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General equilibrium shape equations of polymer chains
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The general equilibrium shape equations of polymer chains are analytically derived in this paper. This
provides a unified description for many models, such as the well-known wormlike GMdi) model, the
wormlike rod chain(WLRC) model, carbon nanotubes, and so on. Using the WLC model, we find that the
pitch-to-radius ratio of coils, 4.443, agrees with Z-DNA, and the pitch-to-radius ratio from WLRC agrees with
the data of B-DNA qualitatively. Using the general shape equations, we discuss a chiral model in which the
solutions of straight, helical, and circular biopolymers are given, respectively. We also find that the model
suggested by HelfriclLangmuir 7, 567(1991)] is very appropriate to describe B-DNAr other biopolymers
if we choose the four phenomenological parameter8as0 nm,C=60 nn?, =40 nn¥, and =50 nnt.
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[. INTRODUCTION equations of polymer chains and the corresponding physical
ffects.

In this paper, we consider the free energy density as a
nctional of curvature and torsion of a polymer chain to
study its general equilibrium equations. In Sec. Il, by making
use of differential geometry and calculating the variation of
the free energy functional, we obtain the precise form of the

eneral equilibrium shape equations of a polymer chain. In

ec. lll, we bring the WLC model, the WLRC model, and

The shapes and topological properties of polymer chaing
(such as proteins and DNAplay a significant role during fu
processes such as replication and transcrigtlo®y. Experi-
mentally, a lot of techniques are available to study the con
formation of polymer chains by bending or twisting them
[2]. And theoretically, many models have been suggested t
describe polymer chains. For example, the wormlike chai
(WLC) model[3] was established to describe the DNA underthe results obtained by Feodit al. [12] into the present

a small external forcg<10 picoNewton(pN)] and torque or - yheqry a5 special examples. The typical solutions of the cor-

semiflexible biopolymers such as actin, with a single elaStiCresponding equilibrium shape equations are investigated, and

constant as the bending modulus. Another model, the Wormegnformations of the polymer chains such as DNA are dis-
like rod chain(WLRC) model[4] is appropriate to describe ¢ sseq in detail. In Sec. IV, we study the equilibrium equa-
DNA with its double-helix structure under a moderate force.+ions of a chiral model derived in Ref14]. The conforma-

The conformations of polymer chains are approached by Usjong of DNA are discussed in the model. Section V is the
ing Lagrangian mechani¢s—9). However, although consid- ., cjusion.

erable work has been done on various equilibrium properties

(for instance, the force-extension relation of DNAf all

these models, the general equilibrium shape equations ofll. THE GENERAL EQUILIBRIUM SHAPE EQUATIONS
polymer chains have not been determined so far. It plays a OF POLYMER CHAINS

crucial role in understanding the properties of polymer

chains. On the other hand, equilibrium shape equations of I'I'aklng ;]nt_o account the O_Pe:[glmfensmnal hature fOf many
vesicle membranes were derivgdlO] over ten years, by polymer chains, we may write the free enerfgjas a func-

which some characters of membranes have been studidl@n@! defined on smooth curved(s) in three-dimensional
theoretically. It is significant to determine the equilibrium Euclidean space,

shape equations of polymer chains. From them, the proper-
ties of polymer chains can be studied theoretically and their F :f F[X(s)]ds,
behaviors can be understood well.

Generally, the shape of a polymer chain is characterizeyheresis the length of a polymer chain arfiis a scalar free
by its curvature and torsion. The effects of bending, twisting,energy density functional, which depends on the position
and the bend-twist coupling of the polymer chain are devector X(s) which describes the spatial shape of polymer
scribed by a free energy functiongll]. For simplicity, the  chains. In three-dimensional ambient space, a smooth curve
contribution of the torsion is often neglected in the free enas two local invariants: curvatures) andtorsions(s).
ergy [12,13. However, the contribution of the torsion plays  The first principal curvatura(s) of a curve characterizes
an important role in the conformation of polymer chainsihe |ocal bending of the curve at the poisit Hence, the
[14]. It is necessary to study the general equilibrium Shap%lependence of the free energy densitgn «(s) specifies the

