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The general equilibrium shape equations of polymer chains are analytically derived in this paper. This
provides a unified description for many models, such as the well-known wormlike chain(WLC) model, the
wormlike rod chain(WLRC) model, carbon nanotubes, and so on. Using the WLC model, we find that the
pitch-to-radius ratio of coils, 4.443, agrees with Z-DNA, and the pitch-to-radius ratio from WLRC agrees with
the data of B-DNA qualitatively. Using the general shape equations, we discuss a chiral model in which the
solutions of straight, helical, and circular biopolymers are given, respectively. We also find that the model
suggested by Helfrich[Langmuir 7, 567(1991)] is very appropriate to describe B-DNA(or other biopolymers)
if we choose the four phenomenological parameters asA=50 nm,C=60 nm2, a=40 nm3, andb=50 nm2.
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I. INTRODUCTION

The shapes and topological properties of polymer chains
(such as proteins and DNA) play a significant role during
processes such as replication and transcription[1,2]. Experi-
mentally, a lot of techniques are available to study the con-
formation of polymer chains by bending or twisting them
[2]. And theoretically, many models have been suggested to
describe polymer chains. For example, the wormlike chain
(WLC) model[3] was established to describe the DNA under
a small external forcef,10 picoNewtonspNdg and torque or
semiflexible biopolymers such as actin, with a single elastic
constant as the bending modulus. Another model, the worm-
like rod chain(WLRC) model [4] is appropriate to describe
DNA with its double-helix structure under a moderate force.
The conformations of polymer chains are approached by us-
ing Lagrangian mechanics[5–9]. However, although consid-
erable work has been done on various equilibrium properties
(for instance, the force-extension relation of DNA) of all
these models, the general equilibrium shape equations of
polymer chains have not been determined so far. It plays a
crucial role in understanding the properties of polymer
chains. On the other hand, equilibrium shape equations of
vesicle membranes were derived[10] over ten years, by
which some characters of membranes have been studied
theoretically. It is significant to determine the equilibrium
shape equations of polymer chains. From them, the proper-
ties of polymer chains can be studied theoretically and their
behaviors can be understood well.

Generally, the shape of a polymer chain is characterized
by its curvature and torsion. The effects of bending, twisting,
and the bend-twist coupling of the polymer chain are de-
scribed by a free energy functional[11]. For simplicity, the
contribution of the torsion is often neglected in the free en-
ergy [12,13]. However, the contribution of the torsion plays
an important role in the conformation of polymer chains
[14]. It is necessary to study the general equilibrium shape

equations of polymer chains and the corresponding physical
effects.

In this paper, we consider the free energy density as a
functional of curvature and torsion of a polymer chain to
study its general equilibrium equations. In Sec. II, by making
use of differential geometry and calculating the variation of
the free energy functional, we obtain the precise form of the
general equilibrium shape equations of a polymer chain. In
Sec. III, we bring the WLC model, the WLRC model, and
the results obtained by Feoliet al. [12] into the present
theory as special examples. The typical solutions of the cor-
responding equilibrium shape equations are investigated, and
conformations of the polymer chains such as DNA are dis-
cussed in detail. In Sec. IV, we study the equilibrium equa-
tions of a chiral model derived in Ref.[14]. The conforma-
tions of DNA are discussed in the model. Section V is the
conclusion.

II. THE GENERAL EQUILIBRIUM SHAPE EQUATIONS
OF POLYMER CHAINS

Taking into account the one-dimensional nature of many
polymer chains, we may write the free energyF as a func-
tional defined on smooth curvesXssd in three-dimensional
Euclidean space,

F =E FfXssdgds,

wheres is the length of a polymer chain andF is a scalar free
energy density functional, which depends on the position
vector Xssd which describes the spatial shape of polymer
chains. In three-dimensional ambient space, a smooth curve
has two local invariants: curvaturekssd andtorsiontssd.

