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High-order events in cortical networks: A lower bound
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It is commonly believed that information processing in cortical networks involves the collective spiking
activity of neuronal assemblies. Nevertheless, due to current technical limitations in multielectrodes recording
methods, it is not possible to tackle this issue with direct experimental measurements. In this study we simulate
spiking activity of large ensembles of cells focusing on the temporal correlation properties of the neuronal
dynamics, and demonstrate that transient, fast synchronization of large groups of cells is a natural phenomenon
of the cortical activity. To prove this result we use a statistical apprqhelsed on combinatorigsand
knowledge derived from a previous research wpkk Benucciet al,, Phys. Rev. E68, 041905(2003]. We
quantify the degree of synchronous activity by computing a lower bound for the fraction of cells participating
in fast(few millisecond$ synchronous events. Finally we discuss the implications of the results found in terms
of cortical coding mechanisms.
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I. INTRODUCTION Il. METHOD

The mathematical tools we will use to derive theorems
nd proofs are based on standard statistical and combinato-
rial analysis. We implement one model, called the combina-
torial method in the following, to generate simulated spiking
dynamics of large ensembles of neurons characterized by a
degree of high order correlations lower, by construction, than
the cortical one. We then quantify the statistical significance
of unitary events in the modeled dynamics and show that
u‘?ﬁtary events are a preponderant dynamical phenomenon.
: €Given that the combinatorial method has been designed to
pools of neurons does play an important role, e.g., RefSyqjerestimate the degree of cortical high order correlation
[1~4. . . . events, we will finally conclude that unitary events are sig-

In a previous study[1], overcoming these experimental ..o+ phenomena of the neuronal dynamics as well.

I|m|:tat|_ons, WIS’ used _a_the(f)rletmal approrsl:h tofprove that the 14 show that the chosen model underestimates the degree
collective spiking activity of large ensembles of neurons canq¢ . ica| high order correlation events, we will use knowl-

not show variability only in the hundreds of milliseconds edge about three physiological “constraints,” as introduced
time scale(as_ shown by el'ectrqencephalography and func-m the previous papdr]. They are well-known properties of
tional magnetic resonance imaging stugliest must be char- the single cell and pairs of cells activity. C1: The single cell

acterized by “some degree” of fast variability at the millisec- g0 timing variability is very high. The standard deviation
ond time scale, i.e., the temporal scale where experimentg e inerspike intervals over their mean, i.e., the coeffi-
method.s cannot be of help. In Benue_d:lal. [1], we reach_ed. cient of variation(CV) assumes values close to 1, suggesting
qualitative “?SL.'“S' thus_ we did not d|spu§s In a quantitativgy, ¢ the spike timing statistics can be described in terms of a
way the statistical significance of the findings. Poisson proces®]. C2: Pairs of cells sharing similar orien-

I?] ]tch|s new kS)ftll_deV\ove V‘.’ﬁ‘gt to quantify th? magnl_tude hOftation properties tend to synchronize their acti\ji§f. Cor-
such fast variability. We will demonstrate, using again a theyg 4o analysis produces cross correlograms of pairs of

oretical approach, that, under very general dynamical condigp;ie trains with central symmetric peaks, which are occa-
tions, the spiking activity of large pools of neurons is char-

ionall i [li ks si li h
acterized by brief epochs of highly synchronized activitySlona y associated to satellite peaks signaling the presence

) ' : of oscillatory activity. C3: Correlations have also been de-
(unitary events or high order correlation events heregfter y Y

. . A tected between pairs of cells in the subthreshold domain
and we will quantify the significance of the results by com- [7,8]. The available data indicate that, on average, pairs of
puting a lower bound for the amplitude of cortical unitary

g . . . 9 Y neighboring cells correlate their subthreshold membrane po-
events. In the Discussion we will consider the implications

f the findi : ¢ | codi hani tentials for as long as 40% of the time, with peaks as high as
of the findings In terms of neuronal coding mechanisms. g, [7]. Sensory stimulation can further increase this frac-

tion of shared temporal variabilitj7]. Incorporated within
an appropriate statistical framework, these three constraints
*Corresponding author. Fax:1-415-3458455. represent the central assumptions for all the following analy-
Electronic address: andrea@ski.org ses and derivations.

