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Linear response of a grafted semiflexible polymer to a uniform force field
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We use the wormlike chain model to analytically calculate the linear response of a grafted semiflexible
polymer to a uniform force field. The result is a function of the bending stiffness, the temperature, the total
contour length, and the orientation of the field with respect to that of the grafted end. We also study the linear
response of a wormlike chain with a periodic alternating sequence of positive and negative charges. This can
be considered as a model for a polyampholyte with intrinsic bending stiffness and negligible intramolecular
interactions. We show how the finite intrinsic persistence length affects the linear response to the external field.
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I. INTRODUCTION describe stretching in strong fields because it is infinitely

Semiflexible polymers are macromolecules with a bend€xtensible[11,12. In contrast, the wormlike chain is charac-
ing stiffness intermediate between that of an absolutely flexterizeéd by a fixed total contour length constraint, and this
ible (Gaussian chain and a rigid rod. A measure of the di- Problem is avoided.
rectedness of a polymer is its persistence length, which is Charged polymers with two types of chargmsitive and
proportional to the bending stiffness. Semiflexible polymersnegative along their backbone are called polyampholytes.
have a presistence length of the order of the total contoufhey have attracted a lot of attention because of their inher-
length. They have been the subject of extensive theoretic&nt theoretical interest and their relevance to the protein fold-
and experimental study in recent years, primarily becaus#g problem[13]. There have been studies of their response
many biologically important macromolecules fall in this to an electric field14—-17, but most of the previous works
class. The structural elements of the cytoskelgtmiin fila-  deal with their conformational properties due to the intramo-
ments, microtubules, intermediate filamgnnd double- lecular interactions in the absence of an external field. They
helix DNA exhibit elastic behavior dominated by their bend- all consider charge distributions on backbones described as
ing stiffness[1,2]. flexible or freely jointed chains and do not take into account

Single-molecule experiments have allowed the study ofhe possibility of an internal bending stiffness.
the influence of external forces or force fields on the confor- In the present paper, we calculate the linear response of a
mational properties of semiflexible polymef3—6]. Their  grafted wormlike chain to a uniform electric field for arbi-
theoretical study is considerably more challenging comparetrary bending stiffness and field orientation. In Sec. Il, we
to that of flexible chains, and one of the main reasons is théescribe the model. In Sec. lll, we calculate the linear re-
lack of scaling properties except for limiting casgsg., Sponse of the orientation and the extension of a uniformly
weakly bending polymejs In the wormlike chain model, charged wormlike chain and compare the results with the
pulling a semiflexible polymer at its ends is formally analo-response to a force applied at the free end. In Sec. IV, we
gous to the Stark effect of a quantum rotaffd}. This anal- calculate the linear response of the extension of a periodic
ogy has led to semianalytical solutions of the force-extensiomlternating polyampholyte with internal bending stiffness.
problem. The response to a force field is even more compli-
cated as the quantum analogy involves a nonl@oaimagi-
nary time interaction. Further complications arise from in-
tramolecular interactions between different polymer The wormlike chain is a fluctuating, continuous, locally
segments, which may become important in realistic experiinextensible line with a fixed total contour length In the
mental situations where a polymer is subject to a hydrodyabsence of any external force, its effective free-energy func-
namic flow or it is charged and placed in an electric field. tional depends only on the bendigurvaturg and is given

Marko and Siggig8] have derived an approximate ana- py
lytical field-extension relation for a semiflexible polymer L )
which has one end fixed and is free to rotate about it. Their Hollr (9)}] = ff ds{&} (2.1)
result for strong fields appears to be in good agreement with 0 2 ds |’ '
an experiment done with DNA in an external electric field
[9]. Lamuraet al. [10] have calculated conformational prop- Wheret(s)=dr(s)/ds is the unit tangent vector of the curve
erties of a grafted semiflexible polymer in a uniform forcer(s) at arc lengths, and« is the bending stiffnesgl8]. The
field in two dimensions using recursion relations in thecorrelation length of the unit tangent vector along the poly-
weakly bending approximation, which is valid at strong mer contour is the persistence lengdth, which is related to
fields and/or large persistence lengths. We should mentiothe bending stiffness via,=2«/[kgT(d—1)], whered is the
that the standard Gaussian polymer model is inadequate ttimensionality of the embedding space. Throughout this pa-

Il. THE MODEL

0
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per, we consider a wormlike chain which is graftedsa, E\ L s
that is, both the position of this poimind the orientation of &cos(s)) = k_'l'{f dS’J ds’{cosf(s)cosH(s"))g
the related tangent vector are kept fixed. B 0 0

