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Community structures are an important feature of many social, biological, and technological networks. Here
we study a variation on the method for detecting such communities proposed by Girvan and Newman and
based on the idea of using centrality measures to define the community bouritfar@svan and M. E. J.
Newman, Proc. Natl. Acad. Sci. U.S.R9, 7821(2002]. We develop an algorithm of hierarchical clustering
that consists in finding and removing iteratively the edge with the highest information centrality. We test the
algorithm on computer generated and real-world networks whose community structure is already known or has
been studied by means of other methods. We show that our algorithm, although it runs to completion in a time
0o(n%, is very effective especially when the communities are very mixed and hardly detectable by the other
methods.
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I. INTRODUCTION might represent functional modulé8]. For this reason, the

Network analysis has revealed as a powerful approach itechniques to find the substruc_tures within a network provide
understand complex phenomena and organization in socia pqwerful tool for understanding the structure and the func-
biological and technological systeni&—5]. In the frame- tioning of the network.
work of network analysis a given system is modeled as a In this paper we present a new method to discover com-
graph in which the nodes are the elements of the system, fanunity structures that uses the recently introduirédrma-
instance the individuals in a social system, the neurons in #on centrality measurg9,10], based on the concept of net-
brain and the routers in the Internet, and the edges represework global efficiency{11,12. The information centrality is
the interactions, social links, synapses and electric wiring&ere used to quantify the relevance of each of the edges in
respectively, between couples of elements. A lot of interesthe network. The method consists in finding and removing
has been focused on the characterization of various structurttie edges with the highest centrality score until the network
and locational properties of the netwofk—5]. Among the  breaks up into components.
others, an important property common to many networks is The paper is organized as follows. In Sec. Il we review
the presence asubgroupsor communities the definitions of cliques and cohesive subgroups and the

For instance, irsocial networkssome individuals can be standard methods for finding community structures in net-
part of a tightly connected group or of a closed social eliteworks. In Sec. lll we propose the new method and describe
others can be completely isolated, while some others may aéis implementation. In Sec. IV we discuss the application of
as bridges between groups. The differences in the way thdbe algorithm to computer-generated networks for which
individuals are embedded in the structure of groups withirthere is already a knowledge and control on the existing sub-
the network can have important consequences on the behagroups. We show that the algorithm, although slower than the
ior they are likely to practice. The division of the individuals best methods on the market, can be extremely effective at
of a social network into communities is a fundamental aspecdiscovering community structures, especially when the com-
of a social system. In fact, subgroups in social systems oftemunities are very mixed and hardly detectable. Finally in
have their own norms, orientations and subcultures, somesec. V we discuss a number of applications to real-world
times running counter to the official culture, and are the mosbetworks. In Sec. VI we present our conclusions.
important source of a person’s identitg]. For this reason
one of the main concerns, since the_ very beginning of sp_cial Il. DEEINITION OF COHESIVE SUBGROUPS
network analysis, has been the definition and the identifica-
tion of subgroups of individuals within a network. And the  Social analysts were the first to formalize the idea of com-
first algorithms to find community structures have been promunities and to devise mathematical measures of the number
posed in social network analysis. and cohesion of communities. Here we review the most im-

Subgroups are also important to other networks. The pregortant definitions developed for social systems. For this rea-
ence of subgrouping imiological and technologicalnet-  son the discussion of this section will be mainly in terms of
works may hinder important information on the functioning social networks, although, as we will see in the following
of the system, and can be relevant to understand the growtfections, the ideas of community structures applies as well to
mechanisms of such networks. In fact, communities in theother networks. Acommunity or cluster, or cohesive sub-
World-Wide-Web may represent pages on common topicsgroupis a subset of individuals among whom there are rela-
while community in cellular[6] and genetic network§7]  tively strong, direct, intense ties. The starting point of all the
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definitions and measures is the concept of subgrapgulA  maximal subgraph containingnodes in which each node is
graphis any collection of nodes selected from the nodes ofadjacent to no fewer thank nodes in the subgraph. Com-
the whole graph, together with a subset of the edges conneqtared ton-clique analysisk-plex analysis tends to find a
ing those nodes. A random sample of points in a graph reprelatively large number of smaller groups.

resenting a social system is for example a subgraph but it is (4) The relative frequency of tiemmong subgroup mem-
not likely to correspond to any meaningful social group. Thebers compared to nonmembers. This idea of cohesive sub-
notion of a meaningful social group is based on the propertgroups is different from the previous three because it is based
of cohesion among the various members of the subgraplon the comparison of ties within the subgroup to ties outside
However the cohesion of a subgraph can be quantified bthe subgroug14j. In this way cohesive subgroups are seen
using various different properties of the ties among subsetas areas of relatively high density in the graph, parts that are
of nodes. The choice of a particular property instead of anlocally denser than the field as a whole. Th8 set is the
other depends on the researcher’s decision that a particulamplest formal definition of a subgroup in this class. A8
mathematical criterion can be given a meaningful and usefusetis a set of nodeS such that any of its proper subséts.,
sociological interpretation. The general aim is to define aany possible subset of nodes that can be selected from the
meaningful social category by investigating the structurainodes inS) has more ties to its complement withithan to
properties of the whole graph and finding the naturally existthe outside ofS [15]. The fact thatLS sets are related by
ing communities into which the social network can be di-containment implies that there is a hierarchyL& sets in a
vided. graph. The definition of lambda sets extends thdt $&ets,

