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I. INTRODUCTION

The conformations of many body systems that minimize
their energy are always interesting since they indicate which
structures the systems will take at their ground states,
reached as their temperature drops to 0 K. To simplify con-
siderations, the interparticle interactions are often considered
to be hard and thus the structure of the densest packing of
hard particles becomes an essential issue in the theory of
many real systems. When a system of many interacting par-
ticles is replaced by a single knotted filament, a similar ques-
tion may still be asked: what is the conformation of its
ground state? Here, the essential role is played by the fila-
ment self-interactions which determine its elastic properties.
In the limit case, the self-interactions may be considered to
be hard, leading to the notion ofperfect rope, the details of
which appear in the following section. Tying a knot with
perfect rope, one may ask the essential question: what is the
conformation at which the knot becomes tightest and its
length reaches the global minimum? This question has also
been considered using different models, e.g., for knots on the
cubic lattice[1] and for nonoverlapping spheres[2]. Using
the model of perfect rope, the only knot for which the length-
minimizing (ideal as it is sometimes called) conformation is
known is the trivial knot, i.e., the unknot. Its ropelengthL,
i.e., the ratio of the length of the rope to its radius, equals 2p.
Ideal structures of a class of simple links, where each com-
ponent is planar, were shown in[3]. Furthermore, a balance
criterion [4] has made it possible to determine critical con-
figurations for a simple clasp and for the Borromean rings
[5,6]. One cannot prove that these configurations are ideal
and the results rely on the assumption that the components
are all planar and lie in perpendicular planes. Still, many
researchers assume that these are ideal configurations. The
exact structures of the ideal conformations of all other knots
and links, and thus their minimal ropelengths, are not known.
But here, as in the case of packing hard spheres, experi-

ments, in particular numerical, provide essential insights. It
is the aim of the present paper to describe and analyze the
results of a series of numerical experiments performed with
the use of theSONO algorithm [7], aimed at determining the
minimum length of perfect rope which is sufficient to tie the
simplest of the nontrivial knots: the trefoil knot.

In performing the experiments, we were aiming at two
goals:(a) finding provable upper bounds for the ropelength
of the trefoil knot and(b) finding, via an extrapolation pro-
cedure, an estimate of the lowest ropelength. The values of
the upper bounds are of essential interest to the researchers
working on the rigorous theory of ideal knots[8–12], while
the value of the estimated least length is of interest to those
studying the physical properties of knots. For example, to
answer the basic question of how the tension within a knot-
ted, thermally fluctuating filament depends on its length, we
need to know the lowest possible value of the length. It may
be also of use in the discussion of the length of knots found
in the physical systems of a completely different nature[13].

II. THE PERFECT ROPE AND ITS CORRUGATED
DISCRETE MODEL

To make the problem of tightening knots unambiguous we
must specify a model of the rope on which the knots are tied.
The simplest of such models is theperfect rope: perfectly
flexible and at the same time perfectly hard. By perfectly
flexible, we mean that it can be bent with zero force, thus, no
elastic energy is stored in its bends. By perfectly hard, we
mean that it cannot be squeezed, i.e., its perpendicular sec-
tion always remains perfectly circular. We also assume that
the surface of the rope is perfectly slippery. As a result, all
changes to the conformation of the knot tied on the perfect
rope need no force to be made and thus no potential energy is
stored in the knot; it is also so in the case of the system of
hard particles, e.g., spheres. One may ask about the relation-
ship between the conformation of the knot found in the nu-
merical experiments performed on a model rope and the con-
formations of the knot found in real, laboratory experiments.
To answer this question, we again refer to the analogy with
the problem of packing hard spheres. All real atoms are not
hard spheres, but some of them, e.g., the atoms of noble
gases, pack during crystallization into the fcc structure. This
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is so because in the packing process the spherical(the
strongly repulsive) part of its mutual interaction plays the
most essential role, and this part of the interaction can be
replaced by the hard spherical repulsion in model systems.
Real ropes are not perfect ropes but results we obtain in
studying knots tied on the latter provide us with essential
insights concerning knots tied on the former.

