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We show here the existence of acoustic metamaterial, in which both the effective density and bulk modulus
are simultaneously negative, in the true and strict sense of an effective medium. Our double-negative acoustic
system is an acoustic analogue of Veselago’s medium in electromagnetism, and shares many unique conse-
quences, such as negative refractive index. The double negativity in acoustics is derived from low-frequency
resonances, as in the case of electromagnetism, but the negative density and modulus are derived from a single
resonance structure as distinct from electromagnetism in which the negative permeability and negative permit-
tivity originates from different resonance mechanisms.
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The idea of negative refraction in an electromagnetic
wave was proposed by Veselago[1] and the concept was
recently demonstrated through the notion of metamaterial
[2]. Veselago’s medium is an isotropic homogeneous me-
dium having a negative refractive index. The electromagnetic
(EM) metamaterials that are realized in practice are compos-
ites with built-in resonance structures that exhibit effective
negative permittivity and negative permeability for some fre-
quency ranges. These “double negative” media have gener-
ated tremendous interest due to unique phenomena, such as
negative refraction and subwavelength imaging[3]. We note
that the phenomena of negative refraction is closely related
but not identical to “double negativity.” Negative refraction
can be achieved through a band-folding effect due to Bragg
scattering[4]. In an acoustic wave, we can also engineer the
dispersion surface of solids to achieve the same effect as in
Notomi’s medium, and it is traditionally called phonon fo-
cusing [5,6]. With this comparison, it becomes natural and
interesting to ask whether we can have an analog of Vesela-
go’s medium in an acoustic wave, namely a composite with
built-in resonances such that the effective response functions
are “double negative” in the effective medium limit.

In EM metamaterials, a negative refractive index in Vese-
lago’s medium is derived from the double negativity of per-
mittivity and permeability. In an acoustic wave, the continu-
ity and Newton’s second law(with harmonic field
dependencee−ivt) can be expressed, respectively, as

¹ ·vW −
iv

k
p = 0,

¹p − ivrvW = 0, s1d

wherep svWd is the pressure(velocity) field. The densityr and
bulk modulusk are position dependent in general. By con-

sidering a plane-wave solution with wave vectorkW inside a
homogeneous medium of constant density and bulk modulus,
the refractive indexn should be defined by

k = unuv/c with n2 = r/k. s2d

Therefore, in order to have a propagating plane wave in-
side the medium, we should have either both positiver andk

or both negativer andk. Moreover, the Poynting vector for
a propagating plane wave should be defined by

SW =
i

2vr
p ¹ p* =

upu2kW

2vr
. s3d

Now, if we can have Veselago’s medium in an acoustic

wave,SW and kW should point in the opposite directions. This
requires negativity in bulk modulus and density. Physically,
it means that the medium displays an anomalous response at
some frequencies such that it expands upon compression
(negative bulk modulus) and moves to the left when being
pushed to the right(negative density) at the same time.

This sounds impossible, but the point of this paper is to
show that it is mathematically possible and can be realized
by dispersing soft rubber in water. Unlike the case in EM
metamaterials, that permittivity and permeability can be
negative intrinsically, natural materials neither have a nega-
tive density nor a negative bulk modulus. Even for compos-
ite materials, the effective bulk modulus and density should
be normally bounded by the values of the constituents or by
the more sophisticated Hashin and Shtrikman bounds[7].
Therefore, we still expect positive bulk modulus and positive
density. For instance, for spherical solid particles dispersed
in a fluid, the effective bulk moduluskef f and effective den-
sity ref f in the long wavelength and in the limit of small
volume filling ratio f [8] are governed by

