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We propose an experimental method for estimating the general time-dependent elastic moduli of ionic
polymer-metal composites(IPMCs). The materials exhibit fast and large bending motion even when a small
voltage about 1 V is applied, and are expected to be used for polymer actuators. Experimental measurements
for an IPMC beam of silver plated Nafion are given to demonstrate the usefulness of the proposed method. For
the IPMC beam we also present a viscoelastic model, which describes the experimental results successfully.
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I. INTRODUCTION

Hydrated electrolytic polymer membranes sandwiched
between thin metal layers, which are often called ionic
polymer-metal composites(IPMCs), exhibit fast and large
bending motion even when a small voltage about 1 V is
applied[1–4]. Nafion, which consists of fluorocarbon chains
and sulfonic acid groups, is the best known as such an elec-
trolytic polymer [1,4]. Owing to their high compliance and
low density as well as large bending motion and low energy
consumption, IPMCs are expected to be used as new actuator
materials. However, in spite of intensive investigations, their
mechanical properties such as elastic moduli and generated
force, which are essential for such applications, are not well
understood at present, especially because they are time de-
pendent and difficult to measure by standard methods.

In most cases IPMCs are modeled as linear elastic mate-
rials [2,3,5,6] and their static elastic moduli obtained experi-
mentally [2,6]. In [7,8] a viscoelastic model was given for
IPMCs and the model parameters, equivalently a dynamic
elastic modulus, were experimentally estimated for a poly-
mer transducer. However, the static or dynamic elastic
moduli and the time-dependent generated force of IPMCs
when some voltage is applied are not well understood.

In our previous study[9], we proposed a simple method
to experimentally evaluate the nominal elastic moduli and
generated force of IPMC beams in their process of self-
bending. In the proposed method, the shapes of the beams
and vertical force at their(hinged) ends are measured and
used to calculate the nominal elastic moduli and generated
force although their viscoelastic properties are neglected. Ex-
perimental results for an IPMC consisting of a Nafion sheet
and two thin silver plates were also given to demonstrate the
method. In particular, the nominal elastic modulus and gen-
erated force had large variations in the process of self-
bending.

In this Brief Report, taking account of their viscoelasticity
and extending the approach of[9], we propose an experi-
mental method for estimating the general time-dependent
elastic moduli of IPMC beams. Experimental measurements
for an IPMC beam of silver plated Nafion are given to dem-
onstrate the usefulness of the proposed method. For the

IPMC beam we also present a viscoelastic model, which de-
scribes the experimental results successfully.

II. THEORY

The theoretical model is shown in Fig. 1. A beam with
length , is clamped at the left end, and it is hinged and
subjected to the vertical forcefstd at the right end. The right
end is at the same level as the left one but free to move in the
horizontal direction. It is also assumed to be inextensible and
to deform according to the general law of viscoelastic mate-
rials (e.g.,[10])

sstd =E
0

t

Est − tdėstddt, s1d

where the overdot represents differentiation with respect to
time t; Estd is the general time-dependent elastic modulus;
and sstd and estd are the stress and strain at timet, respec-
tively. The distance from the left end along the beam is de-
note bys. For simplicity we ignore the influence of the gravi-
tational force and variation of the distance between both ends
of the beam.

When its right end is free and a constant voltageV0 is
applied, the beam bends with some curvature in the negative
direction due to the electric field across it thickness. The
curvature, which we denote byastd, depends on the value of
V0. So the bending moment generated in the electric field is
given by

FIG. 1. Theoretical model.
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M0std =E
0

t

Est − tdIȧstddt, s2d

whereI is the moment of inertia cross section of the beam.
We also assume that the beam motion is so slow that we can
neglect its inertial term.

Let M andu be the bending moment and deflection angle
of the beam, respectively. The equilibrium equation for the
beam becomes

M8st,sd + fstdcosu = 0, s3d

where the prime represents differentiation with respect tos.
See, e.g.,[11] for the derivation of Eq.(3). Here we ignored
the influence of the gravitational force. The bending moment
is given by

Mstd =E
0

t

Est − tdI„u̇8st,sd + ȧstd…dt. s4d

Substituting Eq.(4) into Eq. (3), we obtain an integro–
partial-differential equation

