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Length of the tightest trefoil knot
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The physical sense of tight knots provided by #wmo algorithm is discussed. A method allowing one to
predict their length is presented. An upper bound for the minimum length of a smooth trefoil knot is

determined.
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[. INTRODUCTION ments, in particular numerical, provide essential insights. It

) ~_ is the aim of the present paper to describe and analyze the

The conformations of many body systems that minimizeyesyits of a series of numerical experiments performed with
their energy are always mte_restlng since they indicate whichhe yse of thesono algorithm[7], aimed at determining the
structures the systems will take at their ground statesyinimum length of perfect rope which is sufficient to tie the
reached as their temperature drops to 0 K. To simplify CONsimplest of the nontrivial knots: the trefoil knot.
siderations, the interparticle interactions are often considered |, performing the experiments, we were aiming at two
to be hard and thus the structure of the densest packing @fpals: (a) finding provable upper bounds for the ropelength
hard particles becomes an essential issue in the theory @F the trefoil knot andb) finding, via an extrapolation pro-
many real systems. When a system of many interacting pagedure, an estimate of the lowest ropelength. The values of
ticles is replaced by a single knotted filament, a similar questhe ypper bounds are of essential interest to the researchers
tion may still be asked: what is the conformation of its working on the rigorous theory of ideal knai8—12], while
ground state? Here, the essential role is played by the filane value of the estimated least length is of interest to those
ment self-interactions which determine its elastic propertiesstudying the physical properties of knots. For example, to
In the limit case, the self-interactions may be considered t@nswer the basic question of how the tension within a knot-
be hard, leading to the notion pkrfect rope the details of  teq, thermally fluctuating filament depends on its length, we
which appear in the following section. Tying a knot with peed to know the lowest possible value of the length. It may
perfect rope, one may ask the essential question: what is the, aiso of use in the discussion of the length of knots found

length reaches the global minimum? This question has also

been considered using different models, e.g., for knots on the
cubic lattice[1] and for nonoverlapping spher¢g]. Using Il. THE PERFECT ROPE AND ITS CORRUGATED
the model of perfect rope, the only knot for which the length- DISCRETE MODEL

minimiz.ing (idegllas it is spmetimes calledonformation is To make the problem of tightening knots unambiguous we
_known IS the trivial knat, i.e., the unkn(_)t. Its _ropelenglh must specify a model of the rope on which the knots are tied.
i.e., the ratio of the length of the_ rope to its radius, equaids 2 The simplest of such models is tiperfect rope perfectly

Ideal structures of a class of simple links, where each COMpavible and at the same time perfectly hard. By perfectly

ponent is planar, were shown [8]. Furthermore, a balance fqyibje we mean that it can be bent with zero force, thus, no
criterion [4] has made it possible to determine critical CON- o |astic energy is stored in its bends. By perfectly hard, we

figurations for a simple clasp and for the Borromean ringSyean that it cannot be squeezed, i.e., its perpendicular sec-
[5’;5]‘ hOne calnnotlprovehthat these ponflr?urarglons are idegjon always remains perfectly circular. We also assume that
and the results rely on the assumption that the componeniie g, itace of the rope is perfectly slippery. As a result, all

are all planar and lie in perpendicu!ar pIanes.. Sti”! many hanges to the conformation of the knot tied on the perfect
researchers assume that these are ideal configurations. T e need no force to be made and thus no potential energy is
exact structures of the ideal conformations of all other knOt%tored in the knot; it is also so in the case of the system of

and links, and thus their minimal ropelengths, are not knowny a4 particles, e.g., spheres. One may ask about the relation-

But here, as in the case of packing hard spheres, experiy, hetween the conformation of the knot found in the nu-
merical experiments performed on a model rope and the con-
formations of the knot found in real, laboratory experiments.

*Electronic address: pieransk@man.poznan.pl To answer this question, we again refer to the analogy with
URL: http://fizyka.phys.put.poznan.pipieransk/Personal.html the problem of packing hard spheres. All real atoms are not
"Electronic address: rawdon@mathcs.dug.edu hard spheres, but some of them, e.g., the atoms of noble
URL: http://www.mathcs.dug.edttawdon gases, pack during crystallization into the fcc structure. This
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FIG. 3. Corrugated model of the perfect rope.
two portions of the thickened knot get too close, we have the
situation shown in Fig. 1.