resistance of a polymer chain to be bent, while the second
curvature or torsionr(s) is determined by the relative rota-
*Email address: zhangsl@mail.xjtu.edu.cn tion [13] around the tangerdX(s)/ds at the points of two-
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neighbor infinitely short elements of the polymer chain. Usu- oX(s) = e,(9)ey(s), a=1,2,3, (2.9
ally, people consider the free enerfyas a functional only _ . e

depending on curvature(s), namely F= F«(s)], because a r_esults in the following variation of the free energy func-
rotation of a polymer chain results in only a small energytional (2.2

differenc_e, alloyving many _overaII conforr_natipns of a poly- OF = 6F 1 + 6F, + 6F 3+ OF,, (2.10
mer chain to aris¢13]. In this paper, considering the chiral-

ity and in order to obtain the precise form of the generaWhere

shape equations of polymer chains, we add some terms re-

garding torsion and the derivative of curvature. Thus the free 6F1:f dsF; sk(s), 5F2:f dsF,67(s),

energy density= can be written as

F=Fk(s),7(s),ks(s)]. (2.7)

wherek(s)=d«(s)/ds. Namely, the free energy densifyis
a function depending on curvaturgs), the derivative of
curvature, and torsion(s). Thus the free energl has the
form

5F3:fdsF§5ks(s), 5F4:JF5ds, (2.11
and Fi=dF/dk, F,=dFldr, and F;=dF/dkz. The variation
&dsis calculated in a straightforward way,

—— dXsdX  dX
dds= SVdxXdx = ——— = —d(&X') = (X', doX).
S= 6V 45 - ds (ox) = ( )
(2.12

The substitution of Eq(2.12) into 6F3 in Egs.(2.11) and the
subsequent integration gives

F:fF[K(S),T(S),KS(S)]dS:fF(K,T,KS)dS. (2.2

We use a natural parametrization of the cuXes) in
three-dimensional Euclidean spae&s),i=1,2,3, to de-
scribe a polymer chain. In this parametrization,

dXdX _ o xy=1 4= - f (Fjx' + Fy)(X", 8X)ds— f F(X", 8X)ds.
ds ds ’
or (2.13
d? = dxdy = (dX,dX) 2.3 By making use of the Frenet equatiqi2s7) and the variation

(2.9), one can derive
where(,) denotes the inner product. As usual, the sum over , _ _ _
the repeated indexes is assumed in the corresponding range (X7, 8X) = (€1, 6%) = eq(€1,€0) = &1,
and, for convenience, differentiation with respect to the natu-

ral parametes will be denoted by a prime. Thus the curva- (X", 6X) = (e1,0X) = w185, 0X) = kep.  (2.14)

ture k(s) can be defined as Then we have
axdx
K3(s) = 42 42 =(X",X"). (2.9 OF,= —f (Fix' + FéT')sl(S)dS—f Fkey(s)ds.
For an arbitrary functionaF defined on smooth curves (2.15

X(s) in three-dimensional space, the Euler-Lagrange equa-

tions are a set of three equations In order to calculate the variatioff;, we must find the

variation of the curvatureSk(s). Definition (2.3); and the

SF . .
=0, =123 (2.5 Frenet equation&.7) give

v

ox K(9)5x() = (X', 6X') = (], X') = (€ X") .
We shall use the orthonormal Frenet bafeg associated
with the curveX(s), where

