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Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of
homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal
basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approxi-
mation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for
the correlation functions of homopolymers with different connectivities in a good solvent. The resulting
exponents are in better agreement with those from recent renormalization group calculations as compared to
the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data
for correlation functions from simulations of homopolymers at varied solvent conditions and of
heteropolymers.
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I. INTRODUCTION

The main purpose of this paper is to give a useful intro-
duction and practical guide to those who would like to apply
discrete wavelets for treating the data for the intrachain two-
point correlation functions(TPCF’s) gij

s2dsrd, which either
have been previously computed from direct computer simu-
lations, came from some theoretical technique after solving
equations for TPCF’s, or perhaps have been obtained from
x-ray and neutron scattering experiments. The intrachain cor-
relation functions represent a fundamental link between the
equilibrium thermodynamic observables and the conforma-
tional structure of polymers. These functions for polymers
exhibit rather different behavior depending on the solvent
quality. The TPCF of a homopolymer in a good solvent fol-
lows a universal scaling scaling law1 for which analytical
expressions can be derived by the field theoretical and other

approaches[1–3]. On the contrary, the TPCF’s in a poor
solvent exhibit a complicated oscillating radial dependence
akin to that of simple liquids. In this case, there is no known
simply parametrized representation of TPCF’s for the ho-
mopolymer globule. Moreover, an accurate sampling around
a rather tall peak corresponding to the first solvation shell
becomes very significant as this peak contributes most to the
thermodynamic observables such as the mean energy. On the
other hand, TPCF’s in a good solvent obtained from molecu-
lar mechanics simulations tend to be rather noisy due to the
high entropy of the coil conformation. This results in a large
scatter of values of TPCF’s at small radial separations, which
makes further fitting of the data by an analytical expression
and extraction of the scaling exponents difficult. Therefore,
in general, dealing with the TPCF data of heteropolymers,
for which some monomers are in a good solvent while others
are in a poor solvent, and, particularly, extracting meaningful
information from such data is a rather nontrivial problem.

Relying on the recent works of some of us[4–6], we
believe that the task of parametrizinggij

s2dsrd in a compact
way can be accomplished by means of the multiresolution
analysis[7,8]. At present, a number of special basis sets,
referred to as wavelets[9], are known and are being actively
used for treating both smooth and sharply oscillating func-
tions, as well as for denoising of signals[10,11]. Wavelets
have become a necessary mathematical tool in many modern
theoretical investigations in physics, chemistry, and other
fields[12–22]. Wavelets are particularly useful in those cases
when the result of the analysis of a function should contain
not only the list of its typical frequencies(scales), but also
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1Strictly speaking[28], such laws are asymptotic in nature and do
not apply when the two monomers are too close to each other in
terms of the connectivity or when the interaction parameters are far
from the the appropriate fixed point.
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the list of the local coordinates where these frequencies are
important. Thus, the main field of applications of wavelets is
to analyze and process different classes of functions which
are either nonstationary(in time) or inhomogeneous(in
space).

The most general principle of the wavelet construction is
to use dilations and translations. Commonly used wavelets
form a complete(bi)orthonormal system of functions with a
finite support constructed in such a way. That is why by
changing a scale(dilations) wavelets can distinguish the lo-
cal characteristics of a function at various scales and by
translations they cover the whole region in which a function
is being studied. Due to the completeness of the base system,
wavelets also allow one to perform the inverse transforma-
tion to decomposition, which is called reconstruction.

In the analysis of functions with a complicated behavior,
the locality property of wavelets makes the wavelet trans-
form technique substantially advantageous compared to the
Fourier transform. The latter provides one only with the
knowledge of global frequencies(scales) of a function under
investigation since the system of the base functions used
(sine, cosine, or imaginary exponential functions) is defined
on the infinite range. The special features of wavelets such as
their (bi)orthogonality and vanishing of moments result in
the need for only a few approximating coefficients in practi-
cal applications. That is a reason why wavelets are actively
used, for example, to construct distribution functions in cal-
culations of the electronic structure[19–21] as well as in
statistical mechanics[4–6].

Recently, some of us have carried out several studies de-
voted to the wavelet parametrization of the radial density
functions for various atomic and molecular solutes[4–6]. A
model study of the galaxies density in Ref.[22] uses a simi-
lar wavelet approach for a different problem. In the present
work we would like to address the question whether wavelets
can also be advantageous for approximating the intrachain
correlation functions of homopolymers in different solvents.
The main practical goal of this paper is to apply discrete
wavelets for approximating functionsgij

s2dsrd of open, ring,
and star homopolymers in a coil conformation, as well as of
a globule. In the case of a coil, the des Cloizeaux scaling
formula applies and a number of accurate theoretical results
for the scaling exponents involved are available[1,23]. Thus,
we shall be able to investigate the influence of the choice of
the wavelet basis set and of the number of terms not only on
the quality of the correlation function parametrization, but
also on the values of the scaling exponents extracted from
fitting the wavelet denoised functions by the des Cloizeaux
formula.

II. METHODS

A. Model

To obtain the correlation functions we relied on the stan-
dard coarse-grained homopolymer model[24–26] based on
the following Hamiltonian in terms of the monomer coordi-
nates,X i:

H =
kBT

2,2o
i, j

kijsX i − X jd2 +
1

2 o
i j , iÞ j

VsuX i − X jud. s1d

The first term here represents the connectivity structure of
the polymer with harmonic springs of a given strengthki j
introduced between any pair of connected monomers(de-
noted by i , j). The second term represents pairwise non-
bonded interactions between monomers such as the van der
Waals forces, for which we adopt the Lennard-Jones form of
the potential,

Vsrd = 5+ `, r , d,

V0FSd

r
D12

− Sd

r
D6G , r . d,

s2d

where there is also a hard-core part with monomer diameter
d (below we choosed=, without any lack of generality).

