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Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of
homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal
basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approxi-
mation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for
the correlation functions of homopolymers with different connectivities in a good solvent. The resulting
exponents are in better agreement with those from recent renormalization group calculations as compared to
the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data
for correlation functions from simulations of homopolymers at varied solvent conditions and of
heteropolymers.
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I. INTRODUCTION approacheqg1-3. On the contrary, the TPCF's in a poor
solvent exhibit a complicated oscillating radial dependence

The main purpose of this paper is to give a useful irmo_akin to that of simple liquids. In this case, there is no known
duction and practical guide to those who would like to applysimply parametrized representation of TPCF's for the ho-

discrete wavelets for treating the data for the intrachain two-mopolymer globule. Moreover, an accurate sampling around

point correlation functiongTPCF'y gi(jZ)(_r)’ which either 5 rather tall peak corresponding to the first solvation shell
have been previously computed from direct computer simupecomes very significant as this peak contributes most to the
lations, came from some theoretical technique after SOW'”Qhermodynamic observables such as the mean energy. On the
equations for TPCF's, or perhaps have been obtained frorgther hand, TPCF’s in a good solvent obtained from molecu-
x-ray and neutron scattering experiments. The intrachain collar mechanics simulations tend to be rather noisy due to the
relation functions represent a fundamental link between th&igh entropy of the coil conformation. This results in a large
equilibrium thermodynamic observables and the conformascatter of values of TPCF's at small radial separations, which
tional structure of polymers. These functions for polymersmakes further fitting of the data by an analytical expression
exhibit rather different behavior depending on the solventind extraction of the scaling exponents difficult. Therefore,
quality. The TPCF of a homopolymer in a good solvent fol-in general, dealing with the TPCF data of heteropolymers,
lows a universal scaling scaling lAvior which analytical  for which some monomers are in a good solvent while others

expressions can be derived by the field theoretical and othé'e in a poor solvent, and, particularly, extracting meaningful
information from such data is a rather nontrivial problem.

Relying on the recent works of some of (4-6], we
believe that the task of parametrizir@f)(r) in a compact
"Electronic address: genchuev@ramblerru way can be accomplished by means of the _multire_solution

*Electronic address: Yo Kuznetsov@ucd o analysis[7,8]. At present, a humber of spema! baS|s_ sets,
Sauth " : : q hould 'b dd d referred to as _wavele[Q], are known and are bemg gctlvely

Author to whom correspondence should be addressed. used for treating both smooth and sharply oscillating func-
Electronic address: Edward.Timoshenko@ucd.ie tions, as well as for denoising of signdls0,11. Wavelets
URL: http://darkstar.ucd.ie have become a necessary mathematical tool in many modern

IStrictly speaking28], such laws are asymptotic in nature and do theoretical investigations in physics, chemistry, and other
not apply when the two monomers are too close to each other ifields[12—23. Wavelets are particularly useful in those cases
terms of the connectivity or when the interaction parameters are fawhen the result of the analysis of a function should contain
from the the appropriate fixed point. not only the list of its typical frequencigscale$, but also
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the list of the local coordinates where these frequencies are kg T

important. Thus, the main field of applications of wavelets is H=273

to analyze and process different classes of functions which

are either nonstationaryin time) or inhomogeneougin  The first term here represents the connectivity structure of

space. the polymer with harmonic springs of a given strength
The most general principle of the wavelet construction isintroduced between any pair of connected monontdes

to use dilations and translations. Commonly used waveletgoted byi~j). The second term represents pairwise non-
form a completgbi)orthonormal system of functions with a bonded interactions between monomers such as the van der

finite support constructed in such a way. That is why byWaals forces, for which we adopt the Lennard-Jones form of
changing a scalédilations wavelets can distinguish the lo- the potential,

1
(X = X)2+ = =X
=2 X% X VX)) @

cal characteristics of a function at various scales and by +oo, r<d,
translations they cover the whole region in which a function B 1 6

is being studied. Due to the completeness of the base system, V(r) = Vo[<9) - (9) } r>d 2
wavelets also allow one to perform the inverse transforma- r r/) I '

tlo?nt(t)hge;r?;?psoizlttl)?r;hr\:\::r]cilggsjsw(i:tar:lzdc:)ergoﬁcs:gtlgglgghavior where there is also a hard-core part with monomer diameter
Y P 'd (below we choosel=¢ without any lack of generalily

the locality property of wavelets makes the wavelet trans- We use the Monte Carlo technique with the standard Me-

form'technique substantially advan_tageous compargd to tW?opolis algorithm[27], which converges to the Gibbs equi-
Fourier transform. The Iatte( provides one orjly with theIibrium ensemble, based upon the implementation described
knowledge of global frequencigscale$ of a function under gy us in [25]. The value ofV,=0 will correspond to the