The first principal curvaturekssd of a curve characterizes
the local bending of the curve at the points. Hence, the
dependence of the free energy densityF on kssd specifies the
resistance of a polymer chain to be bent, while the second
curvature or torsiontssd is determined by the relative rota-
tion [13] around the tangentdXssd /ds at the points of two-*Email address: zhangsl@mail.xjtu.edu.cn
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neighbor infinitely short elements of the polymer chain. Usu-
ally, people consider the free energyF as a functional only
depending on curvaturekssd, namelyF=Ffkssdg, because a
rotation of a polymer chain results in only a small energy
difference, allowing many overall conformations of a poly-
mer chain to arise[13]. In this paper, considering the chiral-
ity and in order to obtain the precise form of the general
shape equations of polymer chains, we add some terms re-
garding torsion and the derivative of curvature. Thus the free
energy densityF can be written as

F = Ffkssd,tssd,ksssdg. s2.1d

whereksssd=dkssd /ds. Namely, the free energy densityF is
a function depending on curvaturekssd, the derivative of
curvature, and torsiontssd. Thus the free energyF has the
form

F =E Ffkssd,tssd,ksssdgds=E Fsk,t,ksdds. s2.2d

We use a natural parametrization of the curveXssd in
three-dimensional Euclidean spacexissd , i =1,2,3, to de-
scribe a polymer chain. In this parametrization,

dxi

ds

dxi

ds
= sX8,X8d = 1

or

ds2 = dxidxi = sdX,dXd, s2.3d

wheres,d denotes the inner product. As usual, the sum over
the repeated indexes is assumed in the corresponding range
and, for convenience, differentiation with respect to the natu-
ral parameters will be denoted by a prime. Thus the curva-
ture kssd can be defined as

k2ssd =
d2xi

ds2

d2xi

ds2 = sX9,X9d. s2.4d

For an arbitrary functionalF defined on smooth curves
xissd in three-dimensional space, the Euler-Lagrange equa-
tions are a set of three equations

dF

dxi = 0, i = 1,2,3. s2.5d

We shall use the orthonormal Frenet basisheaj associated
with the curveXssd, where

sea,ebd = dab, a,b = 1,2,3, s2.6d

and the Frenet equations governing the motion of this basis
along the curveXssd,

dea

ds
= vabeb, vab + vba = 0, s2.7d

where

v1,2= − v2,1= kssd, v2,3= − v3,2= tssd. s2.8d

The first vector,e1, is directed along the tangent of the curve
at the points, or e1ssd=dX/ds=X8. The variation of the
space form of the polymer chain,

dXssd = «assdeassd, a = 1,2,3, s2.9d

results in the following variation of the free energy func-
tional (2.2):

dF = dF1 + dF2 + dF3 + dF4, s2.10d

where

dF1 =E dsF18dkssd, dF2 =E dsF28dtssd,

dF3 =E dsF38dksssd, dF4 =E Fdds, s2.11d

and F18=]F /]k, F28=]F /]r, and F38=]F /]k3. The variation
dds is calculated in a straightforward way,

dds= dÎdxidxi =
dxiddxi

ds
=

dxi

ds
dsdxid = sX8,ddXd.

s2.12d

The substitution of Eq.(2.12) into dF3 in Eqs.(2.11) and the
subsequent integration gives

dF4 = −E sF18k8 + F28t8dsX8,dXdds−E FsX9,dXdds.

s2.13d

By making use of the Frenet equations(2.7) and the variation
(2.9), one can derive

sX8,dXd = se1,dXd = «ase1,ead = «1,

sX9,dXd = se18,dXd = v12se2,dXd = k«2. s2.14d

Then we have

dF4 = −E sF18k8 + F28t8d«1ssdds−E Fke2ssdds.

s2.15d

In order to calculate the variationdF1, we must find the
variation of the curvaturedkssd. Definition (2.3); and the
Frenet equations(2.7) give

kssddkssd = sX9,dX9d = se18,dX9d = kse2,X9d.

