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Drag reduction by polymers in turbulent flows raises an apparent contradiction: the stretching of the poly-
mers must increase the viscosity, so why is the drag reduced? A recent theory proposed that drag reduction, in
agreement with experiments, is consistent with the effective viscosity growing linearly with the distance from
the wall. With this self-consistent solution the reduction in the Reynolds stress overwhelms the increase in
viscous drag. In this Rapid Communication we show, using direct numerical simulations, that a linear viscosity
profile indeed reduces the drag in agreement with the theory and in close correspondence with direct simula-
tions of the FENE-P model at the same flow conditions.
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The addition of few tens of parts per million(by weight)
of long-chain polymers to turbulent fluid flows in channels or
pipes can bring about a reduction of the friction drag by up
to 80%[1–4]. In spite of a large amount of experimental and
simulational data, the fundamental mechanism has remained
under debate for a long time[4–6]. Since polymers tend to
stretch in a turbulent flow, thus increasing the bulk viscosity,
it appears contradictory that they should reduce the drag.
There must exist a mechanism that compensates for the in-
creased viscosity. Indeed, drag is caused by two reasons, one
viscous, and the other inertial, related to the momentum flux
from the bulk to the wall. For a fixed rate(per unit mass) of
momentum generated by the pressure gradient, reducing the
momentum flux can reduce the drag. In a recent theory of
drag reduction in wall turbulence[7] it was proposed that the
polymer stretching gives rise to a self-consistent effective
viscosity that increases with the distance from the wall. Such
a profile reduces the Reynolds stress(i.e., the momentum
flux to the wall) more than it increases the viscous drag; the
result is drag reduction. The aim of this Rapid Communica-
tion is to substantiate this mechanism for drag reduction on
the basis of direct numerical simulations.

The onset of turbulence in channel or pipe flows increases
the drag dramatically. For Newtonian flows(in which the
kinematic viscosity is constant) the momentum flux is domi-
nated by the so-called Reynolds stress, leading to a logarith-
mic (von Kármán) dependence of the mean velocity on the
distance from the wall[8]. However, with polymers, the drag
reduction entails a change in the von Kármán log law such
that a much higher mean velocity is achieved. In particular,
for high concentrations of polymers, a regime of maximum
drag reduction is attained(the “MDR asymptote”), indepen-
dent of the chemical identity of the polymer[2] (see Fig. 1).
In a recent theoretical paper[7] the fundamental mechanism
for this phenomenon was elucidated: while momentum is
produced at a fixed rate by the forcing, polymer stretching
results in a suppression of the momentum flux from the bulk
to the wall, while the viscous dissipation is affected less.
Accordingly, the mean velocity in the channel must increase.
It was shown that when the concentration of the polymers is
large enough there exists a new logarithmic law for the mean
velocity with a slope that fits existing numerical and experi-

mental data. The law is universal, thus explaining the MDR
asymptote.

To see how this mechanism works, consider the modified
Navier-Stokes (NS) equation for the polymer solutions
[9,10],

]U/]t + U · =U = − =p + = ·T + n0¹
2U, s1d

wheren0 is the kinematic viscosity of the carrier fluid andT
is the extra stress tensor that is due to the polymer. Denoting
the polymer end-to-end vector distance(normalized by its
equilibrium value) asr, the average dimensionless extension
tensorR is Ri j ;kr ir jl, and the extra stress tensor is(with
vi j ;]Ui /]xj),

T = npsv ·R +R · vT − ]R/]t − U · =Rd. s2d

Here np (proportional to the polymer concentration) is the
polymeric contribution to the viscosity in the limit of zero

FIG. 1. Mean velocity profiles as a function of the distance from
the wall [in “wall” units, cf. Eq. (5)]. The solid line(numerical
simulations[13]) and the experimental points(open circles) [14]
represent the Newtonian results with von Kármán’s log law of the
wall observed fory+.20. The red data points(squares) [2] repre-
sent the MDR asymptote. The dashed red curve represents the the-
oretical universal MDR asymptote, Eq.(4) [7].
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shear. Note that expression(2) for the extra stress tensor is
valid for any dumbbell model of the polymeric molecule
(i.e., Peterlin’s version of finitely extensible nonlinear elastic
(FENE-P), Hookean, etc.).