We use the Monte Carlo technique with the standard Me-
tropolis algorithm[27], which converges to the Gibbs equi-
librium ensemble, based upon the implementation described
by us in [25]. The value ofV0=0 will correspond to the
purely repulsive case(good solvent) leading to a coil confor-
mation of the polymer, whileV0=5 kBT will correspond to
the attractive case(poor solvent) leading to a globular con-
formation as in Ref.[28]. All details of our Monte Carlo
procedure have been previously described in Ref.[28] and,
in fact, here we shall rely on the same set of Monte Carlo
simulation data in order to make the comparison of the
wavelet treated scaling exponents with those of Ref.[28]
more straightforward and unambiguous.

B. Correlation functions

The intrachain two-point correlation function of a pair of
monomersi and j is defined as

gij
s2dsr d ; kdsX i − X j − r dl =

1

4pr2kdsuX i − X ju − rdl. s3d

The second equation establishes that it is a function of radius
r = ur u only due to spatial isotropy[SO(3) rotational symme-
try]. We may note that this function should, strictly speaking,
be named a distribution function, but sincegij

s2dsrd→0 when
r →` because of the chain connectivity, we apply the term
“correlation function” togij

s2dsrd itself rather than to the quan-
tity gij

s2dsrd / sgs1dd2−1, which would vanish asr →` in the
case of simple liquids. The function is normalized to unity
via ed3rgij

s2dsr d=1. Note that the correlation functions exactly
satisfy the excluded volume condition,gij

s2dsrd=0 for r ,d,
due to the choice of hard-core part in the nonbonded poten-
tial Eq. (2). The mean-squared distance between monomersi
and j is

Dij ; ksX i − X jd2l =E d3r ur u2gij
s2dsr d, s4d

which we defined here without the traditional factor of 1/3
as compared to some of the previous papers[25].

The intrachain pair correlation functionsgij
s2dsrd are

strongly dependent on both the degree of polymerizationK

FEDOROVet al. PHYSICAL REVIEW E 70, 051803(2004)

051803-2



of the polymer and the choice of the reference monomersi
and j , contacts between which we are looking at. However,
as we have demonstrated in Ref.[28], if we introduce the
rescaled correlation function in terms of the dimensionless
variables,

ĝij
s2dsr̂d ; Dij

3/2gij
s2dsrd, r̂ ; r/Dij

1/2, s5d

these will change in about the same range and hence would
permit a much more straightforward comparison with each
other. From this definition, obviously,ĝij

s2dsr̂d satisfies the fol-
lowing two normalization conditions:

E
0

`

dr̂r̂2ĝij
s2dsr̂d =E

0

`

dr̂r̂4ĝij
s2dsr̂d =

1

4p
. s6d

C. Scaling relations

According to Refs.[1,3] TPCF’s of a flexible homopoly-
mer coil in a good solvent can be well described[28] via a
power law times a stretched exponential, known as the des
Cloizeaux scaling equation:

ĝij
s2dsr̂d = Aij r̂

ui j exps− Bij r̂
di jd. s7d

Due to the two normalization conditions in Eq.(6), the con-
stantsA andB can be immediately calculated and expressed
via u andd. The exponentsdi j do not really depend oni, j ,
but the contact exponentsui j do. In the case of the end-end
correlations of an open chainui j is denoted asu0, and these
can be expressed via

d =
1

1 − n
, u0 =

g − 1

n
, s8d

wheren has the meaning of the inverse fractal dimension of
the system andg is related to the number of different poly-
mer conformations[1,3].

D. Wavelet theory

The fundamental theory behind wavelets is known as the
multiresolution analysis(MRA). Most of the rigorous results
and definitions from MRA are not usually required for prac-
tical applications. The only equations which are needed for
the work described herein will be introduced in this section.
As we mainly use basis sets from the biorthogonal wavelets
families, we shall introduce all wavelets in a general way as
biorthogonal wavelets. Moreover, we shall use the discrete
wavelet transform(DWT) technique[7,9] to parametrize the
TPCF’s. There is a good introduction to the wavelet tech-
niques in Ref.[15]. We also will follow the style of that book
henceforth. The multiresolution approach is based on the
idea that the wavelet functions generate a hierarchical se-
quence of subspaces in the space of square-integrable func-
tions over the real axisL2sRd, which forms the MRA.

The scaling functionswsrd andw̃srd produce a biorthogo-
nal MRA if they satisfy the following conditions.

(i) Translations of these functions with integersws
=wsr −sd, w̃s=w̃sr −sd, s[Z, are linearly independent and
produce bases of the subspaceV0,L2sRd and their dual

counterpartṼ0,L2sRd correspondingly. This means that if a
function fsrd is contained in the spaceVj, its integer transla-
tions have to be contained in the same space:

fsrd [ Vj ⇔ fsr + sd [ Vj,

fsrd [ Ṽj ⇔ fsr + sd [ Ṽj, s[ Z.

