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We use the wormlike chain model to analytically calculate the linear response of a grafted semiflexible
polymer to a uniform force field. The result is a function of the bending stiffness, the temperature, the total
contour length, and the orientation of the field with respect to that of the grafted end. We also study the linear
response of a wormlike chain with a periodic alternating sequence of positive and negative charges. This can
be considered as a model for a polyampholyte with intrinsic bending stiffness and negligible intramolecular
interactions. We show how the finite intrinsic persistence length affects the linear response to the external field.
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I. INTRODUCTION

Semiflexible polymers are macromolecules with a bend-
ing stiffness intermediate between that of an absolutely flex-
ible (Gaussian) chain and a rigid rod. A measure of the di-
rectedness of a polymer is its persistence length, which is
proportional to the bending stiffness. Semiflexible polymers
have a presistence length of the order of the total contour
length. They have been the subject of extensive theoretical
and experimental study in recent years, primarily because
many biologically important macromolecules fall in this
class. The structural elements of the cytoskeleton(actin fila-
ments, microtubules, intermediate filaments) and double-
helix DNA exhibit elastic behavior dominated by their bend-
ing stiffness[1,2].

Single-molecule experiments have allowed the study of
the influence of external forces or force fields on the confor-
mational properties of semiflexible polymers[3–6]. Their
theoretical study is considerably more challenging compared
to that of flexible chains, and one of the main reasons is the
lack of scaling properties except for limiting cases(e.g.,
weakly bending polymers). In the wormlike chain model,
pulling a semiflexible polymer at its ends is formally analo-
gous to the Stark effect of a quantum rotator[7]. This anal-
ogy has led to semianalytical solutions of the force-extension
problem. The response to a force field is even more compli-
cated as the quantum analogy involves a nonlocal(in imagi-
nary time) interaction. Further complications arise from in-
tramolecular interactions between different polymer
segments, which may become important in realistic experi-
mental situations where a polymer is subject to a hydrody-
namic flow or it is charged and placed in an electric field.

Marko and Siggia[8] have derived an approximate ana-
lytical field-extension relation for a semiflexible polymer
which has one end fixed and is free to rotate about it. Their
result for strong fields appears to be in good agreement with
an experiment done with DNA in an external electric field
[9]. Lamuraet al. [10] have calculated conformational prop-
erties of a grafted semiflexible polymer in a uniform force
field in two dimensions using recursion relations in the
weakly bending approximation, which is valid at strong
fields and/or large persistence lengths. We should mention
that the standard Gaussian polymer model is inadequate to

describe stretching in strong fields because it is infinitely
extensible[11,12]. In contrast, the wormlike chain is charac-
terized by a fixed total contour length constraint, and this
problem is avoided.

Charged polymers with two types of charge(positive and
negative) along their backbone are called polyampholytes.
They have attracted a lot of attention because of their inher-
ent theoretical interest and their relevance to the protein fold-
ing problem[13]. There have been studies of their response
to an electric field[14–17], but most of the previous works
deal with their conformational properties due to the intramo-
lecular interactions in the absence of an external field. They
all consider charge distributions on backbones described as
flexible or freely jointed chains and do not take into account
the possibility of an internal bending stiffness.

In the present paper, we calculate the linear response of a
grafted wormlike chain to a uniform electric field for arbi-
trary bending stiffness and field orientation. In Sec. II, we
describe the model. In Sec. III, we calculate the linear re-
sponse of the orientation and the extension of a uniformly
charged wormlike chain and compare the results with the
response to a force applied at the free end. In Sec. IV, we
calculate the linear response of the extension of a periodic
alternating polyampholyte with internal bending stiffness.

II. THE MODEL

The wormlike chain is a fluctuating, continuous, locally
inextensible line with a fixed total contour lengthL. In the
absence of any external force, its effective free-energy func-
tional depends only on the bending(curvature) and is given
by

H0fhr ssdjg =
k

2
E

0

L

dsF ]tssd
]s

G2

, s2.1d

where tssd=]r ssd /]s is the unit tangent vector of the curve
r ssd at arc lengths, andk is the bending stiffness[18]. The
correlation length of the unit tangent vector along the poly-
mer contour is the persistence length,Lp, which is related to
the bending stiffness viaLp=2k / fkBTsd−1dg, whered is the
dimensionality of the embedding space. Throughout this pa-
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per, we consider a wormlike chain which is grafted ats=0,
that is, both the position of this pointand the orientation of
the related tangent vector are kept fixed.