What is perhaps less obvious is what effect the self-
avoiding condition places on the curving of its bends. The
sharpness of a bend is described by the curvakuoé the
rope axis. We assume that it cannot be higher thaR 1Iri
Ig)ther words, the radius of curvature can never be smaller
than R. When the curvature is higher thanH,/we get the
situation shown in Fig. 2.

. . . . To perform numerical experiments with knots tied on the
IS SO because_ in the pa_ckmg Process th? spheqial perfect rope, we must first construct its discrete representa-
strongly repulsivg part of its mutual interaction plays the ; . : e .

X X ; . tion. We imagine that a continuous kri¢tis tied with perfect
most essential role, and this part of the interaction can be

replaced by the hard spherical repulsion in model systemerpe' Itis represented in our simulations by a sequence of

Real ropes are not perfect ropes but results we obtain iRO'mS located on the rope axis. The points are indicated by

studying knots tied on the latter provide us with essentialveCtorSV" 1=1,2,...,n. The points can be seen as vertices
studying . i P of a knotted polygorK,. Because the knots that we are con-
insights concerning knots tied on the former.

Let us describe in more detail the basic physical and geo§Iderlng are closed, we implicitly take the subscriptodulo

metrical broperties of the perfect rone. We assume that its- To simplify both the numerical calculations and their in-
i prop ) - P rope. . %erpretation, we assume that consecutive vertices are equidis-
axis has no cusps; thus its tangéns always well defined

tant with the common length of the edges denalédrhus,

and continuous. This guarantees that its perpendicular se¢- . . .
tions are also well defined. We require that they always hthE(p Is an equilateral polygonal representationkofits edges

the shape of disks of radiuR where the centers of these will be treated as vectors

disks are located on the rope akisFurthermore, the section € =Uj41 V. (1)
disks are not allowed to overlap. This guarantees that th
surface of the rope remains self-avoiding. Let us discuss th

last condition in more detail.

FIG. 1. When two pieces of the rope pass too close to eac
other, they overlap.

Eet us emphasize that although all numerical simulations we
perform deal with polygonal knots, their results can, as we

The fact that two arclength-distant pieces of the perfec hall demonstrate, be interpreted in terms of smooth knots.

rope cannot be brought together to a distance smaller tRan 2 0 simulate the .hard shgll of the perfect rope, we assume that
is obvious. Analyzing the situation in formal terms, we arrive each of the vertices df, is surrounded by a sphere of radius

at the conclusion that the doubly critical self-distarice., R. The union of all the spheres can be seen as a particular

the minimum distance between pairs of distinct points Whosé“Odel of the perfect rope. Its surface is corrugated, with the

connecting chord is perpendicular to the tangents at both O?orruganon vanishing with increasing numbers of vertices

: l.e., asdl tends to zerp See Fig. 3. Figure 4 shows the
the point3 of the knot cannot be smaller tha8]. When tightest trefoil knot withn=60 vertices tied on the corrugated

rope. One can see that in the middle region of the knot, the
rope makes a short but distinct wiggle. In this region the

FIG. 2. When a bend in the rope is too sharp, its surface devel- FIG. 4. The tightest trefoil knot tied on the corrugated rope
ops defects. consisting ofn=60 cells.
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FIG. 7. Bending angle at thi¢h vertex.

FIG. 5. Single cell of the corrugated rope.

IIl. NUMERICAL TIGHTENING:

curvature reaches its maximum; thus it must be carefully ALGORITHMS AND PROCEDURES

controlled for reasons described below. The corrugated rope
is built from cells each of which can be seen as a piece of The numerical simulation of knots tightened on the cor-
ball of radiusR. See Fig. 5. Its flat side faces have the shapgugated rope must take care of two essential probl¢asil
of disks of radius cells of the rope should remain well defined, ghyithe cells
should not overlap. To kee@) satisfied, all bending angles
R2-dI?/4.
&1 ¥ &

el

(4)