(en8) =84 a,b=1,2,3, (2.6

Hence
Sk = (€5, 8X"). (2.16

Applying Eq.(2.12), one can derive
and the Frenet equations governing the motion of this basisppy 9 Ea.(212

along the curveX(s), 5! = 5d_X

d ds

&

E:wabebu 0‘)ab+wba:01 (27) _E B dX(X/,d5X)

where ds ds’
w1 2= = wp1=K(S), wp3=—w3,=1(S). (2.8 :dggx_)('()(/,dggx)
s s
The first vectorg,, is directed along the tangent of the curve g g
at the points, or e;(s)=dX/ds=X'. The variation of the _ ( )
i - _5X - ,_6)( Il 2 1

space form of the polymer chain, ds €1\ & d (217
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axr = 5%
ds
Ao dX’ (X’,doX)
ds ds’
= d—z(sx— 2e’(e g(SX> -e E(e g5X>
ds N as™) s\ s
(2.18
sxr= 59X = Qs - x"'(x',ﬂax> . (219
ds ds ds

In view of Eqgs.(2.6) and(2.16), the last term in Eq(2.18
does not contribute téx. Substituting Eq(2.18 into Eq.
(2.16) and using the Frenet equatiofis7) together with the
variation(2.9), we obtain

Ok(S) = e+ k'ey + e(k* — 17) = 2185 — T'e5. (2.20)
Substituting Eq(2.20 into the first formula of Eq¢2.11), we
have

oF, = f F;6kds= f Fileh+ k'e, + e(k* — 1°) — 2784

-7 g3]ds.

(2.21

Now let us calculate the variatiofF,. When we have a

PHYSICAL REVIEW E 70, 051902(2004)

Thus, using Eqs(2.24—2.26) and (2.20), one can writedr
as follows:

1
St= E{K’(Kzss -7y~ 2789 — &%)

+ k[2K218,+ 7' (key — 27e53 + 3e5)
+ (k2= Pey+ e, + 276y — £5 1}

(2.27)

Finally, let us calculate the variationF;. Using Egs.
(2.12, (2.14), and(2.17), it is easy to get

S —25 -d ﬁs—gé— "(e1— Kkey). (2.28
K= oK ~ kg = 0k = k(81— Kep). .
The substitution of Eq(2.20 into Eq. (2.18) yields
Oks= (Brk' =277 )e, + k' + (K?- 72)sé
=375+ (K" = Kk')e;— T'e3
- 275+ &y . (2.29

Noting the inextensibility of the polymer chain, one has
that the variation obF depends only on the normal variation
of the curveX(s), or more precisely, on the variation ¥fs)
alongthe two normalse, ande;. The terms indF,, 6F,, 6F3,
and &F, do not depend on the variatian(s) along the tan-

curve X=X(s) ands is the natural parameter, the formula of 96Nt t0 the curve. Substituting Eq&.15), (2.23), (2.27), and

the torsion is7=(X',X",X")/k?® where(,,) denotes a triple
product. By a short calculation, we have

T 1
57.: —_ 2_5K + _2[(5X/,XN,X/”) + (x/,(s)(”,x”/)
K K

+ (X', X", 8X™)]. (2.22)
By making use of
X'=e, X'=«ke, X"=-k +k'e,+Kre;,
(2.23

and Egs.(2.7), (2.17—2.19, and (2.23 together with the
expansion(2.9), one can derive

d
(X!, X" X" = K3<e3,as 5x> =i3(ep+e,m), (2.29

(X', X", X" = (d—zﬁx, P) - 2k(ey, P)<e1,£6X>
ds? ds
= k1{(K? = P)e,— 75— 2765 + €5
+ k' (KPe3— T8, — 2765 —€4), (2.2
(X', X7, X") = K<e3,35x"> + (eg,x"')<e1,35x>
ds ds
= k[2K°Te, — Toe,+ 27K €
+ 7' (ke, — 3785+ 3e,) — 37%e4

+7'g,+ 3785 + 5 ]. (2.26

(2.29 into EqQ.(2.10 and taking into account E@2.11), we
obtain

5F—st( d_2(2F57+F,)+£<2F§K'7+3FQT')
- dg\ « Yods\ k2 K

7
—2+—):| - Fk
K

+ {Fi(/(z -P)- Fé(ZKT—

K
! d ! d3 !
+ F3(3kk’ = 277) - d—S[F3(k2 -r?)]- @Fs £,(9)
& E) dj(i) E{iﬁ o ]
{d§’<k *ag\ e ) tag KT TR

