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The process of adsorption on a planar wall of long flexible polymer chains in a medium with quenched
long-range correlated disorder is investigated. We focus on the case of correlations between defects or impu-
rities that decay according to the power lawx−a for large distancesx, wherex=sr ,zd. A field theoretical
approach ind=4−e and directly ind=3 dimensions up to one-loop order for the semi-infiniteufu4 m-vector
model (in the limit m→0) with a planar boundary is used. The whole set of surface critical exponents at the
adsorption thresholdT=Ta, which separates the nonadsorbed region from the adsorbed one, is obtained.
Moreover, we calculate the crossover critical exponentF and the set of exponents associated with it. We
perform calculations in a doublee=4−d and d=4−a expansion and also for a fixed dimensiond=3, up to
one-loop order for different values of the correlation parameter 2,aø3. The obtained results indicate that for
systems with long-range correlated quenched disorder a different set of surface critical exponents arises. All the
surface critical exponents depend ona. Hence, the presence of long-range correlated disorder influences the
process of adsorption of long flexible polymer chains on a wall in a significant way.
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I. INTRODUCTION

The universal properties of long flexible polymer chains
change when a small amount of long-range correlated
quenched disorder is introduced into an infinite medium
[1,2]. Correlated defects(i.e., regions that cannot be occu-
pied by the chain) may occur, for example, in a porous me-
dium or in a disordered spongelike structure formed by lipid
membranes in biological systems. Intuitively, if the correla-
tions between the defects and/or impurities decay sufficiently
slowly, then the chain has to go around large correlated re-
gions, and effectively occupies a larger space, with the de-
fects contained inside the region occupied by the coil. As a
result, the polymer swells. If, however, the range of correla-
tions is very large, then the polymer may be trapped between
the walls of defects(i.e., the probability of going beyond the
defected region is low), and this may lead to a collapsed
state. These heuristic arguments suggest that the polymer ei-
ther swells or collapses, depending on the range of correla-
tions between the defects or impurities. Indeed, recent results
agree with the intuitive expectations[1,2]. For different
ranges of correlations(i.e., different values ofa for the
power-law decay of correlations 1/xa) the swelling of the
polymer is described by different dependencies of the radius
of gyration on the number of monomers. Finally, fora,2.3
[1,2] a first-order transition to a collapsed state was found
[1,2].

Motivated by the above results we focus our attention on
the effect of the presence of a small amount of long-range
correlated quenched disorder in the bulk on the adsorption of
long flexible polymer chains on a planar surface forming the
system boundary. In real systems different kinds of defects
and impurities may be localized inside the bulk or at the

boundary. As was found in Ref.[3], introducing into the
systemshort-range correlated random quenched surface dis-
order is irrelevant for critical behavior, but long-range corre-
lated quenched surface disorder withgsrd,1/ra can be rel-
evant if a,d−1, and is irrelevant ifaùd−1. The question
of how the adsorption phenomena of long flexible polymer
chains depend on the presence of long-range correlated
quenched disorder in thebulk remains open, however. The
new universality class characterizing the polymer in the pres-
ence of long-range correlated disorder indicates that the criti-
cal exponents describing the properties of the polymer chain
near the wall should assume different values than in the pure
system. The purpose of this work is a determination of the
surface critical exponents to first order in the perturbation
expansion, in order to gain information about a qualitative
change of adsorption of the chains when the range of corre-
lations between the defects in the bulk increases(i.e., a is
decreased). It should be mentioned that our investigations are
connected with the influence of the kind of quenched long-
range correlated disorder that is well above the percolation
thresholdp.pc=0.59 [4], where 1−p is the fraction of di-
luted sites.

Long flexible polymer chains in a good solvent are per-
fectly described by a model of self-avoiding walks(SAWs)
on a regular lattice[5]. Their scaling properties in the limit of
an infinite number of stepsN may be derived by a formal
m→0 limit of the Osmd vector model at its critical point[6].
The average square end-to-end distance, the number of con-
figurations with one end fixed, and the number with both
ends fixed at the distancex=ÎsxWA−xWBd2 exhibit the following
asymptotic behavior in the limitN→`:

kR2l , N2n, ZN , qNNg−1, ZNsxd , qNN−s2−ad, s1d

respectively.n, g, anda are the universal correlation length,
susceptibility, and specific heat critical exponents for them*Electronic address: pylyp@ph.icmp.lviv.ua
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=0 model,d is the space dimensionality,q is a nonuniversal
fugacity, and 1/N plays the role of a critical parameter analo-
gous to the reduced critical temperature in magnetic systems.