(ii ) Dyadic dilates of these functionsw js=ws2jr −sd, w̃ js

=w̃s2jr −sd, j [Z, generate hierarchical sets of subspaces

hVjj and hṼjj, so that

Vj , Vj+1, ø
j=−`

`

Vj is dense inL2sRd, ù
j=−`

`

Vj = 0,

Ṽj , Ṽj+1, ø
j=−`

`

Ṽj is dense inL2sRd, ù
j=−`

`

Ṽj = 0. s9d

(iii ) The sets of functionsw jssrd andw̃ jssrd are biorthogo-
nal to each other. It means that for anys, s8[Z:

E w jssrdw̃ js8srddr = dss8.

It means that if a functionfsrd is contained in the spaceVj,
the compressed functionfs2rd has to be contained in the
higher-resolution spaceVj+1:

fsrd [ Vj ⇔ fs2rd [ Vj+1,

fsrd [ Ṽj ⇔ fs2rd [ Ṽj+1, j [ Z.

(iv) There is a wavelet functioncsrd and its dual wavelet

function c̃srd such that their integer translationscssrd
=csr−sd, c̃ssrd=c̃sr −sd and dyadic dilatesc js=cs2jr −sd,
c̃ js=c̃s2jr −sd form subspacesWj andW̃j which are comple-

mentary toVj and Ṽj so that

Vj+1 = Vj % Wj, Ṽj+1 = Ṽj % W̃j, W̃j ' Vj, Ṽj ' Wj .

s10d

(v) From the above relations it follows thatL2sRd can be
decomposed into the approximation spaceVj0

and the sum of
the detailed spacesWj of higher resolutionsj ù j0:

L2sRd = Vj0
% %

jù j0

`

Wj , s11d

where j0[Z is a chosen level of resolution. This means that
any square-integrable functionfsrd can be represented as a
sum of linear combinations of the reconstruction scaling
functions hw j0

j at a chosen resolutionj = j0 and the recon-
struction wavelet functionshc jj at all finer resolutionsj
ù j0. This can be written as
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fsrd = o
s

aj0sw j0ssrd + o
j. j0

`

o
s

djsc jssrd, s12d

where the coefficientshaj0sj and hdjsj are obtained as the
scalar products with the appropriate dual decomposition ba-
sis functions

ajs =E fsrdw̃ jssrddr, djs=E fsrdc̃ jssrddr. s13d

The later equation defines the discrete wavelet transform.

As wsrd,V0 andV0,V1, w̃srd, Ṽ0 and Ṽ0, Ṽ1, we can
expresswsrd [as well asw̃srd] as a linear combination of the

basis functions inV1fṼ1g:

wsrd = o
s

hsws2r − sd, w̃srd = o
s

h̃sw̃s2r − sd. s14d

This equation is called thedilation equation. Similarly, csrd
andcsrd must satisfy awavelet dilation equation:

csrd = o
s

wsws2r − sd, c̃srd = o
s

w̃sw̃s2r − sd. s15d

The above sets of coefficients are usually called “filters” and
they are completely sufficient in order to describe a chosen
wavelet basis because there are several procedures on how to
build up numerical values of the wavelet functions from the
set of filters[7,9,15]. We should emphasize here that there
are no analytic expressions for biorthogonal(orthogonal)
wavelets with a finite support2 These are determined in terms
of their filter coefficients only. But one can obtain the values
of these functions with any given accuracy by using special
procedures, which are well described in the wavelet literature
[7,9,15].

The scaling functions and the wavelets have a finite sup-
port only in the case of a finite number of the coefficientshs
andws. Due to their biorthogonal nature, these functions sat-
isfy the relations

E w jasrdw̃ jbsrd dr = dab,

E w jasrdc̃lbsrd dr = 0 sl ù jd,

s16d

E w̃ jasrdclbsrd dr = 0 s j ù ld,

E c jasrdc̃kbsrd dr = d jkdab,

for any integerj , l, a, b.

If the pairs of the decomposition functionshw̃ ,c̃j and the
reconstruction functionshw ,cj are identical, the transform is
called the “orthogonal wavelet transform.” Otherwise we

shall talk about a more general “biorthogonal wavelet trans-
form.”

In the expansion(12) the first term gives a “coarse” ap-
proximation for fsrd at the resolutionj0 and the second term
gives a sequence of successive “details.” In practice, we ac-
tually do not need to use an infinite number of resolutions.
Therefore, the sequence of details is cut off at an appropriate
resolution jmax. Since all functions used in numerical work
are given in a finite interval, the sequence of different trans-
lations hsj has also a finite number of terms,S. It should be
mentioned that, really,S can be different for detailed and
coarse approximations.

Importantly, the explicit form of the basis functions is not
required if we are using(bi)orthogonal wavelets with a finite
support and a dyadic set of scalesj . Then the coefficients in
Eq. (13) can be calculated by the fast wavelet transform
(FWT) algorithm[7,8,15]. The main idea of this algorithm is
that a set of(bi)orthogonal discrete filters at consequently
dilated scales is used for the multiresolution analysis of a
signal. As a result, to calculate the approximating coeffi-
cients, the convolution of the signal and the relevant filter is
only required for each scale, and the latter can be easily
obtained.

By choosing relevant basis functions and scales we can
nullify most of the coefficientshaj and hdj thereby reducing
the square root error(SRE) since the DWT satisfies Parse-
val’s identity [9]. Therefore, the function under study can be
reconstructed with the use of only a few nonzero coefficients
without any significant loss of accuracy, making the total
number of approximating coefficients rather small. This fea-
ture of the of wavelet approximation is widely used in the
processing of signals and images, the data for which should
be compressed with minimal losses[10].