Ir;\i/r?:tlgggi?lg Sc')??ﬁ];h; ;ryséimor?;r:t?ael ?u?]sceti fggg?igz duse urely repulsive cas@ood solventleading to a coil confor-
( ’ ' ginary exp p mation of the polymer, whild/,=5 kgT will correspond to

on Fhe i_nfinite range. The Spec‘?" fgatures of wavelets such HRe attractive casgoor solvent leading to a globular con-
their (bi)orthogonality and van!shm'g of moments result " formation as in Ref[28]. All details of our Monte Carlo
the need for only a few approximating coefficients in practi- rocedure have been previously described in Feg] and

cal applications. That is a reason Why vyavelets are ‘%‘C“"e' n fact, here we shall rely on the same set of Monte éarlo
used, for example, to construct distribution functions in Cal'simula'tion data in order to make the comparison of the

culations of the electronic structuf@9-21 as well as in wavelet treated scaling exponents with those of Rg]

statistical mechanici!—]. . : more straightforward and unambiguous.
Recently, some of us have carried out several studies de-

voted to the wavelet parametrization of the radial density
functions for various atomic and molecular solufés6]. A
model study of the galaxies density in REZ2] uses a simi- The intrachain two-point correlation function of a pair of
lar wavelet approach for a different problem. In the presenmonomers andj is defined as

work we would like to address the question whether wavelets

can alsp be ad\_/antageous for approxi_mat_ing the intrachain g-(J-z)(r) = (38X~ X; - 1)) = %(5(|Xi —X,-| -1). (3
correlation functions of homopolymers in different solvents. 4mr

The Talnfpractlcal goal_ of ;h|s Parfgzﬁ 1S tc; apply @screte.rhe second equation establishes that it is a function of radius
wavelets for approximating functiorg, (r) of open, ring, r=|r| only due to spatial isotropfSQ(3) rotational symme-

and star homopolymers in a coil conformation, as well as o1 \we may note that this function should, strictly speaking,

a globule. Iq the case of a coil, the des CIoizeagx scalinq)e named a distribution function. but sing?z)(r)—>0 when
formula applies and a number of accurate theoretical result ' !

for the scaling exponents involved are availgdlg3). Thus P be.cause OT the Ch(%in cpnnectivity, we apply the term
we shall be able to investigate the influence of the choice o correlation function tog; (r) itself rather than to the quan-

the wavelet basis set and of the number of terms not only oHtY gi(jZ)(r)_/(g(l))z'_ 1, which would vanish ag— in the
the quality of the correlation function parametrization, butcase of simple liquids. The function is normalized to unity
also on the values of the scaling exponents extracted fror¥ia fd3f9i(,-2)(f)=1- Note that the correlation functions exactly
fitting the wavelet denoised functions by the des Cloizeawsatisfy the excluded volume conditiogi(,.z)(r):o for r<d,

B. Correlation functions

formula. due to the choice of hard-core part in tJhe nonbonded poten-
tial Eq. (2). The mean-squared distance between monoiners
andj is
Il. METHODS
A. Model Dy = <(Xi‘Xj)2>:fd3f|r|29i(12)(r)’ (4)

To obtain the correlation functions we relied on the stan-which we defined here without the traditional factor of 1/3
dard coarse-grained homopolymer mof24—-2§ based on as compared to some of the previous pap2e.
the following Hamiltonian in terms of the monomer coordi- The intrachain pair correlation functiongi(jz)(r) are
nates,X;: strongly dependent on both the degree of polymerizakion
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of the polymer and the choice of the reference monomers counterpartT/OC L2(R) correspondingly. This means that if a

andj, contacts between which we are looking at. Howevergnction f(r) is contained in the spacé, its integer transla-
as we have demonstrated in RE28], if we introduce the  ions have to be contained in the same space:

rescaled correlation function in terms of the dimensionless

variables, fr €V, = f(r+s) €V,
6'(f) =D}, F=rDj? ©)
these will change in about the same range and hence would

permit a much more straightforward comparison with each (i) Dyadic dilates of these functions;s=¢(2'r -s), ;s

. .. . ~ ~ . g =7(2ir — 1 i i
other. From this definition, obwouslg‘(jz)(r) satisfies the fol- —#(2T~9), J€Z, generate hierarchical sets of subspaces

lowing two normalization conditions: {V;} and{V}}, so that

f(r) EY/,- - f(r+s)€V-, se’.

) o l w -
s22e@ e = | greda@(p) = —
f g = | drgi® =g 6) Vi€ Vi, U Vjisdense (i), N Vj=0,

j=—»

C. Scaling relations ~ o~ ® q ) ®
. . ViCVi, U V.isdenseinL?(R), N V;=0. (9
According to Refs[1,3] TPCF'’s of a flexible homopoly- A ®) j=—oo ©
mer coil in a good solvent can be well descrije8] via a

power law times a stretched exponential, known as the des (i) The sets of functiong(r) and'pis(r) are biorthogo-
Cloizeaux scaling equation: nal to each other. It means that for asys’ €7:

@]i(jz)(f) = AT exp(- By %). (7) N
. . .. . f (pis(r)gojsr(r)dr = 555/.
Due to the two normalization conditions in E&), the con-
stantsA andB can be immediately calculated and expressed
via § and 6. The exponents; do not really depend on j, It means that if a functiori(r) is contained in the spacé,
but the contact exponent do. In the case of the end-end the compressed functiof(2r) has to be contained in the
correlations of an open chaify; is denoted ag), and these higher-resolution spac¥. ;:

can be expressed via
1 y-1 f(r) €V, = f(2r) €V},
o= b= : (8)

1-v v

wherer has the meaning of the inverse fractal dimension of f(n eV« f@2r) eV, JEL
the system and is related to the number of different poly-

X (iv) There is a wavelet functior(r) and its dual wavelet
mer conformation$1,3].