The literature on cohesive subgroups contains variouand is based on the concept of edge connectivity. The edge
ways to conceptualize the idea of subgroups in social neteonnectivity of a pair of nodesandj is equal to the mini-
works. In particular, there are four main ideas that take intanum number of edges that must be removed from the graph
account four different structural propertigg. The resulting in order to leave no path between the two nodes. A set of
four categories of cohesive subgroups are sorted in such reodesS is alambda seff any pair of nodes irS has larger
way that going from the first to the last one we weaken theedge connectivity than any pair of nodes consisting of one
properties that the subgroups have to fulfill. We brieflynode withinS and a node outsid8 [16]. Lambda sets are
present these ideas for one-mode, nondirected, nonvaludzhsed on the idea that a cohesive subgroup is relatively ro-
graphs. bust, namely it is hard to disconnect by the removal of edges.

(1) The mutuality of tiesCohesive subgroups based on An alternative approach based on the same idea is to con-
the mutuality of ties require that all pairs of subgroup mem-sider if there are edges in the graph which, if removed,
bers choose each other. This idea is formalized in the definiwould result in a disconnected structure. This approach is
tion of cliques. Acliqueis a maximal complete subgraph of easy to implement into an algorithmic procedure and allows
three or more nodes, i.e., a subset of nodes all of which ar® develophierarchical clustering methodsSuch methods
adjacent to each other and there are no nodes that are alsmk and remove the edges of the network in terms of their
adjacent to all the members of the clique. importance, where the edge importance can be defined in

(2) The closeness or reachabilinf the members of the different ways as will be clear in a moment. By doing this
subgroup. Since the definition of clique is rather strong andepeatedly the network breaks iteratively into smaller and
restrictive for real social networks, a number of extensions obmaller components until it breaks into a collection of single
the basic idea have been proposed. Cohesive subgroupsnconnected nodes. The resulting hierarchical structure to
based on reachability require that all the members are reacltusters can be represented digndrogramsor hierarchical
able from each other. Tha-cligues extend the notion of trees, as the one reported in Fig. 1, showing the clusters
cligues, weakening the requirement of adjacency among apfroduced at each step of the subdivision.
the subgroup members. Amclique is a maximal subgraph Recently, Girvan and Newman have considered two forms
in which the largest geodesic distance between any twof edge betweenness to measure the edge importance: the
nodes is no greater tham Whenn=1 we go back to the shortest path betweenness and the random-walk betweenness
concept of clique. 2-cliques are subgraphs in which all nodegl7-19. The edge shortest path betweenness extends to the
need not to be adjacent but are reachable through at most oedges the node betweenness proposed by Freg20has a
intermediary. In 3-cliques all nodes are reachable through atentrality measure for the nodes, and is defined as the num-
most two intermediaries, and so on. ber of shortest paths between pairs of nodes that run through

A definition that will be important in the following of the that edgg17]. The random-walk betweenness does consider
paper is that of component. Bomponentis the maximal random walks connecting all couples of nodes instead of the
connected subgraph, i.e., a subgraph in which there is a paghortest patheandom walks have also been used to quantify
between all pairs of nodes, while there is no path between the similarities-dissimilarities between nearest-neighboring
node in the subgraph and any node not in the subgraph. nodes in other algorithms for finding communitigxl]).