The interaction with a uniform external fieldE is ex-
pressed by adding toH0 the term

HIfhr ssdjg = − E ·E
0

L

dslssdfr ssd − r s0dg

= − E ·E
0

L

dslssdE
0

s

ds8tss8d, s2.2d

wherelssd is a phenomenological linear charge density. This
simple model neglects the intramolecular interaction be-
tween different segments of the same polymer and also the
steric self-avoidance. The latter is expected to be negligible
for Lp.L. For polymers with a large aspect ratio, like
double-helix DNA or F-Actin, self-avoidance effects become
important only forL@Lp.

If ussd is the angle between the tangent vectortssd and the
field E, we can write

H = H0 − EE
0

L

dslssdE
0

L

ds8 cosuss8d. s2.3d

The orientational probability distribution of a wormlike
chain having a conformation with a tangent vectorts0d= t0 at
one end and a tangent vectortsLd= tL at the other is given by
a path integral which is formally analogous to the density
matrix element, in the angle representation, of a quantum
rigid rotator [18]. We denote it byGstL ,L u t0,0d. It can be
calculated analytically and it has a spectral representation in
terms of spherical harmonics. In three dimensions, we can
integrate out the azimuthal angle to obtain
Gfussd ,suuss8d ,s8g. Thus we are able to calculate orienta-
tional correlations using

kcosussnd ¯ cosuss1dl0

=E dusLdsinusLdE dussndsinussnd ¯E duss1dsinuss1d

3 G„usLd,Luussnd,sn…cosussndG„ussnd,snuussn−1d,sn−1…

3 ¯ cosss1dG„uss1d,s1uus0d,0…, s2.4d

whereL.sn.sn−1. ¯ .s1.0 [18].

III. LINEAR RESPONSE OF A UNIFORMLY CHARGED
SEMIFLEXIBLE POLYMER

We define the change in the orientation of the polymer
due to the applied force field by

dkcosussdl ; kcosussdlE − kcosussdl0, s3.1d

where the first average on the right-hand side(rhs) of the
equation is taken over the Boltzmann weight associated with
the energy given in Eq.(2.3) and the second average is taken
over the Boltzmann weight associated with the energy given
in Eq. (2.1). To lowest order inE,

dkcosussdl =
El

kBTHE0

L

ds8E
0

s8
ds9kcosussdcosuss9dl0

− kcosussdl0E
0

L

ds8E
0

s8
ds9kcosuss9dl0J .

s3.2d

In this section, we assume that the linear charge densityl is
constant along the polymer contour. Using the prescription of
Eq. (2.4), one obtains

kcosussdl0 = cosus0dexps− s/Lpd s3.3d

and

kcosussdcosuss8dl0 = expf− ss− s8d/Lpgh 1
3 + exps− 3s8/Lpd

3fcos2 us0d − 1
3gj , s3.4d

wheres.s8. Substituting Eqs.(3.3) and (3.4) into Eq. (3.2)
and breaking the domain of integration of the first double
integral on the rhs of the equation into parts with a well-
defined arc-length ordering, we obtain the final result,

dkcosussdl =
ElLp

2

kBT
H−

2

3

s

Lp
+

2

3

L

Lp
−

2

3

L

Lp
exps− s/Lpd

+
1

3
expfss− Ld/Lpg −

1

3
expf− ss+ Ld/Lpg

+ Scos2 us0d −
1

3
DF1

2

L

Lp
exps− 3s/LPd

+ expf− s2s+ Ld/Lpg −
3

4
exps− 3s/Lpd

+
3

4
exps− s/Lpd − expf− ss+ Ld/Lpg

−
1

2

L

Lp
exps− s/Lpd −

1

2

L

Lp
exps− 3s/LpdGJ .

s3.5d

It is instructive to consider the flexible and the weakly
bending limits of this result. In the flexible limit whereL
@Lp, the anisotropy associated with theus0d dependence of
the response drops out and we get

dkcosusLdl =
ElLp

2

3kBT
+ OFS L

Lp
DexpS−

L

Lp
DG . s3.6d

The leading term is precisely the response of a freely rotating
dipole momentm=lLp

2 to a weak fieldE. The average
polarization of such a system is km cosul
=s1/2dedu sinu (m cosu) expf−mE cosu / skBTdg. On the
other hand, in the weakly bending limit whereL!Lp, the
response strongly depends onus0d. For us0dÞ s0,pd,

dkcosusLdl =
ElL3

6k
sin2 us0d + OFS L

Lp
D4G . s3.7d

For a purely bending fieldfus0d=p /2g, we recover the me-
chanical bending of a rod with stiffnessk which is known
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from the classical theory of elasticity[19]. For an elonga-
tional (or compressional) field with us0d=s0,pd,

dkcosusLdl =
ElL4kBT

12k2 + OFS L

Lp
D5G . s3.8d

We note that in this case the linear response becomes pro-
portional to the temperature and it vanishes at zero tempera-
ture. This vanishing is an indication of the existence of a
finite critical field above which the compressional deforma-
tion becomes unstable as predicted by the classical theory of
elasticity of rods(buckling to a field) [19].