E. Choice of wavelet basis set

The compression and denoising properties of the wavelet
transform strongly depended on the fundamental properties
of the wavelet bases, which we define here in a rather sim-
plified way as thenumber of vanishing moments, regularity,
size of support, symmetry, and orthogonality and biorthogo-
nality.

Number of vanishing moments. A wavelet functioncsrd
hasNVM vanishing moments(VM ) if

E rmcsrddr = 0 for m = 0,…,NVM − 1. s17d

The number of vanishing moments strongly influences the
localization of wavelets in the frequency space. The Fourier
transform of a wavelet withNVM =n has a peak and decays as
k−n (k means frequency).

Regularity. This can be defined as the numberr of exist-
ing derivatives of a wavelet function. It also characterizes the
frequency localization of wavelets. The Fourier transform of
a wavelet with regularityr=n decays ask−sn+1d for large k.
We would like to emphasize that as wavelets have no ana-
lytic expressions the definition of their derivatives is not as
straightforward as for the “usual” functions[9]. However,

2This is true except of the simplest basis, Haar basis, which is
constructed from piecewise functions[9].
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these mathematical details are beyond the scope of our ar-
ticle.

Size of support. This is the length of the interval on which
the wavelet function has nonzero values. Obviously, this
characterizes the space localization of the wavelet.

Symmetry. The wavelet bases functions can be strongly
symmetric or asymmetric. The deviation of a wavelet from
the symmetry(i.e., even or odd parity) is usually measured
by how the phase of its Fourier transform deviates from a
linear function. It was shown that is impossible to construct
an orthogonal basis with the exact parity of the functions.3

On the contrary, we can design a biorthogonal basis set
with the exact symmetry of the function without serious ef-
forts [9,29].

Orthogonality and biorthogonality. As we have already
mentioned in the case when the pairs of the decomposition

functions hw̃ ,c̃j and the reconstruction functionshw ,cj are
identical, the wavelet transform is orthogonal. Otherwise it is

biorthogonal. But this is true only if thehw̃ ,c̃j and hw ,cj
obey the conditions(16). We should mention that there are
several nonorthogonal families of wavelets such as Mexican
hat, Morle, Gaussian wavelets, and so on[8,9,11]. Usually
they have infinite support and do not obey exactly Parseval’s
identity. Therefore such wavelets do not provide a one-to-
one reconstruction of a function from the its wavelet expan-
sion coefficients. Due to these circumstances, we do not use
such basis sets in our work.

Summing up the above, we can conclude that in order to
provide good denoising of a signal the wavelets have to pos-
sess good regularity and as many vanishing moments as pos-
sible. From another point of view, they have to be well lo-
calized in space, which means that they must have a quite
short support. Unfortunately, these properties are interre-
lated. Thus, a small support implies only a few vanishing
moments and poor regularity. In addition, the orthogonality
implies asymmetry of the basis functions, which in turn can
lead to some numerical artifacts. Since for each concrete task
certain wavelet properties are more important than others,
there are different wavelet families which are optimized for
some of these properties.

For example, in the case of Daubechies wavelets we have
a maximum number of vanishing moments and maximal
asymmetry with fixed length of support, while the Symlet
wavelet family has the “least asymmetry” and highest num-
ber of vanishing moments with a given support width.

It was shown that it is possible to construct wavelet basis
sets with the scaling function having vanishing moments of
nonzero order with respect to some shifting constantc. Thus,
for a given number of vanishing moments,NVM, we have

E sr − cdncsrddr = 0, 0, n , NVM .

The Coifman wavelets are compactly supported wavelets
which have the highest number of vanishing moments for
bothwsrd andcsrd with a given width of support. This prop-

erty is very useful for the treatment of functions with sharp
peaks and slopes. The larger the number of scaling function
vanishing moments, the better is the approximation for sin-
gular points of the function under study[9]. Hence, by using
such wavelets(e.g., Coifman) we can treat accurately sharp
peaks of such a function. On the other hand, these wavelets
are rather smooth to approximate well the function within the
ranges between these peaks. The price for this extra feature
is that the Coifman wavelets are longer than the Daubechies
wavelets. Their length of support is equal to 3NVM −1 instead
of 2NVM −1.

Thus we can see that for orthogonal wavelets the desir-
able properties are in contradiction with each other. But for-
tunately, we can use different functions for the decomposi-
tion and reconstruction. These biorthogonal bases have
several advantages compared with the orthogonal bases. We
can also benefit from the fact that we can use the base func-

tions w̃, c̃ with a number of vanishing moments for decom-
position, whereas the functionsw, c with a good regularity
for reconstruction. The former would separate any unpleas-
ant stochastic oscillations of TPCF’s leaving this “noise” to
the detail coefficients at higher levels of resolution. The lat-
ter, on the other hand, would produce a TPCF approximation
as smooth as possible during reconstruction. If, however, we
would prefer to impose both conditions of a large number of
vanishing moments and regularity on an orthogonal basis, we
would have to pay with a support at least twice the size that
of the biorthogonal basis. Large supports, on the other hand,
are known to lead to a significant deterioration in the quality
of the wavelet approximation[9,10].