As the rope is bent, the shapes of the cells change, becoming ®; = arcsi
wedgelike. We assume that the bending is limited by the

condition that the side disk faces of the cells are hard ang, st be determined and those of them which are larger than
thus they cannot overlap. Figure 6 shows the shape of thg  must be reduced. This is achieved by the application of

rope cell in the maximally bent situation. Simple trigonomet-e control curvatur¢CC) procedure which shifts the vertex
ric calculations show that the maximum bending angle is v; to a new position

i S dI W — v;
Omax=2 arcsv(aq) . () v =v; tkee _ (5)

Having defined the accessible shapes of the cells, we are ablgeated closer to the middle point

to define their mutual interaction simply as a hard one. As a

result of this hard interaction, the corrugated rope always Vi Ui

remains self-avoiding. W= (6)

located between verticas_; andwv;,;. The small factokec
is experimentally chosen. Usually it equals 0.001. See Fig. 7.
Such a reduction of the bending angle also reduces the
lengths of edgeg_; andeg. This and other disturbances to
the lengths of edges is removed by the equalize edgEs
procedure, which checks the distances between consecutive
vertices and corrects them. One of a few correction algo-
rithms we use has the following form:

el -dl
UF =vi_kEE| | e, (7a)

(7b)

where thekgg factor controlling the efficiency of the EE
procedure is experimentally chosen. Usually it equals 0.5.

FIG. 6. The shape of the corrugated rope cell in the situation of Keeping(b) satisfied needs more attention. The problem
maximal bending. we face here is that vertices whose index distance
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osculating circle

o

0;

FIG. 9. During the tightening move of E¢L0), each vertex is
moved by a small amount toward the center of its osculating circle.

used in the construction of the inscribed knot in the next

(S S— — section) Let us denote the position of the center of the os-
_ culating circle byO,; and its radius by;. Thus, its curvature
FIG. 8. The tightest turn of the corrugated rope. equalsk;=1/p;. Each vertexv; is moved toward the center
O, of its osculating circle according to the formula
i =il whenli —j| < n/2,
D,(v;,v;) = L. ) 8 r_ O -y
() {n—|| -j| otherwise ® vl S0 i o (10
I I

is smaller thanzR/dl should be allowed to stay closer than , o e cry is a small, experimentally adjusted parameter.

2R (see[14] for a more detailed discussion, in particular with g, 5 choice of the tightening algorithm is natural since it
respect to the fact that the resulting knots are not exactlyjitates what one would observe in reality if a knot sub-

equilatera) since this is what happens when the rope enterg,qgeq in a highly viscous medium were shrinking. Notice
the tightest turn. See Fig. 8. The distances between all pai@D

f . h dex di ds thi ber sh at this procedure of theono (shrink-on-no-overlapsal-
of vertices whose Index distance exceeds this number shoUghyithm is different from the original one. It was first intro-

be larger than R. If they are not, the vertices, say anduv;, duced in[15]
are shifted away by the remove overla@0O) procedure '

according to the formulas IV. INTERPRETATION OF RESULTS: FROM POLYGONAL

, 2R-|vj-vj| +e TO SMOOTH KNOTS
vi=vi~kpo—— (T, (93 o . .
LA The knot tightening simulation procedure delivers vertices
R-| I+ of the polygonal knoK, that can be seen as a skeleton of a
, —|vj-vj|te i i )
vl =v; + ko i (v~ v), (9b) tight knot tied on the corrugated rope. The problem we face

is interpreting the result in terms of a knot tied on @&
smooth perfect rope. There is a simple way to do so. As

where thekgg factor controlling the efficiency of the RO -
procedure is experimentally chosen. Usually it equals O.SShown in[14], the polygonal knoK, can be replaced by the

. : . smooth knotK built from arcs inscribed into corners &,
The value ofe determines the excess distance by which thel’he arcs, which we denof@, are tangent to the consecutive
vertices are shifted apart. Its value, initially#Qis reduced ! '

t th d of the tighteni to40rh y : edges ofK, and connect in &' smooth manner at their
at the end of the tightening process 1o € actions o midpoints. The ar€; is the portion of the osculating circle at

the CC, RO, and EE procedures are not consistent. Remov—i lying in the triangle formed by; and the midpoints of the

ing overlaps and controlling curvature disturbs the length o wo incident edges. The arc has total curvature equal to the

the edges, and vice versa, but in practice, at properly chos - T _ ' :
values of thekec, kro, andkgg factors, the multiple applica- eg};]r;%?hgiﬁggrlﬁ):g"k;a’ ©;. The union of all the arcs is the

tion of all the procedures leads to the common goal: an equi-
lateral, overlap-free knot tied on the corrugated rope. The n
polygonal knotk, can be seen as its skeleton. Ke= iL:JlCi- (1)