1

kef f
=

f

ks
+

1 − f

k0
,

ref f − r0

2ref f + r0
= f

rs − r0

2rs + r0
, s4d

where the subscripts “s” and “0” denote, respectively, the
properties for the sphere and the background fluid. Then, it
can be easily proven from the formulas thatkef f andref f are
positive definite for natural materials. However, the above
effective medium formulas and the traditional bounds on the
effective parameters do not apply if there are low-frequency
resonances. Standard homogenizations assume that the
wavelengths in each local region(sphere and background)
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are all much larger than the average distance between par-
ticles. At resonance, the wavelength within the sphere is now
comparable to the size of it although the wavelength in the
background still remains much larger than the average dis-
tance between particles in order to have a valid effective
medium description. Under such a condition, Eq.(4) can be
generalized to be

− 1 +
k0

kef f
=

3f

isk0Rd3D0,

ref f − r0

2ref f + r0
=

3f

isk0Rd3D1, s5d

whereDl is the scattering coefficient of angular momentuml
of a single particle with radiusR andk0 is the wave number
in the background fluid. These new formulas are derived
using the coherent potential approximation method[9,10] by
seeking the self-consistent solution to ensure that the inho-
mogeneous system embedded within an effective medium
generates no scattering in the lowest order of frequency. The
new formulas reduce to the original effective medium formu-
las if we substitute the scattering coefficients for a spherical
particle in its long wavelength(within sphere) limit. We will
see that it becomes possible to achieve negative effective
bulk modulus and negative effective density through reso-
nance behavior inD0 and D1, which are functions in fre-
quency.

From now on, we will establish the existence of acoustic
double negativity using a composite of soft rubber spheres
suspended in water as an example. We choose to use soft
rubber such that sound travels much slower in it than in
water. Then, the Mie resonances(monopolar and dipolar) can
be brought to very low frequency due to the high contrast of
sound speed between rubber and water. Let us start with a
system of rubber spherical particles suspended in water of a
low volume filling ratio 0.1, where Eq.(5) is reasonably
accurate. We have ignored, for simplicity, the shear wave
within the rubber spheres due to the high velocity contrast
[11] between the rubber and water, and we emphasize that
the main features stay the same if we also include the shear
wave within the particles[12]. The spheres are assumed to
be made of a kind of silicone rubber[13]. The effective
medium result using the generalized effective medium for-
mulas is shown in Fig. 1.

From Fig. 1, the effective bulk modulus and density near
the static limit are positive as predicted by Eq.(4). The mo-
nopolar resonance creates a negative bulk modulus above the
normalized frequency at about 0.035 while the dipolar reso-
nance creates a negative density above the normalized fre-
quency at about 0.04. Here,a is the lattice constant if the
spheres are arranged in a fcc lattice. Hence, there is a narrow
frequency range where we have both negative bulk modulus
and negative density. The imaginary part of the effective pa-
rameters is due to the diffusive scattering loss.

The Mie resonances at low frequency in acoustics are the
analog of the resonances created by split rings and wires in
electromagnetic left-handed medium. In EM left-handed me-
dium, the wires and split rings create a negative electric di-

polar and magnetic dipolar response by two different mecha-
nisms, while in our case a single structure gives rise to two
kinds of resonances to achieve double negativity. The mo-
nopolar resonance creates a negative response such that the
volume dilation of a single particle is out of phase with a
hydrostatic pressure field. The dipolar resonance creates a
negative response such that the motion of the center of mass
of the particle is out of phase with an incident directional
pressure field. If these negative responses are large enough to
compensate the background fluid, we can have both negative
effective bulk modulus and negative effective density.

We note from Fig. 1 that in the regime of double negativ-
ity, both the density and the reciprocal of the bulk modulus
are decreasing in magnitude fast enough so that the group
velocity becomes negative according to Eq.(2). It gives rise
to negative refraction.