Neurons in the cortex, when excited by neighboring cells
by virtue of external stimulation or spontaneous intracortica
activity, produce action potentigspikeg. How the activity
of billions of cells translates into different types of compu-
tation and information processing is still unknown. A pri-
mary limitation for the understanding of this problem is the
technical impossibility of recording spiking activity from

thousands of cells at the same time. Nevertheless, there is
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We also briefly re-introduce some definitiofl§ that will ~ following simulation3 respecting the constraints of weak
be used several times in the following. The strength of wealpairwise correlations and coefficient of variation between the
pairwise correlations between spike trains is quantified as theinary strings(spike traing. At the same time, we impose
ratio of the peak amplitude over the offs@aseling of the  that the CM minimizes the degree of high order correlation
spike trains’ cross correlograms, i.e., the relative modulatiorevents. Within this binary scheme, high order correlation
amplitude (RMA) [9]. The subthrehsold correlations are eyents are simply verticatempora) alignments of 1'gmore
quantified by using the amplitudes of the normalized peakgngn twg along the columns of the binary matrix. Summa-
of the cross correIogram; between pairs.of subthresholqzing, the key property implemented in the CM is the ex-
traces[7]. With the term “high order correlation events,” or ,|qitation of the combinatorial possibilities in distributing 1's
“unitary events” we refer to synchronous spiking Ezp'sc’desgetween the bins of the binary matrix in such a way that the
|n\_/olvmg neuronal assemblles W't.h more tha!” two . CeIISconstraints C1-C2 are satisfied and vertical alignments of 1's
(triplets, quadruplets, efc: Finally, with high cortical activ- (high order correlation eventare minimized. An example is

Irtc))/nls\;ﬁlii g\lN gr[)eJﬁé tgot hlizsp:)l:( '&%;ﬁtlggyczfmgr;%unﬁ); ﬁ;gsgn Sshown in_ Figs. {a) and 1b) (see figure captions for detailed
when neurons are transiently excited by intracortical or ex_explanatlon}s .
ternal stimulation. In order to model the dynamics of a large ensemble of
neurons by means of the combinatorial method, we will not
try to directly generate the whole set of thousands of binary
strings(spike traing, but instead we will start with subsets of
The main statistical tool we will use to derive our proofs binary strings, which are characterized ignplerhigh order
is the combinatorial metho@CM). This method allows us to ~ correlation structures, and consider the overall ensemble as a
simulate the activity of large ensembles of neurons and igollection of subsetgalso called “blocks” in the following
based on a very simplified representation of the neuronalhis procedure will allow us to avoid complicated, in statis-
dynamics. When looking at the activity of a large pool of tical and computational terms, characterizations of the high
cells, we will only consider its spiking activity, intended as a order correlation properties of large binary matrices, and lets
binary process(spiking/no spiking, and we will neglect us deal with the easier problem of characterizing the rules of
other degrees of complexity, such as ionic currents, synaptigdding together subsets with quantifiable high order correla-

IIl. LOWER BOUND OF PSTH VARIABILITY

dynamics, dendritic morphologies, etc. tion structures.
We now describe an appropriate formalism to quantify the
A. Main features of the combinatorial method statistical features of subsets of spike trains generated by the

As a first approximation, the combinatorial method can becomblnatorlal method. Within this formalism, we introduce a

thought of as a way to generate raster plots, which ar‘I}heorem concerning the high order correlation properties of

graphical tools, with a matrixlike structure, to visualize thethe subsets. . , )
spiking activity of groups of neuror{40]. In the binary ver- We denote withP,_, the maximum number of binary
sion of these plots, the occurrence of a spike by a given ceBtrings(spike traing, containing eactms 1's (i.e., ns spikes,

at a given time is represented by a “1” in the correspondingind withn, intersectiongof 1's) between any pair of strings,
row (cell numbey and column(time bin) of a binary vector i.e., n, correlated spikes. denotes the maximum number of
(the spike traily, and the nonoccurrence by a “0.” Thus the 1’s aligned in time, what we call therder of the block(i.e.,
whole population’s dynamics can be associated to a binargroup of spike trains thus generajedee Fig. 1. The maxi-
matrix where each row is a binary string associated to anum number of strings for a given orderdepends on the
given cell's spike train. Two of three physiological con- combinatorial possibilities to assign spikes according to C1-
straints introduced before, C1-C2, can also be described?. In the example of Fig.(&), n,=2, ns=6, andr=2, and
within this binary scheme: high coefficient of variatic@V) ~ p2 _=4. More in general, for a block of order 2 the following