The simulation of the tightening process runs as follows.
When, as a result of the multiple application of the RO andSee Fig. 10.
EE procedures, the overlaps and the dispersion of the edge The knotK, can be treated as the axis of a knot tied on the
lengths are brought below an acceptable level, the verticegerfect rope of radiu&.. The circular arcs connect the cen-
are moved by a small amount toward the centers of theiters of the disk-shaped faces and are perpendicular to them.
osculating circlegFig. 9). Let us explain what we mean here Each of the arcs can be seen as the axis of a piece of the
by the osculating circle. Consecutive edggs,e meet at  perfect rope of radiu&;, which is the common radius of all
the vertexv;. Being mostly noncollinear, they define a plane faces. The union of the tubes of radigsabout the arc€; is
within which the(osculating circle tangent to edges_,,e  the knot tied on the perfect rope. The rope as a whole is
at their midpoints is locatedThe osculating circle will be hidden inside the corrugated ropexcept the circles where

|Uj ‘Ui|
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FIG. 11. The raw polygonadl,, inscribedL., and weighted av-
eragel, ropelengths of the tightesiono trefoil knots tied on the
corrugated rope versus the number of vertices.

Dirac ¢ functions localized at the points at which the con-
secutive arcs meet. Their weights are equal to the angles
between consecutive osculating planes.

V. THE RAW POLYGONAL AND THE INSCRIBED
ROPELENGTHS

The problem we face now is how to determine the
—oo limiting length-to-radius ratio of the knot whose dis-
crete representations, for a sequence of increasjngre
tightened by the simulation program. For eaththe pro-
gram delivers vertices; of the polygonal knoK. Since the
spheres used in the construction of the corrugated rope have
radiusR, we may assume that the radius of the rope eqRals
To normalize the results, we assume for the remainder of this
paper thaR=1.

The normalized length, which we shall refer to as tthe
ropelength,of the corrugated rope knot can be found simply
by adding lengths of all edges of its polygonal skelekqn
SinceK, is (within the accepted error rangequilateral, its
raw ropelength is

FIG. 10. Top: the polygonaK, and inscribedK. knots defined n
by the set of vertices delivered by the knot tightening algorithm. Lp= E IVisr — vi| = ndl. (12)
Bottom: the smooth inscribed kn&t, tied with the the perfect rope i=1
of radiusR..

Another way of finding the ropelength is summing up the
consecutive cells of the corrugated rope meet; here the colengthsL(C;) of all circular arcs forming the inscribed knot

rugated rope and the perfect rope coingida view of the K. and dividing the value by the radiug;:
above, the knoK; tied on the perfect rope is self-avoiding.

See Fig. 10. For a formal proof s¢#4]. L= 1 % L(C) (13)
Let us describe some interesting properties of the in- T \,mi:l v

scribed knotK,. Due to its construction, it is piecewise?

(and thusC}) since its tangent vectdris everywhere well Since we know that the smooth ropelengttkafdoes not

defined and continuous, and the curvature is defined at all b#xceedL, theinscribed ropelength Lwill overestimate the

a finite number of points, namely, at the midpoints of theminimum ropelengthi_... See Fig. 10.

edges ofK,,. Being built from circular arcs of various curva- ~ To approximate the value af., we performed a series of
ture radii p;, it has piecewise-constant curvature. Since theknot tightening simulations on the trefoil knot withranging
arcs are planar curves, but the planes within which they aréfom 99 to 2544. Figure 11 presents the results of the rope-
located are in general not coplanar, its torsiois a sum of lengthsL, and L. found for these knots. Indeed, the raw
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FIG. 12. A tight conformation of th€59,2 torus knot.
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FIG. 14. Position of one of the spheres, of which the corrugated
torus is constructed, is controlled by the angldn the picture, the
angle has its maximum valug,a

