially devised for sparse graphs(i.e., whenK,N), and it is
probably doomed to fail for dense graphssK,N2d.

The examples we have taken allowed us as well to see
how efficient our algorithm is compared with others. In par-
ticular we made extensive comparisons with the algorithm of
Girvan and Newman[17,18], which also uses a centrality
measure, the edge betweenness. It turns out that our algo-
rithm is generally as good as the one of Girvan and Newman.
It seems to perform slightly better when there is a high
degree of mixture between the classes; on the other hand,
it sometimes has troubles with nodes which are too
loosely bound to the rest of the network(like nodes with a
single edge), which may separate too early and be misclas-
sified, although they often happen to be truly independent
communities.
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