In this work we will use biorthogonal bases from two
biorthogonal families: biorthogonal spline wavelets whose

decomposition functionsc̃srd are optimized for the number
of vanishing moments, but the reconstruction functionscsrd
are optimized in the sense of regularity; the reverse bior-
thogonal spline wavelets whose decomposition functions

c̃srd are optimized to achieve maximal regularity with a
given support width and the reconstruction functionscsrd
which are constructed in order to gain a maximum number of
vanishing moments. In addition, these biorthogonal sets have
the exact symmetry for all the basis functions.

F. Wavelet algorithm

A typical way of building the wavelet approximation is as
follows [10]. The coefficients obtained by the FWT are
sorted in the order of the decrease of their absolute values
and then only some numberL of the largest coefficients are
kept by nullifying the rest of the coefficients. This is fol-
lowed by application of the inverse transform(reconstruc-
tion). Note that the truncation numberL depends on the re-
quired accuracy of representation of the function in question.
However, this scheme is difficult to apply because of an un-
desired intersection between different levels of resolution
which often arises. The latter leads to a much increased num-
ber of coefficients required without any sensible improve-
ment in accuracy. The quality of the resulting approximation
is not particularly high because the numerical boundary arti-3The Haar basis is also an exception in this case.
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facts result in the so-called Gibbs effect—i.e., false oscilla-
tions of the approximated function[9].

Therefore, we will use instead a “smarter” strategy in
which we employ the following three remarkable circum-
stances.

(i) For physical reasons the functionsĝij
s2dsr̂d vanish atr̂

→0 (due to the excluded volume effect) and atr̂ →` (due to
the finite size of the molecule).

(ii ) In terms of the rescaled radiusr̂ *0.75 the functions
ĝij

s2dsr̂d have a rapid exponential(or even a faster stretched
exponential) decay.

(iii ) On physical grounds it is also well known that
gijs2dsrd is a differentiable function of a high order for
large r̂.

(iv) The multiresolution nature of the wavelet analysis
allows us to treat each level of the wavelet decomposition
separately.

We have developed an advanced scheme of the wavelet
approximation which, first of all, takes into account the pe-
culiarities of TPCF’s. From another side it relies on the strat-
egy of a “level-by-level” thresholding, which has been inde-
pendently proposed by several authors[10,11].

By taking into account the asymptotic behavior of
TPCF’s, we can use the zero-boundary conditions while do-
ing the wavelet decomposition. Considering the values of
ĝsr̂ →0d as zero, we can also nullify all wavelet coefficients
corresponding to the range[0,0.05]. Strictly speaking, the
upper bound for this cutoff is given byr̂ l ;d/ÎDij and it
depends on the system size and parameters, but the value of
0.05 is well below this bound for all data considered in this
paper. As we have decomposition functions with a sufficient
number of vanishing moments, we can nullify all detail co-
efficients at all levels of resolution which correspond to the
range of rescaled radiusr̂ [ f0.75,… ,`d in order to extract
the trends of our TPCF with a “maximal smoothness”[9,30].
The value for this lower boundr̂ r has the meaning of the
rescaled radius after which the TPCF has a fairly smooth
decaying behavior. For other regions ofr̂ we extract the
highestdetail coefficients ineach level of resolutionsepa-
rately.

Summing up all of the above, we propose the following
scheme for the TPCF wavelet approximation.

(i) We perform the FWT with zero-boundary conditions at
the largest scaleM satisfying the conditionobudM,bu
øeobuaM,bu (where a good choice fore is 0.05); then, all
further d coefficients can be neglected.

(ii ) All the coefficients corresponding to the range
r [ f0,0.05g (for both the approximation and detail) are also
nullified.

(iii ) We saveall the approximation coefficients which re-
main nonvanishing in the previous steps.

(iv) All the detail coefficients corresponding to
r [ f0.75,… ,`d are nullified.

(v) In each level of decomposition we leave the maximal
detail coefficients corresponding to the function extrema,
while neglecting the rest of the coefficients.

(vi) We perform the conventional inverse FWT but only
for the nonzero coefficients remaining from the previous
steps.

(vii ) To suppress the Gibbs effect at the left boundary, the
approximated TPCF is set equal to zero up torcross, where
rcross is the rightmost nontrivial zero point of the approxi-
mated TPCF—i.e.,gappsrcrossd=0.

As a result, we have a fast scheme of calculations and a
compact approximation for the correlation functions.

Concerning the choice of the wavelet basis set, we note
that to realize the FWT there are many suitable sets such as
Daubechies, Coifman, Symlets, biorthogonal wavelets, and
so on[9,29]. We have tested various basis sets, but our de-
tailed study presented below indicates that the reverse bior-
thogonal basis(RB5-5) is the best of them for treatment of
TPCF’s for the systems under study. Here we shall follow the
Daubechies notation for this family: the first indexNd=5 for
the decomposition functions, the second indexNr =5 for the
reconstruction ones. These indices reflect the number of van-

ishing moments ofc̃—namely NVM =Nr −1—the regularity
value ofc—namely,r=Nr −1—as well as the length of sup-

port l for the pairs hw̃ ,c̃j, ld=2Nd+1, and for the pairs
hw ,cj, l r =2Nr +1. Figure 1 depicts the functions from the
RB5-5 basis set.