(3) The frequency of tieamong members. This idea of  The algorithms by Girvan and Newman at each step iden-
cohesive subgroups is based on restrictions on the minimuitify and remove the edges that are the most between couples
number of actors adjacent to each other in a subgroumf nodes, in the sense that they are responsible for connect-
Whereas the concept afclique involves increasing the per- ing many pairs of nodes. The method for finding community
missible path lengths, an alternative way to relax the strongtructures that we present in this paper is a modification of
assumption of cliques involves reducing the number of othethe method by Girvan and Newman. In our method we pro-
nodes to which each node must be connectek:pfexis a  pose to identify directly the edges that when removed mostly
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After having described the formal definitions of cohesive
subgroups based on the relative frequency of ties, we need to
04| give some methods for assessing the cohesiveness of the sub-
groups. This is especially important in hierarchical clustering
methods where one obtains a hierarchy of community struc-
tures, from the original graph to the extreme case in which
0.1 all the nodes are disconnected: in this case the number of
communities depends on the level at which the graph is par-
titioned, and we therefore need a criterium to say at which
point to stop. One of the first measures of how cohesive a
subgroup is, was proposed in REZ2] and is just the ratio of
the number of tiegor the average strength of ties for a val-
ued graph within a subgroup divided by the number of ties
from the subgroup to nodes outside the subgroup. This mea-
sure was recently extended in R¢L8] by the measure of
modularity that we will discuss in Sec. IV and which proves
to be successful to express the degree of cohesiveness of the
communities of many networks. This is why it was recently
proposed in Ref[23] to adopt the modularity itself as the
quantity to maximize so to identify the best community
structure. The numerical implementation of this maximiza-
tion allows to analyze very large networks because it can be
performed in a time which is by far shorter than the time
required by all the previous algorithms.
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lIl. OUR METHOD FOR FINDING COMMUNITIES
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The algorithm for finding structures we propose here
makes use of a recently introduced centrality meafH]|,
that is based on the concept of efficient propagation of infor-
mation over the networkl1,12. We assume that the net-
work we want to analyze can be represented as a connected,
nondirected, nonvalued gragh of N nodes andK edges.
However, the extension to nonsymmetric and valued data
does not present any special problem and will be considered
in a forthcoming papefl3]. The graphG is described by the
adjacency matria, a N X N matrix whose entry; is equal
to 1 if i andj are adjacent and O otherwise. Two nodes in the
FIG. 1. Dendrogram of the communities found by applying ourgraphs are said adjacent if they are connected by an edge.
algorithm to a computer generated random graph with 64 vertice3he entries on the main diagonal are undefined, and for con-
and 256 edges. The random graph has been obtained by dividing theenience they are set to be equal to 0. We now give some
nodes into 4 groups of 16 nodes eaghspectively circles, dia- definition that will be useful in the following. Avalk is an
monds, triangles, and squayemnd considering;,=6,z,,=2 (see  alternating sequence of nodes and edges, where each edge is
text). In the top panel the value @ corresponding to the various |inked to both the preceding and the succeeding nogeatA
divisions of the dendrogram is reported. linking two nodesi andj is a walk fromi to j in which all
points and edges are distinct: the length of the path is the
disrupt the network’s ability in exchanging information number of edges traversed to get fronto j. The shortest
among the nodes. In fact, instead of the edge betweennegsth, orgeodesi¢c betweeni and j is any path fromi to j
we adopt a measure of centrality, the information centralitycontaining the minimum number of edges.
C' [9,10], based on the concept of efficient propagation of In order to describe how efficiently the nodes of the net-
information over the networkll,13. The information cen- work G exchange information we use thetwork efficiency
trality has revealed as an interesting quantity to characteriz, a measure introduced in Refd1,12. Such a variable is
the centrality of the nodes of a network, and gives differentbased on the assumption that the information or communica-
results from the betweenness centrali®y. For this reason tion in a network travels along the shortest patpsodesicy
we think that it might be useful to develop an algorithm of and that the efficiency;; in the communication between two
hierarchical clustering based on the edge informatiomodesi andj is equal to the inverse of the shortest path
centrality. lenghtd;. The efficiencyof G is the average oé;:

&
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S e cases better in finding community structures than the algo-
i4jeG I 1 1 rithm based on shorthest path betweenness, for its poor per-
E[G]= NN-1 - N(N-1) EG T (1) formance it can be used only for graphs with up to a thou-
i#]e ij

sand of nodes. For extremely large networks the best
algorithm to be used is the one proposed in R28] and
based on the maximization of the modularity that runs in
etHne O(KN) or O(N?) on a sparse graph, or the one proposed
in Ref. [26] based on the notion of voltage drops across the
network and running in tim&©(K+N).

and measures the mean flow-rate of information @vefhe
guantity E[G] varies in the rangd0, 1], and is perfectly
defined also in the case of disconnected graphs. In fact, wh
there is no path betweenand j, we assumed;=+ and
consistentlye; =0. Such a property will be extremely impor-
tant for our algorithm.

A measure of node centrality, the so calledformation
centrality, based on the network efficiency, has been recently
proposed9]. The same measure can be used to quantify the
importance of groups and clasg@s10. _ We first applied our algorithm to computer generated net-

Here we use such a measure to quantify the Importance Qforks, i.e., random graphs constructed in such a way that
an edge of the grap6. The information centralitC, of the  they have a well defined community structure. All graphs
edgek is defined as the relative drop in the network effi- haye the same number of nodes, 128, and the same number

IV. TESTING THE METHOD ON COMPUTER
GENERATED NETWORKS

ciency caused by the removal of the edge frGm of edges, 1024. The nodes are divided into four classes,
, which are the groups 1-32, 33-64, 65-96 and 97-128. We

Cl= AE = E[G]-E[G,] k=1. K. ) fixed to 16 the average number of edges per node, and we

E E[G] T label the edges according to whether they connect members

of the same group or not. The mixing between the classes is

Here by G we indicate a graph wittN points andK-1  jntroduced by tuning the average number of edges connect-
edges obtained by removing the edgrom G. Notice that  jng nodes belonging to different classes. From a generic ver-
this measure is perfectly defined also Wf@b is a discon- tex of the graph we have on averageedges which join itto
nected graph. other vertices of its group and,, edges connecting it to

The method for finding the hierarchy of cohesive sub-yertices of the other groups. The two numbers are not inde-
groups inG consists in the iterative removal of the edgespendent, as we must of course haye-z,,,=16. We remark
with the highest information centrality, until the system that this is the same set of graphs that Newni28] and
breaks up into components. We expect that the edges that |iﬂeviously Girvan and Newmafil7,18 have used to test
between communities are those with the hlghest informatiorﬂheir a|gorithm5_ In this way we are able to compare direcﬂy
centrality, while those inside communities have a low infor-the role of edge betweenness and edge information centrality
mation centrality. The general form of the algorithm is thejn determining the community structure. As a practical ex-

following. ample we show in Fig. 1 the dendrogram corresponding to
(1) Calculate the information centrality score for each ofthe analysis with our method of a graph of this type, where

the edges. for illustration purposes we take a smaller network with 64
(2) Remove the edge with the highest score. nodes and 8 edges per node. Hejes 6 andzy,=8-z,=2,