of the spiking activity means that the temporal variability of re[ationship holds trueP? . =floor[(ng/ny)+1]. As shown

the “1's” in each binary string can be explained by a randomIn the example of Fig. (), afterP§'2:4 strings, there are no

process and the weak painwise correlations between Splkesore combinatorial possibilities to add strings accordingly to

are interpreted as temporal correlations between 1's in paig . ) .
of binary strings. We impose that both C1 and C2 constraint gpi)ze dvzgh;l#igﬁﬁgrfjtgg: ;‘iigo.r?(i;’]. and the problem is

are satisfied by spike trains generated by the combinatoridl’ _ _

method. Thus, as a built in property, the CM creates large Ve denote with§] , 'the sub-block of strings of the block
groups of binary stringéof the order of few thousands in the Py , , which induces a transition from the ordgr 1 toy, y
being a positive integer. For example, the sub-block of Fig.
1(b) induces a transition from the order 2, Figaj to the

This is not the formal definition of unitary events or high order . . .
correlation eventstypically considered two distinct conceptss order 3. Concerning the order of the sub-blocks, it is possible

found in the literature, e.g., Refi4,11]. The use of thisimplified 0 Prove the following results: ' '
definition allows us to keep the formalism and derivations simple. ~Theorem 1.For a system created by the combinatorial
In the Discussion we will reconcile our definition with more clas- method, the following inequality between sub-blocks must

sical ones. hold: SLZ},OS Sy u
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FIG. 1. Combinatorial methoda) Example of aP2 5.2 System. The letters at the top indicate the best combinatorial choices to guarantee
that the C1 and C2 constraints are respected. For exanfblledlcates pairwise correlations between cells 2 and4 petween cells 1 and
3, “e€” between cells 1 and 4, and so on. When more than four spike tfdiasmaximum number of trains allowed by the combinatorial
possibilitieg are created according to the preceding rules, the maximum number of spikes vertically éigisddwn by the histogram at
the bottom increases to 8order=3, panel(b). The numbers at the top of the sub-block of ordér.&, cells numbered 5, 6, ang, Tndicate
the possible combinatorial strategies to guarantee pairwise correlations with the sub-block of cells {n)pBoelexample, the four spikes
in cell number 7(labeled with the number “3"are associated to the spikes @8r correlations with cells 1-8and f3(for correlations with
cells 2-4 in panel(a). Thus, for cell number 7, pairwise correlations with all the cells in péaeare created, and two more “free” spikes
(indicated in dark grayare available to generate pairwise correlations with the remaining(&etiad § in the same sub-block.

Proof. Every time a new sub-block is added to a group of The equality can hold when the number of available spikes is
spike trains, increasing the order framo r+1, the number high compared ta,. [ |
of available 1'sny, to create internal correlations within the  In other words, the statistical property of the sub-blocks
newly added sub-blockdark gray spikes in Fig.(b)] nec-  created by the CM, as highlighted in Theorem 1, follows
essarily decreases in respect to previous sub-blocks, sincef@m a simple combinatorial observation: the combinatorial
nonzero fraction of spikes in ther 1 sub-block are “frozen” possibilities available to arrange spikes, while respecting the
for the correlation constraints with the previous sub-blockconstraints C1-C2, decreases with increasing number of
[Figs. X&) and Xb), vertical broken arrowls Since the num-  gpike trains. As a lemma, Theorem 1 also implies that if we
ber of possible spike trains per sub-block is proportional toadd together two CM sub-blocks of equal size, the ondef
the combinations the sum must increase at least by a factor of 1 in respect to
the order of the component sets. This is a first important
result for the following derivations, since our aim, as men-
tioned before, is to simulate the overall population dynamics
(n5’>, with ng < ng, thenSﬁ] <S .. as a collection of _smaller bI(_)cks with simple, quantifiable
Ng s'o high order correlation properties.
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B. Compatibility of the combinatorial method ] f=30 Hz . 1=60 Hz f=80 Hz
with the C3 constraint T, T, //7

-

Key properties of CM blocks are their compatibility with o5 05 05 / 7
the constraints C1-C2, while at the same time, by using a — VT = = _
combinatorial strategy, the degree of high order correlation o — T — T — T
events is minimized. The next two lemmas verify the com- 6 9 12 15 18 6 9 12 15 18 6 9 12 15 18
patibility of CM systems with the last constraint, C3, about Aty Aty Aty
the subthreshold correlations. .