Hence

dk = se2,dX9d. s2.16d

Applying Eq. (2.12), one can derive

dX8 = d
dX

ds

=
d

ds
dX −

dXsX8,ddXd
ds2

=
d

ds
dX − X8SX8,

d

ds
dXD

=
d

ds
dX − e1Se1,

d

ds
dXD , s2.17d
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dX9 = d
dX8

ds

=
d

ds
dX8 −

dX8sX8,ddXd
ds2

=
d2

ds2dX − 2e18Se1,
d

ds
dXD − e1

d

ds
Se1,

d

ds
dXD ,

s2.18d

dX- = d
dX9

ds
=

d

ds
dX9 − X-SX8,

d

ds
dXD . s2.19d

In view of Eqs.(2.6) and(2.16), the last term in Eq.(2.18)
does not contribute todk. Substituting Eq.(2.18) into Eq.
(2.16) and using the Frenet equations(2.7) together with the
variation (2.9), we obtain

dkssd = «29 + k8«1 + «2sk2 − t2d − 2t«38 − t8«3. s2.20d

Substituting Eq.(2.20) into the first formula of Eq.(2.11), we
have

dF1 =E F18dkds=E F18f«29 + k8«1 + «2sk2 − t2d − 2t«38

− t8 «3gds. s2.21d

Now let us calculate the variationdF2. When we have a
curveX=Xssd ands is the natural parameter, the formula of
the torsion ist=sX8 ,X9 ,X-d /k2 where s,,d denotes a triple
product. By a short calculation, we have

dt = − 2
t

k
dk +

1

k2fsdX8,X9,X-d + sX8,dX9,X-d

+ sX8,X9,dX-dg. s2.22d

By making use of

X8 = e1, X9 = ke2, X- = − k2e1 + k8e2 + kte3,

s2.23d

and Eqs.(2.7), (2.17)–(2.19), and (2.23) together with the
expansion(2.9), one can derive

sdX8,X9,X-d = k3Se3,
d

ds
dXD = k3s«38 + «2td, s2.24d

sX8,dX9,X-d = S d2

ds2dX,PD − 2kse2,PdSe1,
d

ds
dXD

= ktfsk2 − t2d«2 − t8«3 − 2t«38 + «29g

+ k8sk2«3 − t8«2 − 2t«28 − «39d, s2.25d

sX8,X9,dX-d = kSe3,
d

ds
dX9D + se3,X-dSe1,

d

ds
dXD

= kf2k2t«2 − t3«2 + 2tk8«1

+ t8sk«1 − 3t«3 + 3«28d − 3t2«38

+ t9«2 + 3t«28 + «3-g. s2.26d

Thus, using Eqs.(2.24)–(2.26) and (2.20), one can writedt
as follows:

dt =
1

k2hk8sk2«3 − t8«2 − 2t«28 − «39d

+ kf2k2t«2 + t8sk«1 − 2t«3 + 3«28d

+ sk2 − t2d«38 + t9«2 + 2t«29 − «3-gj. s2.27d

Finally, let us calculate the variationdF3. Using Eqs.
(2.12), (2.14), and(2.17), it is easy to get

dks =
d

ds
dk − dk

dds

ds2 =
d

ds
dk − k8s«1 − k«2d. s2.28d

The substitution of Eq.(2.20) into Eq. (2.18) yields

dks = s3kk8 − 2tt8d«2 + k8«18 + sk2 − t2d«28

− 3t8«38 + sk9 − k8d«1 − t9«3

− 2t«39 + «2-. s2.29d

Noting the inextensibility of the polymer chain, one has
that the variation ofdF depends only on the normal variation
of the curveXssd, or more precisely, on the variation ofXssd
alongthe two normalse2 ande3. The terms indF1, dF2, dF3,
anddF4 do not depend on the variation«1ssd along the tan-
gent to the curve. Substituting Eqs.(2.15), (2.21), (2.27), and
(2.29) into Eq. (2.10) and taking into account Eq.(2.11), we
obtain

