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It is commonly believed that information processing in cortical networks involves the collective spiking
activity of neuronal assemblies. Nevertheless, due to current technical limitations in multielectrodes recording
methods, it is not possible to tackle this issue with direct experimental measurements. In this study we simulate
spiking activity of large ensembles of cells focusing on the temporal correlation properties of the neuronal
dynamics, and demonstrate that transient, fast synchronization of large groups of cells is a natural phenomenon
of the cortical activity. To prove this result we use a statistical approach(based on combinatorics), and
knowledge derived from a previous research work[A. Benucciet al., Phys. Rev. E68, 041905(2003)]. We
quantify the degree of synchronous activity by computing a lower bound for the fraction of cells participating
in fast (few milliseconds) synchronous events. Finally we discuss the implications of the results found in terms
of cortical coding mechanisms.
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I. INTRODUCTION

Neurons in the cortex, when excited by neighboring cells
by virtue of external stimulation or spontaneous intracortical
activity, produce action potential(spikes). How the activity
of billions of cells translates into different types of compu-
tation and information processing is still unknown. A pri-
mary limitation for the understanding of this problem is the
technical impossibility of recording spiking activity from
thousands of cells at the same time. Nevertheless, there is a
growing consensus that the collective activation of large
pools of neurons does play an important role, e.g., Refs.
[1–4].

In a previous study[1], overcoming these experimental
limitations, we used a theoretical approach to prove that the
collective spiking activity of large ensembles of neurons can-
not show variability only in the hundreds of milliseconds
time scale(as shown by electroencephalography and func-
tional magnetic resonance imaging studies) but must be char-
acterized by “some degree” of fast variability at the millisec-
ond time scale, i.e., the temporal scale where experimental
methods cannot be of help. In Benucciet al. [1], we reached
qualitative results, thus we did not discuss in a quantitative
way the statistical significance of the findings.

In this new study we want to quantify the magnitude of
such fast variability. We will demonstrate, using again a the-
oretical approach, that, under very general dynamical condi-
tions, the spiking activity of large pools of neurons is char-
acterized by brief epochs of highly synchronized activity
(unitary events or high order correlation events hereafter)
and we will quantify the significance of the results by com-
puting a lower bound for the amplitude of cortical unitary
events. In the Discussion we will consider the implications
of the findings in terms of neuronal coding mechanisms.

II. METHOD

The mathematical tools we will use to derive theorems
and proofs are based on standard statistical and combinato-
rial analysis. We implement one model, called the combina-
torial method in the following, to generate simulated spiking
dynamics of large ensembles of neurons characterized by a
degree of high order correlations lower, by construction, than
the cortical one. We then quantify the statistical significance
of unitary events in the modeled dynamics and show that
unitary events are a preponderant dynamical phenomenon.
Given that the combinatorial method has been designed to
underestimate the degree of cortical high order correlation
events, we will finally conclude that unitary events are sig-
nificant phenomena of the neuronal dynamics as well.

To show that the chosen model underestimates the degree
of cortical high order correlation events, we will use knowl-
edge about three physiological “constraints,” as introduced
in the previous paper[1]. They are well-known properties of
the single cell and pairs of cells activity. C1: The single cell
spike timing variability is very high. The standard deviation
of the interspike intervals over their mean, i.e., the coeffi-
cient of variation(CV) assumes values close to 1, suggesting
that the spike timing statistics can be described in terms of a
Poisson process[5]. C2: Pairs of cells sharing similar orien-
tation properties tend to synchronize their activity[6]. Cor-
relation analysis produces cross correlograms of pairs of
spike trains with central symmetric peaks, which are occa-
sionally associated to satellite peaks signaling the presence
of oscillatory activity. C3: Correlations have also been de-
tected between pairs of cells in the subthreshold domain
[7,8]. The available data indicate that, on average, pairs of
neighboring cells correlate their subthreshold membrane po-
tentials for as long as 40% of the time, with peaks as high as
80% [7]. Sensory stimulation can further increase this frac-
tion of shared temporal variability[7]. Incorporated within
an appropriate statistical framework, these three constraints
represent the central assumptions for all the following analy-
ses and derivations.
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We also briefly re-introduce some definitions[1] that will
be used several times in the following. The strength of weak
pairwise correlations between spike trains is quantified as the
ratio of the peak amplitude over the offset(baseline) of the
spike trains’ cross correlograms, i.e., the relative modulation
amplitude (RMA) [9]. The subthrehsold correlations are
quantified by using the amplitudes of the normalized peaks
of the cross correlograms between pairs of subthreshold
traces[7]. With the term “high order correlation events,” or
“unitary events” we refer to synchronous spiking episodes
involving neuronal assemblies with more than two cells
(triplets, quadruplets, etc.).1 Finally, with high cortical activ-
ity levels we refer to the spiking activity of groups of neu-
rons firing around 30 Hz or more, as commonly happens
when neurons are transiently excited by intracortical or ex-
ternal stimulation.