polygonal and the inscribed ropelengths are seen to convergéys and hills. A similar situation happens when a corrugated
with increasingn to a common value: the former from below, torus is shifted along a corrugated tube. This latter system is
the latter from above. Having obtained these results, is iimple enough to be analyzed rigorously. Thus, we deter-

possible to determine the common limit value, iSONGs

best approximation for the ropelength of an ideal trefoil

mined howL, andL, of the torus behave in the model case.
First notice that we know the exact value lof in this

knot? To solve the problem, we first tried to see if a properlycase. When both the torus and the rope on which it is tightly
weighted average could deliver values whose dependence @fbund are smooth, the length of the torus i &vhich is the

n would be weaker than the dependenciesLgfand L..
Simple experiments reveal that the weighted average
4L, +L
La= (—"5—) (14)
provides values almost independentofThe data shown in
Fig. 11 illustrate this.

VI. MODEL ANALYSIS OF THE WEIGHTED AVERAGE
ROPELENGTH

The minimal dependence &f, on n suggests that it could
result from some simple properties bf andL.. Thus we

desiredL,, value in this situation. See Fig. 13. Recall that we
are assumingr=1.

Now, let us consider the corrugated rope case. Here, a
corrugated torus winds around the corrugated rope. Let us
assume that the number of spherical cells of which the cor-
rugated torus is built equals The skeleton of the corrugated
torus is a regulan-gon. The lengthdl of its edges depends
on the position of the straight corrugated rope at which it is
wound:dl is smallest when the corrugated torus is located in
the groove and highest when it is located on the hill. Its
position can be described by the anglas shown in Fig. 14.
The distance of the vertices of the corrugated torus from the
axis of the corrugated straight rope is denoted bgee Fig.

performed an analytical analysis on a model situation. Thes_ This distance depends gnand is

trefoil knot belongs to the family ofm, 2) torus knots. Fig-
ure 12 shows a tigh®9, 2 knot from this family. As seen in

the figure, the most characteristic structure which appears in

such knots in a tight conformation is a tight winding of a

r=2cogg). (15

helical structure about an almost straight line. Thus, we de-

cided to analyze this model situation.

The value ofr reaches its minimunm,, when ¢ is at its

When a corrugated rope winds tightly around a Straightmaximumgo .
piece of the same corrugated rope, it travels through its val- max

Q%

FIG. 13. The tightest torus wound around a straight rope; the FIG. 15. Geometry of then-gon skeleton of the corrugated

smooth and corrugated cases.

torus.
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Foin = 2 COS e - (16) di?
- m-ln max) RC: 1 - (27)
Knowing r, we may find the lengthll of the edges of the 4

corrugated torus, Eventually, the dependence of its ropelengtimas given by

the expression
dl=2r sin(%) =4 co:{(p)sin(%) . (17 P
LI
L(n==
Notice that in the model, we are considering the edge length () R;

sir?(#/n) = sirf(ar/n)
1 + sirf(w/n)Jarctart[sin(w/n)] - 4 sirf(#/n)

tightly wound, which also equaldl. The value ofdl reaches =

of the corrugated straight rope around which the torus is \/
= a1
its minimum when the torus is in the groove, i.e., whers [

at its maximum: (28)
T hich looks rather complex, but when expanded into a se-
dlnin=4co sin| — . 18 which PIEX, 1 exp
min $¢ma) < ) (18) ries, in terms of 1, reveals a rather simple dependence on

The maximum value that the angdecan reach is given

by solution of the equation 16 ,1 1
y g L(n) =47+ ?WBH_Z + O(F) . (29
. dImin
Si = 19
ema 4 19 Similarly, the dependende,(n) can be expanded into series
which in view of Eq.(18) takes the following form: in terms of 1h giving
4 .1 1
: o =l — — 3 =
SiN(@may) = COE{(Pmax)&n(H)- (20) Lp(n) = 4m 3"t O(n“)' (30
Thus, From the above formulas, one can im_mediat_ely see (that
as expected, both, and L. tend with increasing to the
— arctan sin K (21) L..=4m value; (2) at finite n, L, underestimates the rope-
Pmax= length of the torus, while.. overestimates it; and3) the

) o i weighted average of the expansidngs=(4L,+L)/5 better
Knowing the limit value ofp, we may find the average approximates....

value ofr, The last conclusion is essential, since it supports the ex-
Pmax perimental results that the weighted average of the numeri-

f rde , cally found ropelengtht, and L. displays a weak depen-
-~ 70 - 2 sin(ar/n) (229 dence on the number of vertices and thus allows one to

= . (22
Pmax arctamsin(z/n) V1 + sirf(m/n) provide good estimates of the, ropelength of the knots
even at smalh.