dF =E dsXH d2

ds2S2F28t

k
+ F18D +

d

ds
S2F28k8t

k2 +
3F28t8

k
D

+ FF18sk
2 − t2d − F28S2kt −

k8t8

k2 +
t9

k
DG − Fk

+ F38s3kk8 − 2tt8d −
d

ds
fF38sk

2 − r2dg −
d3

ds3F38J«2ssd

− H d3

ds3SF28

k
D +

d2

ds2SF28k8

k2 D +
d

ds
FF28

k
sk2 − t2d − 2tF18G

+ F18t8 − F28k8 +
F28t8t

k
+

d2

ds2s2F38td −
d

ds2s3F38t8d

+ F38t9J«3ssdD = 0. s2.30d

From Eq.(2.30), two equations for principal curvatures fol-
low:

d2

ds2S2F28t

k
+ F18D +

d

ds
S2F28k8t

k2 +
3F28t8

k
D + FF18sk

2 − t2d

− F28S2kt −
k8t8

k2 +
t9

k
DG − Fk + F38s3kk8 − 2tt8d

−
d

ds
fF38sk

2 − t2dg −
d3

ds3F38 = 0, s2.31d
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d3

ds3SF28

k
D +

d2

ds2SF28k8

k2 D +
d

ds
FF28

k
sk2 − t2d − 2tF28G + F18t8

− F28k8 +
F28t8t

k
+

d2

ds2s2F38td −
d

ds
s3F38t8d + F38t9 = 0.

s2.32d

The two equations are exactly the general shape equations of
polymer chains, which provides a uniform description for the
equilibrium shapes of polymer chains. If we can correctly
construct the free energy densityF of a polymer chain, we
can always obtain its equilibrium shape equations immedi-
ately by substitutingF into Eqs.(2.31) and (2.32). Further-
more, because the two equations are equations of mathemati-
cal physics, they are also fit for describing the shapes of
carbon nanotubes[15,20] and even strings[12].

III. FEOLI’S FORMULISM AND EQUILIBRIUM SHAPE
EQUATIONS OF WLC AND WLRC MODELS

From the equilibrium shape equations(2.31) and (2.32),
many results can be derived. When the free energy densityF
depends only on the curvaturekssd, one can write F
=Ffkssdg, and we haveF8=F18=]F /]k ,F28=0, andF38=0. In
view of the general shape equations(2.31) and (2.32), we
obtain

d2

ds2F8 + F8sk2 − t2d = Fk, s3.1d

2
d

ds
sF8td = F8t8. s3.2d

We see that Eqs.(3.1) and (3.2) are exactly the results ob-
tained by Feoliet al. [12]. From Eqs.(3.2) and (3.1), we
obtain

t =
C

sF8d2 , s3.3d

d2

ds2F8 + F8Sk2 −
C2

sF8d4D − Fk = 0, s3.4d

whereC is an integration constant.
We write the free energy densityF of the WLC model as

follows (having been rescaled) [13]:

F = Fskd = k2 + l,

wherel is a constant denoting an external force or a con-
straint, k is the curvature. Obviously we haveF8=F18
=]F /]k=2k. Then we obtain

2k9 + k3 − lk −
C2

8k3 = 0. s3.5d

Using Eq.(3.3), we can easily obtain

k2t =
C

4
= C1, s3.6d

whereC1 is a constant. Therefore, Eq.(3.5) can be written as

0 = 2k9 + k3 − lk − 2kt2,

C1 = k2t. s3.7d

Equations(3.7) are just the ones obtained by Langeret al.
[13] with the Gauss curvatureG=0, which is because the
three-dimensional Euclidean space is a flat space.

A coiled polymer chain can be described by

r ssd = „r0cossvsd,r0sinsvsd,hvs…, s3.8d

where the coiled pitchp=2ph, r0 is the coil radius, andv
=1/Îfr0

2+h2g. Substituting

k =
r0

r0
2 + h2, t =

h

r0
2 + h2 s3.9d

into Eq. (3.7), we obtain

r0
2 − 2h2 − sr0

2 + h2d2l = 0. s3.10d

This is the equation for helical chains. Lettingl=m/a, we
see Eq.(3.10) is the result obtained in the study of confor-
mations of multiwalled carbon nanotubes[15].