function Tp(r) such that their integer translationgs(r)
D. Wavelet theory ~=¢(r~—s), Y(r)=y(r-s) and dyadic dilatespjszw(zjr—s),

The fundamental theory behind wavelets is known as thgiS_szr_s) form~subspacewj andW; which are comple-
multiresolution analysi$MRA). Most of the rigorous results mentary toV; andV; so that
and definitions from MRA are not usually required for prac-
tical applicatior_ws. The or_1|y e_quati_ons which are r_leedeq for Vi =V e W, i'/jﬂ:i‘/j @ \7\/1 \7\,] LV, i‘/j LW,
the work described herein will be introduced in this section.
As we mainly use basis sets from the biorthogonal wavelets (10)

families, we shall introduce all wavelets in a general way as (v) From the above relations it follows tha#(R) can be

biorthogonal wavelets. Moreover, we shall use the discretgecomposed into the approximation spaeeand the sum of
wavelet transforn{DWT) technique[7,9] to parametrize the . otailed spaced/; of higher resolution%?jo:
TPCF's. There is a good introduction to the wavelet tech- !

nigues in Ref[15]. We also will follow the style of that book -
henceforth. The multiresolution approach is based on the LAR) =V, ® @& W, (11)
idea that the wavelet functions generate a hierarchical se- o

quence of subspaces in the space of square-integrable func-

=jo

tions over the real axis?(R), which forms the MRA. wherej,€7Z is a chosen level of resolution. This means that
The scaling functions(r) and(r) produce a biorthogo- any square-integrable functidifr) can be represented as a
nal MRA if they satisfy the following conditions. sum of linear combinations of the reconstruction scaling

(i) Translations of these functions with integers,  functions{¢; } at a chosen resolutioj=j, and the recon-
=¢(r-s), ps=¢(r-s), s€Z, are linearly independent and struction wavelet functiondy;} at all finer resolutions]
produce bases of the subspadgC L%(R) and their dual =j,. This can be written as
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* shall talk about a more general “biorthogonal wavelet trans-
f(r) =2 3 5P s(F) + > > disis(n), (12 form.”
s i>jo s In the expansior{12) the first term gives a “coarse” ap-

e Proximation forf(r) at the resolutiorj, and the second term
agives a sequence of successive “details.” In practice, we ac-
tually do not need to use an infinite number of resolutions.
Therefore, the sequence of details is cut off at an appropriate

~ ~ resolutionj .. Since all functions used in numerical work
aJ'S:f f(r)es(r)dr, dJ’S:f fr)is(r)dr. (13) are given ]i;?a:; finite interval, the sequence of different trans-
lations{s} has also a finite number of tern§, It should be
The later equation defines the dis~crete V\Lavelgt transform. mentioned that, reallyS can be different for detailed and
As ¢(r)CVy andVoC V4, o(r) CVy andVyCV,, we can  coarse approximations.
expressp(r) [as well asp(r)] as a linear combination of the Importantly, the explicit form of the basis functions is not
basis functions iNl[vl]: required if we are ugin(t)i)orthogonal wavelets wifch. a fini_te
support and a dyadic set of scaleS hen the coefficients in
o(r) => he(2r - 9), a(r)zgﬁs},‘p(zr -s). (14 Eqg. (13 can be calculated by Fhe fast wayelet tr.ansfc.)rm
s s (FWT) algorithm[7,8,15. The main idea of this algorithm is
that a set of(bi)orthogonal discrete filters at consequently
dilated scales is used for the multiresolution analysis of a
signal. As a result, to calculate the approximating coeffi-
_ _ T N cients, the convolution of the signal and the relevant filter is
‘”(r)‘gwsw(zr S ‘/’(”‘gwsg"(zr s. (19 only required for each scale, and the latter can be easily
obtained.
The above sets of coefficients are usually called “filters” and By choosing relevant basis functions and scales we can
they are completely sufficient in order to describe a Choselﬂ'u”ify most of the coefficient§a} and{d} thereby reducing
wavelet basis because there are several procedures on how@ square root erroSRE since the DWT satisfies Parse-
build up numerical values of the wavelet functions from the, gy identity [9]. Therefore, the function under study can be
set of filters[7,9,13. We should emphasize here that therereconstructed with the use of only a few nonzero coefficients
are no analytic expressions for biorthogorafthogonal  \yithout any significant loss of accuracy, making the total
wavelets with a finite suppdiThese are determined in terms nymper of approximating coefficients rather small. This fea-
of their filter coefficients only. But one can obtain the valuesy,re of the of wavelet approximation is widely used in the

of these functions with any given accuracy by using speciabygcessing of signals and images, the data for which should
procedures, which are well described in the wavelet literaturge compressed with minimal lossg].

[7,9,15.

The scaling functions and the wavelets have a finite sup-
port only in the case of a finite number of the coefficiemis
andws. Due to their biorthogonal nature, these functions sat- The compression and denoising properties of the wavelet
isfy the relations transform strongly depended on the fundamental properties

of the wavelet bases, which we define here in a rather sim-
f @il Pjp(r) dr = S, plified way as thenumber of vanishing moments, regularity,
size of support, symmetry, and orthogonality and biorthogo-
nality.