When the polymer solution is in contact with a solid sub-
strate(or with vapor), then the monomers interact with the
surface(or their chemical potential at the interface is differ-
ent than in the bulk). At sufficiently low temperaturesT,Ta,
the attraction between the monomers and the surface leads to
an adsorbed state, where a finite fraction of the monomers is
attached to the system boundary. The deviation from the ad-
sorption threshold,c~ sT−Tad /Ta, changes sign at the tran-
sition between the adsorbedsc,0d and the nonadsorbed
statessc.0d and it plays the role of a second critical param-
eter. The adsorption threshold for infinite chains, where
1/N→0 andc→0, is a multicritical phenomenon. We shall
assume that the solution of polymer chains is sufficiently
dilute so that interchain interactions and overlapping be-
tween different chains can be neglected, and it is sufficient to
consider surface effects for configurations of a single chain.
For pure solvents the investigation of adsorption phenomena
of long flexible polymer chains on the surface was the sub-
ject of a series of works(for the sake of brevity we notice
only few of them[6–14]). The polymer adsorption on a wall
in the limit of an infinite chain is closely related to surface
critical phenomena in them-vector model of a magnet in a
semi-infinite geometry in the limitm→0 [6,15,16]. Based on
the above analogy, Eisenriegler and co-workers[7–9] de-
scribed the scaling properties of long chains near a wall on
the basis of the results of the field theory developed for semi-
infinite magnetic systems in Refs.[17–19]. Surface multi-
critical phenomena in dilute polymer systems(at T=Ta and
N→`) correspond to the special transition in semi-infinite
magnets. The special transitionsc=0d is characterized by one
additional independent surface critical exponenthi, which
characterizes critical correlations in directions parallel to the
surface. The whole set of the other surface critical exponents
can be obtained on the basis ofhi and the bulk critical ex-
ponentsn and h with the help of surface scaling relations.
The crossover critical exponentF characterizes the cross-
over behavior between the special and ordinary transitions
scÞ0d. The latter exponent is related to the length scale[8,9]

jc , ucu−n/F s2d

associated with the parameterc. In the polymer problem the
lengthjc can be interpreted as the distance from the surface
up to which the properties of the polymer depend on the
value ofc, not only on its sign. The remaining, bulk length
scales are the average end-to-end distancejR=ÎkR2l,Nn

and the microscopic lengthl—the effective monomer linear
dimension. Near the multicritical point the only relevant
lengths arejR→` andjc→`, and the properties of the sys-
tem depend on the ratiojR/jc. In the asymptotic scaling
regime the universal physical quantitiesXsN,cd and
Ysz;N,cd assume the scaling forms

XsN,cd = NaXX±
ssjR/jcd, Ysz;N,cd = NaYY±

ssz/jR,jR/jcd,

s3d

whereX±
s andY±

s denote the scaling functions with the sub-
scripts 1 and 2 corresponding toc.0 andc,0, respec-

tively. The characteristic length ratio issjR/jcdF/n,ucuNF,
where cNF is the standard scaling variable[7]. The expo-
nentsaX andaY assume different values for different quanti-
tiesX andY. Let us first consider the mean square end-to-end
distance for one end attached to the surface and the other one
free. In a semi-infinite system the translational invariance is
broken, and the parallelkRi

2l and perpendicularkR'
2 l parts of

the average end-to-end distancekR2l=kR'
2 +Ri

2l should be
distinguished. ForkR'

2 l1/2 the exponent in the scaling form
(3) is aX=n and the corresponding scaling functions assume
the form ,const for cù0 and ,1/y for c,0, where y
=jR/jc [7]. Thus, for the adsorbed state and forN→` the
length associated withc describes the thicknessj of the ad-
sorbed layer,

j = kR'
2 l1/2 , jc, c , 0. s4d

This thickness diverges forc=1/N=0 and for finite negative
values ofc remains finite for an infinite chain. Forcù0 the
asymptotic behavior of the mean distance of the free end
from the other end attached to the surface is

kR'
2 l1/2 , Nn, c ù 0, s5d

i.e., it has the same asymptotic behavior as in the bulk. The
asymptotic scaling form ofkRi

2l1/2 for c,0 is kRi
2l1/2

,ucusn
d−1−nd/FNnd−1

, wherend−1 is the correlation exponent in
d−1 dimensions. Forcù0 the scaling form ofkRi

2l1/2 is
given by Eq.(5), i.e., it is also the same as in the bulk.

For the fraction of monomers at the surface,N1/N, the
following asymptotic behavior has been found forN→`
[7,9]:

N1/N , 5ucus1−Fd/F if c , 0,

NF−1 if c = 0,

scNd−1 if c . 0.
6 s6d

Hence, forN→` and for finite, negative values ofc, N1/N is
finite, but forcù0 N1/N→0 for N→`. The thickness of the
adsorbed layer is closely related to the fraction of monomers
at the surfaceN1/N [7,9], since the more monomers are fixed
at the wall, the smaller the region occupied by the remaining
monomers. In particular, for weakly adsorbed phase(c,0
and ucu!1) we find N1/N,j−s1−Fd/n.

The scaling behavior is also obeyed by the mean number
of the free ends in the layer betweenz and z+dz, which is
proportional to the partition function of a chain with one end
fixed atxA=sr A,zd and the other end free,ZNszd. The density
of monomers in a layer at the distancez from the wall to
which one end of the polymer is attached,MN

lszd, scales ac-
cording to Eq.(3) as well. For the above quantities the ex-
ponent aY in Eq. (3) is g−1 and g1−n respectively. The
short-distance behaviorsl !z!jRd of the two quantities right
at the thresholdsc=0d is

ZNszd , zsg−g1d/nNg1−1 s7d

and
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MN
lszd , z−1+s1−Fd/nNg1−1+F. s8d

g1 as well as the whole set of the surface critical exponents
can be obtained fromhi andF through scaling relations(see
the Appendix). The remaining quantities characterizing the
adsorption process are described in detail in Refs.[7,9].

Taking into account the results of Refs.[1,2] we conclude
that for cù0 the polymer with one end attached to the sur-
face swells as in the bulk whena decreases[see Eq.(5)].
However, in order to determine the effect of the long-range
correlated disorder on the adsorption of the polymer right at
the threshold[see Eqs.(7) and(8)] or in the crossover region
[see Eq.(2), (4), and (6)] it is necessary to find the depen-
dence of the surface critical exponents ona.