Furthermore, ifl=0, which means no external forces or
constraints,we haver0=Î2h, and noting that for the pitch of
coiled polymer chainsp=2ph, we also have

p

r0
= Î2p < 4.443, s3.11d

which agrees well with Z-DNA[16] with p=4.46 nm and
r0=0.90 nm, thusp/ r0<4.96. This result means that it is
reasonable to approximately write the free energy density of
Z-DNA as the formF=sA/2dk2.

For the WLRC model[4,9,17], the corresponding free en-
ergy density is given as follows:

F = Fsk,td =
A

2
k2 +

C

2
st − v0d2, s3.12d

whereA is the usual bending rigidity,C is the twist rigidity,
andv0=2p /p (p is the helical repeated length). For B-DNA
[16], A<50 nm,C<1.5 A, andv0<1.85 nm−1.

Obviously, we haveF18=]F /]k=Ak, F28=]F /]r =Cst
−v0d. In view of Eqs.(2.31) and (2.32), we obtain the cor-
responding equilibrium shapeequations as follows:

Ak5 − k3fs2A + 5Cdt2 − 6Cv0t + Cv0
2g + 2Cs3v0 − 5tdk8t8

+ 2Ak2k9 + 2Ckf6st8d2 + s5t − 3v0dt9g = 0, s3.13d

− 2Ak4tk8 + 6Csv0 − tdsk8d3 + sC − Adk5t8 + 6Ckk8fk8t8

+ st − v0dk9g − Ck2s− t3k8 + v0t2k8 + 3t8k9 + 3k8t9

+ tk- − v0k-d + Ck3s− 2t2t8 + v0tt8 + t-d = 0.

s3.14d

For the solutions of helical chains, substituting Eq.(3.9) into
Eqs.(3.13) and (3.14), we obtain
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s2A + 5Cdh2 − Ar0
2 − 6Cv0hsh2 + r0

2d + Cv0
2sh2 + r0

2d2 = 0.

s3.15d

For B-DNA, we can plot the curve ofr0 versush, shown as
a solid curve in Fig. 1. We see that the value ofr0/h is not a
constant. Whenh<0.54 nm, r0<1.26 nm, which is larger
than the experimental data of B-DNA,[16], r0=1 nm. So it
appears the WLRC model is not very appropriate to describe
B-DNA. However, because the value ofh of DNA is in the
interval [16] (0.2,0.7), in which the extent of the curve of the
r0 versush relation deviating from the straight lines is not
very big, the WLRC model is somewhat appropriate to de-
scribe DNA.

If v0=0, the corresponding free energy density has the
form [17,18]

F = Fsk,td =
A

2
k2 +

C

2
t2, s3.16d

and we can easily getp/ r0<1.948, which is much smaller
than any one measured experimentally. For example, the cor-
responding values ofp/ r0 of A-DNA, B-DNA, and C-DNA
are 2.435, 3.4, and 3.263, respectively[16]. Therefore, it is
not appropriate to describe the free energy density of DNA
by Eq. (3.16).

IV. EQUILIBRIUM SHAPE EQUATIONS OF THE MODEL
OF CHIRAL BIOPOLYMERS

Let us discuss a chiral model which favors special chiral-
ity, originally suggested by Helfrich[14]. The corresponding
free energy densityF reads[14,19]

F = Fsk,td =
A

2
k2 +

C

4
k4 −

a

2
k2t +

b

2
sks

2 + k2t2d + l,

s4.1d

wherel is a constant denoting a constraint or a force, andA,
C, a, b are all non-negative constants. The term −sa /2dk2t
is associated with the chirality of biopolymers. In view of
Eqs. (2.31) and (2.32), one can derive the corresponding
shape equations as follows:

2Ask3 − 2kt2 + 2kssd − 4lk − 2as3k3t − 2kt3 + 6ksts

+ 2ktss+ 6ksstd + Cs3k5 − 4k3t2 + 24kks
2 + 12k2kssd

+ 2bs5k3t2 − 2kt4 + kks
2 − 2k2kss− 2kssss+ 12ksst

2

+ 24kstts + 8kttss+ 6kts
2d = 0, s4.2d

4As2kst + ktsd − 2as6kst
2 + 6ktts − 3k2ks − 2ksssd

+ Cs4k3ts + 24k2kstd + 4bs4kst
3 + 6kt2ts − 3k2kst

− k3ts − 4kstss− 6kssts − 4kssst − ktsssd = 0. s4.3d

This result has also been derived previously by Zhaoet al. in
the study of kink instability in circular DNA[19].