Let us describe in more detail the basic physical and geo-
metrical properties of the perfect rope. We assume that its
axis has no cusps; thus its tangentt is always well defined
and continuous. This guarantees that its perpendicular sec-
tions are also well defined. We require that they always have
the shape of disks of radiusR where the centers of these
disks are located on the rope axisK. Furthermore, the section
disks are not allowed to overlap. This guarantees that the
surface of the rope remains self-avoiding. Let us discuss the
last condition in more detail.

The fact that two arclength-distant pieces of the perfect
rope cannot be brought together to a distance smaller than 2R
is obvious. Analyzing the situation in formal terms, we arrive
at the conclusion that the doubly critical self-distance(i.e.,
the minimum distance between pairs of distinct points whose
connecting chord is perpendicular to the tangents at both of
the points) of the knot cannot be smaller than 2R [8]. When

two portions of the thickened knot get too close, we have the
situation shown in Fig. 1.

What is perhaps less obvious is what effect the self-
avoiding condition places on the curving of its bends. The
sharpness of a bend is described by the curvaturek of the
rope axis. We assume that it cannot be higher than 1/R. In
other words, the radius of curvature can never be smaller
than R. When the curvature is higher than 1/R, we get the
situation shown in Fig. 2.

To perform numerical experiments with knots tied on the
perfect rope, we must first construct its discrete representa-
tion. We imagine that a continuous knotK is tied with perfect
rope. It is represented in our simulations by a sequence ofn
points located on the rope axis. The points are indicated by
vectorsvi , i =1,2,… ,n. The points can be seen as vertices
of a knotted polygonKp. Because the knots that we are con-
sidering are closed, we implicitly take the subscripti modulo
n. To simplify both the numerical calculations and their in-
terpretation, we assume that consecutive vertices are equidis-
tant with the common length of the edges denoteddl. Thus,
Kp is an equilateral polygonal representation ofK. Its edges
will be treated as vectors

ei = vi+1 − vi . s1d

Let us emphasize that although all numerical simulations we
perform deal with polygonal knots, their results can, as we
shall demonstrate, be interpreted in terms of smooth knots.
To simulate the hard shell of the perfect rope, we assume that
each of the vertices ofKp is surrounded by a sphere of radius
R. The union of all the spheres can be seen as a particular
model of the perfect rope. Its surface is corrugated, with the
corrugation vanishing with increasing numbers of vertices
(i.e., asdl tends to zero). See Fig. 3. Figure 4 shows the
tightest trefoil knot withn=60 vertices tied on the corrugated
rope. One can see that in the middle region of the knot, the
rope makes a short but distinct wiggle. In this region the

FIG. 1. When two pieces of the rope pass too close to each
other, they overlap.

FIG. 2. When a bend in the rope is too sharp, its surface devel-
ops defects.

FIG. 3. Corrugated model of the perfect rope.

FIG. 4. The tightest trefoil knot tied on the corrugated rope
consisting ofn=60 cells.
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curvature reaches its maximum; thus it must be carefully
controlled for reasons described below. The corrugated rope
is built from cells each of which can be seen as a piece of
ball of radiusR. See Fig. 5. Its flat side faces have the shape
of disks of radius

Rc = ÎR2 − dl2/4. s2d

As the rope is bent, the shapes of the cells change, becoming
wedgelike. We assume that the bending is limited by the
condition that the side disk faces of the cells are hard and
thus they cannot overlap. Figure 6 shows the shape of the
rope cell in the maximally bent situation. Simple trigonomet-
ric calculations show that the maximum bending angle is

Qmax= 2 arcsinS dl

2R
D . s3d

Having defined the accessible shapes of the cells, we are able
to define their mutual interaction simply as a hard one. As a
result of this hard interaction, the corrugated rope always
remains self-avoiding.

III. NUMERICAL TIGHTENING:
ALGORITHMS AND PROCEDURES

The numerical simulation of knots tightened on the cor-
rugated rope must take care of two essential problems:(a) all
cells of the rope should remain well defined, and(b) the cells
should not overlap. To keep(a) satisfied, all bending angles

Qi = arcsin
uei−1 3 eiu
uei−1uueiu

s4d

must be determined and those of them which are larger than
Qmax must be reduced. This is achieved by the application of
the control curvature(CC) procedure which shifts the vertex
vi to a new position

vi8 = vi + kCC
wi − vi

uwi − viu
s5d

located closer to the middle point

wi =
vi−1 + vi+1

2
, s6d

located between verticesvi−1 andvi+1. The small factorkCC
is experimentally chosen. Usually it equals 0.001. See Fig. 7.