E
0

t

Est − tdI u̇9st,sddt + fstdcosu = 0. s5d

The boundary condition is also given by

ust,0d = 0, u8st,,d = − astd. s6d

Let (xst ,sd ,yst ,sd) be the position of the beam at timet
and positions. Suppose thatu<0. Then u<dy/dx, s<x,
and cosu<1, so that Eqs.(5) and (6) are, respectively, ap-
proximated by

E
0

t

Est − tdIẏ-st,xddt + fstd = 0 s7d

and

yst,0d = yst,,d = y8st,0d = 0, y9st,,d = − astd, s8d

where the prime represents differentiation with respect tox.
Performing the Laplace transformation in Eqs.(7) and (8),
we obtain

pÊspdIŷ-sp,xd + f̂spd = 0 s9d

and

ŷsp,0d = ŷsp,,d = ŷ8sp,0d = 0,ŷ9sp,,d = − âspd, s10d

where Êspd, ŷsp,xd, f̂spd, and âspd are the Laplace trans-
forms of Estd, yst ,sd, fstd, and astd, respectively, and are
given by

Êspd =E
0

`

Estde−ptdt,

ŷsp,xd =E
0

`

yst,xde−ptdt,

f̂spd =E
0

`

fstde−ptdt. s11d

Here we assumed that the beam is not initially deflected, i.e.,
ys0,xd=0. The solution of Eq.(9) with ŷsp,0d= ŷsp,,d
= ŷ8sp,0d=0 is given by

ŷsp,xd =
f̂spdx2s, − xd

6pÊspdI
. s12d

By Eqs. (2) and (12) the Laplace transforms ofastd and
M0std become

âspd = − ŷ9sp,,d =
2f̂spd,

3pÊspdI
s13d

and

M̂0spd = pÊspdIâspd =
2

3
f̂spd,, s14d

respectively. Here we assumed thatas0d=0 andM0s0d=0.
From Eqs.(12)–(14) we obtain

yst,xd =
astd
4,

x2s, − xd s15d

and

M0std =
2

3
fstd,. s16d

Our approach to estimate the generated bending moment
M0std, curvatureastd, and time-dependent elastic modulus
Estd in experiments is as follows. Letti, i =1,2, . . ., be a
sequence of times at the same interval such thatti+1− ti =Dt.
We measure the loadfstid and deflections of the beamyjstid
at some, sayNs.1d, points x=xj, j =1,2, . . . ,N, at t= ti, i
=1,2, . . ..M0stid, i =1,2, . . ., areobtained from Eq.(16) di-
rectly, andastid, i =1,2, . . ., arecalculated by applying the
least squares method to Eq.(15) with the datafstid andyjstid.
The Laplace transformation is numerically performed to

computef̂spd and âspd, and thenÊspd is obtained from Eq.
(13). The general time-dependent elastic modulusEstd can be
obtained, for example, by performing the inverse Laplace

transformation forÊspd numerically.

III. EXPERIMENTS

Figure 2 is an illustration of our experimental setup. We
prepared IPMC beams of silver plated Nafion through the
method described in Sec. IV A of[9]. An IPMC beam was
clamped horizontally near the left end, and its right end was
placed slightly above the stand of balance so that the gap
between it and the stand is negligibly small. The distance
between the clamping point and the hinged end of the beam
was 16 mm. When a voltage of 1 V is applied, the beam
starts bending. The shape of the beam was tracked as a func-
tion of time with the image processing instrument CV-2000
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(Keyence Corporation, Osaka, Japan). The positionssxi ,yid,
i =1, . . . ,11, of 11 representative points set on the beam in-
cluding both the ends were automatically recorded every
122 ms. The vertical forcef was also measured with a bal-
ance simultaneously at the same interval time of 122 ms. We
did not observe plastic deformation of the beam for time
periods shorter than 60 s.

Figure 3 shows a set of experimental results for a speci-
men. Here the Simpson rule was used as the numerical inte-
grator to compute the Laplace transform in Fig. 3(d), in
which numerical integration yields a smooth curve. Figures
3(a)–3(c) should be, respectively, compared with the corre-
sponding results of Figs. 5, 8, and 9 in[9]. Qualitative agree-
ment between both results is found although the experiment
was performed for a different sample under different circum-
stances(e.g., temperature) from those in[9]. We note that
mechanical properties of our material were very distinct
among individual samples since Nafion does not have a per-
fect crystal structure. From Fig. 3(d) we see that the depen-
dence of stress on instantaneous strain velocity is negligible

since Êspd seems to tend to zero asp→`. The theoretical
prediction of Eq.(15) and the experimental measurement for
the shape of the IPMC beam att=30.012 s are shown in Fig.
4. A fine agreement between them is found. Note that we do
not have to assume the value ofEstd to obtain the theoretical
result.