Lemma 1.For a group of spike trains created by the com-  FIG. 2. The three panels show the behaviofTefand T, as a
binatorial method, the maximum and minimum fraction of function of At for three different values of the mean firing rate:

time during which two cells can be correlated, are given by30: 60, and 80 Hz, from left to right, respectivgbee also Fig. @)
Ti=1+Atged X (Ce=2) and T,=FAt oy X (C+2) — 2fAtyeq re- in the companion papdd]]. The five different horizontal and ob-
spectivelye s ! «© lique lines refer tar; and Ty, respectively, while\tye.changes from

Proof. The proof follows closely the proof of Theorem 3 1 to 5 ms(1 for the top line and 5 for the bottom lipeThe thick

. . vertical line indicates a commonly reportatt.,,, value for pairwise
in the companion papgd]. We sketch here only the bottom correlations in the spiking activity, 10 ms, e.g., Rg8], much

line of the reasoning and refer the interested readers to thg J o\ than for subthreshold correlations, which is typically around
lengthy proof in the companion papidd. For a given couple 44 mg(7). The thick horizontal line indicates the mean value for the

of spike trains, it is possible to defirg, the pairwise corre-  gigyribution of the subthreshold correlation strength as found in
lation strength between the spike traifs,eca decorrelation | ampj et al. [7].

time between the subthreshold membrane potentials related

to the refractoriness of the spiking activityf.,, a correla-  incompatibility is related to theombinatorial natureof the

tion time, centered on spike timings during which the sub-algorithm. The very “sparsefbut not randomdistribution in
threshold membrane potentials of any two given neurongime of the spikes is what causes the disagreement between
could be correlated, anfithe mean firing rate; from these CM systems and C3. As soon as some degree of temporal
quantities it is possible to derive an estimate of the maximun@lignment is allowed, the third constraint is satisfied. We use
and minimum fraction of time during which the subthreshold@ numerical simulation to show this point:

membrane potentials of two cells can or cannot be correlated, Numerical simulation We refer here to the results of the
i.e., Tf and T,. The new starting equations, following the numerical simulation as shown in Fig. 3 in the companion

proof of Theorem 3 in the companion paper, are paper[1]. The underlying rationale is to compare two en-
sembles of spike trains, uncorrelated Poisson spike trains and
T.= bisi — 2Atgec Atyd, T,= 2Ateon ~ 2Algec | At f a group of spike trains created using an algorithm that allows
= - deccs TuT tis) cormCs: a higher degree of high order correlation evdiis We then

computed thél; parameter, which can be related to the sub-
Considering that the constraint C1 about high coefficient othreshold constraint C3; its numerical value agrees with ex-
variation is respected, the time between two spiketer  perimental data only in the latter case, when significant tem-
spike interval is t;g;=1/f and the time between two corre- poral alignments of spikes are allowed. As long as the
lated spikes for any given pair of neuronsTis=1/f. The  number of cells in the ensemble is larger than 3 and the time

results follow simply by working out the mathemati@ili window is longer than 100 md}; reaches a stable conver-
By comparing these estimates with experimentally detergent value. Thus the results found do not critically depend on
mined values, it is possible to derive the following: the size of the block.