III. LOWER BOUND OF PSTH VARIABILITY

The main statistical tool we will use to derive our proofs
is the combinatorial method(CM). This method allows us to
simulate the activity of large ensembles of neurons and is
based on a very simplified representation of the neuronal
dynamics. When looking at the activity of a large pool of
cells, we will only consider its spiking activity, intended as a
binary process(spiking/no spiking), and we will neglect
other degrees of complexity, such as ionic currents, synaptic
dynamics, dendritic morphologies, etc.

A. Main features of the combinatorial method

As a first approximation, the combinatorial method can be
thought of as a way to generate raster plots, which are
graphical tools, with a matrixlike structure, to visualize the
spiking activity of groups of neurons[10]. In the binary ver-
sion of these plots, the occurrence of a spike by a given cell
at a given time is represented by a “1” in the corresponding
row (cell number) and column(time bin) of a binary vector
(the spike train), and the nonoccurrence by a “0.” Thus the
whole population’s dynamics can be associated to a binary
matrix where each row is a binary string associated to a
given cell’s spike train. Two of three physiological con-
straints introduced before, C1-C2, can also be described
within this binary scheme: high coefficient of variation(CV)
of the spiking activity means that the temporal variability of
the “1’s” in each binary string can be explained by a random
process and the weak pairwise correlations between spikes
are interpreted as temporal correlations between 1’s in pairs
of binary strings. We impose that both C1 and C2 constraints
are satisfied by spike trains generated by the combinatorial
method. Thus, as a built in property, the CM creates large
groups of binary strings(of the order of few thousands in the

following simulations) respecting the constraints of weak
pairwise correlations and coefficient of variation between the
binary strings(spike trains). At the same time, we impose
that the CM minimizes the degree of high order correlation
events. Within this binary scheme, high order correlation
events are simply vertical(temporal) alignments of 1’s(more
than two) along the columns of the binary matrix. Summa-
rizing, the key property implemented in the CM is the ex-
ploitation of the combinatorial possibilities in distributing 1’s
between the bins of the binary matrix in such a way that the
constraints C1-C2 are satisfied and vertical alignments of 1’s
(high order correlation events) are minimized. An example is
shown in Figs. 1(a) and 1(b) (see figure captions for detailed
explanations).

In order to model the dynamics of a large ensemble of
neurons by means of the combinatorial method, we will not
try to directly generate the whole set of thousands of binary
strings(spike trains), but instead we will start with subsets of
binary strings, which are characterized bysimplerhigh order
correlation structures, and consider the overall ensemble as a
collection of subsets(also called “blocks” in the following).
This procedure will allow us to avoid complicated, in statis-
tical and computational terms, characterizations of the high
order correlation properties of large binary matrices, and lets
us deal with the easier problem of characterizing the rules of
adding together subsets with quantifiable high order correla-
tion structures.

We now describe an appropriate formalism to quantify the
statistical features of subsets of spike trains generated by the
combinatorial method. Within this formalism, we introduce a
theorem concerning the high order correlation properties of
the subsets.