Now let us make use of the equilibrium shape equations
(4.2) and (4.3) to discuss some possible solutions.

A. Solutions of straight biopolymers

From Eqs.(4.2) and (4.3), we can easily obtain the van-
ishing curvature and torsion,

k = 0, t = 0,

as solutions of the shape equations. Obviously, the above
solutions give a straight line, which corresponds to straight
biopolymers.

B. Solutions of helical biopolymers

The shape equations(4.2) and(4.3) possess a nonvanish-
ing constant curvature and a torsion solution as Eq.(3.9).
Substituting Eq.(3.9) into Eqs.(4.2) and (4.3), we obtain

Cr0
2s4h2 − 3r0

2d + 2As2h6 + 3h4r0
2 − r0

6d − 2ahs2h4 − 3h2r0
2

− r0
4d + 2bh2s2h2 + 3r0

2d + 4lsr0
2 + h2d4 = 0, s4.4d

which is the equation for helical biopolymers, corresponding
to the free energy density Eq.(4.1).

Let l=0, which means no external forces or constraints,
and whenA=50 nm,C=60 nm2, a=40 nm3, b=50 nm2, we
find the value ofr0/hs<1.848d is almost a constant, which
agrees well with the experimental value of B-DNA[16] (see
Fig. 2). Therefore, we can expect that it is reasonable to
describe properties of DNA by the above model with the
corresponding parametersA, C, a, b.

C. Solutions of circular biopolymers

We know that the shape equations(4.2) and(4.3) possess
a ring like solution with a vanishing torsiont=0 and a con-
stant curvaturek. In view of this, from Eqs.(4.2) and (4.3)

FIG. 1. The coil radiusr0 vs h of the WLRC model of B-DNA,
where h=p/2p and p is the helical pitch.The straight lines of
B-DNA, C-DNA, and A-DNA arer0=1.848h, r0=1.926h, and r0

=2.58h, which are the experimental results[16].
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we obtain 3Ck4+2Ak2−4l=0, of which we can write out
the solutionk as follows.

WhenC=0, we have

k =Î2l

A
, s4.5d

and whenC is nonzero, we have

k = F− A + ÎA2 + 12Cl

3C
G1/2

. s4.6d

From Eq.(4.5), if we let A=2, we havek=Îl=1/R, where
R is the radius of the circle. Furthermore, if we letl=m/a,

we see the result is just the one obtained in the study of
conformations of multiwalled carbon nanotubes[20].

V. CONCLUSION

To conclude, we have derived two rather general equilib-
rium shape equations(2.31) and (2.32) of a polymer chain.
Also, the results of Feoliet al. have been generalized, and
the equilibrium shape equations of the well known wormlike
chain (WLC) model and the wormlike rod chain(WLRC)
model have been obtained by making use of our general
equilibrium shape equations. We find that the ratio of pitch
and radius of coil is about 4.443 in the WLC model, which
agrees well with Z-DNA[16]. And the ratio of the coil pitch
to the radius from WLRC agrees with the data of B-DNA
[16] qualitatively. We find that the model suggested by Ref.
[14] is very appropriate to describe B-DNA(or other
biopolymers) if we choose the four phenomenological pa-
rameters asA=50 nm, C=60 nm2, a=40 nm3, and b
=50 nm2.

Our present approach does not take into account the con-
formation entropy of the chain because it is a phenomeno-
logical theory. Although the particular choice of the effective
energy may represent entropic contributions, temperature ef-
fects, and fluctuations, it is necessary to consider the micro-
scopic theory of polymer chains in future work.
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