Such a reduction of the bending angle also reduces the
lengths of edgesei−1 and ei. This and other disturbances to
the lengths of edges is removed by the equalize edges(EE)
procedure, which checks the distances between consecutive
vertices and corrects them. One of a few correction algo-
rithms we use has the following form:

vi8 = vi − kEE

ueiu − dl

ueiu
ei , s7ad

vi+18 = vi+1 + kEE

ueiu − dl

ueiu
ei , s7bd

where thekEE factor controlling the efficiency of the EE
procedure is experimentally chosen. Usually it equals 0.5.

Keeping(b) satisfied needs more attention. The problem
we face here is that vertices whose index distance

FIG. 5. Single cell of the corrugated rope.

FIG. 6. The shape of the corrugated rope cell in the situation of
maximal bending.

FIG. 7. Bending angle at theith vertex.
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DIsvi,v jd = Hui − j u when ui − j u ø n/2,

n − ui − j u otherwise
J s8d

is smaller thanpR/dl should be allowed to stay closer than
2R (see[14] for a more detailed discussion, in particular with
respect to the fact that the resulting knots are not exactly
equilateral) since this is what happens when the rope enters
the tightest turn. See Fig. 8. The distances between all pairs
of vertices whose index distance exceeds this number should
be larger than 2R. If they are not, the vertices, sayvi andv j,
are shifted away by the remove overlaps(RO) procedure
according to the formulas

vi8 = vi − kRO

2R− uv j − viu + e

uv j − viu
sv j − vid, s9ad

v j8 = vi + kRO

2R− uv j − viu + e

uv j − viu
sv j − vid, s9bd

where thekRO factor controlling the efficiency of the RO
procedure is experimentally chosen. Usually it equals 0.5.
The value ofe determines the excess distance by which the
vertices are shifted apart. Its value, initially 10−3, is reduced
at the end of the tightening process to 10−8. The actions of
the CC, RO, and EE procedures are not consistent. Remov-
ing overlaps and controlling curvature disturbs the length of
the edges, and vice versa, but in practice, at properly chosen
values of thekCC, kRO, andkEE factors, the multiple applica-
tion of all the procedures leads to the common goal: an equi-
lateral, overlap-free knot tied on the corrugated rope. The
polygonal knotKp can be seen as its skeleton.

The simulation of the tightening process runs as follows.
When, as a result of the multiple application of the RO and
EE procedures, the overlaps and the dispersion of the edge
lengths are brought below an acceptable level, the vertices
are moved by a small amount toward the centers of their
osculating circles(Fig. 9). Let us explain what we mean here
by the osculating circle. Consecutive edgesei−1,ei meet at
the vertexvi. Being mostly noncollinear, they define a plane
within which the(osculating) circle tangent to edgesei−1,ei
at their midpoints is located.(The osculating circle will be

used in the construction of the inscribed knot in the next
section.) Let us denote the position of the center of the os-
culating circle byOi and its radius byri. Thus, its curvature
equalski =1/ri. Each vertexvi is moved toward the center
Oi of its osculating circle according to the formula

vi8 = vi + cTMki
Oi − vi

uOi − viu
, s10d

where cTM is a small, experimentally adjusted parameter.
Such a choice of the tightening algorithm is natural since it
imitates what one would observe in reality if a knot sub-
merged in a highly viscous medium were shrinking. Notice
that this procedure of theSONO (shrink-on-no-overlaps) al-
gorithm is different from the original one. It was first intro-
duced in[15].