The interaction with a uniform external field is ex-

L s
pressed by adding t&(, the term - <COSG(S)>0J dS’f d§’<cos¢9(s”)>0}.
0 0
) (3.2
H[{r(s}]=-E- J ds\(s)[r(s) = r(0)] '
0 In this section, we assume that the linear charge densisy

L s constant along the polymer contour. Using the prescription of
=-E J ds?x(s)f ds't(s), (2.2 Eg. (2.4), one obtains
0 0

(cosh(s))o = coso(0)exp(— /L) (3.3
where\(s) is a phenomenological linear charge density. This
simple model neglects the intramolecular interaction bedn
tween different segments of the same polymer and also the(cos g(s)cos6(s'))o = exd - (s - 5')/L {2 + exp(- 35'/L,)
steric self-avoidance. The latter is expected to be negligible L
for L,>L. For polymers with a large aspect ratio, like x[cog 6(0) - 3]}, (3.4
double-helix DNA or F-Actin, self-avoidance effects becomewheres>s’. Substituting Eqs(3.3) and (3.4) into Eq. (3.2)

important only forL> L, . . ) ) )
. and breaking the domain of integration of the first double
If 6(s) is the angle between the tangent ved{sj and the integral on the rhs of the equation into parts with a well-

field E, we can write defined arc-length ordering, we obtain the final result,

L L 2
H=Hy- Ef ds?x(s)f ds cosé(s'). (2.3 &cosé(s)) = %{_ 2s + 2L 2L exp(- s/L,)
0 0 kT 3L, 3L, 3L,

The orientational probability distribution of a wormlike
chain having a conformation with a tangent vedi@) =t, at
one end and a tangent vect¢k)=t, at the other is given by

- - , 1\[1L
a path integral which is formally analogous to the density + (co§ 6(0) — _){__ exp(- 35/Lp)
matrix element, in the angle representation, of a quantum 3 p
rigid rotator [18]. We denote it byG(t,L|ty,0). It can be 3
calculated analytically and it has a spectral representation in +exd-(2s+L)/Ly] - 2 exp(— 3s/Lp)
terms of spherical harmonics. In three dimensions, we can
integrate  out the azimuthal angle to obtain 3
G[H(s),s|6(s'),s']. Thus we are able to calculate orienta- *2 exp(=s/Lp) —exd~ (s+L)/L;]
tional correlations using

+ % expg(s—L)/Ly] - % exp - (s+L)/Lp]

1L 1L
(cosé(s,) - -~ cosb(sy))g - EL_p exp(- /L) - EL_D exp(— 3S/Lp):| } :
(3.5

:f dé(L)sin 0(L)J dé(s,)sin 9(Sn)“‘J dé(sy)sin 6(sy)
It is instructive to consider the flexible and the weakly

X G(A(L),L|6(s,),5,)c088(s,)G(H(Sn),Sn| (Sn-1),Sn-1) bending limits of this result. In the flexible limit wheie
>L,, the anisotropy associated with th€0) dependence of

X -+ €0s(s)G(8(s1),51|6(0), ), (2.4 the response drops out and we get
whereL>s,>s,_;>--->s,>0 [18]. EAL2 [( L) p( L)]
L)) = —bp ol | — - . 3.6
&cosh(L)) 3T + L, ex L (3.6)

lll. LINEAR RESPONSE OF A UNIFORMLY CHARGED

SEMIFLEXIBLE POLYMER The leading term is precisely the response of a freely rotating

dipole moment,uz)\Lg to a weak fieldE. The average
We define the change in the orientation of the polymermolarization of such a system s (ucosé)

due to the applied force field by =(1/2) fd@sin 6 (u cosh) exd—uE cosé/(kgT)]. On the

other hand, in the weakly bending limit whete<L,, the
&cosd(s)) = (cosb(s))e ~ (COSH(S))o, (3.1 response strongly depends 6(0). For 6(0) # (0, ),

where the first average on the right-hand sides) of the EALS L\4

equation is taken over the Boltzmann weight associated with Xcosd(L)) = o sir? 6(0) + O{(L_) } (3.7

the energy given in Eq2.3) and the second average is taken P

over the Boltzmann weight associated with the energy giverror a purely bending fiel@6(0)==/2], we recover the me-

in Eq. (2.1). To lowest order irE, chanical bending of a rod with stiffnesswhich is known
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from the classical theory of elasticify19]. For an elonga- 1
tional (or compressionalfield with 6(0)=(0, ), 1072