Number of vanishing moment& wavelet functiony(r)

hasNyy vanishing momentgVM) if

where the coefficientiajos} and {d;s} are obtained as th
scalar products with the appropriate dual decomposition b
sis functions

This equation is called thdilation equation Similarly, ¢r)
and i(r) must satisfy avavelet dilation equation

E. Choice of wavelet basis set

J SDja(f):blb(f) dr=0 (I=]j),

(16)
fh‘/‘?ia(r)ﬁblb(r) dr=0 (j=1), f rég(r)dr=0 for w=0,...,Nyy—1. (17
_ The number of vanishing moments strongly influences the
f a1 (1) dr = S Sap, localization of wavelets in the frequency space. The Fourier
transform of a wavelet witll,,, =n has a peak and decays as
for any integerj, |, a, b. k™ (k means frequengy

Regularity This can be defined as the numlpeof exist-
ing derivatives of a wavelet function. It also characterizes the
frequency localization of wavelets. The Fourier transform of
a wavelet with regularitp=n decays ak ™7 for largek.
We would like to emphasize that as wavelets have no ana-
This is true except of the simplest basis, Haar basis, which idytic expressions the definition of their derivatives is not as
constructed from piecewise functiof@). straightforward as for the “usual” functior{®]. However,

If the pairs of the decomposition functio{fé,?p} and the
reconstruction functionp, ¢} are identical, the transform is
called the “orthogonal wavelet transform.” Otherwise we
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these mathematical details are beyond the scope of our aerty is very useful for the treatment of functions with sharp
ticle. peaks and slopes. The larger the number of scaling function

Size of supportThis is the length of the interval on which vanishing moments, the better is the approximation for sin-
the wavelet function has nonzero values. Obviously, thigyular points of the function under stud]. Hence, by using
characterizes the space localization of the wavelet. such waveletge.g., Coifmam we can treat accurately sharp

Symmetry The wavelet bases functions can be stronglypeaks of such a function. On the other hand, these wavelets
symmetric or asymmetric. The deviation of a wavelet fromare rather smooth to approximate well the function within the
the symmetry(i.e., even or odd parilyis usually measured ranges between these peaks. The price for this extra feature
by how the phase of its Fourier transform deviates from ds that the Coifman wavelets are longer than the Daubechies
linear function. It was shown that is impossible to constructwavelets. Their length of support is equal td3,— 1 instead
an orthogonal basis with the exact parity of the functidns. of 2Ny — 1.

On the contrary, we can design a biorthogonal basis set Thus we can see that for orthogonal wavelets the desir-
with the exact symmetry of the function without serious ef-able properties are in contradiction with each other. But for-
forts [9,29]. tunately, we can use different functions for the decomposi-

Orthogonality and biorthogonalityAs we have already tion and reconstruction. These biorthogonal bases have
mentioned in the case when the pairs of the decompositioseveral advantages compared with the orthogonal bases. We

identical, the wavelet transform is orthogonal. Otherwise it istions @, ¢ with a number of vanishing moments for decom-

biorthogonal. But this is true only if th&b,ﬂ/} and {¢, position, whergas the functions « with a good regularity
obey the condition¢16). We should mention that there are for reconstruction. The former would separate any unpleas-
several nonorthogonal families of wavelets such as Mexica@nt Stochastic oscillations of TPCF's leaving this "noise” to
hat, Morle, Gaussian wavelets, and so [68,1]. Usually the detail coefficients at higher levels of resolution. The lat-
they have infinite support and do not obey exactly Parsevalter> on the other hand, would produce a TPCF approximation
identity. Therefore such wavelets do not provide a one-to@S Smooth as possible during reconstruction. If, however, we
one reconstruction of a function from the its wavelet expanvould prefer to impose both conditions of a large number of
sion coefficients. Due to these circumstances, we do not usétNishing moments and regularity on an orthogonal basis, we
such basis sets in our work. would have to pay with a support at least twice the size that
Summing up the above, we can conclude that in order t&f the biorthogonal basis. Large supports, on the other hand,
provide good denoising of a signal the wavelets have to pos2'® known to lead to a S|gn|f|cant deterioration in the quality
sess good regularity and as many vanishing moments as pds the wavelet approximatiof®,10.
sible. From another point of view, they have to be well lo- N this work we will use biorthogonal bases from two
calized in space, which means that they must have a quitglorthogonal families: b~|orthogonal spline wavelets whose
short support. Unfortunately, these properties are interredecomposition functiong(r) are optimized for the number
lated. Thus, a small support implies only a few vanishingof vanishing moments, but the reconstruction functigfs
moments and poor regularity. In addition, the orthogonalityare optimized in the sense of regularity; the reverse bior-
implies asymmetry of the basis functions, which in turn canthogonal spline wavelets whose decomposition functions

lead to some numerical artifacts. Since for each concrete tagy) are optimized to achieve maximal regularity with a
certain wavelet properties are more important than otherjiven support width and the reconstruction functioffs)
there are different wavelet families which are optimized for\, hich are constructed in order to gain a maximum number of

some of these properties. , vanishing moments. In addition, these biorthogonal sets have
For example, in the case of Daubechies wavelets we havgq exact symmetry for all the basis functions.

a maximum number of vanishing moments and maximal
asymmetry with fixed length of support, while the Symlet
wavelet family has the “least asymmetry” and highest num-
ber of vanishing moments with a given support width. ) o S
It was shown that it is possible to construct wavelet basis A typical way of building the wavelet approximation is as
sets with the scaling function having vanishing moments of©llows [10]. The coefficients obtained by the FWT are
nonzero order with respect to some shifting constafhus, sorted in the order of the decrease of their absolute values

for a given number of vanishing moments,,,, we have and then only some numbeérof the largest coefficients are
kept by nullifying the rest of the coefficients. This is fol-

lowed by application of the inverse transforreconstruc-

f (r=o)"y(r)dr=0, 0<n<Nyy. tion). Note that the truncation numbérdepends on the re-
quired accuracy of representation of the function in question.