IV. INTERPRETATION OF RESULTS: FROM POLYGONAL
TO SMOOTH KNOTS

The knot tightening simulation procedure delivers vertices
of the polygonal knotKp that can be seen as a skeleton of a
tight knot tied on the corrugated rope. The problem we face
is interpreting the result in terms of a knot tied on theC1

smooth perfect rope. There is a simple way to do so. As
shown in[14], the polygonal knotKp can be replaced by the
smooth knotKc built from arcs inscribed into corners ofKp.
The arcs, which we denoteCi, are tangent to the consecutive
edges ofKp and connect in aC1 smooth manner at their
midpoints. The arcCi is the portion of the osculating circle at
vi lying in the triangle formed byvi and the midpoints of the
two incident edges. The arc has total curvature equal to the
bending angle atvi, i.e., Qi. The union of all the arcs is the
smooth inscribed knot

Kc = ø
i=1

n

Ci . s11d

See Fig. 10.
The knotKc can be treated as the axis of a knot tied on the

perfect rope of radiusRc. The circular arcs connect the cen-
ters of the disk-shaped faces and are perpendicular to them.
Each of the arcs can be seen as the axis of a piece of the
perfect rope of radiusRc, which is the common radius of all
faces. The union of the tubes of radiusRc about the arcsCi is
the knot tied on the perfect rope. The rope as a whole is
hidden inside the corrugated rope(except the circles where

FIG. 8. The tightest turn of the corrugated rope.

FIG. 9. During the tightening move of Eq.(10), each vertex is
moved by a small amount toward the center of its osculating circle.
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consecutive cells of the corrugated rope meet; here the cor-
rugated rope and the perfect rope coincide). In view of the
above, the knotKc tied on the perfect rope is self-avoiding.
See Fig. 10. For a formal proof see[14].

Let us describe some interesting properties of the in-
scribed knotKc. Due to its construction, it is piecewiseC2

(and thusC1,1) since its tangent vectort is everywhere well
defined and continuous, and the curvature is defined at all but
a finite number of points, namely, at the midpoints of the
edges ofKp. Being built from circular arcs of various curva-
ture radii ri, it has piecewise-constant curvature. Since the
arcs are planar curves, but the planes within which they are
located are in general not coplanar, its torsiont is a sum of

Dirac d functions localized at the points at which the con-
secutive arcs meet. Their weights are equal to the angles
between consecutive osculating planes.

V. THE RAW POLYGONAL AND THE INSCRIBED
ROPELENGTHS

The problem we face now is how to determine then
→` limiting length-to-radius ratio of the knot whose dis-
crete representations, for a sequence of increasingn, are
tightened by the simulation program. For eachn, the pro-
gram delivers verticesvi of the polygonal knotKp. Since the
spheres used in the construction of the corrugated rope have
radiusR, we may assume that the radius of the rope equalsR.
To normalize the results, we assume for the remainder of this
paper thatR=1.

The normalized length, which we shall refer to as theraw
ropelength,of the corrugated rope knot can be found simply
by adding lengths of all edges of its polygonal skeletonKp.
SinceKp is (within the accepted error range) equilateral, its
raw ropelength is

Lp = o
i=1

n

uvi+1 − viu < ndl. s12d

Another way of finding the ropelength is summing up the
lengthsLsCid of all circular arcs forming the inscribed knot
Kc and dividing the value by the radiusRc:

Lc =
1

Î1 − dl2/4
o
i=1

n

LsCid. s13d

Since we know that the smooth ropelength ofKc does not
exceedLc, the inscribed ropelength Lc will overestimate the
minimum ropelengthL`. See Fig. 10.

To approximate the value ofL`, we performed a series of
knot tightening simulations on the trefoil knot withn ranging
from 99 to 2544. Figure 11 presents the results of the rope-
lengths Lp and Lc found for these knots. Indeed, the raw

FIG. 10. Top: the polygonalKp and inscribedKc knots defined
by the set of vertices delivered by the knot tightening algorithm.
Bottom: the smooth inscribed knotKc tied with the the perfect rope
of radiusRc.

FIG. 11. The raw polygonalLp, inscribedLc, and weighted av-
erageLa ropelengths of the tightestSONO trefoil knots tied on the
corrugated rope versus the number of vertices.
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polygonal and the inscribed ropelengths are seen to converge
with increasingn to a common value: the former from below,
the latter from above. Having obtained these results, is it
possible to determine the common limit value, i.e.,SONO’s
best approximation for the ropelength of an ideal trefoil
knot? To solve the problem, we first tried to see if a properly
weighted average could deliver values whose dependence on
n would be weaker than the dependencies ofLp and Lc.
Simple experiments reveal that the weighted average

La =
s4Lp + Lcd

5
s14d

provides values almost independent ofn. The data shown in
Fig. 11 illustrate this.