R L
1 2K K ds

d
(2F37) - @(35’37’)
+ FH}%(S)) =0. (2.30

From Eq.(2.30), two equations for principal curvatures fol-
low:

@ (2Fr )\ d[2FK T 3Fr ,
R S S L e
k// 7_]/
- Fé(ZKT— k—; + ?)} - Fr+ F3(3kk’ — 277")
d ., &
= g Falx —72)]—@&:0, (2.3
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da(’:é) d2<Fék’> d|:Fé 5 ] 0=2k"+ k3= Nk — 2k 7,
S\ =+ S| 5| (- P) = 2R, | + AT
ds’\ « ds\ «? ds| « (K ) 2 17
- 2
o ,+FéT,T+d_2(2F, )_E(3F, ’)+F,T"_O Cl_K T. (37)
2 k d2 3T T gg T T T = Equations(3.7) are just the ones obtained by Langsral.

(2.32) [13] with the Gauss curvatur&=0, which is because the
three-dimensional Euclidean space is a flat space.

The two equations are exactly the general shape equations of A coiled polymer chain can be described by
polymer chains, which provides a uniform description for the
equilibrium shapes of polymer chains. If we can correctly r(s) = (rocogws), rgsin(ws), hws), (3.9
construct the free energy densiyof a polymer chain, we . . . . .
can always obtain its equilibrium shape equations immediwher%mled pitctp=2mh, o is the coil radius, and
ately by substitutingF into Eqgs.(2.3) and (2.32. Further-  —1/\[rg+h"]. Substituting
more, because the two equations are equations of mathemati- o h

cal physics, they are also fit for describing the shapes of K=, =5 (3.9
carbon nanotubefl5,2Q and even string$12]. rg+h rg+h
lll. FEOLI'S FORMULISM AND EQUILIBRIUM SHAPE into Eq.(3.7), we obtain
EQUATIONS OF WLC AND WLRC MODELS 2 2
rg—2h?—(r§+h?2x =0. (3.10

From the equilibrium shape equatio(®31) and(2.32,
many results can be derived. When the free energy defsity This is the equation for helical chains. Letting-m/a, we
depends only on the curvature(s), one can write F  see EQq.(3.10 is the result obtained in the study of confor-
=F[«(s)], and we have~’ = F}=dF/ dx,F,=0, andF;=0. In  mations of multiwalled carbon nanotubf].

view of the general shape equatiof&s31) and (2.32, we Furthermore, if\=0, which means no external forces or
obtain constraints,we have,=12h, and noting that for the pitch of
P coiled polymer chainp=2xh, we also have
@F'+F’(K2—TZ)=FK, (3.1 -
l‘_ =27 = 4.443, (3.11
0
d
2d—S(F’T) =F'7. (3.2 which agrees well with Z-DNA16] with p=4.46 nm and

ro=0.90 nm, thusp/ro=4.96. This result means that it is

We see that Eqg3.1) and(3.2) are exactly the results ob- reasonable to approximatelyzwrite the free energy density of
tained by Feoliet al. [12]. From Egs.(3.2 and (3.1, we  Z-DNA as the formF=(A/2)«".
obtain For the WLRC mode[4,9,17, the corresponding free en-

c ergy density is given as follows:

T=—-, (3.3
(F") F= F(K,T):§K2+g(7'—wo)2, (3.12
d? c?
@F’ + F’(Kz - W) - Fk=0, (3.4 whereA is the usual bending rigidity is the twist rigidity,
and wy=27/p (p is the helical repeated lengthH-or B-DNA
whereC is an integration constant. [16], A=~50 nm,C=~1.5 A, andwy~1.85 nnm,
We write the free energy densify of the WLC model as Obviously, we have F;=dF/dk=A«k, F,=dF/dar=C(r
follows (having been rescalgdl13]: —wg). In view of Egs.(2.31) and(2.32, we obtain the cor-