III. RESULTS

To illustrate the usefulness of our scheme we have inves-
tigated the two-point correlation functions of ring, linear, and
star homopolymers in the coil state, as well as of the globular
state of a ring homopolymer since the connectivity is not as
important for the latter state. The data forĝij

s2dsr̂d have been
obtained by the Monte Carlo simulations discussed in our
previous study[28]. Figure 2 depicts the typical behavior of
ĝij

s2dsr̂d for an open homopolymer coil and a ring homopoly-
mer globule. As one can see, in the liquid globular state the
TPCF has several peaks of increasing width and decreasing
height located at approximatelynd/ÎDij sn=1,2,…d. On the
other hand, the TPCF of a coil exhibits a smoother radial
dependence, but suffers from a significant statistical noise.

The correlation functions obtained from such data are
then approximated by the above described wavelet proce-
dure. Figure 3 shows the differenceDĝsr̂d= ĝsr̂d− ĝappsr̂d of
the TPCF’s obtained by simulations and their approximations
by wavelets(solid curves) and cosines(dashed curves) with
the same number of terms,L. One can clearly see that the
wavelet treatment provides a much better approximation than
the cosine Fourier treatment. For the coilsL=20d, at small
radial separations both treatments do show deviations from
the simulation data, but these only reflect the limitations of
sampling statistics of TPCF’s as the function should really be
very smooth and obey the des Cloizeaux equation. However,
while the wavelet treatment gives an essentially vanishing
Dĝ for largerr̂, the Fourier treatment continues to yield para-
sitic oscillations at all separations. For the globulesL=25d,
which had a much better quality of data due to a smaller
entropy of the globule, the wavelet treatment gives an essen-
tially vanishingDĝ everywhere, whereas the Fourier method
works very poorly in the whole range with strong oscillations
present even for the largest of separations.

In Fig. 4 we present four different levels of the wavelet
decomposition of the TPCF of an open coil. We can see that
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the smooth part of this function can be well represented by
the approximation coefficients. Conversely, the unpleasant
oscillations are concentrated in the detail coefficients.

In Fig. 5 we likewise present four different levels of the
wavelet decomposition of the TPCF for the globule of a ring
homopolymer. We can see that the smooth part of this func-
tion can be mainly represented by the approximation coeffi-
cients. But there is also important information in the detail
coefficients, which mainly represent the sharp peaks of the

function. Therefore, our “smart” level-by-level technique al-
lows us to effectively suppress noise in the case of the coil
and to prevent us from “oversmoothing” of physical oscilla-
tions in case of the globule.

We have also calculated the mean-square norm of the in-
accuracyD, which characterizes the quality of the approxi-
mation: D;Îoi=1

n fĝsr̂ id− ĝappsr̂ idg2, where r̂ i = i dr̂ are the
grid points, ĝsr̂ id is the “true” correlation function from
Monte Carlo data, andĝappsr̂ id is the approximated one. Fig-

FIG. 1. Reverse biorthogonal spline wavelets 5-5. The abscissa is the real numbers axissx[Rd. At the top are the decomposition scaling

functionw̃ and the wavelet functionc̃, and at the bottom are the corresponding reconstruction functionsw andc. Here and in all other figures
the axes are depicted in dimensionless units.

FIG. 2. Rescaled correlation
function of the homopolymers
with the degree of polymerization
K=200. The solid curve corre-
sponds to the end-end correlations
of an open homopolymer in the
coil state. The dashed curve corre-
sponds to the globule of a ring ho-
mopolymer with K=200 and for
ui − j u=100.
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ures 6 and 7 depict the dependences of the normD on the
numberL of approximating coefficients for the coil and glob-
ule states, respectively. In what was mentioned above we
have used the “RB5-5” basis set[9]. Here, for comparison
we also depict these dependences for the cosine and fast
Fourier transform(FFT) approximation, which are widely
used in applications[31]. We can see that for a reasonable
number of coefficients the wavelet approximations give us a
remarkably better accuracy than conventional methods.

For the approximated TPCF’s we have also evaluated the
scaling exponents for the coil state. In this case we can com-
pare these results with the rather accurate theoretical values
obtained from Borel-resumed renormalization group calcula-
tions[1,3,23,32]. As in Ref.[28] the fitting has been done via
the the nonlinear least-squares(NLLS) Marquardt-
Levenberg method[34] by means of thefit function in the
gnuplot software.Fit reports parameter error estimates which
are obtained from the variance-covariance matrix after the

FIG. 3. The differenceDĝsr̂d between the
TPCF’s obtained from simulations and their ap-
proximations by wavelets(solid curve) and co-
sines(dashed curve). The upper part of the figure
corresponds to the coil of an open homopolymer,
while the lower one to the globule of a ring ho-
mopolymer of the same lengths as in Fig. 2.

FIG. 4. Four different levels of the wavelet decomposition of the end-end TPCF of an open homopolymer withK=200. At the top there
are approximating coefficientshaj at the level j0=0. The detail coefficientshdj are presented in the ascending order in the level of the
resolutionj vs the shift parameters.
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final iteration. By convention, these estimates are called
“standard errors” and they are reported in Table I, which
contains the results for open and ring homopolymers. Here
we have used the wavelet approximation withL=20 coeffi-
cients. In this table we also include the results which are

obtained from the fitting of the untreated functions as in Ref.
[28]. The notations in the first column follow the des
Cloizeaux convention: 0, end-end monomers; 1, end-middle,
18, end-three-quarters; 19, end-one-quarter; and 2, one-
quarter-three-quarters of the chain, respectively. Here and be-

FIG. 5. Four different levels of the wavelet decomposition of the TPCF of the homopolymer globule of the same lengths and for the same
chain indices as in Fig. 2. At the top there are approximating coefficientshaj at the levelj0=0. The detail coefficientshdj are presented in
the ascending order in the level of the resolutionj vs the shift parameters.