In the next section the model is briefly described. In Sec.
III the surface multicritical behavior of the system with long-
range correlated disorder is outlined. The results of Sec. III
enable us to obtain in Sec. IV the surface critical exponents
to first order in the perturbation expansion. The final section
contains a brief discussion of the results.

II. THE MODEL

When a disorder is introduced into an infinite magnetic
system, the Landau-Ginzburg-Wilson Hamiltonian assumes
the form

H =E
V

ddxS1

2
u ¹ fW u2 +

1

2
fm0

2 + dtsxdgufW u2 +
1

4!
v0sfW 2d2D ,

s9d

wherefW sxd is anm-vector field with the componentsfisxd,
i =1, . . . ,m. Herem0

2 is the “bare mass,” which in the case of
a magnet corresponds to the reduced temperature. The inho-
mogeneities in the system cause local deviations from the
average value of the transition temperature, anddtsxd repre-
sents the quenched random temperature disorder, with
kdtsxdl=0 and

1

8
kdtsxddtsx8dl = gsuxud, s10d

where the angular bracketsk¯l denote configurational aver-
aging over quenched disorder. Following Refs.[1,2,20] we
assume that the pair correlation functiongsuxud falls off with
the distance as

gsuxud ,
1

xa s11d

for largex=sr ,zd, wherea is a constant andx= uxu. The Fou-
rier transformg̃skd of gsxd for small k is

g̃skd , u0 + w0ukua−d. s12d

This corresponds to the so-called long-range correlated “ran-
dom temperature” disorder. In the case of random uncorre-
lated pointlike(or short-range correlated) disorder the site-
occupation correlation function isgsxd,dsxd and its Fourier
transform assumes the simple form

g̃skd , u0. s13d

Applying the replica method in order to average the free
energy over different configurations of the quenched disor-
der, it is possible to construct an effective Hamiltonian of the
ufu4 m-vector model with a long-range correlated disorder
[1,2,20]

Heff = o
a=1

n E
V

ddxS1

2
u ¹ fW au2 +

1

2
m0

2fW a
2 +

1

4!
v0sfW a

2d2D
− o

a,b=1

n E ddx1d
dx18gsux1 − x18udfW a

2sx1dfW b
2sx18d. s14d

Here greek indices denote replicas, and the replica limit
n→0 is implied. In the most general case when the disor-
dered systems exhibit numerous local minima solutions of
the saddle point equation for the effective Hamiltonian(14)
the propertyg=gaa [wheregaa are diagonal elements of the
no replica symmetric matrixgabsux1−x18ud= ḡsux1−x18uddab

−u0] does not hold(i.e., the pair correlation function is not
symmetric anymore). In such disordered systems there exist
a macroscopic number of spatial “islands” with nonzero lo-
cal magnetization and with local effective temperature below
the critical temperaturem0

2+dtsxd,0. For study of this kind
of disordered systems the Parisi replica symmetry breaking
scheme which has proved to be essential in the mean-field
theory of spin glasses[21,22] was proposed. In common, for
such systems different thermodynamic characteristics are ex-
pected for 1,m,4, wherem is a number component of the
order parameter[23–26].

But the recent detailed analysis of critical behavior of
systems with quenched disorder performed in the frames of
the field theoretical approach in the two-loop approximation
directly at three dimensions[27,28] have shown that their
critical behavior is stable against the effect of replica sym-
metry breaking. It was established that for systems with a
one-componentsm=1d order parameter the critical behavior
is determined by the quenched disorder with a replica-
symmetric fixed point. In accordance with this we choose
gsux1−x18ud to be a replica-symmetric function. This means
that we can work in the frames of method proposed by Grin-
stein and Luther[29] for such kind of systems with quenched
correlated or uncorrelated disorder. So we use the traditional
renormalization group(RG) approach which is only a pertur-
bation theory and integrate over the deviations of the field
around the ground-state configuration. The influence of weak
quenched disorder on the critical phenomena has been stud-
ied for many years(see the two last reviews on this theme
[30,31]).

If aùd, then thew0 term is irrelevant. This corresponds
to random uncorrelated pointlike disorder(or short-range
correlated random disorder). As noticed by Kim[32], in this
case in the limitm, n→0 both v0 and u0 terms are of the
same symmetry. It indicates thata weak quenched uncorre-
lated disorder is irrelevant for SAWs[33]. If, on the other
hand,a,d, the termw0k

a−d is relevant for the critical be-
havior at k→0, and the long-range correlated disorder is
relevant for SAWs(see[1,2]). The limit m→0 of this model
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can be interpreted as a model of long flexible polymer chains
in a disordered medium[1,2].