An experimentally more accessible quantity is the re-
sponse of the end-to-end vector in the direction of the field,

dRi ; skRlE − kRl0d ·
E

uEu
, s3.9d

where

R =E
0

L

dstssd. s3.10d

We easily obtain it by integrating Eq.(3.5) over the polymer
contour,

dRi =
ElLp

3

kBT
H−

2

3
Fexps− L/Lpd +

L

Lp
−

L

Lp
exps− L/LpdG

+
1

3
FS L

Lp
D2

+ exps− 2L/Lpd + 36G + Scos2 us0d −
1

3
D

3F−
1

3

L

Lp
−

5

4
exps− L/Lpd +

4

9
−

7

36
exps− 3L/Lpd

+ exps− 2L/Lpd +
1

2

L

Lp
exps− L/LpdGJ . s3.11d

As with the response of the orientation, we gain insight by
considering the limiting cases of flexible and weakly bending
polymers. In the flexible limitsL@Lpd,

dRi =
ElLpL

2

3kBT
+ OS L

Lp
D . s3.12d

The leading term is the result that one obtains for the re-
sponse to a uniform field of a Gaussian chain with Kuhn
length equal to 2Lp. Obviously, this result cannot be valid in
the strong field regime because the,L2 scaling would be-
come incompatible with the local inextensibility of the poly-
mer. Indeed, the response of a wormlike or a freely-jointed
chain to a strong field has different scaling behavior and is
free from this pathology, as is shown in Refs.[8,11,12]. For
weak fields, however, there is no inconsistency between Eq.
(3.12) and the constraint of fixed contour length. In the
weakly bending limitsL!Lpd,

dRi =
ElL4

8k
sin2 us0d + OFS L

Lp
D5G s3.13d

for us0dÞ s0,pd, and

dRi =
ElkBTL5

20k2 + OFS L

Lp
D6G s3.14d

for us0d=s0,pd. As before, the bending response in the
weakly bending limit reproduces the result from the classical
elasticity of rods[19] and the temperature dependence in Eq.
(3.14) is a sign of its entropic origin. The crossover between
the two scaling limits as the chain stiffness varies is illus-
trated in Fig. 1.

In order to compare the linear response to a field to the
linear response to a force exerted at the free end, it is instruc-
tive to define an “effective point charge.” It is a point charge
placed at the free end which, subject to the fieldE, would
yield the same response as that due to the total chargelL
which is uniformly distributed along the polymer contour. In
Fig. 2, we plot the “effective point charge”(in units oflL) as
a function of L /Lp for the response of the extension,dRi

(upper curve) and for that of the orientation,dkcosusLdl
(lower curve). The equations giving the response to a force
applied at the free end of a grafted wormlike chain are cited
in Appendix A. We note that the effective charge for the
extension tends tos1/2dlL in the flexible limit, which is just

FIG. 1. Rescaled linear response coefficient for the extension,
C8;dRikBT/ sElLpL

2d, as a function of the chain stiffness,l
;L /Lp, for u0=p /2 (upper curve) andu0=0 (lower curve).

FIG. 2. Effective point charge for the response of the extension
(upper curve) and for the response of the orientation(lower curve)
as a function ofl ;L /Lp for u0=0.

LINEAR RESPONSE OF A GRAFTED SEMIFLEXIBLE ... PHYSICAL REVIEW E70, 051806(2004)

051806-3



the average charge along the polymer contour. In the weakly
bending limit, it decreases tos3/10dlL for us0d=s0,pd and
to s3/8dlL for any other orientation.