Lemma 2.The order,r, of any block produced by the The results of the simulation confirm that the source of
combinatorial method, which obeys the constraints of weakncompatibility between CM and C3 is the “pathological”
pairwise correlations and high C\C1-C2, is an underesti- absence of temporal alignments for all those systems pro-
mate of the amplitude of unitary events in cortical networks.duced by the combinatorial method. Some increased degree

Proof. Using the results of Lemma 1, we plot in Fig. 2 the of temporal alignments, of a magnitude which must be
dependence of,, and T (quantifying the lower and upper higher than the by-chance level of correlations observed in
tails of subthreshold correlation strength’s distribution, as inPoisson spike trains, is necessary to enter in a physiologi-
C3[7]) on the set of paramete(at,y,, Atge, f, C) and we  cally plausible range.
check if there is ever compatibility with reported experimen-  Thus Lemmas 1 and 2 prove not only that CM blocks are
tal values (C3). When f=30 Hz (high input regimes, not compatible with the constraint C3, but also that the de-
At >10 ms(reported values are around 40 1) and  gree of temporal alignments in the spiking activity of such
Atgec=5 ms(in the range of absolute-relative refractoriness blocks is an underestimate of the cortical one. This is an
it is not possible to obtain values @f, and T; compatible  important result for our derivations: the lemmas are suggest-
with the physiologically observed subthreshold correlationing (see the following proofsthat if we simulate the popu-
strength’s distribution, CB7] [see also Figs.(#l) and 2b) in lation dynamics putting together blocks created by the com-
Benucciet al. [1]]. This result about the incompatibility of binatorial method, the resulting spiking dynamics is
CM and the constraint C3 is not a proof of Lemma 2 sincecompatible with the cortical one only for what concerns the
incompatibledoes not meatower order.To prove the propo- constraints about the coefficient of variation and weak pair-
sition of Lemma 2, we are going to show that the source ofwise correlations, but not for the high order correlation prop-
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8 Lower Limit b equally large ensemble of cortical neurons. We will use
i blocks of strings oforder 2 as building blocks to create an
s " I ™ reavesiy &~  ensemble of spike trains with a negligible high-order corre-
_ 6 — e i s lation structure. Since blocks of order 2 are easier to handle,
5 5 P 5 ; : ;
2. P RS / we will be able to quantify the degree of high order correla-
2 A : / P tion events for an arbitrary collection of blocks, and, thanks
11 Yy to the results of the lemmas, we can be sure that the emerg-
Yo & & i 48 B0 28 b e i N ing high order correlation structures underestimate the corti-
Fr— NG, 61 iduforis cal ones, thus defining the lower bound we are looking for.
Considering a group of spike trains as a sum of several
c . . .
Pop.PSTH second order distinct blocks, we make the following assump-

tions: instead of imposing thatny two spike trains in the
system have the same correlation strength, we simply require
that the trains in the same second order block are correlated
P SO0 VR S PB according to a givem,, parameter, while for the correlations
between trains not belonging to the same block we require a
weaker correlation strength, according to a new parameter
N, <Ny, Which is a “small” nonzero integdi=1). This is a

FIG. 3. Lower bound(a) Step function indicating the relation- strong simplification also in respect to electrophysiological
ship between the total number of cells in the network and the ordegjata. Indeed, the parametey represents a sort of “decorre-
r of the unitary events in the lower bound condition. The dotted linejtion” factor between the blocks in the sense that it further
is the linear fit of the step function. This specific example relates tqgq ces the previously assumed weak pairwise correlations
the block of spike trains shown in Figsal and ib). (b) Schematic \\iihin the blocks. Thus this parameter sets the average cor-

plot of the relationships between the total number of neurons an elation strength to lower values than those physiologically
the order for the different methods. The shaded area represents th8b : : .
served. It is now possible to formulate the following.

part of the plane associated to systems with variability lower than - DY

the cortical ongsee text The total number of neurons is related to Theorgm 2A step function, of step W_Idtlﬁ)“ Mo’ a_lnd step
the order of the systerfthe magnitude of the unitary eveptsa a  height 1 is a lower bound for the amplitude of higher-order
linear function, whose slope changes accordingly to the generatin§Vents in the cortical dynamics.

method: P, Poisson; Co, combinatorial. The function associated to Proof. Given an initial block with as many aﬁ’ﬁs,no

the combinatorial method is obtained by linearly interpolating the=floor(ns/n,+1) strings, the size of the following block is
step function in@). The lower limit(LL) is somewhere above itand |ess than, or equal to, the size of the first blgtkheorem}.