5owever, this scheme is difficult to apply because of an un-

F. Wavelet algorithm

The Coifman wavelets are compactly supported wavelet esired intersection between different levels of resolution

which have the highest number of vanishing moments fOwhich often arises. The latter leads to a much increased num-
both ¢(r) and () with a given width of support. This prop- ber of coefficients required without any sensible improve-

ment in accuracy. The quality of the resulting approximation
*The Haar basis is also an exception in this case. is not particularly high because the numerical boundary arti-
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facts result in the so-called Gibbs effect—i.e., false oscilla- (vii) To suppress the Gibbs effect at the left boundary, the
tions of the approximated functidi®]. approximated TPCF is set equal to zero uprigsy Where

Therefore, we will use instead a “smarter” strategy inr is the rightmost nontrivial zero point of the approxi-
which we employ the following three remarkable circum- mated TPCF—i.€ Gapp(T crosd =0.

stances. As a result, we have a fast scheme of calculations and a
(i) For physical reasons the functio@%z)(?) vanish atf  compact approximation for the correlation functions.

— 0 (due to the excluded volume effg¢end atf — o (due to Concerning the choice of the wavelet basis set, we note

the finite size of the molecule that to realize the FWT there are many suitable sets such as

A(z)(iiA) In terms of the rescaled radiiis=0.75 the functions  paubechies, Coifman, Symlets, biorthogonal wavelets, and
g, (F) have a rapid exponentigbr even a faster stretched so on[9,29. We have tested various basis sets, but our de-
exponential decay. tailed study presented below indicates that the reverse bior-

(i) On physical grounds it is also well known that thogonal basi§RB5-5) is the best of them for treatment of
gij(2)(r) is a differentiable function of a high order for TPCF's for the systems under study. Here we shall follow the
largef. Daubechies notation for this family: the first indsly=5 for

(iv) The multiresolution nature of the wavelet analysisthe decomposition functions, the second inéégx5 for the
allows us to treat each level of the wavelet decompositiorreconstruction ones. These indices reflect the number of van-
separately. ishing moments of—namely Nyy =N, - 1—the regularity

We have_ devellopedl an advanced s_cheme of the wavelgh|ye of y—namely,p=N, - 1—as well as the length of sup-
approximation which, first of all, takes into account the pe- S~ _ .

. ) e port | for the pairs{p,y}, |g=2Ny+1, and for the pairs
culiarities of TPCF’s. From another side it relies on the strat- _ . . .
egy of a “level-by-level” thresholding, which has been inde—{‘P"ﬂ}’ Ir_z.Nr+1' Figure 1 depicts the functions from the
pendently proposed by several authfit8,11]. RB5-5 basis set.

By taking into account the asymptotic behavior of ll. RESULTS
TPCF’s, we can use the zero-boundary conditions while do- . ]
ing the wavelet decomposition. Considering the values of TO illustrate the usefulness of our scheme we have inves-
g(f —0) as zero, we can also nullify all wavelet coefficients tigated the two-pom'F correlat_|on functions of ring, linear, and
corresponding to the rang®,0.09. Strictly speaking, the star homop_olymers in the coil state, as well as o_f f[he_globular
upper bound for this cutoff is given b§j=d/ \“‘sDij and it _state of a ring homopolymer since the con)nfactlwty is not as
depends on the system size and parameters, but the valueiBfportant for the latter state. The data @ff (F) have been
0.05 is well below this bound for all data considered in thisobtained by the Monte Carlo simulations discussed in our
paper. As we have decomposition functions with a sufficienfrevious study28]. Figure 2 depicts the typical behavior of
number of vanishing moments, we can nullify all detail co-d; () for an open homopolymer coil and a ring homopoly-
efficients at all levels of resolution which correspond to themer globule. As one can see, in the liquid globular state the
range of rescaled raditfs=[0.75.,...,%) in order to extract TPCF has several peaks of increasing width and decreasing
the trends of our TPCF with a “maximal smoothnef#30.  height located at approximatehd/\D;; (n=1,2....). On the
The value for this lower bound, has the meaning of the other hand, the TPCF of a coil exhibits a smoother radial
rescaled radius after which the TPCF has a fairly smootlilependence, but suffers from a significant statistical noise.

decaying behavior. For other regions bfwe extract the The correlation functions obtained from such data are
highestdetail coefficients ireachlevel of resolutionsepa- then approximated by the above described wavelet proce-
rately. dure. Figure 3 shows the differendd(r)=g(f) - Japg(f) of
Summing up all of the above, we propose the followingthe TPCF’s obtained by simulations and their approximations
scheme for the TPCF wavelet approximation. by wavelets(solid curve$ and cosinegdashed curvegswith

(i) We perform the FWT with zero-boundary conditions atthe same number of termk, One can clearly see that the
the largest scaleM satisfying the condition=,|dy p| wavelet treatment provides a much better approximation than
<eXp|lay (Where a good choice foe is 0.05; then, all  the cosine Fourier treatment. For the cdil=20), at small
further d coefficients can be neglected. radial separations both treatments do show deviations from