We denote withPns,no

r the maximum number of binary
strings(spike trains), containing eachns 1’s (i.e., ns spikes),
and withno intersections(of 1’s) between any pair of strings,
i.e., no correlated spikes.r denotes the maximum number of
1’s aligned in time, what we call theorder of the block (i.e.,
group of spike trains thus generated), see Fig. 1. The maxi-
mum number of strings for a given orderr depends on the
combinatorial possibilities to assign spikes according to C1-
C2. In the example of Fig. 1(a), no=2, ns=6, andr =2, and
P6,2

2 =4. More in general, for a block of order 2 the following
relationship holds true:Pns,no

2 =floorfsns/nod+1g. As shown
in the example of Fig. 1(a), afterP6,2

2 =4 strings, there are no
more combinatorial possibilities to add strings accordingly to
C1-C2 without affecting the order, and the problem is
mapped to a high order[r =3, Fig. 1(b)].

We denote withSns,no

g the sub-block of strings of the block
Pns,no

g , which induces a transition from the orderg−1 to g, g

being a positive integer. For example, the sub-block of Fig.
1(b) induces a transition from the order 2, Fig. 1(a), to the
order 3. Concerning the order of the sub-blocks, it is possible
to prove the following results:

Theorem 1.For a system created by the combinatorial
method, the following inequality between sub-blocks must
hold: Sns,no

r+1 øSns,no

r . N

1This is not the formal definition of unitary events or high order
correlation events(typically considered two distinct concepts), as
found in the literature, e.g., Refs.[4,11]. The use of thissimplified
definition allows us to keep the formalism and derivations simple.
In the Discussion we will reconcile our definition with more clas-
sical ones.
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Proof. Every time a new sub-block is added to a group of
spike trains, increasing the order fromr to r +1, the number
of available 1’s,ns8, to create internal correlations within the
newly added sub-block[dark gray spikes in Fig. 1(b)] nec-
essarily decreases in respect to previous sub-blocks, since a
nonzero fraction of spikes in ther +1 sub-block are “frozen”
for the correlation constraints with the previous sub-block
[Figs. 1(a) and 1(b), vertical broken arrows]. Since the num-
ber of possible spike trains per sub-block is proportional to
the combinations

Sns8

n0
D, with ns8 , ns, thenSns,no

r+1 ø Sns,no

r .

The equality can hold when the number of available spikes is
high compared tono. N

In other words, the statistical property of the sub-blocks
created by the CM, as highlighted in Theorem 1, follows
from a simple combinatorial observation: the combinatorial
possibilities available to arrange spikes, while respecting the
constraints C1-C2, decreases with increasing number of
spike trains. As a lemma, Theorem 1 also implies that if we
add together two CM sub-blocks of equal size, the orderg of
the sum must increase at least by a factor of 1 in respect to
the order of the component sets. This is a first important
result for the following derivations, since our aim, as men-
tioned before, is to simulate the overall population dynamics
as a collection of smaller blocks with simple, quantifiable
high order correlation properties.

FIG. 1. Combinatorial method:(a) Example of aP6,2
2 system. The letters at the top indicate the best combinatorial choices to guarantee

that the C1 and C2 constraints are respected. For example, “f” indicates pairwise correlations between cells 2 and 4, “d” between cells 1 and
3, “e” between cells 1 and 4, and so on. When more than four spike trains(the maximum number of trains allowed by the combinatorial
possibilities) are created according to the preceding rules, the maximum number of spikes vertically aligned(as shown by the histogram at
the bottom) increases to 3sorder=3d, panel(b). The numbers at the top of the sub-block of order 3(i.e., cells numbered 5, 6, and 7), indicate
the possible combinatorial strategies to guarantee pairwise correlations with the sub-block of cells in panel(a). For example, the four spikes
in cell number 7(labeled with the number “3”) are associated to the spikes d3(for correlations with cells 1-3) and f3(for correlations with
cells 2-4) in panel(a). Thus, for cell number 7, pairwise correlations with all the cells in panel(a) are created, and two more “free” spikes
(indicated in dark gray) are available to generate pairwise correlations with the remaining cells(5 and 6) in the same sub-block.
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B. Compatibility of the combinatorial method
with the C3 constraint

Key properties of CM blocks are their compatibility with
the constraints C1-C2, while at the same time, by using a
combinatorial strategy, the degree of high order correlation
events is minimized. The next two lemmas verify the com-
patibility of CM systems with the last constraint, C3, about
the subthreshold correlations.