F=F(k)= 124\, responding equilibrium shapeequations as follows:
where is a constant denoting an external force or a con- Ak® = K*[(2A+5C) 7 = 6Cwo7+ Cwg] + 2C(3wg = 57)k' 7/
straint, « is the curvature. Obviously we havé’'=F; + 28k%K" + 2CK[6(7')2 + (57— 3wg) 7] = 0, (3.13
=dF/dk=2k. Then we obtain

CZ — 4 ’ _ "3 _ 5_1 2 ’r
2K+ K3 = \k=-—5=0. (3.5 2Ak" 1K' + 6C(wp = 7)(k')* + (C = A 7" + 6Cki’[K' T
o + (7= wo)K"] = CK(= Pk’ + wor?k’ + 37 K" + 3k 7"
Using Eq.(3.3), we can easily obtain 71" = o) + CKY(= 2227 + wyrr +7) =0,
c d
K2r=—= Ci, (3.6) (3.19

4 For the solutions of helical chains, substituting E2}9) into

whereC; is a constant. Therefore, E.5) can be written as EQs.(3.13 and(3.14), we obtain

051902-4
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; E:elgél.ﬁRCmodel EF= F(K,T) - éK2+ EKA_ EK2T+ E
1f{ = C-DNA 20 4 2 2
T (4.9

where\ is a constant denoting a constraint or a force, And
C, a, B are all non-negative constants. The terfa/2)k’r

is associated with the chirality of biopolymers. In view of
Egs. (2.31)) and (2.32, one can derive the corresponding
shape equations as follows:

2A(K3 = 2k 7 + 2Kg) — Ik — 2a(3K3T = 2K7° + BKyTs
+ 2K Tgg+ Biger) + C(3K® — 4377 + 24KK2 + 127K
+2B(5k37% - 2k7* + KKé = 2K%Kgs— 2Kessst 12Kss™
+ 24KgTTs + 8K 7Tt 6k72) =0, (4.2

(K§+ K272) + \,

Coil radius [ (nm)
- R

o
o

o
>

o
n

02 1 L L 1 1 L 1 1 L
0.2 0.25 03 0.35 0.4 0.45 05 0.55 0.6 0.65 07
h (nm)

AA(2kT+ KTg) — 206K + BKTTs — 3KPKs— 2Kgsd

FIG. 1. The coil radiusg vs h of the WLRC model of B-DNA, 3 2 2
where h=p/27 and p is the helical pitch.The straight lines of + C(4r°Ts+ 24nPksT) + 4B(AKsT + BT 75— Bk KsT
B-DNA, C-DNA, and A-DNA arery=1.848, ry=1.926, andrg — K37 — AKgTes— BKsaTs — AKssd — KTssd = 0. (4.3
=2.5&, which are the experimental resu[tss].

This result has also been derived previously by Zégal. in
2 2 2 2o the study of kink instability in circular DNA19].

(2A+5C)h? = Arg— 6Cwgh(h? + r5) + Cwg(h? +r5)2 = 0. Now let us make use of the equilibrium shape equations

(3.195 (4.2) and(4.3) to discuss some possible solutions.

A. Solutions of straight biopolymers
For B-DNA, we can plot the curve af, versush, shown as g POl

a solid curve in Fig. 1. We see that the valuergfh is not a From Egs.(4.2) and(4.3), we can easily obtain the van-
constant. Wherh=0.54 nm,r,~1.26 nm, which is larger ishing curvature and torsion,

than the experimental data of B-DNALE], ro=1 nm. So it -0 -0

appears the WLRC model is not very appropriate to describe =5 T
B-DNA. However, because the value lofof DNA is in the  as solutions of the shape equations. Obviously, the above
interval[16] (0.2,0.7, in which the extent of the curve of the solutions give a straight line, which corresponds to straight
ro versush relation deviating from the straight lines is not biopolymers.