(3) Perform an analysis of the network's components. e, the network is strongly clustered. The algorithm produces
(4) Go back to point 1 until all the edges are removed andy hierarchy of subdivisions of the network: from a single
the system breaks up inf® disconnected nodes. component ta\ isolated nodes, going from top to bottom in

As in the Girvan and Newman algorithrfis7,18, the recal- the dendrogranieft to right in the figuré. To know which of

culation of the information centrality scores every time afterth€ divisions is the best one for a given network, i.e., where
an edge has been removed appears to be an important asp&& have to cut the hierarchical tree, we need to use a mea-
of the algorithm. We will discuss this point in Sec. V. The SUre of the cohesiveness of the communities. The first mea-
calculation of all the shortest paths, necessary to compute tr!'€ 0f how cohesive a subgroup is, was proposed in Ref.
efficiency of the network, can be performed with a breadth122l- If there areN nodes in the grapts andNs nodes in the
first search algorithm in im©(KN) [24,25. Then the cal- SubgroupG, the cohesiveness of subgroan be defined
culation of the information centrality for all the edges takes aES the ratio of the number of ties within subgrcBiivided

time O(K2N). This time is comparable to the time it takes to PY the number of ties fron$ to outsiders:

compute the random-walk betweenness for all the edges >SS a
[18], but is longer than the tim®(KN) it takes to calculate icsjcs I
the shortest paths betweenness for all the edges used in the - - 3
method of Ref[17]. The algorithm repeats the calculation of Esgsaij

all the information centralities for each edge removed, Ke.,
times. In conclusion, the entire community structure algo-This measure was recently extended by Girvan and Newman
rithm based on the information centrality can be completedn Ref.[18] into the measure of modularity, that allows us to
in time O(K®N), or time O(N*) for a sparse graph. Although, consider more than a group at the same time and tell us how
as we will show in Sec. IV, the algorithm can be in somegood a subdivision o6 in n subgroups is.
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The modularityQ is defined in the following way. Let us 0.08 ' ' ' ' ' ' ' ! ' !
suppose that we want to test the goodness of a subdivision ¢! 882
the network inn well defined communities. We expect thata 002 , ,
good split is obtained if most of the edges fall inside the os ; | ; , ; , ; ,
communities, with comparatively few edges joining the com- . o

munities to each other. For this purpose one introduces a =92

TTTTTTTT
>
b
-
P |

j=1

whole network as a single community we would get the
maximal value 1 without doing any subdivision at all. There- e —————
fore we further define the rowor column sumsa=2;e;, number of edges removed

which represent the fraction of edges that connect to vertices _ )

in communityi. If the network is such that the probability to ~_F!G- 2. Information centralinC' of the edge removed, global
have an edge between two sites is the same regardless gficiency E, number of components and modularityQ for the
their eventual belonging to the same commuriitgndom resulting graph as a function of the number of edges removed.

network, we would haves; =a;a;. The modularity is defined
as value of Q as a function of the number of removed edges,

i.e., as a function of the iterations of the algorithm. Each time
Q=2 (g-a)=Tre-|ée, (4)  we remove an edge with a high information centrality score,
i i.e. each time there is a sharp drop in the network efficiency,
we also observe a sharp increase in the modularity. The
dieight of the three main peaks @l is roughly proportional
o the corresponding variations @. The correlation be-
V\tlweenC' andQ is nontrivial, but we can give the following
simple argument to explain it. Suppose that after the removal
the whole network as a single community, we @st0 and of an edge we get a split of th_e componénin two classes,
we can easily get higher values by choosing subdivisions it®/ Ay _a'_ﬂ'd_ Ao. We |nd|cate_ WIthIAl'_IAZ’IA the number of
more than just a single class. Values approach@wl, €dges joining pairs of vertices withid;, A, andA, respec-
which is the maximum, indicate strong community structure;tively. Furthermore, let us denote withy ,m,,, M, the sum
on the other hand, for a random netwd@<0. The expres- Of the vertex degrees of all the vertices Af,A, and A.
sion(4) is not normalized, so th& will not reach a value of According to Eq.(4), the modularityQy, before the split is

=]

X 'n symmetric matrixe whose elemeng; is the fraction of 0 ' ' ' ' . ' : '
all edges in the network that link vertices in communiity §§: ' ! ' ' ' ! ' ! ' 3
vertices in communityj [28]. The trace of this matrix Te nd0E 3
=3,e; gives the fraction of edges in the network that connect  f0E — . .3
vertices in the same community. To try just to maximize the 0.2 . | . | . | : , : -
value of the trace does not help because by considering th Q§:§ E
1 3