The presence of a hard wall leads to a modification of the
interactions in the near-surface layer. Thus, in the semi-
infinite system there should be an additional, surface contri-
bution to the Hamiltonian. The effective Hamiltonian of the
semi-infiniteufu4 m-vector model with long-range correlated
disorder in this case is

Heff = o
a=1

n E
V

ddxS1

2
u ¹ fW au2 +

1

2
m0

2fW a
2 +

1

4!
v0sfW a

2d2D
− o

a,b=1

n E ddx1d
dx18ḡsux1 − x18udfW a

2sx1dfW b
2sx18d

+
c0

2 o
a=1

n E
]V

dd−1rfW a
2sr ,z= 0d, s15d

wherec0 describes the surface enhancement of interactions.
In the polymer analogc0~ sT−Tad /Ta, as already noted in
the Introduction. The surface introduces an anisotropy into
the problem, and the directions parallel and perpendicular to
the surface are no longer equivalent. In accordance with the
fact that we have to deal with semi-infinite geometry
fx=sr ,zù0dg, only parallel Fourier transforms ind−1 di-
mensions will be performed. The parallel Fourier transform
g̃sq,zd of Eq. (10) is

g̃sq,zd = w0
2sa−d+1d/2

Gfsd − ad/2gÎp
qsa−d+1d/2zsd−a−1d/2Ksa−d+1d/2sqzd,

s16d

where z= uz1−z18u and Ksa−d+1d/2sqzd is the modified Bessel
function andq= uqu, whereq is a sd−1d-dimensional vector.
In the case of smallq andz we obtain the relation

g̃sq,zd , u0 + w0q
a−d+1 + w08z

d−a−1, s17d

which agrees with the predictions obtained in[3]. We con-
centrate our attention on the caseaø3 for d=3, for which
the long-range correlated disorder in the bulk is relevant. In
the general case of arbitraryz (from z=0 on the wall to
z→`) we must take into account the Fourier transform
g̃sq,zd of the form (16).

III. SURFACE CRITICAL BEHAVIOR NEAR
THE MULTICRITICAL POINT c=ca

A. Normalization conditions

The correlation function which involvesN fields fsxid at
distinct pointsxi s1ø i øNd in the bulk, M fields fsr j ,z
=0d;fssr jd at distinct points on the wall with parallel coor-
dinatesr j s1ø j øMd, andL1 insertions of the surface opera-
tor 1

2fs
2sRld at pointsRl with 1ø l øL1, has the form

GsN,M,L1dshxij,hr jj,hRljd =Kp
i=1

N

fsxidp
j=1

M

fssr jdp
l=1

L1 1

2
fs

2sRldL ,

s18d

wherek…l denotes averaging with the Boltzmann factor, in
which the Hamiltonian is given in Eq.(15). The correspond-
ing full free propagator in the mixedpz representation is
given by [19]

Gsp,z,z8d =
1

2k0
Se−k0uz−z8u −

c0 − k0

c0 + k0
e−k0sz+z8dD , s19d

where k0=Îp2+m0
2 with p being the value of the parallel

momentump associated with thed−1 translationally invari-
ant directions in the system.

There are two special cases:(a) when two ends of the
polymer are attached to the wall[in such a case we have to
deal with the calculation of a two-point correlation function
Gs0,2dsr ,z=0;r8 ,z8=0d], and (b) when one end of the poly-
mer is unrestricted in the bulk and the other one is attached
to the wallfGs1,1dsx; r8 ,z8=0dg. In order to obtain the univer-
sal surface critical exponents characterizing the adsorption
on the wall of long flexible polymer chains inserted into the
medium with long-range correlated quenched disorder, it is
sufficient to consider the correlation function of two surface
fields Gs0,2dsr ,z=0;r8 ,z8=0d (see [34]). The universal sur-
face critical exponents for such systems depend on the di-
mensionality of spaced, the number of order parameter com-
ponents m sm→0d, and the range of the disorder
correlations, i.e., ona.

In the theory of semi-infinite systems the bulk fieldfsxd
and the surface fieldfssr d should be reparametrized by dif-
ferent uv-finite renormalization factorsZfsu,v ,wd and
Z1su,v ,wd [17,34],

fsxd = Zf
1/2fRsxd and fssrd = Zf

1/2Z1
1/2fs,Rsrd.

Introducing the additional surface operator insertions
1
2fs

2sRld requires an additional specific renormalization fac-
tor Zfs

2

fs
2 = fZfs

2g−1fs,R
2 .

The renormalized correlation function involvingN bulk and
M surface fields andL1 surface operators12fs

2sRld can be
written as

GR
sN,M,L1dsp;m,u,v,w,cd = Zf

−sN+Md/2Z1
−M/2Z

fs
2

L1

3GsN,M,L1dsp;m0,u0,v0,w0,c0d.

s20d

It should be mentioned that the typical bulk short-distance
singularities, which are present in the correlation function
Gs0,2d, can be subtracted after performing the mass renormal-
ization. For distinguished parallel and perpendicular direc-
tions we obtain

m0
2 = m2 − t1

s0dI1sm2d + t2
s0dI2sm2d, s21d

where
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t1
s0d =

1

3
Sv0 − u0 −

w0ma−d

cosfpsa − dd/2gD ,

s22d

t2
s0d =

w0

3Îp

G„sd − a − 1d/2…
G„sd − ad/2…

,

and

I1sm2d =
1

s2pdd−1 E dd−1q

2kq
s23d

with kq=Îq2+m2 and

I2sm2d =
1

s2pdd−1 E dd−1q

uqua−d+1
2F1F1

2
,1,

3 + a − d

2
,
q2

kq
2G

2kq
2 .

According to the above mentioned notation, we have only
two coupling constantsV0=v0−u0 and w0 in the effective
Hamiltonian(we keep the notationv0 for V0).

The renormalized coupling constantsv ,w are fixed via the
standard normalization conditions of the infinite-volume
theory [2]:

m4−dv = Gb,R,v
s4d ushqj;m2,v,wduq=0,

m4−aw = Gb,R,w
s4d ushqj;m2,v,wduq=0, s24d

whereGb,R,v
s4d andGb,R,w

s4d are thev- andw-term symmetry con-
tributions to the four-point vertex function. To the present
accuracy of calculation at one-loop order, the vertex renor-
malization givesv=v0md−4 andw=w0ma−4.