it has been associated to a linear behavior just for simplicity. Th%ccording to Lemma 2, each block underestimates the mag-
variability of the cortical dynamic dominates the upper part of thenpjtyde of unitary events in the cortical dynamics. When more
plot, well above the Co levelower bound condition (c) Variabil- — hjocks are added together, there is another underestimate of

ity of the population PSTH in the lower bound conditi®piky  ne temporal correlations between the spikes due to the fact
curve) vs the Poisson caghorizontal ling. Since the integral of the 41y | < as in the assumptions. If nonzero correlations
two superimposed PSTH's is the same, a positive geaiign in 5.0 considered, as in the present case, the araenst in-

the lower bound condition, with a 160% increase from the POiSSOQ:rease at least by 1 every time a block is added. This way, by

backgroundPB), must be associated with a negative péalsign . o .
of equivalent area. The PB is normalized to “1” for simplicity. The always adding second grder blocks it is possible to get a step

time duration of the unitary event is around 10 (ase text function, of step lengtlﬁ)”g”a and step height 1,_Wh|ch_relates
the number of strings in the systdithe population’s sizeto

erties. CM systems minimize temporal alignment of spikesthe order of the block; see Fig(d. This step function is

thus underestimating the magnitude of cortical unitaryprOduced accordingly to c'on.s'traints that carry und_eresti—
events. Note that we do not know what their magnitude ism"flte.S of the cortical variability of two typesntrinsic
but we have been able to go around the problem focusing o, yithin each block, Lemmas 1 and 2And extrinsic (when

the subthreshold correlations and showing that temporal cor-loc.kS are put togethgrthus defining a lower bound for
cortical unitary events. [ ]

elaton properies i CM systems e (00 “smpl” o assue "N {0 SUE02 i i might o b e
steepest onesee Fig. 8b). A step with decreasing length
(Theorem 1}, for example, would produce a steeper behavior.
In other words, we have described a systéhe group of
spike trains generated summing together blocks of orgler 2
Using the result of the two lemmas, we now show it iswhich underestimates the degree of high order correlation
possible to create an arbitrary large population of spikesvents of an equivalently large ensemble of spiking neurons,
trains, whose high order correlation structure underestimatesith the same second order correlation properties. Thought
the degree of high order correlation events existing in arwe do not know the magnitude of this underestimation; for

26

160%

Time

C. A lower bound for the unitary events
in the cortical dynamics
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this reason we talk about a lowdound and not about a since we fixedcg to 0.1.Ny,;, then cancels out in the inequal-
lower limit. ity, which can be rewritten a¢f)>1/(10X Aty;,). The in-
equality is satisfied only for average firing rates above 100
Hz. Even considering only groups of cells being optimally
D. Variability in the lower-bound condition activated ((f)=80 H2), the equation still has no solutions.

So far, we have shown the two following resulgs: we ~ Thus these results show that in the correlateder bound
derived a quantitative expressi¢the step function of Theo- case, there must be temporal alignments of spikegh or-
rem 2 to relate the degree of high order correlation events irfler correlation eventof larger amplitude than in the uncor-
a group of spike trains generated by the combinatorial®lated Poisson cageeference system
method, to the population sizéi) We have shown that given e néed to make the comparison between the two meth-

an equivalently large ensemble of spike trains, the degree G9S: P:)lsson and c?mbmat(?r[[al, Imore q”?nt't?t've' In tkh's
high order correlation events in CM systems must be lowefESPECt WE Can use two analylica’ approaches: one working
than in the cortical case. at alocal level, meaning at the level of the building blocks of

We now quantitatively address the statistical significancgchl\e/I v?/ﬁtlzrg%pirlgtigr?ogp g[)iizetr?l?rgbal level, considering

of these results and show that in ensembles produced by the Local level: due to the pairwise correlations, the building

combinatorial method, unitary events are a preponderant dy5;qck of the step functionP? __, has an order,=2, which is

. . non !
namical phenomenon. It f°'.'°W.5 that the same COnCI'“'S'Orhigher than the order of an uncorrelated Poisson system with
must apply(even more convincingly according to Theorem

2) to the cortical dynamics. an equal number of spike trains. Indeed, considering that in