VI. MODEL ANALYSIS OF THE WEIGHTED AVERAGE
ROPELENGTH

The minimal dependence ofLa on n suggests that it could
result from some simple properties ofLp and Lc. Thus we
performed an analytical analysis on a model situation. The
trefoil knot belongs to the family ofsm,2d torus knots. Fig-
ure 12 shows a tight(59, 2) knot from this family. As seen in
the figure, the most characteristic structure which appears in
such knots in a tight conformation is a tight winding of a
helical structure about an almost straight line. Thus, we de-
cided to analyze this model situation.

When a corrugated rope winds tightly around a straight
piece of the same corrugated rope, it travels through its val-

leys and hills. A similar situation happens when a corrugated
torus is shifted along a corrugated tube. This latter system is
simple enough to be analyzed rigorously. Thus, we deter-
mined howLp andLc of the torus behave in the model case.

First notice that we know the exact value ofL` in this
case. When both the torus and the rope on which it is tightly
wound are smooth, the length of the torus is 4p, which is the
desiredL` value in this situation. See Fig. 13. Recall that we
are assumingR=1.

Now, let us consider the corrugated rope case. Here, a
corrugated torus winds around the corrugated rope. Let us
assume that the number of spherical cells of which the cor-
rugated torus is built equalsn. The skeleton of the corrugated
torus is a regularn-gon. The lengthdl of its edges depends
on the position of the straight corrugated rope at which it is
wound:dl is smallest when the corrugated torus is located in
the groove and highest when it is located on the hill. Its
position can be described by the anglew as shown in Fig. 14.
The distance of the vertices of the corrugated torus from the
axis of the corrugated straight rope is denoted byr. See Fig.
15. This distance depends onw and is

r = 2 cosswd. s15d

The value ofr reaches its minimumrmin, when w is at its
maximumwmax:

FIG. 12. A tight conformation of the(59,2) torus knot.

FIG. 13. The tightest torus wound around a straight rope; the
smooth and corrugated cases.

FIG. 14. Position of one of the spheres, of which the corrugated
torus is constructed, is controlled by the anglew. In the picture, the
angle has its maximum valuewmax.

FIG. 15. Geometry of then-gon skeleton of the corrugated
torus.
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rmin = 2 cosswmaxd. s16d

Knowing r, we may find the lengthdl of the edges of the
corrugated torus,

dl = 2r sinSp

n
D = 4 cosswdsinSp

n
D . s17d

Notice that in the model, we are considering the edge length
of the corrugated straight rope around which the torus is
tightly wound, which also equalsdl. The value ofdl reaches
its minimum when the torus is in the groove, i.e., whenw is
at its maximum:

dlmin = 4 cosswmaxdsinSp

n
D . s18d

The maximum value that the anglew can reach is given
by solution of the equation

sinswmaxd =
dlmin

4
s19d

which in view of Eq.(18) takes the following form:

sinswmaxd = cosswmaxdsinSp

n
D . s20d

Thus,

wmax= arctanFsinSp

n
DG . s21d

Knowing the limit value ofw, we may find the average
value of r,

r̄ =

E
0

wmax

r dw

wmax
=

2 sinsp/nd
arctanfsinsp/ndgÎ1 + sin2sp/nd

. s22d

The skeleton of the corrugated torus is ann-gon. At the av-
erage value ofr, the length of its edges equals

dl = 2r̄ sinSp

n
D . s23d

See Fig. 15. Thus, the raw polygonal length of the corrugated
torus is given by

Lpsnd = n dl = 4n
sin2sp/nd

arctan2fsinsp/ndgÎ1 + sin2sp/nd
. s24d

Now, let us inscribe into then-gon a smooth curve built from
inscribed arcs in the same manner as we did in considering
polygonal knots. Here, at the average value ofr, the curve is
simply a circle of radius