In order to remove the short-distance singularities of the
correlation functionGs0,2d, located in the vicinity of the sur-
face, the surface enhancement shiftc0=c+dc is required. In
accordance with this, a new normalization condition should
be introduced for the surface enhancement shiftdc and the
surface renormalization factorZ1. By analogy with magnetic
systems[34–36], the renormalized surface two-point corre-
lation function in our case is normalized in such a manner
[34] that at zero external momentum it should coincide with
the lowest-order perturbation expansion of the surface sus-
ceptibility xispd=Gs0,2dspd:

Gs0,2dsp;m0,v0,w0,c0d =
1

c0 + Îp2 + m0
2

+ Osv0,w0d.

s25d

Thus, we obtain the necessary surface normalization condi-
tion,

GR
s0,2ds0;m,v,w,cd =

1

m + c
, s26d

and for the first derivative with respect top2 we have

U ]GR
s0,2dsp;m,v,w,cd

]p2 U
p=0

= −
1

2msm + cd2 . s27d

Equation(26) defines the required surface enhancement shift
dc and shows that the surface susceptibility diverges at

m=c=0. This point corresponds to the multicritical point
sm0c

2 ,c0
ad, at which the adsorption threshold takes place(it

corresponds to the special transition).
From the normalization condition of Eq.(27) and the ex-

pression for the renormalized correlation function of Eq.
(20), we can find the renormalization factorZi=Z1Zf from
the relation

Zi
−1 = 2m

]

]p2ufGs0,2dspdg−1up2=0 = lim
p→0

m

p

]

]p
fGs0,2dspdg−1.

s28d

The normalization condition for the correlation function
Gs0,2,1d, with the insertion of the surface operator1

2ws
2,

uGR
s0,2,1dsp;m,v,w,cdup=0 =

1

sm + cd2 , s29d

gives the possibility of obtaining the renormalization factor
Zfs

2 from

fZfs
2g−1 =UZi

]fGs0,2ds0;m0,v0,w0,c0dg−1

]c0
U

c0=c0sc,m,u,vd
.

s30d

Equation(29) follows from the fact that the bare correlation
functionGs0,2,1ds0;m0,v0,w0,c0d may be written as a deriva-
tive −s] /]c0dGs0,2ds0;m0,v0,w0,c0d.

B. The Callan-Symanzik equations

Asymptotically close to the critical point the renormalized
correlation functionsGR

sN,Md satisfy the corresponding homo-
geneous Callan-Symanzik(CS) equations[34,35]

Sm
]

]m
+ bvsv,wd

]

]v
+ bwsv,wd

]

]w
+

N + M

2
hsv,wd

+
M

2
h1

spsv,wdDGR
sN,Mds0;m,v,w,cd = 0, s31d

where theb functions arebvsv ,wd= ums] /]mduLRv, bwsv ,wd
= ums] /]mduLRw, the exponentsh andh1

sp are

h = m
]

]m
uln ZfuLR, h1

sp= m
]

]m
uln Z1uLR, s32d

and where LR is the long-range fixed point. It should be
mentioned that up to one-loop order in thee andd expansion
the LR fixed point is located in the region of irrelevant dis-
order a.3, and up to two-loop order the LRstable fixed
point is found after performing the Borel-Chisholm resum-
mation [1,2].

The simple scaling dimensional analysis ofGR
s0,2d and of

the mass dependence of theZ factors allows us to express the
surface correlation exponenthi

sp as

hi
sp= h1

sp+ h. s33d

From Eqs.(28), (32), and (33), we obtain for the surface
correlation exponenthi

sp the following expression:

CRITICAL ADSORPTION OF POLYMERS IN A MEDIUM… PHYSICAL REVIEW E 70, 051801(2004)

051801-5



hi
sp= m

]

]m
uln ZiuLR = bvsv,wd

] ln Zisv,wd
]v

+ bwsv,wdU ] ln Zisv,wd
]w

U
LR

, s34d

where theb functions are[2]

bv̄sv̄,w̄d = − v̄ + v̄2 − s3f1sad − f2saddv̄w̄ − ¯ ,

bw̄sv̄,w̄d = − s4 − adw̄ − sf1sad − f2saddw̄2 +
v̄w̄

2
+ ¯ .

s35d

In the above equation the renormalized coupling constantsv
andw are normalized in a standard fashion, so that

v̄ =
4

3
vI1, w̄ =

4

3
wI1,

and the integralI1 in the case ofd=3 is equal to 1/8p and in
the case ofd=4−e it is I1=2−dp−d/2Gse /2d. The coefficients
f isad expressed via the one-loop integrals[2,37] are given by

f1sad =
sa − 2dsa − 4d
2 sinfpa/2g

,

f2sad =
sa − 2dsa − 3dsa − 4d
48p sinfpsa/2 − 1dg

. s36d

C. Crossover between the adsorbed
and nonadsorbed states

As already discussed in the Introduction, it is particularly
interesting to investigate the adsorption threshold and the
crossover behavior between the adsorbed and the nonad-
sorbed states, where the distribution of monomers in the
near-surface region changes character. In order to investigate
the crossover behavior from the nonadsorbed regionc.c0

a to
the adsorbed onec,c0

a, let us consider a small deviation
Dc0=c0−c0

a from the multicritical point. The power
series expansion of the bare correlation functions
GsN,Mdsp ;m0,v0,w0,c0d in terms of this small deviationDc0

has the form

GsN,Mdsp;m0,v0,w0,c0d = o
L1=0

`
sDc0dL1

L1!