ST

b
3

wherel|€?|| indicates the sum of the elements of the magfix
This quantity then measures the degree of correlation b
tween the probability of having an edge joining two sites an
the fact that the sites belong to the same community. It no
makes sense to look for high values@f In fact, if we take

1, even on a perfectly mixed network. For networks with an | ma \2
appreciable subdivision in classe®, usually falls in the Qp ~ —A—(—A) , (5)
range from about 0.2 to 0.7. Ko \2K

In Fig. 1 we plot theQ corresponding to the classes we \yhereK is the total number of edges of the network. Notice
determined after each split. Thecoordinate represents the tnat1,/K is exactlyes, of Eq. (4) and ma/2K roughly a,

number of steps of the algorithm which end with a split Of(with i=A). On the other hand, after the split, we get the
the network(or of one of its components, if the network is modularity

not connected We remark that, sinc® is always calculated

by using the full networkQ can only vary if, after the re- la, *la, [Ma 2 My, 2
motion of one edge, the number of components of the net- Qa~ Tk \2k/) T\ /-
work changes, otherwise it keeps the value corresponding to

the last subdivision. To take for thecoordinate the number As just a few edges keefsy; and A, together inA,m, is
of removed edges would result in a plot with many intervalsapproximately given bynAl+ Ma,. So, we come to the fol-
whereQ stays constant and, even if that would not affect oudowing expression for the modularity variatiaxQ after the
description, we do not consider it appropriate for a presentasplit:

(6)

tion.
The plot presents a single peak, which exactly corre- AO=0. -0 ~ |A1+|A2_|A_ Ma, My, .
sponds to the splitting of the network into the four groups. Q=Qa~ Qs K K2 ()

This means that the algorithm succeeds in identifying the . ) ] )
four classes. The height of the peak is 0.499, which indicates The first term on the right-hand sid&HS) of Eq. (7) is
that the network is indeed highly clustered. In Fig. 2 weSmall, becauséy~1x +1a, so the dominant term is the sec-
show the details of the calculation. We plot the informationond one, which is proportional to the produth ma . On
centrality C' of the edge removed, the global efficienBy  sparse graphs like those we are dealing with hegem,, is
the number of components of the resulting graph and the roughly proportional to the number of vertex pairs with a
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£ y also the region of values o, ; which corresponds to net-

£ 1 L works with a clear community structure. In the secf6r

g Ty 7.5], where the communities are very mixed and hardly de-
2 08f LI T tectable, both algorithms start inevitably to fail, but our al-
ﬁ x, gorithm clearly performs better. Ifi7, 7.5 our results are

o 067 _ even better than the ones obtained through the modularity-
8 " a based algorithm recently proposed by Newnja8]. These

§ 0.4 r 1 results may justify the extra price in terms of CPU time that
] we have to pay if we choose to adopt the algorithm based on
§ 021 hi — the information centrality. As far as the modularity is con-
g Newma,f "avp:r: . cerned, we passed from peak values of about 0.65 for the
0S4 45 5 55 o 65 v 75 8 lowest z,,; we have taken(2) to about 0.25 for the most

mixed case$z,,=7.5.
As a further evidence of the similarities and differences
FIG. 3. Average fraction of correctly identified vertices as abetween edge information and betweenness centrality we re-
function of z,,. Each point represents an average over 100 to 50(0rt in Fig 4 a scatter plot of the two measures for each of
graphs. The comparison with the analogous results of Girvan anthe 1024 edges of the initial network, i.e., before we start the
Newman shows that our algorithm performs better when the comfirst iteration of the edge removal process. The figure shows
munities are very mixed and hardly detectable. that, as expected, the two measures are correlated, although
there are some important differences. In particular we notice
vertex inA, and the other ir,. This number of pairs equals that the edges with the higher information are not always
those with the higher betweenness. This is more evident

the number of paths going froma; to A,, which after the ”» .
split are of infinite length and give a vanishing contribution when the communities are mixed and hardly detectable. For

- e instance in the casg,;=7 the edge with the largest informa-
Fofthe gtlpbal effltcuT_r:cy ofﬂ'ghe rlietwotrk.t;]rhe vanﬁon of .tth?tion, i.e., the one that will be removed by our algorithm is
information centrality 1S then due 1o tose paihs, SO 1t 1S4t the one with the largest betweenness.
proportional toAQ, as we find numerically.

Our aim is of course to test how the algorithm works for
many different n_etworks, and th's is accomplished by con- After the first experiments on artificial networks, we can
sidering many different realizations of the same graph and,y yhat the algorithm seems promising. However, if our
checking how many vertices are correctly classified in eachnainod is any good, it must work as well for real networks,

case. We analyzed our artificial networks for various valuegynich actually represent the systems we are mostly inter-
of z,, ranging from 4 to 7.5, with a step of 0.25. We did not gsted in. We present here the analysis of four networks, al-

number of intercommunity edges per vertex z, ,

V. APPLICATIONS TO REAL NETWORKS

do a quantitative analysis of the intervak@, <4 because
there the algorithm always finds the right clasgesre than
99% of successful attemptd-or each value ot we pro-

though we analyzed more. The first three of them, i.e., the
Zachary’s karate club, the network of the American college
football teams and the food web of the Chesapeake Bay,

duced from 100 to 500 samples, and calculated the averageave also been studied by other authors, with other hierar-
fraction of nodes which end up in their natural group. Wechical clustering methods. In this way we can better under-
plot such averages in Fig. 3 as a functiorzgf. In the same  stand what the differences between the various approaches
plot we report the results obtained by using the algorithm ofare. The last network studied represents the interactions
Girvan and Newman on the same network. We see that in themongst a group of 20 monkeys.