(i) All the coefficients corresponding to the range the simulation data, but these only reflect the limitations of
r€[0,0.08 (for both the approximation and detedre also  sampling statistics of TPCF'’s as the function should really be

nullified. very smooth and obey the des Cloizeaux equation. However,
(iii) We saveall the approximation coefficients which re- while the wavelet treatment gives an essentially vanishing

main nonvanishing in the previous steps. Ag for largerf, the Fourier treatment continues to yield para-
(iv) All the detail coefficients corresponding to sitic oscillations at all separations. For the glob(le=25),

r&[0.75,...,) are nullified. which had a much better quality of data due to a smaller

(v) In each level of decomposition we leave the maximalentropy of the globule, the wavelet treatment gives an essen-
detail coefficients corresponding to the function extrematially vanishingAg everywhere, whereas the Fourier method
while neglecting the rest of the coefficients. works very poorly in the whole range with strong oscillations

(vi) We perform the conventional inverse FWT but only present even for the largest of separations.
for the nonzero coefficients remaining from the previous In Fig. 4 we present four different levels of the wavelet
steps. decomposition of the TPCF of an open coil. We can see that
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0 2 4 6 8 10 0 2 4 6 8 10
x

FIG. 1. Reverse biorthogonal spline wavelets 5-5. The abscissa is the real numbéxs=ak)sAt the top are the decomposition scaling

functionp and the wavelet functioﬁr, and at the bottom are the corresponding reconstruction functiamsl ». Here and in all other figures
the axes are depicted in dimensionless units.

the smooth part of this function can be well represented byunction. Therefore, our “smart” level-by-level technique al-
the approximation coefficients. Conversely, the unpleasarlbws us to effectively suppress noise in the case of the coil
oscillations are concentrated in the detail coefficients. and to prevent us from “oversmoothing” of physical oscilla-
In Fig. 5 we likewise present four different levels of the tions in case of the globule.
wavelet decomposition of the TPCF for the globule of aring We have also calculated the mean-square norm of the in-
homopolymer. We can see that the smooth part of this funcaccuracyA, which characterizes the quality of the approxi-
tion can be mainly represented by the approximation coeffimation: A= V’EF:l[Q(Fi)—@app(fi)]z, where i;=i 6f are the
cients. But there is also important information in the detailgrid points, §(f;) is the “true” correlation function from
coefficients, which mainly represent the sharp peaks of th&lonte Carlo data, and,p(f;) is the approximated one. Fig-

T . T T T T T T T
0.6 1 .
| :
.I
"y
[ ]
0.5 1y globule T
Al n,
r ' i
g( ) ' : FIG. 2. Rescaled correlation
0.4} : ] . function of the homopolymers
. : with the degree of polymerization
: ' K=200. The solid curve corre-
031 ' ', = sponds to the end-end correlations
: ' of an open homopolymer in the
' R4 coil state. The dashed curve corre-
o2k coil A - sponds to the globule of a ring ho-
R > mopolymer withK=200 and for
PV ‘e N li-j|=100.
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_0.05 4 FIG. 3. The differenceAd(f) between the
1 . L TPCF’s obtained from simulations and their ap-
0 0.5 1 1.5 2 2.5 N -
P j— proximations by waveletgsolid curvg and co-
oz sines(dashed curve The upper part of the figure
: ' ' ' ' ' ' slobule corresponds to the coil of an open homopolymer,
o .'. © while the lower one to the globule of a ring ho-
Aglr) N b mopolymer of the same lengths as in Fig. 2.
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ures 6 and 7 depict the dependences of the naron the

For the approximated TPCF’s we have also evaluated the

numberL of approximating coefficients for the coil and glob- scaling exponents for the coil state. In this case we can com-
ule states, respectively. In what was mentioned above wpare these results with the rather accurate theoretical values
have used the “RB5-5" basis sg@]. Here, for comparison obtained from Borel-resumed renormalization group calcula-

we also depict these dependences for the cosine and fastns[1,3,23,32. As in Ref.[28] the fitting has been done via

Fourier transform(FFT) approximation, which are widely the

the nonlinear

least-square$NLLS) Marquardt-

used in application$31]. We can see that for a reasonable Levenberg method34] by means of theit function in the
number of coefficients the wavelet approximations give us anuplot software.Fit reports parameter error estimates which
are obtained from the variance-covariance matrix after the

remarkably better accuracy than conventional methods.
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FIG. 4. Four different levels of the wavelet decomposition of the end-end TPCF of an open homopolymer2@a. At the top there

are approximating coefficient@} at the levelj,=0. The detail coefficient¢d} are presented in the ascending order in the level of the
resolutionj vs the shift parametes.
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FIG. 5. Four different levels of the wavelet decomposition of the TPCF of the homopolymer globule of the same lengths and for the same
chain indices as in Fig. 2. At the top there are approximating coeffic{ahtat the levelj,=0. The detail coefficientfd} are presented in
the ascending order in the level of the resolutjors the shift parametes.

final iteration. By convention, these estimates are callesbtained from the fitting of the untreated functions as in Ref.
“standard errors” and they are reported in Table |, which[28]. The notations in the first column follow the des
contains the results for open and ring homopolymers. Her€loizeaux convention: 0, end-end monomers; 1, end-middle,
we have used the wavelet approximation with20 coeffi- 1’, end-three-quarters;”1 end-one-quarter; and 2, one-
cients. In this table we also include the results which areguarter-three-quarters of the chain, respectively. Here and be-

FIG. 6. Square-root erron
between the rescaled end-end
. TPCF of a homopolymer ring in
the coil state with the degree of
polymerizationK =200 and its ap-
proximations. The curves corre-
spond to the wavelet approxima-
tion (solid ling), FFT
approximation(dashed ling and
cosine approximatiofdash-dotted
line). The X axis is the total num-
berL of the approximation coeffi-
cients used.