EXL%kgT ( L )5] i
cosO(L))=———+0O|({—| |. 3.8 1074

&cosé(L)) 122 { L, (3.8
We note that in this case the linear response becomes pro- 0'10_6;

portional to the temperature and it vanishes at zero tempera-
ture. This vanishing is an indication of the existence of a

finite critical field above which the compressional deforma- 107 5

tion becomes unstable as predicted by the classical theory of 1

elasticity of rods(buckling to a field [19]. ] A
An experimentally more accessible quantity is the re- 107 1 10?

sponse of the end-to-end vector in the direction of the field, !

FIG. 1. Rescaled linear response coefficient for the extension,

SR = ((R)e = (R)o) E (3.9 C'=RkgT/(ENL,L?), as a function of the chain stiffness,
| E el =L/L,, for 6o=m/2 (upper curvg and 6,=0 (lower curve.
where 5 6
EnkgTL L
L 5R”=—20 >—+0 L_ (3.19
R:f ds(s). (3.10 ) P
0

for #(0)=(0,). As before, the bending response in the
We easily obtain it by integrating E¢3.5) over the polymer ~Weakly bending limit reproduces the result from the classical
contour, elasticity of rodq19] and the temperature dependence in Eq.
(3.14) is a sign of its entropic origin. The crossover between

ExL]| 2 L L the two scaling limits as the chain stiffness varies is illus-
R = EE{_ g{exp(‘ LiLp) + = expl= U'—p)} trated in Fig. 1.
NVIRY: PP L . In order to comp?re the Iineeg resrpl)o?se to g f_ie_Id_to the
(L _ 1 inear response to a force exerted at the free end, it is instruc-
+ 3{<Lp) +exp(— 2L/Ly) + 36] + (COS? %0) 3) tive to define an “effective point charge.” It is a point charge
placed at the free end which, subject to the fiEldwould
{_ 1L .5 exp(- L/L,) + a_7 exp(- 3L/L,) yield the same response as that due to the total chege
3L, 4 P 36 P which is uniformly distributed along the polymer contour. In

1L Fig. 2, we plot the “effective point charg&h units of\L) as
+exp— 2L/L,y) + - — exp(— L/Lp)} . (3.11)  a function ofL/L, for the response of the extensiodR
2L, (upper curve and for that of the orientationgcosa(L))

As with the response of the orientation, we gain insight by(lower curvg. The equations giving the response to a force
considering the limiting cases of flexible and weakly bendingapplied at the free end of a grafted wormlike chain are cited
polymers. In the flexible limi(L>L,), in Appendix A. We note that the effective charge for the

extension tends t@l/2)AL in the flexible limit, which is just

_EALL? ( L )

| HT +0 L, . (3.12 06
The leading term is the result that one obtains for the re- 0.5]
sponse to a uniform field of a Gaussian chain with Kuhn ]
length equal to B,,. Obviously, this result cannot be valid in 041
the strong field regime because thé.? scaling would be- ]
come incompatible with the local inextensibility of the poly- q 0.3
mer. Indeed, the response of a wormlike or a freely-jointed ]
chain to a strong field has different scaling behavior and is 0.2
free from this pathology, as is shown in Reff8,11,13. For 3
weak fields, however, there is no inconsistency between Eq. 0.1
(3.12 and the constraint of fixed contour length. In the ]
weakly bending limit(L <L), 00' T A e s 10

EALY L\s :
Ry = 8k sinf 6(0) + OKL_) ] (3.13 FIG. 2. Effective point charge for the response of the extension
. (upper curve and for the response of the orientati@dower curve

for 6(0) # (0,7), and as a function of =L/L, for 6,=0.
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In order to understand the interplay between the three
characteristic lengthis, L, andl,,, we focus on the response
] of a chain with total contour length=ml,,, wherem (the
0.002 3 number of dipolekis an integer. In this case, as well as when