sector[4, 6] the two algorithms perform equally well; the
algorithm of Girvan and Newman seems to lead in some
cases to slightly better results but they are compatible with The first example we considered is the famous karate club
ours within errors except eventually fag,=5.75. This is network analyzed by Zachaf®7]. It consists of 34 persons

A. Zachary’s karate club

T T T T T T LI DL EELEN L B B D

b zout-4 i r zont=7 9
= 00005 -
= 1r o eew 7| 00003 FIG. 4. Correlation between edge information
8 00004~ et 9 L - i centrality and betweenness centrality. Each point
g 1 " of the scatter plot refers to an edge of an artifi-
S 00003} =1 Tem— —0.0002 cially generated network with 128 nodes and
E | - 1024 edges. We consider the two valugg=4
Lg 0.0002 407 - T and z,,=7, respectively representing a case in
- 1l L e o.00m which the communities are clearly separated and
8D 00001 | 4 —— a case in which the communities are mixed and
l-.?l 1T 1 hardly detectable.
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FIG. 5. The karate club network of Zachaffjgure taken from 25
Girvan and Newmaii18]). || i‘:

(78 edgeswhose mutual friendship relationships have been
carefully investigated over a period of two years. Due to
contrasts between a teacher and the administrator of the cluk
the club split into two smaller ones. The questions we want
to answer are the following: Is it possible, by studying the =
network community structures before the network splitting,
to predict the behavior of the network and in particular to
identify the two classes? Moreover, according to the network
structure will a possible conflict most likely involve two fac-
tions or multiple groups? The network is presented in Fig. 5,
where the squares and the circles label the members of th r{
two groups. The results of our analysis are illustrated in the 4
dendrogram of Fig. 6. L
The first edge which gets removed is the one linking node
12 to the rest of the network. This edge corresponds to the
edge between node 12 and node 1, an edge having the large
information centrality(0.0249 and a medium value of be-
tweennesg66) as shown in the scatter plot reported in Fig. 7.
Notice also that the edge with the highest betweennes:
(142.79 is the edge connecting node 1 with node 32. The
removal of the first edge then leads to the isolation of node
12. This is a feature that we encountered other times in oul
analyses. The early separation of a single node or of a small
group is due to the fact that a system often looses more FIG. 6. Dendrogram of the communities of the karate club. Ini-
efficiency because of such splits than through the removal dfally one has the split of two loosely bound nodes, 12 and 27, from
intercommunities edges. the rest of the network. After that the two communities, with the
To see why this is so, let us consider the simple exampl&xception of node 10and of the two above-mentioned noylesre
of Fig. 8, describing a networ@ with N nodes composed by correctly |dent|f|ed_. The separatlc_m of the two communities corre-
two cohesive subgroups, nameBy with N, nodes, ands, ~ SPOnds to a peak in the modularity

with N, nodes(N;~N,<1), and by the two nodels, which 5 e removed. But this is not always the case, since a simple
is joined to the network via a single eddike node 12 inthe  modification of the network considered in the figure would
karate club andi, bridging G; to G,. In such a case the |ead to a different result. In fact, if we now suppose that node
separation of the nodk leads to a decrease of efficiency i is connected t6, through two edgegas for the connection
proportional to the number of remaining nodes, i.e.,.between nodé and G,) instead of a single one, then the
AE,spir= O(N). In fact, because of the single edge, the short-algorithm will see the graph composed 6y,G, andi as a

est paths between pairs of nodes different frkmare not  more cohesive structure than before and the first edge to be
affected by the removal of the edge, so the only contributionsemoved will be the one connectirkgto G;.

come from the paths froto the rest of the network, which Going back to the dendrogram of Fig. 6, we see that after
areN-1. On the other hand, the removal of the edge linkingnode 12 is removed from the network of the karate club, also
i to G influences the lengths dfl; X N, shortest paths, so the loosely bound node Ajust two edgepisolates from the
that AEjicomm® O(N?). In such a case, the edge standingrest. The third split finally separates the two big groups. At
between the two communiti€d; andG, will be the first one  this stage we have four components, two isolated nétizs

OOODDOOO0DoO0oDOno0ao . 0000000000000 CO O O

_N W
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Edge betweenness centrality FIG. 9. Information centralityC' of the edge removed, global

efficiency E, number of components and value ofQ for the re-
FIG. 7. Correlation between edge information centrality and be-sulting graph as a function of the number of edges removed for the
tweenness centrality for the karate club network. Each point of th&arate club network.
scatter plot refers to an edge of the network.

and 27 and two larger groups which are homogeneous ex- s
cept node 10 which is misclassifigduriously enough, this
node is also misclassified by the fast algorithm of Newman,
[23]). The separation of the four above mentioned clusters
corresponds to a peak in the plot @f However there is a
second higher peak which is obtained for a split of the net->%
work into seven communities. This double peak structure is
present as well in th®-plot of the Girvan-Newman analysis o
[17,18.