Lemma 1.For a group of spike trains created by the com-
binatorial method, the maximum and minimum fraction of
time during which two cells can be correlated, are given by
Tf =1+Dtdecf 3 scs−2d andTu= fDtcorr3 scs+2d−2fDtdec, re-
spectively.

Proof. The proof follows closely the proof of Theorem 3
in the companion paper[1]. We sketch here only the bottom
line of the reasoning and refer the interested readers to the
lengthy proof in the companion paper[1]. For a given couple
of spike trains, it is possible to definecs, the pairwise corre-
lation strength between the spike trains,Dtdec a decorrelation
time between the subthreshold membrane potentials related
to the refractoriness of the spiking activity,Dtcorr a correla-
tion time, centered on spike timings during which the sub-
threshold membrane potentials of any two given neurons
could be correlated, andf the mean firing rate; from these
quantities it is possible to derive an estimate of the maximum
and minimum fraction of time during which the subthreshold
membrane potentials of two cells can or cannot be correlated,
i.e., Tf and Tu. The new starting equations, following the
proof of Theorem 3 in the companion paper, are

Tf =
tISI − 2Dtdec

tISI
+ Dtdecfcs

Tu =
2Dtcorr − 2Dtdec

tISI
+ Dtcorrfcs

.

Considering that the constraint C1 about high coefficient of
variation is respected, the time between two spikes(inter
spike interval) is tISI=1/ f and the time between two corre-
lated spikes for any given pair of neurons, isTc=1/ fcs

. The
results follow simply by working out the mathematics.N

By comparing these estimates with experimentally deter-
mined values, it is possible to derive the following:

Lemma 2.The order,r, of any block produced by the
combinatorial method, which obeys the constraints of weak
pairwise correlations and high CV(C1-C2), is an underesti-
mate of the amplitude of unitary events in cortical networks.

Proof. Using the results of Lemma 1, we plot in Fig. 2 the
dependence ofTu and Tf (quantifying the lower and upper
tails of subthreshold correlation strength’s distribution, as in
C3 [7]) on the set of parameterssDtcorr , Dtdec, f , csd and we
check if there is ever compatibility with reported experimen-
tal values (C3). When f ù30 Hz (high input regimes),
Dtcorr.10 ms (reported values are around 40 ms[7]) and
Dtdecø5 ms(in the range of absolute-relative refractoriness),
it is not possible to obtain values ofTu and Tf compatible
with the physiologically observed subthreshold correlation
strength’s distribution, C3[7] [see also Figs. 1(d) and 2(b) in
Benucciet al. [1]]. This result about the incompatibility of
CM and the constraint C3 is not a proof of Lemma 2 since
incompatibledoes not meanlower order.To prove the propo-
sition of Lemma 2, we are going to show that the source of

incompatibility is related to thecombinatorial natureof the
algorithm. The very “sparse”(but not random) distribution in
time of the spikes is what causes the disagreement between
CM systems and C3. As soon as some degree of temporal
alignment is allowed, the third constraint is satisfied. We use
a numerical simulation to show this point:

Numerical simulation: We refer here to the results of the
numerical simulation as shown in Fig. 3 in the companion
paper[1]. The underlying rationale is to compare two en-
sembles of spike trains, uncorrelated Poisson spike trains and
a group of spike trains created using an algorithm that allows
a higher degree of high order correlation events[1]. We then
computed theTf parameter, which can be related to the sub-
threshold constraint C3; its numerical value agrees with ex-
perimental data only in the latter case, when significant tem-
poral alignments of spikes are allowed. As long as the
number of cells in the ensemble is larger than 3 and the time
window is longer than 100 ms,Tf reaches a stable conver-
gent value. Thus the results found do not critically depend on
the size of the block.