0.004

L=(m+1/2)l,, the response is peaked. The result reads
c 0 | ,
] E)‘OLp lek7 6
1 = 6K’ = 87K°m
0002 ] R = L T6(9 + KI(1+ KD (4 + KOKE! m
oo — 288mm+ 2K” exp(— 2L/L,) - 8K’ exp(- L/L,)
B e —— + 7263 exp(— 2L/L,) - 104K° exp(— L/L,)
1 1.2 14 1.6 1.8 2
! - 2883 expl(- L/L,) + 216<3 + 26K® exp(— 2L/L,)
FIG. 3. Linear-response coefficient for the extension of a peri- + 78K° - 392rK2m - 1127K*m+ [ cog ¢(0) - 5]
odic polyampholyte, C= sRkgT/(EXoL3), as a function ofl % 5 _ _ 3 _
=L/L,, for fo=m/2 andly/Ly=1/20. [78K% expl= 2L/Lp) ~ 29T exp(- L/Ly)
- 23K exp(= 3L/L,) — 87K> exp(- L/L,)
the average charge along the polymer contour. In the weakly — 25K5 exp(- 3L/L,) + 216K3 exp(- 2L/L,)

bending limit, it decreases t@/10\L for #(0)=(0,s) and . .
to (3/8)AL for any other orientation. + 6K exp(— 2L/Lp) - 2K exp(— 3L/Ly)

- 6K” exp(— L/L,) + 2K + 34K® + 1043}, (4.3
IV. ALTERNATING POLYAMPHOLYTES

. . whereK=2xL/l.
- p
In this section, we extend our study of a charged worm In the flexible limit (L1 p), we obtai

like chain in an external electric field to a grafted semiflex-

ible polymer with a periodic alternating charge sequence Ex2 am7m K
along its contour. We model such a sequence by a sinusoidaR, = pd 772 + > > {27 + K2
linear charge density, keT 3K® 3(1+K)(9+K)
— ; L
A(s) = N sin(ks), (4.2) +[cog 0(0) - ](13 +K?)} - o[exp<— L—) ] } (4.4)
P

wherek= 27/, with |, being the arc length of the “elemen-
tary dipole.” This model is analytically tractable and the lin- The leading term is the response of a neutral Gaussian chain
ear response of the extension formally reads with a point charge at its free end equal to theerage
E (- L g charge in th_e Ia_st segment of arc Ieng;,hz_ of Fhe polyam-
OR, = _J d f ds sin(ks’)f ds’{cosf(s)cosé(s")), pholyte, which is €1/2)Agl,,/ 7. The contribution from the
kT Jo 0 0 charge in the bulk depends on the rdigL, and it is maxi-
L o mal whenl,/L,~2m. We have to distinguish between the
—<cos€(s)>0f ds' sin(ks’)f ds(cosé(s")), (. (4.2) case where the chain is flexible on the scale of the elemen-
0 0 tary dipole, that isl.,<I,, and the case where the chain is

o weakly bending on that scale. To leading ordeLitL,, the
The explicit final result appears too long and cumbersome ;.. . . P

. ) o~ Telative difference between elongational and bending re-
and we report it in Appendix B. Here, we only highlight its

main features. The sign of the response oscillates dependirfé)??gie /ﬁeff(;r;elfi ;{?R‘;?\%_B)(L 5/?';]()2‘()[ 78);&5?‘(2_ O)V\IIZ

on the sign of the charge at the tip of the chékig. 3). TP p~..m”- o P P p - m
Specifically,sR, will have the same sign as that of the Charglep0|_nt out the qualitative difference betwgen the two cases,
in the last polymer segment of arc lengty/2. This is a which could be u_sed as a way to experimentally probe the
manifestation of the same phenomenon as the “odd-even ep_olyampholyte stlffnes_s on the scalelof

fect” discussed in Refg15] and[16] for free (nongrafted In the weakly bending limi{L <L), for &(0) # (0, ),
alternating polyampholytes. In those papers, it is shown that 3 s

a flexible polyampholyte in an external field stretches when - %{§w3m3+ 277m}sin2 0(0) + O[(l) } (4.5)

the total number of charges is odd, while it collapses when T keTKAE K/ ]

the total number of charges is evaero net charge In the

case considered here, because of the different boundary cowhereas foré(0)=(0, ),

ditions, the polymer deforms in the direction of the external

field when the charge at the last segment of lerigit® is __ E’\o'-39§ 4+ 0 (1)6 4.6)
positive and it deforms in the opposite direction when this ‘ kg TK®3 K/ | '

charge is negative. The remarkable point is the strong depen-
dence of the response on the charge of the last segment deer largem, as in the flexible limit, we recover the response
spite the very large number of segments. of a neutral wormlike chain with a point charge at its free
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end equal to the average charge in the last segment of aoerning the linear response of a grafted wormlike chain to a
lengthl,,/2 of the polyampholyte. Notice that in the case of force applied at its free en20]. In place of Eq.(2.2), the
elongational or compressional fields, we do not need to agnteraction with a force= is expressed by adding &, the
sume largem in order to get this cancellation of the contri- term
bution from the charges in the bulk of the chain. L