Under the condition that the background wavelength is
much larger than the average interparticle distance and for
slow spatially varying volume averaged wave field, homog-
enization of the composite to give effective bulk modulus
and density is meaningful and it is valid to replace the whole
composite by an effective medium in considering its acoustic
properties. However, the CPA formulas[Eq. (4)] are quanti-
tatively accurate only at a low filling ratio although it gives
the physical origin of the double negativity. We need other
procedures to extract the effective parameters. In the follow-
ing, we demonstrate the extraction and the usefulness of as-
signing negative bulk modulus and density in considering
acoustic properties of composites of a higher filling ratio. For
this purpose, we consider the transmittance at different inci-
dence angles through eight layers of a fcc colloidal crystal of
silicone rubber spheres within water. For simplicity, we take
the density of the rubber spheress1000 kg m−3d to match
with that of water and the sound speed within the rubber to
be 46.4 ms−1. The radius of the rubber spheres is fixed at
1 cm. We look at two different filling ratios of 40% and 74%,
respectively. We first calculate the dispersion at zero trans-

verse wave vectorKzsv ;kWt=0Wd using the layer-multiple-
scattering formalism[14], where the fcc(111) planes of the
crystal are aligned perpendicular to thez axis. The square of
the effective refractive indexnef f

2 svd is then extracted from it
by Kz

2=sv /cd2nef f
2 , wherec is the speed of sound in the back-

ground medium. Note that the eigenstate can be spanned by
plane-wave components consisting of both normal and dif-

FIG. 1. Effective density and bulk modulus[using Eq.(5)] for
rubber (r=1300 kg m−3, k=6.273105 Pa) spheres of filling ratio
0.1 within water(r=1000 kg m−3, k=2.153109 Pa).
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fracted plane waves. Conventionally, we can only extract the
refractive index from the dispersion curve. In fact, by recog-
nizing that the information of half-space reflection amplitude
is already embedded in the details of the eigenmode, we can
get an additional parameter. In an effective medium, it can be
proved that the half-space reflection amplitudesrh.s.d is the
ratio between the amplitudes of the backward and forward
propagating normal plane-wave components at the middle
between two(111) planes of spheres. Therefore, we can ex-
tract the effective surface impedanceZef fsvd from it using
rh.s.=sZef f−cr0d / sZef f+cr0d. Since we have assumed that the
crystal can be effectively replaced by a homogeneous me-
dium, the effective density and effective bulk modulus can
be found from

Zef f =
vref f

Kz
,

nef f
2 =

ref f

r0

k0

kef f
. s6d

Figure 2(a) shows the dispersion of the rubber/water com-
posite calculated using the layer-multiple-scattering formal-
ism for a filling ratio of 0.4, and the extracted effective bulk
modulus and effective density are shown in Fig. 2(d). Below
2.65 kHz, both the effective bulk modulus and density are
negative. In the double-negative regime, there exists a singly
degenerate band of effective medium with negative group
velocity in the dispersion. It is called the double negative
(DNG) band. Above 2.65 kHz, the effective density becomes
positive and the negative modulus give rise to a gap at the
dispersion.

In Figs. 2(b) and 2(c), the transmittance at normal inci-
dence and 60° off normal incidence through the eight layers

of particles calculated by layer-multiple-scattering formal-
ism, is shown as open circles, compared with the transmit-
tance calculated by assuming the same thickness of the ef-
fective medium using parameters just extracted, in solid
lines. The excellent agreement reaffirms that it is both quali-
tatively meaningful and quantitatively accurate to use nega-
tive effective bulk modulus and density extracted to describe
the medium, and that we have a double-negative medium in
exactly the same spirit as Veselago’s EM medium. We em-
phasize here that the result of the double-negative band origi-
nates from resonances, and is not a band-folding effect from
Bragg scattering. The composite system can be treated as a
homogeneous medium in the same spirit as the Veselago’s
medium in the EM wave.