In [7], two approximations led to a transparent semiquan-
titative theory of drag reduction. The first approximation is
important, ignoring the fluctuations ofR as compared to its
mean and to takeR<kRl in Eq. (2). In this approximation
the stress tensorT in the modified NS equation(1) can be
written in the form of some effective,R-dependent tensorial
viscosity. A second unessential approximation in[7] (made
for simplicity) was to ignore the tensorial structure of the
conformation tensor. This has led to an effective viscosity
proportional to the trace ofR. In fact, later analysis[11,12]
of the role of the various tensorial components shows that
the effective viscosity is proportional toRyy, even though
Rxx is considerably larger. These considerations allow one to
simplify the dumbbell model(1) to a modified NS equation
with an effective viscosity,n0⇒n, and pressure,p⇒ P,

]Ui/]t + Uj¹ jUi = − ¹iP + ¹ jfnsvi j + v jidg,

n = n0 + npRyy, P = p + ]n/]t + U · =n. s3d

Obviously, the polymer elongation,Ryy, depends on the dis-
tance from the wall, leading to the corresponding depen-
dence of the effective viscosity. Notice that the above ap-
proximations are uncontrolled. Their verification is one of
the main goals of this Rapid Communication. We demon-
strate that the dynamical model Eq.(3) contains the essential
properties of the full FENE-P model Eqs.(1) and (2).

In Ref. [7] we modified the Reynolds closure approach to
the situation in which the scalar viscosity cannot be ne-
glected. This approach, that was justified by considering a
reasonable model of the coil-stretch transition of the poly-
mers, resulted in the analytical form of the universal MDR
logarithmic profile

V+sy+d =
1

kv
lnsekvy

+d, kv < 0.09, s4d

presented in the wall units

Ret ; LÎp8L/n0, y+ ; yRet /L, V+ ; V/Îp8L. s5d

Herep8;−]p/]x is a fixed pressure gradient in the stream-
wise directionx, L is the half-width of the channel(in the
wall-normal directiony), and Ret is the friction Reynolds
number. Equation(4) is in excellent agreement with the
MDR asymptote,(see Fig. 1). Another conclusion of[7] is
that in the MDR regime the polymer extensionRsyd is self-
adjusted in order to provide a universal linear profile of the
effective viscosity

nMDRsyd = kv
Îp8Ly. s6d

Needless to say, in the viscous sublayer the viscosity is New-
tonian:n=n0. It should be noted that the possibility of drag
reduction by increasing of the viscosity looks somewhat
paradoxical: in the usual Newtonian case with constant vis-
cosity, the drag is monotonically increasing with the viscos-
ity. The point is that for the polymer solutions the effective

viscosity is not constant anymore; it increases linearly with
the distance from the wall according to Eq.(6). This point is
the essential difference of the theory[7] from all previous
“viscous” theories of drag reduction(see, e.g.,[5]). There-
fore, a crucial test of the theory[7] is to introduce such a
linear viscosity profile to the NS Eq.(3) by hand, and see
whether we observe drag reduction together with its various
statistical aspects. Clearly, due to limitations on the Reynolds
number in direct numerical simulations(DNS) we will not be
able to test the MDR Eq.(4) per se; however, we will be able
to justify using an effective viscosity model instead of the
full FENE-P.

To this aim we simulate the effective NS Eq.(3) with
proper viscosity profiles(discussed below) and show that the
results are in semiquantitative agreement with the corre-
sponding full FENE-P DNS. All simulations were done in a
domain 2pL32L31.2pL, with periodic boundary condi-
tions in the streamwise and spanwise directions, and with no
slip conditions on the walls that were separated by 2L in the
wall-normal direction. An imposed mass flux and the same
Newtonian initial conditions were used. The Reynolds num-
ber Re(computed with the centerline velocity) was 6000 in
all the runs. The grid resolution is 963129396 for the lin-
ear viscosity profile runs and 963193396 for the FENE-P
run. The latter was done withDet=52.7, hp=0.1, Rmax

2

=1000, whereDet is the Deborah number, defined with the
friction velocity andhp is the polymeric contribution to the
dynamic velocity. For a definition of these parameters and
details of the numerical procedure see Refs.[15].

The y dependence of the scalar effective viscosity was
close to being piecewise linear along the channel height,
namelyn=n0 for yøy1, a linear portion with a prescribed
slope for y1,yøy2, and again a constant value for
y2,y,L. For numerical stability this profile was smoothed
out according to the differential equation

d2n

dy2 =
Cn0

Î2psL
HexpF−

sy − y1d2

2s2 G − expF−
sy − y2d2

2s2 GJ ,

integrated with initial conditionsns0d=n0, andn8sLd=0. We
choses=0.04L, y1=L /C, y2=3L /4, while C is the dimen-
sionless value of the slope. Examples of four such profiles