3GsN,M,L1dsp;m0,v0,w0,c0
ad. s37d

Taking into account Eq.(20), we can rewrite the right-hand
side of Eq. (37) in terms of the renormalized correlation
functions and renormalized variableDc=fZfs

2sv ,wdg−1Dc0.
In this way we obtain

Zf
−sN+Md/2sZ1d−M/2GsN,Mdsp;m0,v0,w0,c0d

= o
L1=0

`
sDcdL1

L1!
GR

sN,M,L1dsp;m,v,wd. s38d

The above equation determines in a straightforward fashion

the corresponding renormalized correlation functions in the
vicinity of the multicritical pointsm0c

2 ,c0
ad,

GR
sN,Mdsp;m,v,w,Dcd = Zf

−sN+Md/2sZ1d−M/2

3GsN,Mdsp;m0,v0,w0,c0d. s39d

These correlation functions depend on the dimension-
less variable c̄=Dc/m. The correlation functions
GR

sN,Mdsp ;m ,v ,w,Dcd satisfy the CS equations(31) (see also
Refs. [34,35]) with the additional surface related term
−f1+hc̄sv ,wdgc̄] /]c̄, where

hc̄sv,wd = Um
]

]m
U

LR
ln Zfs

2sv,wd = bvsv,wd
] ln Zfs

2sv,wd

]v

+ bwsv,wdU ] ln Zfs
2sv,wd

]w
U

LR
s40d

should be calculated at the LR stable fixed point.
The asymptotic scaling critical behavior of the correlation

functions can be obtained through a detailed analysis of the
CS equations, as was proposed in Refs.[38,39] and em-
ployed in the case of semi-infinite systems in[34,40]. Taking
into account the scaling form of the renormalization factor
Zfs

2 of Eq. (30) and the relationm,tn, where t=sT
−Tcd /Tc is the reduced critical temperature in magnetic sys-
tems, we obtain forDc and for the scaling variablec̄ the
following asymptotic forms:

Dc , m−hc̄sv*,w* dDc0, Dc , t−nhc̄sv*,w* dDc0, s41d

and

c̄ , m−s1+hc̄sv*,w* ddDc0, c̄ , t−FDc0, s42d

where

F = nf1 + hc̄sv * , w * dg s43d

is the surface crossover critical exponent. Equation(42) ex-
plains the physical meaning of the surface crossover expo-
nent as a value which characterizes the measure of deviation
from the multicritical point.

Taking into account the above mentioned results, we ob-
tain from the CS equation the following asymptotic scaling
form of the surface correlation functionGs0,2d,

Gs0,2dsp;m0,v0,w0,c0d , m−g11
sp/n

3GR
s0,2dS p

m
;1,v * , w * , m−F/nDc0D

, t−g11
sp

Gspt−n;1,t−FDc0d, s44d

whereg11
sp=ns1−hid, andhi

sp=h1
sp+h are the surface expo-

nents at the multicritical point. The knowledge ofhc̄ gives
access to the calculation of the critical exponentsa1 andai

of the layer and local specific heats via the usual scaling
relations[19]

a1 = a + n − 1 +F = 1 −nsd − 2 −hc̄d,

s45d
ai = a + n − 2 + 2F = − nfd − 3 − 2hc̄g.
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IV. THE PERTURBATION EXPANSION FOR
THE SURFACE CRITICAL EXPONENTS

Applying the field theoretical renormalization group ap-
proach we perform calculations in a double expansion ine
=4−d and ind=4−a up to the linear approximation, as was
proposed by Weinrib and Halperin[20] for infinite systems.
Thus, after performing the integration of the corresponding
Feynman integrals in the renormalized two-point correlation
functionGs0,2d, we obtain at the first order of the perturbation
theory the following result for the renormalization factorZi:

Zi = 1 +
v̄

4s1 + ed
−

w̄

2 cosfsp/2dsd − edg
gse,dd, s46d

where

gse,dd = S1 −
d

e
D 1

1 + d
+ e/2 − d −

ef1/d + gE/2 + cEs1/2dg
2Gsd − ed

3 SpFqFH1

2
,1,2 −

d

2
J,H2 +

d

2
,
3 + e − d

2
J,1G

+ pFqFH1,
3

2
,2 −

d

2
J,H2 +

d

2
,
3 + e − d

2
J,1GD .

s47d

Combining the renormalization factorZi together with the
correspondingb functions derived in Refs.[1,2], we obtain
for the surface critical exponenthi

sp the result

hi
sp= −

v̄
4

e

s1 + ed
+

w̄d

2cosfsp/2dsd − edg
gse,dd. s48d

The above mentioned surface critical exponenthi
sp in the

case ofe, d expansion can be calculated formally at the
corresponding fixed point v* =2d2/ se−dd, w* =−dse
−2dd / se−dd obtained in the first order ofe, d expansion in
[1].