In Fig. 2(a), there is an extra deaf band of double degen-
eracy just above the double-negative band and they meet at
the zone center. The physical origin of this band can be un-
derstood also from the effective medium. When we put a
plane-wave solution into Eq.(1), in addition to the expected

longitudinal mode(vW / /kW, with dispersionk2=v2r /k), we get

two extra transverse modesskW ·vW =0d when the effective den-
sity is zero. It is equivalent to the longitudinal plasmon mode
in EM at a frequency of zero permittivity. The deaf band has
a L3 symmetry and cannot be excited by a normal-incidence
wave[14], which has aL1 symmetry, and it couples weakly
even to the incident wave of an oblique incidence angle.
Since this deaf band does not couple with the incident wave
and it is not the expected longitudinal mode, we do not use
the deaf band in calculating the effective parameters.

When the filling ratio is further increased with the particle
fixed in size, Fig. 3 shows the dispersion, effective density/
bulk modulus, and the transmittance through 0° or 60° across
eight layers of the composite. As the concentration of par-
ticles becomes higher, the resonance becomes stronger. It

FIG. 2. Double acoustic negativity and negative refractive index
of rubber spheres in water, fcc arrangement with a filling ratio of
40%. (a) Dispersion;(b) and (c) The transmittance through eight
layers of the(111) planes at normal and 60° incidence. The open
circles are calculated by the multiple-scattering method and the
solid line is the approximation using homogeneous media with ef-
fective bulk modulus and density[as shown in panel(d)] extracted
from the dispersion.

FIG. 3. Double acoustic negativity and negative refractive index
of rubber spheres in water, fcc arrangement with filling ratio of
74%. (a) Dispersion;(b) and (c) The transmittance through eight
layers of the(111) planes at normal and 60° incidence. The open
circles are calculated by the multiple-scattering method and the
solid line is the approximation using homogeneous media with ef-
fective bulk modulus and density[as shown in panel(d)] extracted
from the dispersion.
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results in an even larger frequency width of the double-
negative band of negative density and negative bulk modu-
lus. We see that the effective medium also represents the
composite very well in calculating the transmittance of vari-
ous incidence angles. Again, this is the evidence that the
composite can be really treated as an effective medium.

The high contrast between the sound speed in rubber and
water makes the double-negative band stay at a very low
frequency so that we can use negative density and negative
bulk modulus to represent the band. If the contrast in sound
speed becomes smaller, we expect the effective medium de-
scription degrades in the intermediate frequency regime. For
example, the sound speed in the rubber is now set to a higher
value of 150 ms−1. Figure 4 shows the corresponding disper-
sion and transmittance at both normal and 60° off normal
incidence. At this case, the double-negative band is shifted to
higher frequencies. If we insist on extracting effective bulk
modulus and density, we find that they still provide a quan-
titative description for normal incidence but the agreement
between effective medium and exact multiple-scattering re-
sults is not good at oblique incidence. In this case, the effec-
tive medium description is qualitatively meaningful but not
quantitatively correct.

In short, we have demonstrated theoretically the concept
of a double-negative acoustic medium(Poynting vector in
opposite direction with wave vector) which has a simulta-
neously negative effective bulk modulus and density. It is the
acoustic analog of Veselago’s medium having simultaneously
negative values of« andm. While the negative« and nega-
tive m in EM metamaterials are typically derived from two
types of resonances, the negative modulus and density origi-
nate from the monopolar and dipolar resonances of the same
structure, one example being soft rubber in water. We em-
phasize that the double negativity is a consequence of reso-
nance and the resulting negative refraction properties are not

a consequence of a band-folding effect due to Bragg scatter-
ing. We note in passing that our results remain true even if
we include shear wave components within the particles. We
also note that some unique properties of a double-negative
medium, such as negative refractive index and subwave-
length focusing, are natural consequences.
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FIG. 4. Double acoustic negativity and negative refractive index
of rubber spheres in water, fcc arrangement with filling ratio of 40%
and sound speed in rubber being 150 ms−1. (a) Dispersion;(b) and
(c) The transmittance through eight layers of the(111) planes at
normal and 60° incidence. The open circles are calculated by the
multiple-scattering method and the solid line is the approximation
using homogeneous media with effective bulk modulus and density
[as shown in panel(d)] extracted from the dispersion.
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