The skeleton of the corrugate_d torus isragon. At the av- By analyzing more carefully the deviations bf and L

erage value of, the length of its edges equals from the propelL., value, we may conclude that their mag-
— Az nitude depends both amand on the value df..; what mat-
di=2r sin(;). (23)  ters here is the ratit../n. Thus, the most natural function

describing the dependencelgf andL . on n should have the
See Fig. 15. Thus, the raw polygonal length of the corrugatefborm

torus is given by [ (L )2]
B . L.l|1+b[—] [. (31
Lo(n)=ndl=4n sirt(m/n) . (29 :

arcta{sin(m/n) Y1 + sirf(m/n) Taking into account that in our case =4, we may trans-

Now, let us inscribe into tha-gon a smooth curve built from form the formulag29) and(30) to the form
inscribed arcs in the same manner as we did in considering 2
; 1(4xw
polygonal knots. Here, at the average value,dhe curve is Le=dm|1+——] |, (329

simply a circle of radius 12\ n
— dr? 2
= /12— — (25) - 1 (47T>
Ly=4m|1-—| —] |. 32b
4 PTT "7 48\ n (32b)
of length Thus, in the case df; the b parameter equals 1/12, while

/ e for L, it is —1/48. Below we analyze the results of the nu-
= p
Le(n) = 2ah. (26) merical simulations carried out on the trefoil knot to see if

The circle can be seen as the axis of a smooth rope of radiwge obtain similar results.
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32.7465

TABLE I. Numerically found ropelengths of the tightesbno ]
trefoil knot tied on the corrugated rope with various numbers of 55 346 ]
vertices. 1
32.7455
n Lp Lc La=(4Lp+Lo)/5 327450
99 32.6647176 33.0345690 32.73868788 32.7445 Lc
111 32.6812344 32.9733664 32.73966080 % 327440 4
126 32.6962424 32.9221906 32.74143204 ;&. 3”435_'
141 32.7053340 32.8859212 32.74145144 .
159 32.7124892 32.8533314 32.74065764 P L
177 32.7194584 32.8330050 32.74216772 Lco 32.7425 \‘\\\L\\\
198 32.7256180 32.8164914 32.74379268 v P "
222 32.7285652 32.8006428 32.74298072 00000 D02 00004+ 00006 0008 00010
252 32.7319694 32.7878064 32.74313680 Un
282 32.7341496 32.7786866 32.74305700 FIG. 16. Polygonal, inscribed, and weighted average rope-
318 32.7359878 32.7710046 32.74299116  lengths of the tightest trefoil knots tied on the corrugated rope ver-
354 32.7372462 32.7654718 32.74289132  sus the inverse of the number of vertices. Curves shown in the
396 327384826 32.7610420 3274299448 figure were obtained by fitting the data with the function given by
444 32.7393900 32.7573132 32.74297464 3.
504 32.7401800 32.7540806 32.74296012
the values predicted by the model analysis: -14#48
564 327407196 327518186 327429340 [y nien®, W00 063 33 when a knot or link has
636 32.7412068 32.7499328 32.74295200  mych of its self-contact resulting from helical-like wrapping,
708 32.7415512 32.7485920 32.74295936  such as thg59,2) torus knot in Fig. 12, we would expect the
792 32.7418288 32.7474540 32.74295384 fitting parameters to be close to those predicted by the torus
888 32.7420514 32.7465248 32.74294608  analysis. However, for most knots and links, this very well
1008 32.7422584 32.7457310 32.74295292 may not be the case. Further analysis is necessary to deter-
1128 32.7424006 32.7451740 3274295528 mine how well this technique will work for other knots and
1272 32.7425154  32.7446960 3274295152  NKS.
1416 32.7425976 32.7443568 32.74294944
1584 32.7426692 32.7440750 32.74295036 VIIl. DISCUSSION
1776 82.7427278 32.7438460 82.74295144 Numerical simulations of the knot tightening process for a
2016 32.7427756 32.7436436 32.74294920 perfect rope provide us with ropelength data which can be
2256 32.7428132  32.7435064 32.74295184  ysed to determine an estimate of the ideal knot ropelength.
2544 32.7428414 32.7433864 32.74295040  The simulations of the knot tightening process that we pre-
sented above were based on a modifgENo algorithm.
Analyzing the trefoil conformations it provided, we found
VII. RESULTS