In the special case of three spatial dimensionsd=3 and
for arbitrarya the renormalization factorZi at the one-loop
order is given by

Zi = 1 +
v̄
8

+
w̄gsad

8 sinspa/2d
, s49d

where we have introduced the functiongsad by

gsad = 2a−31GS5 − a

2
D

GS7 − a

2
D + s3 − ad

GS3 − a

2
D

GS5 − a

2
D2

−
s3 − ad
s4 − ad1GS5 − a

2
D

GS7 − a

2
D +

GS3 − a

2
D

GS5 − a

2
D2 . s50d

From Eq.(50) it is easy to see that in the case of short-range
correlated(or uncorrelated) disorder, i.e., fora=d=3, the
above mentioned function reduces togsad=1, and bothv̄ and
w̄ terms are of the same symmetry. This confirms that a

short-range correlated(or uncorrelated) disorder is irrelevant
for SAWs.

Combining the renormalization factorZi together with the
one-loop pieces of theb functions, according to Eq.(34), we
finally obtain the following expression for the surface critical
exponenthi

sp:

hi
sp= −

v̄
8

−
w̄

8

s4 − adgsad
sinspa/2d

. s51d

Similarly, for the renormalization factorZfs
2 we obtain at the

one-loop order

Zfs
2 = 1 +

v̄
2
Sln 2 −

1

4
D +

w̄

2 sinspa/2dShsad −
gsad

4
D ,

s52d

wherehsad is a combination of the Appell hypergeometric
functions of two variablesF1fa,b1,b2,c,x,yg,

hsad = 2a−4F1F1,1,
5 − a

2
,2,− 1,− 1/2G

+
2sa−1d/2

5 − a
F1F5 − a

2
,1,

5 − a

2
,
7 − a

2
,− 1,− 2G

−
4s3 − ad

s7 − ads6 − ad
. s53d

Finally, for the exponenthc̄ we obtain

hc̄ = −
v̄
2
Sln 2 −

1

4
D −

w̄s4 − ad
2 sinspa/2dShsad −

gsad
4

D . s54d

In the case of short-range correlated(or uncorrelated) disor-
der for the functionhsad at a=d=3 we obtain ln 2.

The above values of the surface critical exponentshi
sp and

hc̄ should be calculated at the long-range stable fixed point
obtained in Refs.[2,37] for different fixed values of the cor-
relation parameter, 2,aø3. The other surface critical expo-
nents can be calculated on the basis of the surface scaling
relations(see the Appendix) and one-loop series for the bulk
critical exponents obtained in Refs.[1,2],

n−1 = 2 −
v̄
4

+
f1sad − f2sad

2
w̄ + ¯ ,

h =
1

2
f2sadw̄ + ¯ . s55d

The results of our calculation off1/0g and f0/1g Padé
approximants of the series of the surface critical exponents at
the adsorption threshold, and a group of critical exponents
connected with the crossover exponentF are presented in
Table I and Table II, respectively.

In the casea=d=3, which corresponds to random uncor-
related pointlike disorder(or short-range correlated disorder)
the obtained one-loop results for the surface critical expo-
nents coincide with the results for the pure model(see
[34,35]), Padé approximantsf1/0g andf0/1g, as they should.
For 2.3øa,3 the surface critical exponents belonging to
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the universality class associated with the LR fixed point of
the RG equations depend ona, similarly to the bulk expo-
nents. This fact indicates that all the characteristics of the
process of adsorption on a clean wall, described in the Intro-
duction, depend on the range of the correlations between the
defects in the bulk.

V. DISCUSSION OF THE RESULTS

Let us first discuss the effect of the long-range correlated
disorder on the distribution of monomers at and above the
adsorption thresholdscù0d. From Eq.(5) and the fact that
nsad is a decreasing function[1,2], it follows that the poly-
mer with one end attached to the surface swells as in the bulk
when a decreases. The behavior of the average end-to-end
distance at and above the threshold is independent of the
surface critical exponents[see Eq.(5)], and the relevant ex-
ponentnsad has been obtained at two-loop order[1,2].

Right at the threshold the average number of polymer
ends and the average number of monomers depend on the
distance from the surface. The distribution of monomers at
different distances from the surface at the adsorption thresh-
old, as well as the crossover behavior to the adsorbed state,

can only be determined with the help of the surface critical
exponents, as discussed in some detail in the Introduction.
The latter exponents have been calculated in this work up to
one-loop order and we can describe the effect of the long-
range correlated disorder on the basis of our results. Our
one-loop results show that for decreasinga the exponent
g1sad strongly increases, whereasFsad decreases. We should
point out that we cannot exclude the possibility that the de-
pendence of the surface critical exponents ona is different
beyond the one-loop approximation.

Let us describe the effect of the long-range correlated
disorder at the adsorption threshold and at the crossover to
the adsorbed state assuming that the qualitative trends are
properly captured by the one-loop results. For small dis-
tancessl !z!jRd and for c=0 the partition functionZNszd
and the number of monomers in the layer atz are shown in
Figs. 1 and 2 respectively for several values ofa. From these
plots [see also Eqs.(7) and(8) and Tables I and II; and also
the table in Ref.[1]] we can see that the number of free ends
and the number of monomers in the near-surface region
sl !z!jRd both increase for decreasinga. Moreover, the de-
pendence onz is the stronger, the larger the range of corre-
lations between the defects. This result suggests that the
larger is the range of correlations between the defects, the

TABLE I. Surface critical exponents of the long flexible polymer at the special transitionc=ca for
d=3 up to one-loop order calculated at the pure[the casea=3 with sv* =1.632,w* =0d] and LR stable fixed
points for different fixed values of the correlation parameter 2,a,3.