The results of the simulation confirm that the source of
incompatibility between CM and C3 is the “pathological”
absence of temporal alignments for all those systems pro-
duced by the combinatorial method. Some increased degree
of temporal alignments, of a magnitude which must be
higher than the by-chance level of correlations observed in
Poisson spike trains, is necessary to enter in a physiologi-
cally plausible range. N

Thus Lemmas 1 and 2 prove not only that CM blocks are
not compatible with the constraint C3, but also that the de-
gree of temporal alignments in the spiking activity of such
blocks is an underestimate of the cortical one. This is an
important result for our derivations: the lemmas are suggest-
ing (see the following proofs) that if we simulate the popu-
lation dynamics putting together blocks created by the com-
binatorial method, the resulting spiking dynamics is
compatible with the cortical one only for what concerns the
constraints about the coefficient of variation and weak pair-
wise correlations, but not for the high order correlation prop-

FIG. 2. The three panels show the behavior ofTf and Tu as a
function of Dtcorr for three different values of the mean firing rate:
30, 60, and 80 Hz, from left to right, respectively[see also Fig. 2(d)
in the companion paper[1]]. The five different horizontal and ob-
lique lines refer toTf andTu, respectively, whileDtdecchanges from
1 to 5 ms(1 for the top line and 5 for the bottom line). The thick
vertical line indicates a commonly reportedDtcorr value for pairwise
correlations in the spiking activity, 10 ms, e.g., Ref.[6], much
shorter than for subthreshold correlations, which is typically around
40 ms[7]. The thick horizontal line indicates the mean value for the
distribution of the subthreshold correlation strength as found in
Lampl et al. [7].
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erties. CM systems minimize temporal alignment of spikes
thus underestimating the magnitude of cortical unitary
events. Note that we do not know what their magnitude is,
but we have been able to go around the problem focusing on
the subthreshold correlations and showing that temporal cor-
relation properties in CM systems are too “simple” to assure
the compatibility with the constraint C3.

C. A lower bound for the unitary events
in the cortical dynamics

Using the result of the two lemmas, we now show it is
possible to create an arbitrary large population of spike
trains, whose high order correlation structure underestimates
the degree of high order correlation events existing in an

equally large ensemble of cortical neurons. We will use
blocks of strings oforder 2 as building blocks to create an
ensemble of spike trains with a negligible high-order corre-
lation structure. Since blocks of order 2 are easier to handle,
we will be able to quantify the degree of high order correla-
tion events for an arbitrary collection of blocks, and, thanks
to the results of the lemmas, we can be sure that the emerg-
ing high order correlation structures underestimate the corti-
cal ones, thus defining the lower bound we are looking for.

Considering a group of spike trains as a sum of several
second order distinct blocks, we make the following assump-
tions: instead of imposing thatany two spike trains in the
system have the same correlation strength, we simply require
that the trains in the same second order block are correlated
according to a givenno parameter, while for the correlations
between trains not belonging to the same block we require a
weaker correlation strength, according to a new parameter
no8!no, which is a “small” nonzero integersù1d. This is a
strong simplification also in respect to electrophysiological
data. Indeed, the parameterno8 represents a sort of “decorre-
lation” factor between the blocks in the sense that it further
reduces the previously assumed weak pairwise correlations
within the blocks. Thus this parameter sets the average cor-
relation strength to lower values than those physiologically
observed. It is now possible to formulate the following.

Theorem 2.A step function, of step widthPns,no

2 , and step
height 1 is a lower bound for the amplitude of higher-order
events in the cortical dynamics.