FIG. 6. Square-root errorD
between the rescaled end-end
TPCF of a homopolymer ring in
the coil state with the degree of
polymerizationK=200 and its ap-
proximations. The curves corre-
spond to the wavelet approxima-
tion (solid line), FFT
approximation(dashed line), and
cosine approximation(dash-dotted
line). TheX axis is the total num-
ber L of the approximation coeffi-
cients used.
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low reported errors are those from the fitting procedure only
and do not necessarily account for statistical and other simu-
lation errors.

We can see that the wavelet approximated functions agree
with the most recent theoretical values much better. Note
also that some of the theoretical values in this table have
been updated thanks to the more accurate values from Refs.
[3,23,32] as compared to those which we have used in Ref.
[28]. Moreover, we do not even need to freezed at the the-
oretical value in order to extract a more accurate estimate for
u as we had to do previously. These improvements in the
results of our fitting are not surprising given that, as we have
mentioned earlier, the coefficient cut off leads to an effective
noise suppressing.

The least-squares fitting of the datahx ,yj with a model
function ysxi ;ad, which depends on the fitting parametersa
in a nonlinear fashion, in the multi variate case is a complex
problem[34] akin to that of finding the global minimum of
the merit functionx2sad=oi=1

N si
−2fyi −ysxi ;adg2 with respect

to N parametersa, wheresi is the standard deviation(error)
of the ith data point. If the data are fairly noisy, the problem
of finding the global minimum ofx2 becomes complicated as

there are many low-lying local minima of this function and
its constant value surfaces have a complicated topology. The
Marquardt-Levenberg method is one of the most popular fit-
ting algorithms which is an efficient hybrid of the inverse-
Hessian(variable metric) and the steepest-descent(conju-
gated gradients) minimization algorithms for x2 [34].
Practically, the iterations need to be stopped after the values
of x2 change less than the specified precision and, clearly, the
resulting fitted valuesafit may depend on the choice of the
initial valuesa0 if there are many local minima present, as
well as on the weightss. It is not uncommon to find the
parameters wandering around near the global minimum in a
flat valley of complicated topology if the input data were
fairly noisy [34]. The wavelet treatment renders the initial
poorly defined fitting problem into a well-defined one(which
becomes essentially independent of the initial parameters
choice) by removing the high-pitch statistical noise from the
data and thus by simplifying the topology of the constantx2

surfaces and getting rid of its many artificial local minima.
At the same time, the variances(squared standard errors) of
the fitted parameters and the covariances between them be-
come smaller than for the untreated data as we are now guar-
anteed to have found the truex2 global minimum.

FIG. 7. Square-root errorD
between the rescaled TPCF of a
homopolymer ring with K=200
and ui − j u =100 in the globular
state and its approximations. The
curves correspond to the wavelet
approximation (solid line), FFT
approximation(dashed line), and
cosine approximation(dash-dotted
line). The X axis is the numberL
of approximation coefficients
used.

TABLE I. Comparison of the exponentsd andu between the results from the direct fitting of the Monte
Carlo data with those from their wavelet approximations(subscriptww) and the theoretical results(subscript
theor) for open and ring homopolymer coils with the degree of polymerizationK=200. Fitted values have
been obtained by a four-parametric fit via Eq.(7).

d dww dtheor u uww utheor

0 2.11±0.07 2.36±0.02 2.428±0.001 0.36±0.02 0.276±0.005 0.271±0.002

1 2.23±0.04 2.36±0.02 … 0.56±0.01 0.51±0.01 ,0.46

1’ 2.42±0.04 2.39±0.02 … 0.45±0.01 0.462±0.003 0.459±0.003

1” 2.04±0.08 2.39±0.02 … 0.68±0.03 0.52±0.02 ,0.46

2 2.39±0.07 2.40±0.02 … 0.81±0.02 0.80±0.01 0.80±0.01

Ring 2.46±0.07 2.40±0.02 … 0.79±0.006 0.815±0.005 0.80±0.01
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Table II lists similar exponents for star homopolymers
with the number of armsf =12 in a good solvent. Here we
have used the wavelet approximation withL=30 coeffi-
cients. We then have compared the results with those from
the analytical renormalization group calculations in the so-
called “cone” approximation foru from Ref.[33]. This com-
parison has not been previously made in Ref.[28] or else-
where so far, to the best of our knowledge. The agreement
between the Monte Carlo and theoretical values seems quite
reasonable despite the relatively short length of the arms and
the limitations of the “cone” approximation. The latter pro-
duces the contact exponents only dependent on the function-
alities f i, f j of the two monomers in question and not on any
other parameters of the star—namely

u f i,f j
.

5

36

1
Î2 − 1

fsf i + f jd3/2 − f i
/3/2 − f j

3/2g. s18d

As one can see, the quality of the wavelet approximation is
rather good for the combined scheme, while the number of
approximating coefficients is quite small.

In general, the accuracy of the wavelet approximations
with a fixed number of reconstruction coefficients depends
on the chosen basis set. So far, no exact “recipe” was given
on which basis we have to use in a concrete case. Thus, we
have checked our assumption about one of the dual bases
“RB5-5” by an additional study. As we are especially inter-
ested in the quality of the scaling exponent calculations we
have evaluated the scaling exponent for an open homopoly-
mer coil with the use of different bases. These results are
presented in Table III. We have used the wavelet approxima-
tions of the end-end TPCF’s with the same number of coef-
ficients. We chose for this comparison typical representatives
of the main wavelet families: Coifman 2, Daubechies 4,
Symlet 4, biorthogonal 5-5, and discrete Meyer wavelets[9].