; . : 5
To quantify the statistical significance of unitary events inthe Poisson C,ase_(nS/Nbi”) X Nin .and “S'”Q N‘“_Pnsﬂo,

CM systems we use, as a reference level, uncorrelated Pois.ls/ Mo +1 (omitting the floor function, Chf‘l”g'”g the vari-

son spike trains with the same average firing rate and C\2Ples as done before, ther(f) X Aty, X (c;"+1), which is

see Figs. @) and 3c). This choice is very natural: if corre- Nigher than 2 only for firing rates higher than roughly 200

lations are not relevant for the information processing andiZ- Thus already at the level of the individual building

they simply occurby chance,then uncorrelated Poisson blocks the two systems have different degrees of high order

spike trains are the simplest level of description of the dy-correlations; difference that intuitively shousim upwhen

namics[10]. blocks are added together. This is shown in the next analyses.
The first step is to show that CM systems have a degree of Global level: considering thé;,,r) plane as in Fig. @),

temporal correlations that is higher than in the Poisson casé linear relationship between the total number of neurons in

given an ensemble of spike trains generated by uncorrelatéfe population and the order of the vertical alignments of

stationary Poisson process@sth constant mean ratd, the  SPikes(high order correlation eventgan be computed for

average number of spikes per time bMy,, is given by both the Poisson and the combinatorial methods. For the

(ng/Nyin) X N;, [expression on the right side of the following Poisson case we showed before thatns/Ny;) X Ny, and

Eq. (1)], whereN,, is the total number of spike trainggis ~ 9iven thatng=(f) X Np;; X Atpi, thenr=(f) X N, X Aty For

the number of spikes per each trgim=f X T), andN,;, is  the combinatorial approach, omitting tfieor function and

the number of “bins” used to discretize the time window of using the same expression fan; as above, thenr

analysesT, i.e., Ny, =T/ Aty If instead the group of spike =Nin/(1/cs+1)+2. Using Nj;=10%, ¢;=0.1,f=35 Hz, and

trains is a sum of blocks of order 2, as in the lower boundAty,=10" sec, we obtain 350 and 911 for the valuerpin

conditions, a linear relationship betwelp, and the order of the Poisson and combinatorial cases, respectively.

the unitary events can be obtained by linearly interpolating More in general, a quantitative comparison can be carried

the step function of Fig. @) [broken line, and expression on out by evaluating independently the two expressions of Eqg.

the left side of Eq(1)]. Thus the two system@oisson and  (1). Using Ni,=10% ny=3, ng=30, andNy;,=10® (i.e., (f)

CM) would have the same orderif the following equation =30 Hz andcs=0.1) gives a 160% fractional increase of uni-

is satisfied: tary events’ magnitude in the CM case, in respect to the
Poisson backgrounfFig. 3(c)]. The percentage is still sig-
X Ny + 2 _Ns X Ni. (1) nificant, _22%, even _for the extreme case of a much smaller,
roor<E+ 1) Npin very active population of neurongy;,=300,n,=8, ng=80
o (i.e., (f)=80 Hz andcs=0.1). The relative independence of

. . ) ... the fractional increase from the parameigyf is due to the
Working out the mathematics and making few simplifica- 5t that for typical values of the parametéts X n,/n.>2,
tions (i.e., omitting the “floor” function anq considering that thenN,, can be canceled out in E¢L). Instead, the absolute
Ns/No+1= ”s/ngzlo’ forcs=0.1), the equation has a solution o qnitude(orden of the unitary events strongly depends on
iff ngXx l_\lbin< ns..As p_omtgd out bgfore, we are mterestgd N the precise value dfl,, ranging from 911 to 29, foN,, equal
correlations during high input regimes therefore by using 3%, 10 and 300 respectively.

Hz for the average firing rate,=0.1 andAty;,=1 ms, with a Finally, for what concerns the duration and frequency of
time window of analysis'=1 sedNy;,=1000, the equation  5ccyrrence of the unitary events, they can be quantified ac-
has no solution. This result does not depend on the timesorging to the following considerations: referring to Figs.
window duration, as can be seen by changing the variablega) and yb), all the spikes in a given spike train can be
Ns={f) X Npin X Atpi, andny,=(f) X Ny, X Aty;, with f=f/10,  possible points in time for the emergence of unitary events.