If we modify the linear charge density of E¢.1) by He=-F f dst(s). (A1)
introducing a phase, that i&(s) =\ sin(ks+ ¢), the results 0

presented in this section will remain unchanged up to a phasgsing the orientational correlations of the free chain, one
shift. For example, if we have=/2, the response will be gptains the linear response of the tip orientation,

peaked when the total contour lengthlis(m+1/4)l,, or L1 2 1
(m+3/4)1,,, wherem is an integer. &cosé(L)) = k_1g{§ -3 exp(- L/L,) + 3 exp(- 2L/L,)
B

V. CONCLUSIONS

_ _ _ +[cog 6(0) - %][exp(— 2L/L,)
In this paper, we have calculated analytically the linear
response of a grafted wormlike chain to a uniform force 1 1
field. The response assumes scaling forms in the limiting —EeXp(— L/Lp)_éexq_ 3L/Lp):| , (A2)
cases of weakly bending and flexible polymers, and we have
obtained explicit results for polymers of arbitrary stiffness.and the linear response of the extension,
We have discussed how the response to a field differs from L2 oL 4 1
the response to a force exerted at the free end. We havm‘ = —F-’{— 1+_-—+_exp-L/Ly - exp—2L/L,)
considered a uniformly charged chain and a periodic alter- keT 3Lp 3
nating polyampholyte and we have demonstrated the strong 1 1
dependence of the response on the distribution of charge  +[cog 6(0) - %]{— 373 exp(—3L/L,) + exp(— L/Ly)
along the polymer contour. In the latter case, we have shown

how the interplay between the internal persistence length and 1
the characteristic length of the charge modulation affects the 3 exp— 2L/Lp) — exp(= 2L/Ly) | (. (A3)
response.
APPENDIX B
APPENDIX A

In this appendix, we report the explicit result for the linear
For the sake of completeness and in order to facilitateesponse of a periodic alternating polyampholyte of arbitrary
comparisons, in this appendix, we cite the main results conlength as obtained from Eg4.2),

B ExolL>

kgT6(9 +K?)(1 +K?)(4 +K?)
- 2K8 exp(- 21)sin(KI) — 26K* exp(— 21)sin(KI) — 2K” exp(— 21)cogKl) + 4K5 — 52K exp(- |) — 30 sinK)K*
- 144K exp(— 1) — 4K® exp(— |) + 144K + 4 cogK)K'l + 56 cogKI)k®l + 144 co$KI)KI — 26K° exp(— 21)codKI)
+196 co$KI)K3l + 144 expp— 1) cogKI)K — 124K? sin(KI) — 2K® sin(KI) — 6 cogKI)K’ - 268 co$Kl)K3 - 82 cogKI)K>
+ 523+ 52 expi— 1)sin(KK* - 144 co$KI)K + 144 exg— )sin(KI)K? — 72Kk2 exp(— 2)cogKl) — 72K? exp(— 21)sin(KI)
+ 4K exp(— )sin(KI) + [ cog 6(0) - £ |[81K® exp(- 1)cogKI) + 255 exgg- 1)K3 cogKl) + 6 exg— K cogKl) + 23
xexp(— 31)K3 cogKl) + 108 co$Kl)exp(— 1)K + 25 expg— 3l)cogKI)K® + 45 exg— 31)K* sin(Kl)
+2 exp— 3K’ cogKl) + 3 exg— 3)KE sin(Kl) + 42 expg— 31)K? sin(KI) — 216<3 exp(- 2I) — 78K°>
xexp(— 21)cogKl) — 6K exp(— 21)sin(Kl) — 6K” exp(— 21)cogKI) + 6 exd— 1)K® + 42 ex— ) K3
- 108exp— 1)K + 39K* exp(— 1)sin(KI) — 98 cogKI)K® - 28 cogKI)K® + 108 exg— 1) K2 sin(KI)
+ 3 expg— KO sin(Kl) — 72 cogKI)K + 72K — 6K® + 72K — 6K® + 6K> - 2 cogKI)K’ - 21642
X exp(- 21)sin(KI) - 78<* exp(— 21)sin(K1)]}, (B1)

SR = K2{108|<5 exp(— 1)cogKl) + 8K” exp(— ) cogKI) + 340K exp(— ) cogKI) — 144 sir(Kl)

wherel = L/Lp.
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