As stated at the end of Sec. II, by performing the inverse
Laplace transformation, we can obtain the general time-
dependent elastic modulusEstd. However, precise inverse
Laplace transformation is generally difficult and this is the
case for the result of Fig. 3(d). Instead of doing so, we pro-
pose a viscoelastic model for the IPMC beam in the next
section.

IV. VISCOELASTIC MODEL FOR THE IPMC BEAM

The Laplace transform of the elastic modulus in Fig. 3(d)
is redrawn in Fig. 5 after it is multiplied by the variablep.
The curve has a peak and it seems to tend to some constant
as p→0 and p→`. However, typical viscoelastic models
like the Maxwell and Voigt materials[10] and the Golla-
Hughes-McTavish(GHM) model used in[7,8] do not repre-
sent all the characteristics.

So we present a simple model having the properties

Estd = E0 + sE1t − E2de−lt, s17d

whereE0.E2.0 andE1,l.0. The Laplace transform of
Eq. (17) becomes

Êspd =
E0

p
+

E1

sp + ld2 −
E2

p + l
. s18d

We easily see that

lim
p→0

Êspd = `, lim
p→`

Êspd = 0 s19d

and

FIG. 2. Experimental setup.

FIG. 3. Experimental results:(a) Vertical force at the(hinged)
end of the beam;(b) equilibrium curvature;(c) generated bending
moment;(d) Laplace transform of elastic modulus. The computa-
tion results of Eqs.(21) and (18) with the estimated parameter
values are also drawn as broken curves in(a) and (d).

FIG. 4. Comparison between the theoretical prediction(solid
curve) and experimental measurementssd for the shape of the
IPMC beam att=30.012 s.

FIG. 5. Redrawing of the experimental result of Fig. 3(d). The
computation result of Eq.(18) with the estimated parameter values
is also drawn as a broken curve.
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lim
p→0

pÊspd = E0, lim
p→`

pÊspd = E0 − E2. s20d

Moreover,pÊspd attains its maximumE0+sE1−E2ld2/4E1l
at p=sE1−E2ldl / sE1+E2ld. Thus, the model(17) has key
properties observed in Figs. 3(d) and 5.

Using the experimental data of Fig. 5 and applying the

least squares technique topÊspd, we estimate

E0 = 8.333 10−3sGPad, E1 = 3.353 10−2sGPad,

E2 = 4.063 10−3sGPad, l = 0.373s1/sd.

Figure 6 shows the time-dependent elastic modulusEstd
computed by Eq.(17) for the above parameter values. We
observe thatEstd has a peak att<2.8 s and gradually de-
creases ast increases after that. This can also explain why
the beam deformed largely after the peak of the generated

bending moment. From Eqs.(9), (15), and(17) we also ob-
tain

fstd =
3I

2,SE0

t

Est − tdȧstddtD
=

3I

2,SE0

t

fsE1 + E2ld − E1lst − tdg

3e−lst−tdastddt + sE0 − E2dastdD . s21d

The computation results of Eqs.(18) and(21) are also drawn
in Figs. 3(a), 3(d), and 5. In Fig. 3(a) the data of Fig. 3(b)
were used to compute Eq.(21). Especially in Figs. 3(d) and
5, we found good agreement between the computations and
experimental measurements.

V. CONCLUDING REMARKS

In this Brief Report, taking into account their viscoelas-
ticity, we extended the experimental method of[9] for esti-
mating general time-dependent elastic moduli of IPMC
beams. The proposed method was demonstrated in experi-
ments of an IPMC beam of silver plated Nafion and a vis-
coelastic model was presented to describe the experimental
results. We hope that our method and model will prove use-
ful for understanding physical properties of IPMCs and other
polymers.

One challenging issue is to construct a theory explaining
the relationship between bending motions and applied volt-
ages for IPMCs. It is necessary for manufacturing and con-
trolling IPMC actuators. Some attempt was performed in
[2,7,8] but that approach was based on a linear circuit model
[2] although nonlinear behavior was observed in our prelimi-
nary experiments. Our research in this direction is in
progress.
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FIG. 6. Computed time-dependent elastic modulus(17) with the
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