h̄ =Îr̄2 −
dl2

4
s25d

of length

Lc8snd = 2ph̄. s26d

The circle can be seen as the axis of a smooth rope of radius

Rc =Î1 −
dl2

4
. s27d

Eventually, the dependence of its ropelength onn is given by
the expression

Lcsnd =
Lc8

Rc

= 4pÎ sin2sp/nd − sin4sp/nd
f1 + sin2sp/ndgarctan2fsinsp/ndg − 4 sin4sp/nd

s28d

which looks rather complex, but when expanded into a se-
ries, in terms of 1/n, reveals a rather simple dependence on
n:

Lcsnd = 4p +
16

3
p3 1

n2 + OS 1

n4D . s29d

Similarly, the dependenceLpsnd can be expanded into series
in terms of 1/n giving

Lpsnd = 4p −
4

3
p3 1

n2 + OS 1

n4D . s30d

From the above formulas, one can immediately see that(1)
as expected, bothLp and Lc tend with increasingn to the
L`=4p value; (2) at finite n, Lp underestimates the rope-
length of the torus, whileLc overestimates it; and(3) the
weighted average of the expansionsLa=s4Lp+Lcd /5 better
approximatesL`.

The last conclusion is essential, since it supports the ex-
perimental results that the weighted average of the numeri-
cally found ropelengthsLp and Lc displays a weak depen-
dence on the number of vertices and thus allows one to
provide good estimates of theL` ropelength of the knots
even at smalln.

By analyzing more carefully the deviations ofLp and Lc
from the properL` value, we may conclude that their mag-
nitude depends both onn and on the value ofL`; what mat-
ters here is the ratioL` /n. Thus, the most natural function
describing the dependence ofLp andLc on n should have the
form

L`F1 + bSL`

n
D2G . s31d

Taking into account that in our caseL`=4p, we may trans-
form the formulas(29) and (30) to the form

Lc = 4pF1 +
1

12
S4p

n
D2G , s32ad

Lp = 4pF1 −
1

48
S4p

n
D2G . s32bd

Thus, in the case ofLc the b parameter equals 1/12, while
for Lp it is −1/48. Below we analyze the results of the nu-
merical simulations carried out on the trefoil knot to see if
we obtain similar results.
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VII. RESULTS

Following suggestions provided by the analysis presented
above, we performed a series ofSONO knot tightening simu-
lations on the trefoil knot with the number of vertices rang-
ing from n=99 up ton=2544. The results of the simulations,
i.e., the values ofLp, Lc, andLa, are presented in Table I and
in Fig. 11. The data are presented in the table with an exces-
sive accuracy just to show at which decimal digits the values,
in particularLa, are changing.

To find theL` value, we have taken into consideration the
last nine points, i.e., the data obtained forn=1008, 1128,
1272, 1416, 1584, 1776, 2016, 2256, and 2544. As suggested
by results of the model analysis performed above, theLp and
Lc data were fitted with the function from(31). See Fig. 16.

The value of theL` fitting parameter proved to be
identical for both ropelengths. Its value equals
32.742 950±0.000 001. Values of theb parameter were
found to be −0.019 98 and 0.080 54 for fits of theLp andLc
data, respectively. Furthermore, the values are not far from

the values predicted by the model analysis: −1/48<
−0.020 83 and 1/12<0.083 33. When a knot or link has
much of its self-contact resulting from helical-like wrapping,
such as the(59,2) torus knot in Fig. 12, we would expect the
fitting parameters to be close to those predicted by the torus
analysis. However, for most knots and links, this very well
may not be the case. Further analysis is necessary to deter-
mine how well this technique will work for other knots and
links.

VIII. DISCUSSION

Numerical simulations of the knot tightening process for a
perfect rope provide us with ropelength data which can be
used to determine an estimate of the ideal knot ropelength.
The simulations of the knot tightening process that we pre-
sented above were based on a modifiedSONO algorithm.
Analyzing the trefoil conformations it provided, we found
that as the number of the vertices tends to infinity, the raw
and inscribed ropelength fitting curves converge toL`

=32.742 950±0.000 001. A word of caution seems neces-
sary. TheL` value was obtained by extrapolation of the rope-
length data found for the increasing number of vertices. The
data end atn=2544. One cannot exclude, although it seems
highly unlikely, that for a higher value ofn the conformation
of the trefoil will undergo a qualitative change to a better,
i.e., smaller ropelength, form. Thus, from the rigorous point
of view, the 32.742 950 value is only an estimate of the ideal
trefoil ropelength.