10 '

10 1 1 1 1 1 1 1 1 1
o} 20 40 60 80 100 120 140 160 180 200
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of approximation coefficients
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low reported errors are those from the fitting procedure onlythere are many low-lying local minima of this function and
and do not necessarily account for statistical and other simuits constant value surfaces have a complicated topology. The
lation errors. Marquardt-Levenberg method is one of the most popular fit-
We can see that the wavelet approximated functions agreiéng algorithms which is an efficient hybrid of the inverse-
with the most recent theoretical values much better. Notélessian(variable metri¢g and the steepest-desce@onju-
also that some of the theoretical values in this table hav@ated gradienjs minimization algorithms for x* [34].
been updated thanks to the more accurate values from Refgactically, the iterations need to be stopped after the values
[3,23,33 as compared to those which we have used in Refof X change less than the specified precision and, clearly, the
[28]. Moreover, we do not even need to freazat the the- resulting fitted valuesy; may depend on the choice of the

oretical value in order to extract a more accurate estimate fgfitial valuesa if there are many local minima present, as

0 as we had to do previously. These improvements in thé{"e" as on the weightw. It is not uncommon to find the

results of our fitting are not surprising given that, as we hav%arameters wandering around near the global minimum in a

X ) = . flat valley of complicated topology if the input data were
mgntloned earh_er, the coefficient cut off leads to an effeCt'vefairly noisy [34]. The wavelet treatment renders the initial
noise suppressing.

- . oorly defined fitting problem into a well-defined ich

The least-squares fitting of the dae,y} with a model Eecorynes essentialglJypindependent of the initialogg:ameters
function y(x;;a), which depends on the fitting parameters  cnojice by removing the high-pitch statistical noise from the
in a nonlinear fashion, in the multi variate case is a complexjata and thus by simplifying the topology of the constght
problem[34] akin to that of finding the global minimum of surfaces and getting rid of its many artificial local minima.
the merit functiony?(a)=3=N,07 [y, -y(x;a)]* with respect At the same time, the variancésquared standard errgrsf
to N parameters, whereo; is the standard deviatio@rror)  the fitted parameters and the covariances between them be-
of theith data point. If the data are fairly noisy, the problem come smaller than for the untreated data as we are now guar-

of finding the global minimum of? becomes complicated as anteed to have found the tryé global minimum.

TABLE |. Comparison of the exponentsand 6 between the results from the direct fitting of the Monte
Carlo data with those from their wavelet approximatigsigbscriptww) and the theoretical resul{subscript
theorn for open and ring homopolymer coils with the degree of polymerizaier200. Fitted values have
been obtained by a four-parametric fit via E@).

é 5\NW 5theor 0 0WW etheor
0 2.11+0.07 2.36+0.02 2.428+0.001 0.36+0.02 0.276+0.005 0.271+0.002
1 2.23+0.04 2.36+0.02 0.56+0.01 0.51+0.01 ~0.46
1 2.42+0.04 2.39+0.02 0.45+0.01 0.462+0.003 0.459+0.003
1" 2.04+0.08 2.39+0.02 0.68+0.03 0.52+0.02 ~0.46
2 2.39+0.07 2.40+0.02 0.81+0.02 0.80+0.01 0.80+0.01
Ring 2.46+0.07 2.40+0.02 0.79+0.006 0.815+0.005 0.80+0.01
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TABLE II. Values of the exponent8 and ¢ for star homopolymers with=12 arms andN-1)/f=50 arm
length in a good solvent. The following notations for the monomer pairs have been adoptgd:m, where
a,b number arms and, m number monomers within arms and 0 refers to the core monomer. Other notations
are the same as in Table I.

é 5ww 0 wa 0theor
0,a:m=25 2.67+0.03 2.67+0.002 3.036+0.04 3.024+0.02 2.677
0, a:m=50 2.56+0.03 2.62+0.01 0.59+0.02 1.51+£0.01 1.442
a:n=25,a:m=50 2.40+0.06 2.48+0.004 0.55+0.01 0.50+0.003 0.458
a:n=50,b:m=50 2.30+0.03 2.18+0.01 0.23+0.01 0.26+0.007 0.277
Table Il lists similar exponents for star homopolymers IV. CONCLUSION

with the number of arm$=12 in a good solvent. Here we oy present study indicates that the discrete wavelets pro-
have used the wavelet approximation with=30 coeffi-  \ige a suitable and powerful instrument for approximating
cients. We then have compared the results with those frome intrachain two-point correlation functions of different ho-
the analytical renormalization group calculations in the SOwgpolymers in dilute solutions. The wavelet technique al-
called “cone” approximation foé from Ref.[33]. This com- 4,5 s to extract the scaling properties from fairly noisy
parison has not been previously made in R@8] or else-  yata more accurately and reliably than can be done by direct