FIG. 2. The Newtonian viscosity profile and four examples of
close to linear viscosity profiles employed in the numerical simula-
tions. Solid line: runN, --: run R, ¯: run S, -·-: T, -··-: runU.
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are shown in Fig. 2. The slope of the linear part of the vis-
cosity profile[i.e., parameterkv in (6)] was varied for differ-
ent runs and was smaller than the theoretically predicted
value for the MDR regime. The simulations withnMDRsyd
require larger Re numbers to sustain the turbulence. Included
in the figure is the flat viscosity profile of the standard New-
tonian flow. Since we keep the throughput constant, the runs
differ in the values of friction Reynolds numbers Ret

;ÎtwL /n0, wheretw is the average friction at the walltw
;n0dU/dy. The decreased value of Ret is a manifestation of
the drag reduction(DR) measured in percentage asst w

N

−t w
Ed /t w

N. The normalized slopes, the value of Ret and the
percentage of drag reduction for these runs are summarized
in Table I.

In Fig. 3 we show the resulting profiles ofV 0
+syd vs y+.

The line types are chosen to correspond to those used in Fig.
2. Thedecreaseof the drag with theincreaseof the slope of
the viscosity profiles is obvious. Since the slopes of the vis-
cosity profiles are smaller than needed to achieve the MDR
asymptote for the corresponding Ret , the drag reduction oc-
curs only in the near-wall region and the Newtonian plugs
are clearly visible.

It is most interesting to compare the effect of the linear
viscosity profile to the simulation of the FENE-P model in
which both the throughputand Ret are the same. Such a
comparison was performed for the “S” viscous run, for
which Ret=214 and the FENE-P run with Ret=212.5. The
results are presented in the two panels of Fig. 4. In the upper
panel the mean velocity profiles(symbols for FENE-P and
dashed line for the linear viscosity profile) are seen to corre-
spond very closely. The region with increased slope of the
mean velocity(e.g., the region where the drag reduction oc-

TABLE I. DNS parameters for effective viscosity runs.

Case C Ret DR (%) kV

N 0 245

R 8 227 13.8 0.035

S 9 214 21.6 0.042

T 10 197 36.9 0.051

U 12 185 42.0 0.065

FIG. 3. The reduced mean velocity as a function of the reduced
distance from the wall. The line types correspond to those used in
Fig. 2.

FIG. 4. Upper panel: the reduced mean velocity as a function of
the reduced distance from the wall. Lower panel: Reynolds stresses
across the channel. Continuous line: Newtonian. Dashed line: linear
viscosity profile. Symbols: FENE-P.

FIG. 5. The rms streamwise(upper panel) and wall-normal
(lower panel) velocity fluctuations across the channel. The line
types correspond to those used in Fig. 4.
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curs) is limited to approximatelyy+ø50, or, in natural units,
to y/Lø0.25. In the outer region(Newtonian plugs,y+

ù50 or y/Lù0.25) the polymer molecules in the FENE-P
model are supposedly unstretched and the polymeric contri-
bution to the effective viscosity is small. In contrast, in the
viscous model the effective viscosity is maximum in this
region and may be much larger thann0. Therefore, if the
mechanism of the drag reduction in the viscous model is the
same as in the full FENE-P model, we expect that all statis-
tical quantities qualitatively coincide for both models in the
elastic regiony/Lø0.25, but may differ in the Newtonian
plugsy/Lù0.25.

In Fig. 4, lower panel, we show the normalized Reynolds
stresses. Clearly, in the elastic regiony/L,0.25 both drag-
reducing models coincide; this is strong evidence that the
reduced model(3) captures all essential properties of the full
model (1) and the mechanisms of drag reduction are the
same in both cases.

Another important characteristic of drag-reducing flows is
behavior of the root-mean-square(rms) velocity fluctuations.
The increase in rms streamwisesV x

+d and decrease in rms
wall-normal sV y

+d velocity fluctuations were observed in

many experiments and numerical simulations of drag-
reducing flows. In Fig. 5 we compare these quantities for
FENE-P and “S” runs. Clearly, the correct trend of the rms
velocity fluctuations is observed, indicating that the impor-
tant features of the mechanism of drag reduction are cor-
rectly captured by the model. An almost quantitative agree-
ment is reached in the region where drag reduction actually
occurssy/L<0.1–0.3d.

In conclusion, we showed that the simple linear viscosity
model (3) and (6) faithfully demonstrates drag-reducing
properties and, surprisingly enough, the amount of drag re-
duction increases with the increase of the slope of the vis-
cosity profile. Even more interestingly, the behavior of ob-
jects like the Reynolds stress or the velocity fluctuations in
the elastic sublayer are in close correspondence with the full
FENE-P model, indicating that the mechanisms of drag re-
duction proposed in[7] operates similarly in both cases.
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