On the other hand, theLc values presented in Table I can
be interpreted differently. Each of them is a numerically
found, provable upper bound of the trefoil ropelength up to
computer round-off error. Thus, the smallest of these,Lc
=32.743 386 4, found atn=2544 is the lowest known prov-
able upper bound of the trefoil ropelength. This is an im-
provement on the upper bounds 32.77[9], 32.744 46[11,12],
and 32.743 91[14]. The value is smaller than the value ob-

TABLE I. Numerically found ropelengths of the tightestSONO

trefoil knot tied on the corrugated rope with various numbers of
vertices.

n Lp Lc La=s4Lp+Lcd /5

99 32.6647176 33.0345690 32.73868788

111 32.6812344 32.9733664 32.73966080

126 32.6962424 32.9221906 32.74143204

141 32.7053340 32.8859212 32.74145144

159 32.7124892 32.8533314 32.74065764

177 32.7194584 32.8330050 32.74216772

198 32.7256180 32.8164914 32.74379268

222 32.7285652 32.8006428 32.74298072

252 32.7319694 32.7878064 32.74313680

282 32.7341496 32.7786866 32.74305700

318 32.7359878 32.7710046 32.74299116

354 32.7372462 32.7654718 32.74289132

396 32.7384826 32.7610420 32.74299448

444 32.7393900 32.7573132 32.74297464

504 32.7401800 32.7540806 32.74296012

564 32.7407196 32.7518186 32.74293940

636 32.7412068 32.7499328 32.74295200

708 32.7415512 32.7485920 32.74295936

792 32.7418288 32.7474540 32.74295384

888 32.7420514 32.7465248 32.74294608

1008 32.7422584 32.7457310 32.74295292

1128 32.7424006 32.7451740 32.74295528

1272 32.7425154 32.7446960 32.74295152

1416 32.7425976 32.7443568 32.74294944

1584 32.7426692 32.7440750 32.74295036

1776 32.7427278 32.7438460 32.74295144

2016 32.7427756 32.7436436 32.74294920

2256 32.7428132 32.7435064 32.74295184

2544 32.7428414 32.7433864 32.74295040

FIG. 16. Polygonal, inscribed, and weighted average rope-
lengths of the tightest trefoil knots tied on the corrugated rope ver-
sus the inverse of the number of vertices. Curves shown in the
figure were obtained by fitting the data with the function given by
(31).
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tained previously with the originalSONOalgorithm[14]. One
cannot exclude that different tightening algorithms will be
able to find still better, i.e., smaller, values of the essential
geometrical parameter of knots, but so far the value we have
found is smallest. Our bound can also be compared to the
rigorous lower bound 31.32 found recently by Denne, Diao,
and Sullivan[10]. Having both bounds, we know that the
ropelength of the ideal trefoil is located somewhere between
these values, although the actual value is most likely closer
to the numerical upper bound.

Numerical simulations performed with the use of the
SONO algorithm provide us with coordinates of vertices of
equilateral polygonal knots. As we have shown, the vertices
can be used to construct smooth, piecewise constant curva-
ture knots. Such knots have a direct physical sense since, in
principle, they can be assembled with pieces of a tube. For
instance, looking at Table I one can see that to construct a
99-piece knot, one should take 33.034 569 inches of 1-in.
radius tubing, cut it into pieces of appropriate length, bend

the pieces into appropriate constant curvature elements, and
carefully connect them to match the angle between their os-
culating planes; these connection points are where the tor-
sion of the knot is accumulated. It seems obvious that allow-
ing the pieces of the tube to have a variable curvature and
nonzero torsion will allow one to reduce their length further.
Finding the exact shapes of the pieces with which an ideal
trefoil can be constructed needs rigorous analysis and thus
remains still a distant goal.
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