We can see that the “reverse biorthogonal 5-5” basis set
does the approximation better than the other bases. On the
other hand, other bases, apart from the discrete Meyer’s, also
reveal good fitting results compared to the untreated TPCF.
This means that our current scheme is just one of possible
successful choices of the basis set. The situation with the
discrete Meyer basis is easily explained by a too large sup-
port length of this basisl =60 as compared withl =11 for
“RB5-5,” which is known to lead to strong over-
smoothing[9].

IV. CONCLUSION

Our present study indicates that the discrete wavelets pro-
vide a suitable and powerful instrument for approximating
the intrachain two-point correlation functions of different ho-
mopolymers in dilute solutions. The wavelet technique al-
lows us to extract the scaling properties from fairly noisy
data more accurately and reliably than can be done by direct
fitting. The wavelet treatment removes the high-pitch sto-
chastic fluctuations(part of the “statistical noise”) in the
data, thereby producing a somewhat “coarse-grained” ap-
proximation of the data. This renders the ill-defined multi-
variate nonlinear fitting procedure of the untreated data into a
well-defined uniquely convergent fitting procedure after the
wavelet treatment of the data. Naturally, this also reduces the
standard deviations of the fitted parameters. However, the
wavelet treatment does not oversmooth the data by retaining
the genuine oscillations as we clearly see in the case of the
globule; nor does it produce any of the unpleasant artifacts of
the truncated Fourier approximation.

We can see that the dual basis set performs particularly
well for approximating TPCF’s. This is related to the basis
properties—namely, that the decomposition functions have a
maximal number of vanishing moments with a finite support,
whereas the reconstruction functions are as regular as pos-
sible with a given length of support. Moreover, the proposed
scheme is rather flexible as it is based on the conventional
FWT algorithm. One can choose the basis set and adjust the

TABLE II. Values of the exponentsd andu for star homopolymers withf =12 arms andsN−1d / f =50 arm
length in a good solvent. The following notations for the monomer pairs have been adopted:a:n, b:m, where
a,b number arms andn, m number monomers within arms and 0 refers to the core monomer. Other notations
are the same as in Table I.

d dww u uww utheor

0, a:m=25 2.67±0.03 2.67±0.002 3.036±0.04 3.024±0.02 2.677

0, a:m=50 2.56±0.03 2.62±0.01 0.59±0.02 1.51±0.01 1.442

a:n=25, a:m=50 2.40±0.06 2.48±0.004 0.55±0.01 0.50±0.003 0.458

a:n=50, b:m=50 2.30±0.03 2.18±0.01 0.23±0.01 0.26±0.007 0.277

TABLE III. Comparison of the exponentsd andu between the
theoretical results, different wavelet approximations(with names of
the wavelet bases are given in the first column), and the untreated
results from the direct fitting of Monte Carlo data for the end-end
TPCF’s of an open homopolymer coil with the degree of polymer-
ization K=200.

d u

Theoretical 2.428±0.001 0.271±0.002

“RB5-5” 2.36±0.02 0.276±0.005

“BR5-5” 2.36±0.02 0.31±0.01

Daubechies 4 2.35±0.02 0.29±0.02

Symlet 4 2.34±0.02 0.28±0.02

Coifman 2 2.36±0.02 0.285±0.005

Discrete Meyer 2.1±0.01 0.4±0.01

Untreated 2.11±0.07 0.36±0.02
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number of the coefficients easily for a particular problem.
From the results in Table III we can also conclude that by
using almost any reasonable basis it is possible to obtain an
improvement in the fitting procedure.

It should be emphasized that the wavelet scheme is rather
universal. The scheme of the wavelet approximation pro-
posed here allows us to represent the correlation functions
with a small number of approximating coefficients not only
for the coil but also for globular state of the homopolymers.
For instance, our procedure yields the relative accuracy of
the approximation of orders1/ndD,0.5310−3. Such accu-
rate knowledge of TPCF’s can be used for an input to the
self-consistent calculations of the interchain distribution
functions in the framework of the density functional methods
[35–37] and others.

Due to a compact parametrization and a high accuracy of
the approximation by wavelets, we hope that the wavelets
can be applied not only for approximating the interchain dis-
tribution functions of polymers, but also in order to calculate
these functions by the integral equation theory of polymers
[38]. The success of the recent applications of wavelets to
the theory of molecular solutes[4] has indicated that the
method is capable of calculating the thermodynamic charac-
teristics of solvation rather accurately.

We believe that further progress in this direction can also
be of importance for novel theories for calculating the intra-
chain TPCF’s of polymers directly from a force field. Some
of us are presently working on the super-Gaussian self-
consistent(SGSC) theory for a single macromolecule with
any two-body Hamiltonian, in which a set of integro-
differential equations is derived forĝijsr̂d as well as forDij .
In order to reduce the computational expenses in such calcu-
lations, having a compact and multiresolution accurate rep-
resentation forĝijsr̂d is essential.

Finally, due to the very general nature of the wavelet
theory, we hope that wavelets can find other numerous ap-
plications for describing the spatial and temporal depen-
dences of various observables in a number of fields of soft
condensed matter theory which they have not hereto benefi-
cially influenced.
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