Proof. Given an initial block with as many asPns,no

2

=floorsns/no+1d strings, the size of the following block is
less than, or equal to, the size of the first block(Theorem1).
According to Lemma 2, each block underestimates the mag-
nitude of unitary events in the cortical dynamics. When more
blocks are added together, there is another underestimate of
the temporal correlations between the spikes due to the fact
that no8!no, as in the assumptions. If nonzero correlations
are considered, as in the present case, the orderr must in-
crease at least by 1 every time a block is added. This way, by
always adding second order blocks it is possible to get a step
function, of step lengthPns,no

2 and step height 1, which relates
the number of strings in the system(the population’s size) to
the order of the block; see Fig. 3(a). This step function is
produced accordingly to constraints that carry underesti-
mates of the cortical variability of two types:intrinsic
(within each block, Lemmas 1 and 2) and extrinsic (when
blocks are put together), thus defining a lower bound for
cortical unitary events. N

Note that the slope obtained withPns,no

2 might not be the
steepest one;see Fig. 3(b). A step with decreasing length
(Theorem 1), for example, would produce a steeper behavior.
In other words, we have described a system(the group of
spike trains generated summing together blocks of order 2),
which underestimates the degree of high order correlation
events of an equivalently large ensemble of spiking neurons,
with the same second order correlation properties. Thought
we do not know the magnitude of this underestimation; for

FIG. 3. Lower bound.(a) Step function indicating the relation-
ship between the total number of cells in the network and the order
r of the unitary events in the lower bound condition. The dotted line
is the linear fit of the step function. This specific example relates to
the block of spike trains shown in Figs. 1(a) and 1(b). (b) Schematic
plot of the relationships between the total number of neurons and
the orderr for the different methods. The shaded area represents the
part of the plane associated to systems with variability lower than
the cortical one(see text). The total number of neurons is related to
the order of the system(the magnitude of the unitary events) via a
linear function, whose slope changes accordingly to the generating
method: P, Poisson; Co, combinatorial. The function associated to
the combinatorial method is obtained by linearly interpolating the
step function in(a). The lower limit(LL ) is somewhere above it and
it has been associated to a linear behavior just for simplicity. The
variability of the cortical dynamic dominates the upper part of the
plot, well above the Co level(lower bound condition). (c) Variabil-
ity of the population PSTH in the lower bound condition(spiky
curve) vs the Poisson case(horizontal line). Since the integral of the
two superimposed PSTH’s is the same, a positive peak(+ sign) in
the lower bound condition, with a 160% increase from the Poisson
background(PB), must be associated with a negative peak(− sign)
of equivalent area. The PB is normalized to “1” for simplicity. The
time duration of the unitary event is around 10 ms(see text).
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this reason we talk about a lowerbound and not about a
lower limit.

D. Variability in the lower-bound condition

So far, we have shown the two following results:(i) we
derived a quantitative expression(the step function of Theo-
rem 2) to relate the degree of high order correlation events in
a group of spike trains generated by the combinatorial
method, to the population size.(ii ) We have shown that given
an equivalently large ensemble of spike trains, the degree of
high order correlation events in CM systems must be lower
than in the cortical case.

We now quantitatively address the statistical significance
of these results and show that in ensembles produced by the
combinatorial method, unitary events are a preponderant dy-
namical phenomenon. It follows that the same conclusion
must apply(even more convincingly according to Theorem
2) to the cortical dynamics.

To quantify the statistical significance of unitary events in
CM systems we use, as a reference level, uncorrelated Pois-
son spike trains with the same average firing rate and CV;
see Figs. 3(b) and 3(c). This choice is very natural: if corre-
lations are not relevant for the information processing and
they simply occurby chance,then uncorrelated Poisson
spike trains are the simplest level of description of the dy-
namics[10].

The first step is to show that CM systems have a degree of
temporal correlations that is higher than in the Poisson case:
given an ensemble of spike trains generated by uncorrelated
stationary Poisson processes(with constant mean ratef), the
average number of spikes per time binDtbin is given by
sns/Nbind3Nin [expression on the right side of the following
Eq. (1)], whereNin is the total number of spike trains,ns is
the number of spikes per each trainsns= f 3Td, andNbin is
the number of “bins” used to discretize the time window of
analysesT, i.e., Nbin=T/Dtbin. If instead the group of spike
trains is a sum of blocks of order 2, as in the lower bound
conditions, a linear relationship betweenNin and the order of
the unitary events can be obtained by linearly interpolating
the step function of Fig. 3(a) [broken line, and expression on
the left side of Eq.(1)]. Thus the two systems(Poisson and
CM) would have the same orderr if the following equation
is satisfied:

1

floorS ns

no
+ 1D 3 Nin + 2 =

ns

Nbin
3 Nin. s1d

Working out the mathematics and making few simplifica-
tions (i.e., omitting the “floor” function and considering that
ns/no+1>ns/no=10, forcs=0.1), the equation has a solution
iff no3Nbin,ns

2. As pointed out before, we are interested in
correlations during high input regimes therefore by using 35
Hz for the average firing rate,cs=0.1 andDtbin=1 ms, with a
time window of analysisT=1 secsNbin=1000d, the equation
has no solution. This result does not depend on the time-
window duration, as can be seen by changing the variables

ns=kfl3Nbin3Dtbin andno=k f̃l3Nbin3Dtbin, with f̃ = f /10,

since we fixedcs to 0.1.Nbin then cancels out in the inequal-
ity, which can be rewritten askfl.1/s103Dtbind. The in-
equality is satisfied only for average firing rates above 100
Hz. Even considering only groups of cells being optimally
activatedskfl=80 Hzd, the equation still has no solutions.
Thus these results show that in the correlated(lower bound)
case, there must be temporal alignments of spikes(high or-
der correlation events) of larger amplitude than in the uncor-
related Poisson case(reference system).

We need to make the comparison between the two meth-
ods, Poisson and combinatorial, more quantitative. In this
respect we can use two analytical approaches: one working
at alocal level, meaning at the level of the building blocks of
CM systems, and another one at aglobal level, considering
the whole population of spike trains.

Local level: due to the pairwise correlations, the building
block of the step function,Pns,no

2 , has an order,r =2, which is
higher than the order of an uncorrelated Poisson system with
an equal number of spike trains. Indeed, considering that in
the Poisson caser =sns/Nbind3Nin and using Nin=Pns,no

2

= ns/n0 +1 (omitting the floor function), changing the vari-
ables as done before, thenr =kfl3Dtbin3 scs

−1+1d, which is
higher than 2 only for firing rates higher than roughly 200
Hz. Thus already at the level of the individual building
blocks the two systems have different degrees of high order
correlations; difference that intuitively shouldsum upwhen
blocks are added together. This is shown in the next analyses.

Global level: considering thesNin ,rd plane as in Fig. 3(b),
a linear relationship between the total number of neurons in
the population and the order of the vertical alignments of
spikes(high order correlation events) can be computed for
both the Poisson and the combinatorial methods. For the
Poisson case we showed before thatr =sns/Nbind3Nin, and
given thatns=kfl3Nbin3Dtbin, thenr =kfl3Nin3Dtbin. For
the combinatorial approach, omitting thefloor function and
using the same expression forns as above, thenr
=Nin / s1/cs+1d+2. Using Nin=104, cs=0.1, f =35 Hz, and
Dtbin=10−3 sec, we obtain 350 and 911 for the value ofr, in
the Poisson and combinatorial cases, respectively.

More in general, a quantitative comparison can be carried
out by evaluating independently the two expressions of Eq.
(1). Using Nin=104, n0=3, ns=30, andNbin=103 (i.e., kfl
=30 Hz andcs=0.1) gives a 160% fractional increase of uni-
tary events’ magnitude in the CM case, in respect to the
Poisson background[Fig. 3(c)]. The percentage is still sig-
nificant, 22%, even for the extreme case of a much smaller,
very active population of neurons,Nin=300,n0=8, ns=80
(i.e., kfl=80 Hz andcs=0.1). The relative independence of
the fractional increase from the parameterNin is due to the
fact that for typical values of the parametersNin3no/ns@2,
thenNin can be canceled out in Eq.(1). Instead, the absolute
magnitude(order) of the unitary events strongly depends on
the precise value ofNin, ranging from 911 to 29, forNin equal
to 104 and 300, respectively.

Finally, for what concerns the duration and frequency of
occurrence of the unitary events, they can be quantified ac-
cording to the following considerations: referring to Figs.
1(a) and 1(b), all the spikes in a given spike train can be
possible points in time for the emergence of unitary events.