As for the computer generated networks, we report in Fig.
9 the information centralitZ' of the edge removed, the glo-
bal efficiencyE, the number of componenisof the resulting
graph and the value o as a function of the number of
edges removed from the network of the karate club. The
figure is analogous to Fig. 2. We observe again a correlatior
between the peaks @' and the jumps of) (here we have
two). Moreover, like in the previous case, the absolute maxi-
mum of Q corresponds to the lower of the two peaks@f

We remind that the variation of the efficiency correspond-
ing to the remotion of one edge is calculated by taking into
account the structure of the network at the current stage, i.e.
without considering the edges which were eliminated in the
previous steps. For the algorithm of Girvan and Newman this
condition of recalculation turns out to be crucial, because
removing the edges according to ttdecreasingvalues of L

| | H

OOOOooocoooocooooogooooocooocotnnOn

k

s

1

FIG. 10. Dendrogram of the communities of the karate club
obtained by our method if we calculate the information centrality

FIG. 8. A graphG composed by a nodk and two cohesive according to the initial structure of the network. This version of the
subgroupsG; andG,, connected by nodie algorithm fails to detect the communities.
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the betweenness as calculated from the original configuration of the network leads to very poor results. We wanted to check
whether this is also true for our method. Indeed, Fig. 10 clearly shows that this is the case: the dendrogram does not reveal the
real splitting of the network into the two classes, which instead look quite mixed up, and the modularity, whose values are
quite low all over, presents a rather flat profile.
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QO Spot ) FIG. 12. Dendrogram of the communities of
O m‘:;z::mmfeedm the Chesapeake Bay food web. The modularity
Nereis (Rag worm) peaks for the highlighted partitio_n of the network.
Sea catfish The two largest clusters are quite homogeneous,
Other polychaetes reflecting approximately the division between pe-
Macoma lagic and benthic organisms.
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B. Network of the American college football teams the analysis of Girvan and Newman. There is however a
) . ) reason for that, namely the fact that the Sunbelt teams played
The second network we have investigated is the colleggasically the same number of games against Western Athletic
football network, representing the schedule of games begams as they did among themselves. The independent teams
tween American college football teams in a season. Th%labeled as IA Independenshow indeed no relationship to

teams are divided into well known “conferences,” which aregach other nor to a particular conference and they appear as
the communities, with a higher number of games betwee@rmy independent nodes.

members of the same conference than between teams of dif-
ferent conferences. There are altogether eleven conferences
plus few other teams which do not belong to any conference. C. Food webs

Figure 11 shows the dendrogram we have derived with our We have also applied our algorithm to several food webs.
method. The pattern of the modularity looks similar to theHere we mainly discuss the analysis of the food web of ma-
one we have shown for the karate club, and it again presentine organisms living in the Chesapeake Bay, which is situ-
two peaks, the higher of which reaches the vale0.485. ated on the Atlantic coast of the United States. This special
The corresponding subdivision of the network is the one weecosystem was originally studied by Baird and Ulanowicz
highlighted in the figure. We identify ten groups which coin- [29], who carefully investigated the trophic relationships
cide with ten conferencegither exactly or up to a team (i.e., the predatory interactionbetween the 33 most impor-
The teams labeled as Sunbelt are not recognized as belongnt taxa, which are the vertices of the network; a taxon is a
ing to the same group. This group is misclassified as well irspecies or a group of species. Baird and Ulanowicz studied
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the exchanges of carbon among the taxa and in this way the'
compiled the matrix of their thophic relationships, specifying o2
the percentage of carbon assimilated in each interaction. Sc
strictly speaking, the network is directéd feeds onB but

the opposite is not trye and valued(due to the different
percentages of carbon exchanged in the interadtioever- ~ 0.01
theless, we took it nondirected and nonvalued, following Gir-
van and Newmail7]. Figure 12 shows our analysis, which

is quite similar to the analysis of RgfL7]; the optimal split

(peak of the modularityis obtained for a separation in two
large classes and four small ones. One of the big groups 0
with a few exceptions, contains pelagic organistwich

live near the surface or at middle depththe other one
mainly benthic organism@wvhich live near the bottomm Our
classification of the taxa thus favours the habitat versus the
trophic levels, in contrast to other methods used to study
food webs. We must be careful, however. On the one hand
the mixed pattern of Fig. 12 suggests that one should prob
ably take into account other criteria as well. On the other
hand our analysis of a similar food web, relative to the sea-
grass ecosystem of St. Marks National Wildlife Ref(igé],

shows different results. This network is larger than the pre-
vious one(48 vertices versus 33and has several species in
common with the ecosystem of the Chesapeake Bay. The
presence of terrestrial species and birds enlarges the variet

of possible habitats and the spectrum of the trophic levels;

PHYSICAL REVIEW E 70, 056104(2004

() 20(F 1Y)
() 19(F,4Y)
() 18(F1Y)
() 16(F,3Y)
() 6(F4Y)
() 2(m3Y)
L] 9(r2Y)
Ll sm2y
L] 8(r3Y)
L am2y