IV. ALTERNATING POLYAMPHOLYTES

In this section, we extend our study of a charged worm-
like chain in an external electric field to a grafted semiflex-
ible polymer with a periodic alternating charge sequence
along its contour. We model such a sequence by a sinusoidal
linear charge density,

lssd = l0 sinsksd, s4.1d

wherek;2p / lm with lm being the arc length of the “elemen-
tary dipole.” This model is analytically tractable and the lin-
ear response of the extension formally reads

dRi =
El0

kBT
E

0

L

dsHE
0

L

ds8 sinsks8dE
0

s8
ds9kcosussdcosuss9dl0

− kcosussdl0E
0

L

ds8 sinsks8dE
0

s8
ds9kcosuss9dl0J . s4.2d

The explicit final result appears too long and cumbersome
and we report it in Appendix B. Here, we only highlight its
main features. The sign of the response oscillates depending
on the sign of the charge at the tip of the chain(Fig. 3).
Specifically,dRi will have the same sign as that of the charge
in the last polymer segment of arc lengthlm/2. This is a
manifestation of the same phenomenon as the “odd-even ef-
fect” discussed in Refs.[15] and [16] for free (nongrafted)
alternating polyampholytes. In those papers, it is shown that
a flexible polyampholyte in an external field stretches when
the total number of charges is odd, while it collapses when
the total number of charges is even(zero net charge). In the
case considered here, because of the different boundary con-
ditions, the polymer deforms in the direction of the external
field when the charge at the last segment of lengthlm/2 is
positive and it deforms in the opposite direction when this
charge is negative. The remarkable point is the strong depen-
dence of the response on the charge of the last segment de-
spite the very large number of segments.

In order to understand the interplay between the three
characteristic lengthsL, Lp, andlm, we focus on the response
of a chain with total contour lengthL=mlm, wherem (the
number of dipoles) is an integer. In this case, as well as when
L=sm+1/2dlm, the response is peaked. The result reads

dRi =
El0Lp

3

kBT6s9 + K2ds1 + K2ds4 + K2dK2h6K7 − 8pK6m

− 288pm+ 2K7 exps− 2L/Lpd − 8K7 exps− L/Lpd

+ 72K3 exps− 2L/Lpd − 104K5 exps− L/Lpd

− 288K3 exps− L/Lpd + 216K3 + 26K5 exps− 2L/Lpd

+ 78K5 − 392pK2m− 112pK4m+ fcos2 us0d − 1
3g

3f78K5 exps− 2L/Lpd − 297K3 exps− L/Lpd

− 23K3 exps− 3L/Lpd − 87K5 exps− L/Lpd

− 25K5 exps− 3L/Lpd + 216K3 exps− 2L/Lpd

+ 6K7 exps− 2L/Lpd − 2K7 exps− 3L/Lpd

− 6K7 exps− L/Lpd + 2K7 + 34K5 + 104K3gj , s4.3d

whereK;2pLp/ lm.
In the flexible limit sL@Lpd, we obtain

dRi =
El0Lp

3

kBT
H−

4pm

3K2 +
K

3s1 + K2ds9 + K2d
h27 + 3K2

+ fcos2 us0d − 1
3gs13 +K2dj − OFexpS−

L

Lp
DGJ . s4.4d

The leading term is the response of a neutral Gaussian chain
with a point charge at its free end equal to theaverage
charge in the last segment of arc lengthlm/2 of the polyam-
pholyte, which is −s1/2dl0lm/p. The contribution from the
charge in the bulk depends on the ratiolm/Lp and it is maxi-
mal when lm/Lp<2p. We have to distinguish between the
case where the chain is flexible on the scale of the elemen-
tary dipole, that is,Lp! lm, and the case where the chain is
weakly bending on that scale. To leading order inL /Lp, the
relative difference between elongational and bending re-
sponse defined asfdRisu0=0d−dRisu0=p /2dg /dRisu0=0d is
s2/3dLp/L for Lp@ lm and ,sLp/ lmd2sLp/Ld for Lp! lm. We
point out the qualitative difference between the two cases,
which could be used as a way to experimentally probe the
polyampholyte stiffness on the scale oflm.

In the weakly bending limitsL!Lpd, for us0dÞ s0,pd,

dRi = −
El0Lp

3

kBTK4h 8
3p3m3 + 2pmjsin2 us0d + OFS 1

K
D5G , s4.5d

whereas forus0d=s0,pd,

dRi = −
El0Lp

3

kBTK5

8

3
p4m4 + OFS 1

K
D6G . s4.6d

For largem, as in the flexible limit, we recover the response
of a neutral wormlike chain with a point charge at its free

FIG. 3. Linear-response coefficient for the extension of a peri-
odic polyampholyte,C;dRikBT/ sEl0Lp

3d, as a function of l
;L /Lp, for u0=p /2 andlm/Lp=1/20.
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end equal to the average charge in the last segment of arc
length lm/2 of the polyampholyte. Notice that in the case of
elongational or compressional fields, we do not need to as-
sume largem in order to get this cancellation of the contri-
bution from the charges in the bulk of the chain.