051909-6



HIGH-ORDER EVENTS IN CORTICAL NETWORKS: A.. PHYSICAL REVIEW E 70, 051909(2004

Since in CM systems spike trains are generally only partiallyas aworking hypothesisthe existence of high order correla-
overlapping, but never nonoverlappif@2), it is reasonable tion events in the network’s dynamics. Assumed to exist in
to expect(f),2x(f)] as a range for the frequency of occur- “synfire chains”[4], they are meant to play a crucial role not
rence of high order correlation events. Moreover, since unionly at a network level, but also at the cellular one, in respect
tary events can be considered as ¢femeratorsof the pair-  to the long lasting dispute of “coincidence detector” vs “pure
wise correlations, their duration must be related to the widttintegrator” for the neuronal modality of input processing,
of the experimentally measured cross correlograms, i.e., few.g., Ref.[5].
milliseconds time scaléas it has also been shown in simu-  The scope of the results found is not limited to the method
lation studieg12,13). used. The logic behind our approach has been to identify one
The take home message from these qualitative and quaspecific methodthe CM) which allowed us to simulate neu-
titative comparisons is that CM systems are characterized bgpnal dynamics with two requiremenig) underestimate the
a degree of high order correlation events that is significantlydegree of high order correlation as observed in the cortical
higher than what is found in uncorrelated Poisson spikenetworks(ii) provide and explicit quantitative way to evalu-
trains with identical second order correlation propertiesate the magnitude of unitary events. Any other model fulfill-
What traditionally defines high order correlation events oring such requirements could have done an equally good job.
unitary events is the statistical significance in respect to dyDifferent analytical relationships could have eventually been
namical systems where spike correlations occur by chanc®und, together with more accurate estimates of the lower
and have no functional meaning. Thus the highly statisticalimit, though complementary, and not in contradiction with
difference found with the above quantitative analyses reconeur results. This idea can also be understood graphically by
ciles our definition of unitary events with more standardlooking at Fig. 3b): we picked one specific function defined
ones, e.g., Ref.11]. Most importantly, the finding that high in the shaded part of the plane, below the level of cortical
order correlation event are a preeminent phenomenon in theigh order correlation events. Many other functions with dif-
dynamics of CM systems, in conjunction with the results offerent analytical properties can possibly be defined in this
Theorem 2, finally prove that high order correlation eventssubspace, though their existence would not “shift” CM sys-

are a key dynamical feature of the cortical dynamics. tems into a different part of the plane, i.e., more comprehen-
sive analyses could complement our results but not invali-
IV. CONCLUSIONS date them.

The results are robust also in respect to the experimental

In this study we described the correlation properties ofassumptions. The three physiological constraints considered
large ensembles of neurons in the millisecond time scale. Wg, the assumptions are sufficient conditioted perhaps
showed that, under very general conditi¢@4-C3, unitary  necessary as welto prove the validity of the results. Thus
events appear in the cortical dynamics. any other experimental evidence consistent with these well

Despite the fact they have never been observed due tgstablished constraints cannot invalidate the results.
technical limitations or deduced theoretically in an undispu-  |n conclusion, this study provides a formal demonstration
table way, unitary events appeared in the theoretical discushat unitary events must and do appear in the constrained
sion since 1963 with Griffith[14] and kept on attracting population dynamics, to an extent which is related to the
more and more interest through the years. In theoretical angomputed lower bound. These results add interesting insights
experimental studies they have been labeled with the terrabout how information flows in cortical networks, and
“surges” of activity, “high order events,” “volleys,” “bar- strongly supports coding strategies based on correlation
rages” of inputs, “conspicuous coincidences,” “unitary schemes. Advances in recording techniques are needed for a
events,” “population spikes,” or “large brief excitatory final experimental validation of these findings.
events’[4,11,12,15-1P

Unitary events have been claimed as extremely interesting
from the point of view of information coding, e.g., R¢8].
The crucial importance of proving their existence in cortical This work was supported by the Swiss National Fund
networks is easily understood by considering that the largéSNF through Grant Nos. 31-61415.01 and EU IST-2000-
majority of theoretical models based on correlation require28127/BBW 01.0208.
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