L] 71y

the latter allowed us to identify if30] five clusters of taxa.
Nevertheless, our study did not reveal any particular subdi-
vision of the species. Repeating the analysis with the algo- » D 11(F,4Y)
rithm of Girvan and Newman led essentially to the same D 17(F.2Y)
results. We had similar problems by analyzing other food ’
webs; the reason may be the fact that these networks ofte E D 15(F,2Y)

L l10(r2Y)

contain many edges, and our algorithm is probably not suit- L | D 14 (F, 1Y)
able for the analysis of dense graphs. D S EAT

Ll 12(r3Y)
L l3msy
L] 1amay

D. Primate network

In this section we consider a data set collected by Linda
Wolfe [9,31]], recording 3 months of interactions amongst a
group of 20 monkeys, where interactions were defined as the
joint presence at the river. The dataset also contains informa- FIG. 13. Dendrogram of the primate network. The circles rep-
tion on the sex and the age of each animal. Monkeys 1-5 argsent the asocial monkeys, the squares the social morikegs
males; monkeys 6—20 are females. In increasing order dext. There is no separation in classes; our procedure leads to a
age: monkeys 7, 14, 18, 20 belong to the first age g(thgy ~ Progressive isolation of the nodes. The modula@tys very low,
youngest, monkeys 4, 5, 9, 10, 15, 17 to the second, mon-_the higher peak is relative tp a partition i_n a [arge group and the
keys 2, 3, 8, 12, 16 to the third and monkeys 1, 6, 11, 13, 1gsolated nodes 5, 8 and(®esides the asocial primajes
to the fourth and oldest group. A detailed analysis of the
@ndividual and group centrality of this_ ”et"_VOfk can be found ot there is no appreciable community structure; neverthe-
in Refs. [9,31]. The total number of links is 31, i.e., of the |o55 two peaks are clearly visible, the higher of which is
order of magnitude of the nodes. Indeed, six out of twentyyptained when the nodes 5, 8 and 9 separate one after the
monkeys did not actively participate in the social life of the pther from the network. One gets then a major community of
group; the resulting nondirected nonvalued graph thus congleven elements and nine isolated monkeys. We do not find
sists of 6 isolated poin{dabeled by the numbers 2, 6, 16, 18, any sensible relationships between our partition and the di-
19, 20 and a connected component of 14 points. The resultgision of the primates in age groups. We analyzed the net-
of our analysis are illustrated in Fig. 13, where we reportedyork as well with the method of Girvan and Newman and
as well for each primate both séki=male F=femalg and  the results are essentially the same: one gets again two peaks
age (in yearg. The modularity of the subsequent subdivi- for the modularity(whose values remain lowand the best
sions of the network in components is very low, which showspartition of the network corresponds to a separation in the
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same large community we found before without node 11ties in most cases. This implies the existence of a correlation
which is now isolated, plus isolated sites except the pair 5-8between the information centralit;l}< of an edgek and the
fact that the edge joins two different communities; the higher
C:‘, the more likelyk is a tie between groups. This is con-
firmed by the correlation we observed between the peaks of
VI. CONCLUSIONS C' and the jumps in the modularitigee Figs. 2 and)9We

. . . .stressed the importance of the recalculation of the informa-
We have presented a new algorithm to identify the SUde'tion centrality step by step; without it the algorithm is not

visions of cp_mplex networl_<s in _cohesive groups of verFicesable to distinguish the communities. Our method was espe-
or communities. The algorithm is based on a recently mtro-Cially devised for sparse grapise., whenK ~N), and it is
duced centrality measure, the so-called information central-robably doomed to fail for dense grapti~ N2),
ity, and consists in classifying all edges a}ccordlng o thep The examples we have taken allowed us as well to see
\églﬁt?aﬁf t;gslaﬂifsgéeé S’Ig :ﬁeieirr;ncl)?/z der:(')Crz ?ﬁgi;wrgrolj%ow efficient our algorithm is compared with others. In par-

: 9 . : : ticular we made extensive comparisons with the algorithm of
One then recalculates the information centrality of the r€Girvan and Newmarf17,18, which also uses a centralit
maining edges and again removes the most central edge; tla;? e y

. . easure, the edge betweenness. It turns out that our algo-
procedurg IS repeatgd until all edges are removed. The ho fthm is generally as good as the one of Girvan and Newman
is that this sequential removal of edges looses the bon '

¥ seems to perform slightly better when there is a high

between tightly connected groups of vertices, so that, a&egree of mixture between the classes; on the other hand
some stage, the_y e_ventually separate from each other. it sometimes has troubles with nodes which are too
For the quantitative evaluation of the goodness of the suq

cessive splits, which is necessary in order to identity the bes?OSEIy bound to the rest of the netwaflike nodes with a
subdivision of the network, we adopted the modulay single edgg which may separate too early and be misclas-

introduced in[18]. Our algorithm runs to completion in time sified, although they often happen to be truly independent

O(K®N) (K andN are the number of edges and vertices of thecommunmes.

graph, respectivelyand therefore is not so fast as other

methods; because of that, networks with thousands of verti-

ces are unreachable. The aim of the paper, however, was to ACKNOWLEDGMENTS
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