very big, the WLRC model is somewhat appropriate to de-

scribe DNA. _ _ B. Solutions of helical biopolymers
If wy=0, the corresponding free energy density has the _ .
form [17,18 The shape equationd.2) and(4.3) possess a nonvanish-

ing constant curvature and a torsion solution as ).
Substituting Eq(3.9) into Egs.(4.2) and(4.3), we obtain
F=F(k,7) = g,(z + %2, (3.16 Cr3(4h? - 3rd) + 2A(2h% + 3h*3 - rd) — 2ah(2h* - 3h?r2
- rg) +2Bh%(2h% + 3rd) + AN(r3+ h?)*=0, (4.9
and we can easily gat/ro~1.948, which is much smaller which is the equation for helical biopolymers, corresponding
o~ 4. , .
than any one measured experimentally. For example, the 00?9 the fr(ie energy density EG1.1). .
responding values qb/r, of A-DNA, B-DNA, and C-DNA Let A=0, which means no external forces or constraints,
0 . y BT ’ - — — — —
are 2.435, 3.4, and 3.263, respectivgly]. Therefore, it is ﬁﬂg \tme\m 2%2@&:?0823?}:;'?02& '[g (;nSSCt)aT':%wV\rlw?ch
not appropriate to describe the free energy density of DNA Lo '
by Eq.(3.16 agrees well with the experimental value of B-DNZ§] (see
L Fig. 2). Therefore, we can expect that it is reasonable to
describe properties of DNA by the above model with the

corresponding parametefs C, «, B.
IV. EQUILIBRIUM SHAPE EQUATIONS OF THE MODEL

OF CHIRAL BIOPOLYMERS . . .
C. Solutions of circular biopolymers
Let us discuss a chiral model which favors special chiral- We know that the shape equatioi@s2) and(4.3) possess
ity, originally suggested by Helfriciil4]. The corresponding a ring like solution with a vanishing torsior=0 and a con-
free energy densitf reads[14,19 stant curvaturec. In view of this, from Eqs(4.2) and (4.3

051902-5
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T T T T T T T
— the chiral model .7
— - B-DNA

12F s

Coil radius T (nm)

. L L . . L . . L
0.2 0.25 0.3 0.35 04 045 0.5 0.55 0.6 0.65 0.7
h (nm)

FIG. 2. The coil radiusrg vs h of the theoretical model of
B-DNA with A=50 nm,C=60 nn?, a=40 nn¥, and =50 nn¥.

we obtain Tx*+2Ax%-4\=0, of which we can write out
the solutionk as follows.
WhenC=0, we have

K=\ —, (4.5

and whenC is nonzero, we have
_ {—A+ JAZ+ 12c>\}1’2
K= 3C .

(4.6)

From Eq.(4.5), if we let A=2, we havex= V\=1/R, where
R is the radius of the circle. Furthermore, if we ketm/ «,

PHYSICAL REVIEW E 70, 051902(2004)

we see the result is just the one obtained in the study of
conformations of multiwalled carbon nanotul@§)].

V. CONCLUSION

To conclude, we have derived two rather general equilib-
rium shape equation@.31) and(2.32 of a polymer chain.
Also, the results of Feolét al. have been generalized, and
the equilibrium shape equations of the well known wormlike
chain (WLC) model and the wormlike rod chai@WLRC)
model have been obtained by making use of our general
equilibrium shape equations. We find that the ratio of pitch
and radius of coil is about 4.443 in the WLC model, which
agrees well with Z-DNA16]. And the ratio of the coil pitch
to the radius from WLRC agrees with the data of B-DNA
[16] qualitatively. We find that the model suggested by Ref.
[14] is very appropriate to describe B-DNAor other
biopolymers if we choose the four phenomenological pa-
rameters asA=50 nm, C=60 nn?, «=40nn¥, and B
=50 nnt.

Our present approach does not take into account the con-
formation entropy of the chain because it is a phenomeno-
logical theory. Although the particular choice of the effective
energy may represent entropic contributions, temperature ef-
fects, and fluctuations, it is necessary to consider the micro-
scopic theory of polymer chains in future work.
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