that as the number of the vertices tends to infinity, the raw
Following suggestions provided by the analysis presentednd inscribed ropelength fitting curves converge Lo
above, we performed a seriessfNo knot tightening simu- =32.742 950+0.000 001. A word of caution seems neces-
lations on the trefoil knot with the number of vertices rang-sary. Thel., value was obtained by extrapolation of the rope-
ing fromn=99 up ton=2544. The results of the simulations, length data found for the increasing number of vertices. The
i.e., the values ok, L, andL,, are presented in Table | and data end ah=2544. One cannot exclude, although it seems
in Fig. 11. The data are presented in the table with an excesighly unlikely, that for a higher value of the conformation
sive accuracy just to show at which decimal digits the valuespf the trefoil will undergo a qualitative change to a better,
in particularL,, are changing. i.e., smaller ropelength, form. Thus, from the rigorous point
To find theL., value, we have taken into consideration the of view, the 32.742 950 value is only an estimate of the ideal
last nine points, i.e., the data obtained for1008, 1128, trefoil ropelength.
1272, 1416, 1584, 1776, 2016, 2256, and 2544. As suggested On the other hand, thk; values presented in Table | can
by results of the model analysis performed above lthand be interpreted differently. Each of them is a numerically
L. data were fitted with the function froii81). See Fig. 16. found, provable upper bound of the trefoil ropelength up to
The value of thel. fitting parameter proved to be computer round-off error. Thus, the smallest of thelsg,
identical for both ropelengths. Its value equals=32.743 386 4, found ai=2544 is the lowest known prov-
32.742 950+0.000 001. Values of the parameter were able upper bound of the trefoil ropelength. This is an im-
found to be —0.019 98 and 0.080 54 for fits of theandL, ~ provement on the upper bounds 32[9], 32.744 411,12,
data, respectively. Furthermore, the values are not far fromand 32.743 9114]. The value is smaller than the value ob-
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tained previously with the originaonoalgorithm[14]. One  the pieces into appropriate constant curvature elements, and
cannot exclude that different tightening algorithms will be carefully connect them to match the angle between their os-
able to find still better, i.e., smaller, values of the essentiatulating planes; these connection points are where the tor-
geometrical parameter of knots, but so far the value we havsion of the knot is accumulated. It seems obvious that allow-
found is smallest. Our bound can also be compared to thgg the pieces of the tube to have a variable curvature and
rigorous lower bound 31.32 found recently by Denne, Diaononzero torsion will allow one to reduce their length further.
and Sullivan[10]. Having both bounds, we know that the Finging the exact shapes of the pieces with which an ideal

ropelength of the ideal trefoil is located somewhere betweeRefoi can be constructed needs rigorous analysis and thus
these values, although the actual value is most likely closefomains still a distant goal.

to the numerical upper bound.

Numerical simulations performed with the use of the
SONO algorithm provide us with coordinates of vertices of
equilateral polygonal knots. As we have shown, the vertices
can be used to construct smooth, piecewise constant curva- P.P. thanks Maciej Oszwaldowski for indicating the pos-
ture knots. Such knots have a direct physical sense since, Bibility of the analytical treatment of the corrugated torus
principle, they can be assembled with pieces of a tube. Famodel. The authors thank John Sullivan for many helpful
instance, looking at Table | one can see that to construct eomments. J.B., P.P., and S.P. acknowledge financial support
99-piece knot, one should take 33.034 569 inches of 1-inby Grant No. PB-62-204/04-BW, and E.J.R. by NSF Grant
radius tubing, cut it into pieces of appropriate length, bendNo. 0311010.
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