where so far, to the best of our knowledge. The agreementying The wavelet treatment removes the high-pitch sto-
between the Monte Carlo and theoretical values seems quit§,astic fluctuationgpart of the “statistical noisg”in the

reasonable despite the relatively short length of the arms angl;;5 thereby producing a somewhat “coarse-grained” ap-

the limitations of the “cone” approximation. The latter Pro- proximation of the data. This renders the ill-defined multi-
duces the contact exponents only dependent on the functioy jate nonlinear fitting procedure of the untreated data into a
alities f;, f; of the two monomers in question and not on any,ye|.defined uniquely convergent fitting procedure after the
other parameters of the star—namely wavelet treatment of the data. Naturally, this also reduces the
standard deviations of the fitted parameters. However, the
5 ap 2 e wavelet treatment d_oes not oversmooth the_ data by retaining
b1, = %?L[(fi +f))¥2 - £ - 152, (18)  the genuine oscillations as we clearly see in the case of the
v globule; nor does it produce any of the unpleasant artifacts of
the truncated Fourier approximation.
As one can see, the quality of the wavelet approximation is We can see that the dual basis set performs particularly
rather good for the combined scheme, while the number ofell for approximating TPCF’s. This is related to the basis
approximating coefficients is quite small. properties—namely, that the decomposition functions have a
In general, the accuracy of the wavelet approximationgnaximal number of vanishing moments with a finite support,
with a fixed number of reconstruction coefficients dependsvhereas the reconstruction functions are as regular as pos-
on the chosen basis set. So far, no exact “recipe” was givesible with a given length of support. Moreover, the proposed
on which basis we have to use in a concrete case. Thus, waeheme is rather flexible as it is based on the conventional
have checked our assumption about one of the dual bas&3VT algorithm. One can choose the basis set and adjust the
“RB5-5" by an additional study. As we are especially inter-
ested in the quality of the scaling exponent calculations we TABLE Ill. Comparison of the exponents and 6 between the
have evaluated the scaling exponent for an open homopolyheoretical results, different wavelet approximatiowith names of
mer coil with the use of different bases. These results aréhe wavelet bases are given in the first colypand the untreated
presented in Table Ill. We have used the wavelet approximatesults from the direct fitting of Monte Carlo data for the end-end
tions of the end-end TPCF’s with the same number of coef] PCF’s of an open homopolymer coil with the degree of polymer-
ficients. We chose for this comparison typical representative&ation K=200.
of the main wavelet families: Coifman 2, Daubechies 4,

Symlet 4, biorthogonal 5-5, and discrete Meyer wave@}s 4 4

We can see that the “reverse biorthogonal 5-5” basis set Theoretical 2 428+0.001 0.271+0.002
does the approximation better than the other bases. On the . )

. , RB5-5 2.36x0.02 0.276+£0.005

other hand, other bases, apart from the discrete Meyer’s, also .
reveal good fitting results compared to the untreated TPCF. BR5'5_ 2.36+0.02 0.31+0.01
This means that our current scheme is just one of possible Daubechies 4 2.35+0.02 0.29+0.02
successful choices of the basis set. The situation with the Symlet 4 2.34%0.02 0.28+0.02
discrete Meyer basis is easily explained by a too large sup-  Coifman 2 2.36+0.02 0.285+0.005
port length of this basi$=60 as compared with=11 for Discrete Meyer 2.1+0.01 0.4+0.01
“RB5-5,” which is known to lead to strong over- Untreated 211+0.07 0.36+0.02

smoothing[9].
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number of the coefficients easily for a particular problem. We believe that further progress in this direction can also
From the results in Table Il we can also conclude that bybe of importance for novel theories for calculating the intra-
using almost any reasonable basis it is possible to obtain a¢hain TPCF’s of polymers directly from a force field. Some
improvement in the fitting procedure. of us are presently working on the super-Gaussian self-
It should be emphasized that the wavelet scheme is rath&onsistent(SGSQ theory for a single macromolecule with
universal. The scheme of the wavelet approximation pro2ny two-body Hamiltonian, in which a set of integro-
posed here allows us to represent the correlation functiondifferential equations is derived fay;(f) as well as forD;.
with a small number of approximating coefficients not only In order to reduce the computational expenses in such calcu-
for the coil but also for globular state of the homopolymers.lations, having a compact and multiresolution accurate rep-
For instance, our procedure yields the relative accuracy diesentation fog;(F) is essential.

the approximation of ordefl/n)A ~0.5x 10°3. Such accu- Finally, due to the very general nature of the wavelet

rate knowledge of TPCF's can be used for an input to théheory, we hope that wavelets can find other numerous ap-

self-consistent calculations of the interchain distributionpllcatlons for describing the spatial and temporal depen-

functions in the framework of the density functional methodsdences of various observablgs in a number of fields of soﬁ

[35-37 and others. cpnde_nsed matter theory which they have not hereto benefi-
Due to a compact parametrization and a high accuracy o(f'a"y influenced.

the approximation by wavelets, we hope that the wavelets

can be applied not only for approximating the interchain dis-

tribution functions of polymers, but also in order to calculate We would like to thank Professor L. Schéafer, Dr. C. von

these functions by the integral equation theory of polymergerber, Dr. H.-J. Flad, Dr. H. Luo, and Professor D. Kolb for
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