BENUCCI, VERSCHURE, AND KÖNIG PHYSICAL REVIEW E70, 051909(2004)

051909-6



Since in CM systems spike trains are generally only partially
overlapping, but never nonoverlapping(C2), it is reasonable
to expectfkfl ,23 kflg as a range for the frequency of occur-
rence of high order correlation events. Moreover, since uni-
tary events can be considered as thegeneratorsof the pair-
wise correlations, their duration must be related to the width
of the experimentally measured cross correlograms, i.e., few
milliseconds time scale(as it has also been shown in simu-
lation studies[12,13]).

The take home message from these qualitative and quan-
titative comparisons is that CM systems are characterized by
a degree of high order correlation events that is significantly
higher than what is found in uncorrelated Poisson spike
trains with identical second order correlation properties.
What traditionally defines high order correlation events or
unitary events is the statistical significance in respect to dy-
namical systems where spike correlations occur by chance
and have no functional meaning. Thus the highly statistical
difference found with the above quantitative analyses recon-
ciles our definition of unitary events with more standard
ones, e.g., Ref.[11]. Most importantly, the finding that high
order correlation event are a preeminent phenomenon in the
dynamics of CM systems, in conjunction with the results of
Theorem 2, finally prove that high order correlation events
are a key dynamical feature of the cortical dynamics.

IV. CONCLUSIONS

In this study we described the correlation properties of
large ensembles of neurons in the millisecond time scale. We
showed that, under very general conditions(C1-C3), unitary
events appear in the cortical dynamics.

Despite the fact they have never been observed due to
technical limitations or deduced theoretically in an undispu-
table way, unitary events appeared in the theoretical discus-
sion since 1963 with Griffith[14] and kept on attracting
more and more interest through the years. In theoretical and
experimental studies they have been labeled with the term
“surges” of activity, “high order events,” “volleys,” “bar-
rages” of inputs, “conspicuous coincidences,” “unitary
events,” “population spikes,” or “large brief excitatory
events”[4,11,12,15–19].

Unitary events have been claimed as extremely interesting
from the point of view of information coding, e.g., Ref.[3].
The crucial importance of proving their existence in cortical
networks is easily understood by considering that the large
majority of theoretical models based on correlation require,

as aworking hypothesis, the existence of high order correla-
tion events in the network’s dynamics. Assumed to exist in
“synfire chains”[4], they are meant to play a crucial role not
only at a network level, but also at the cellular one, in respect
to the long lasting dispute of “coincidence detector” vs “pure
integrator” for the neuronal modality of input processing,
e.g., Ref.[5].

The scope of the results found is not limited to the method
used. The logic behind our approach has been to identify one
specific method(the CM) which allowed us to simulate neu-
ronal dynamics with two requirements:(i) underestimate the
degree of high order correlation as observed in the cortical
networks,(ii ) provide and explicit quantitative way to evalu-
ate the magnitude of unitary events. Any other model fulfill-
ing such requirements could have done an equally good job.
Different analytical relationships could have eventually been
found, together with more accurate estimates of the lower
limit, though complementary, and not in contradiction with
our results. This idea can also be understood graphically by
looking at Fig. 3(b): we picked one specific function defined
in the shaded part of the plane, below the level of cortical
high order correlation events. Many other functions with dif-
ferent analytical properties can possibly be defined in this
subspace, though their existence would not “shift” CM sys-
tems into a different part of the plane, i.e., more comprehen-
sive analyses could complement our results but not invali-
date them.

The results are robust also in respect to the experimental
assumptions. The three physiological constraints considered
in the assumptions are sufficient conditions(and perhaps
necessary as well) to prove the validity of the results. Thus
any other experimental evidence consistent with these well
established constraints cannot invalidate the results.

In conclusion, this study provides a formal demonstration
that unitary events must and do appear in the constrained
population dynamics, to an extent which is related to the
computed lower bound. These results add interesting insights
about how information flows in cortical networks, and
strongly supports coding strategies based on correlation
schemes. Advances in recording techniques are needed for a
final experimental validation of these findings.
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