If we modify the linear charge density of Eq.(4.1) by
introducing a phase, that is,lssd=l0 sinsks+fd, the results
presented in this section will remain unchanged up to a phase
shift. For example, if we havef=p /2, the response will be
peaked when the total contour length isL=sm+1/4dlm or
sm+3/4dlm, wherem is an integer.

V. CONCLUSIONS

In this paper, we have calculated analytically the linear
response of a grafted wormlike chain to a uniform force
field. The response assumes scaling forms in the limiting
cases of weakly bending and flexible polymers, and we have
obtained explicit results for polymers of arbitrary stiffness.
We have discussed how the response to a field differs from
the response to a force exerted at the free end. We have
considered a uniformly charged chain and a periodic alter-
nating polyampholyte and we have demonstrated the strong
dependence of the response on the distribution of charge
along the polymer contour. In the latter case, we have shown
how the interplay between the internal persistence length and
the characteristic length of the charge modulation affects the
response.

APPENDIX A

For the sake of completeness and in order to facilitate
comparisons, in this appendix, we cite the main results con-

cerning the linear response of a grafted wormlike chain to a
force applied at its free end[20]. In place of Eq.(2.2), the
interaction with a forceF is expressed by adding toH0 the
term

HF = − F ·E
0

L

dstssd. sA1d

Using the orientational correlations of the free chain, one
obtains the linear response of the tip orientation,

dkcosusLdl =
FLp

kBT
H1

3
−

2

3
exps− L/Lpd +

1

3
exps− 2L/Lpd

+ fcos2 us0d − 1
3gFexps− 2L/Lpd

−
1

2
exps− L/Lpd −

1

2
exps− 3L/LpdGJ , sA2d

and the linear response of the extension,

dRi =
FLp

2

kBT
H− 1 +

2

3

L

Lp
+

4

3
exps− L/Lpd −

1

3
exps− 2L/Lpd

+ fcos2 us0d − 1
3gF−

1

3
+

1

3
exps− 3L/Lpd + exps− L/Lpd

−
1

3
exps− 2L/LPd − exps− 2L/LpdGJ . sA3d

APPENDIX B

In this appendix, we report the explicit result for the linear
response of a periodic alternating polyampholyte of arbitrary
length as obtained from Eq.(4.2),

dRi = −
El0Lp

3

kBT6s9 + K2ds1 + K2ds4 + K2dK2h108K5 exps− ldcossKld + 8K7 exps− ldcossKld + 340K3 exps− ldcossKld − 144 sinsKld

− 2K6 exps− 2ldsinsKld − 26K4 exps− 2ldsinsKld − 2K7 exps− 2ldcossKld + 4K5 − 52K3 exps− ld − 30 sinsKldK4

− 144K exps− ld − 4K5 exps− ld + 144K + 4 cossKldK7l + 56 cossKldk5l + 144 cossKldKl − 26K5 exps− 2ldcossKld

+ 196 cossKldK3l + 144 exps− ldcossKldK − 124K2 sinsKld − 2K6 sinsKld − 6 cossKldK7 − 268 cossKldK3 − 82 cossKldK5

+ 52K3 + 52 exps− ldsinsKldK4 − 144 cossKldK + 144 exps− ldsinsKldK2 − 72K3 exps− 2ldcossKld − 72K2 exps− 2ldsinsKld

+ 4K6 exps− ldsinsKld + fcos2 us0d − 1
3gf81K5 exps− ldcossKld + 255 exps− ldK3 cossKld + 6 exps− ldK7 cossKld + 23

3exps− 3ldK3 cossKld + 108 cossKldexps− ldK + 25 exps− 3ldcossKldK5 + 45 exps− 3ldK4 sinsKld

+ 2 exps− 3ldK7 cossKld + 3 exps− 3ldK6 sinsKld + 42 exps− 3ldK2 sinsKld − 216K3 exps− 2ld − 78K5

3exps− 2ldcossKld − 6K6 exps− 2ldsinsKld − 6K7 exps− 2ldcossKld + 6 exps− ldK5 + 42 exps− ldK3

− 108exps− ldK + 39K4 exps− ldsinsKld − 98 cossKldK3 − 28 cossKldK5 + 108 exps− ldK2 sinsKld

+ 3 exps− ldK6 sinsKld − 72 cossKldK + 72K − 6K5 + 72K − 6K5 + 6K3 − 2 cossKldK7 − 216K2

3exps− 2ldsinsKld − 78K4 exps− 2ldsinsKldgj , sB1d

wherel ;L /Lp.
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