hi h' b1 g11 g1

a v* w* f1/0g f0/1g f1/0g f0/1g f1/0g f0/1g f1/0g f1/0g

3.0 1.63 0.00 −0.204 −0.169 −0.102 −0.114 0.250 0.250 0.704 1.255

2.9 4.13 1.47 −0.342 −0.255 −0.171 −0.146 0.247 0.248 0.837 1.418

2.8 4.73 1.68 −0.402 −0.287 −0.200 −0.167 0.244 0.244 0.891 1.480

2.7 5.31 1.81 −0.468 −0.319 −0.233 −0.189 0.241 0.241 0.951 1.550

2.6 5.89 1.87 −0.542 −0.351 −0.270 −0.212 0.238 0.238 1.018 1.630

2.5 6.48 1.89 −0.620 −0.383 −0.308 −0.236 0.235 0.236 1.090 1.715

2.4 7.10 1.87 −0.704 −0.413 −0.350 −0.259 0.233 0.233 1.169 1.810

2.3 7.76 1.84 −0.793 −0.442 −0.394 −0.283 0.230 0.231 1.253 1.911

TABLE II. Surface critical exponents of the long flexible polymer at the special transitionc=ca for d=3 involving the RG functionhc̄,
calculated at the pure(the casea=3) and LR stable fixed points for different fixed values of the correlation parameter 2,a,3.

a v* w*

hc̄ a1 ai F s1−Fd /n

f1/0g f0/1g f1/0g f0/1g f1/0g f0/1g f1/0g f0/1g f1/0g f0/1g

3.0 1.63 0.00 −0.362 −0.266 0.217 0.280 −0.362 −0.266 0.421 0.427 0.954 0.956

2.9 4.13 1.47 −0.607 −0.378 0.031 0.181 −0.607 −0.378 0.363 0.379 0.942 0.945

2.8 4.73 1.68 −0.710 −0.415 −0.045 0.147 −0.710 −0.415 0.335 0.358 0.950 0.953

2.7 5.31 1.81 −0.822 −0.451 −0.128 0.114 −0.822 −0.451 0.306 0.337 0.955 0.957

2.6 5.89 1.87 −0.943 −0.485 −0.219 0.082 −0.943 −0.485 0.276 0.317 0.954 0.956

2.5 6.48 1.89 −1.066 −0.516 −0.314 0.051 −1.066 −0.516 0.247 0.298 0.944 0.947

2.4 7.10 1.87 −1.192 −0.544 −0.413 0.023 −1.192 −0.544 0.222 0.282 0.922 0.928

2.3 7.76 1.84 −1.309 −0.567 −0.511 −0.003 −1.309 −0.567 0.203 0.271 0.881 0.894
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more efficient is the trapping of the chain between the attrac-
tive surface and the region occupied by the defects. For
smallera more steps are necessary for the chain to go around
the defected region, which is larger for smallera. From the
fact that F decreases for decreasinga it follows that the
fraction of the monomers adsorbed at the surface also de-
creases(see Eq.(6) and Table II). This result is somewhat
surprising, since it shows a trend just opposite to the one for
the fraction of monomers contained in the layer at the dis-
tancez from the wall for l !z!jR. A possible explanation
might be that once the polymer leaves the surface, the large
disordered patches in the bulk make it difficult for the poly-
mer to return back. As a result, the fraction of the monomers
near the wall can be higher than right at the wall. Recall that
also in the pure systems forc=0 there is a discrepancy be-
tween the behavior of the fraction of monomers right at the
surface,N1/N,NF−1, and the fraction of monomers at a
distance from the surface of the order of the effective mono-

mer dimensionl, MN
lsld /N,NF−1+g1−1. Sinceg1.1 beyond

mean field(MF), the concentration of monomers close to the
surface is larger than just at the boundary, andN1/MN

lsld
,N1−g1→0 for N→` and c=0. Our one-loop results indi-
cate that this effect is enhanced in the presence of long-range
correlated disorder.

Let us now consider the crossover to the adsorbed state.
Assume that one end of the infinite polymer chain is attached
to the surface, and the temperature is decreased below the
threshold, i.e., −1,c,0. The thickness of the adsorbed
layer [Eq. (4)] starts to decrease from infinity whenucu in-
creases from zero(see Fig. 3). From Eq.(2) and Table II we
see that for a givenc such thatucu,1, the thickness of the
near-surface, polymer layer increases when the range of cor-
relations increases(a decreases). Moreover, the dependence
on a of the exponentnsad /Fsad is stronger than in the case
of nsad. Hence, the dependence of the thickness of the ad-
sorbed layerj,ucu−nsad/Fsad on a is stronger than the corre-

FIG. 1. (Color online) The partition function
ZNszd just at the adsorption thresholdc=0 and for
N=100, as a function ofz/ l for 1!z/ l !Nn and
for different values ofa. ZNszd is dimensionless
and l is the microscopic length scale.

FIG. 2. (Color online) The density of mono-
mersMlszd in the layer at the distancez from the
surface to which one end of the chain is attached
for 1!z/ l !Nn just at the thresholdc=0 and for
N=100 for different values ofa. Mlszd is in ar-
bitrary units andz/ l is dimensionless.
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sponding dependence of the mean end-to-end distancejR
,Nnsad in the bulk. It indicates that the effect of the long-
range disorder on the adsorbed layer just below the threshold
is stronger than the corresponding effect on the polymer coil
in the bulk. The fraction of monomers, on the other hand,
decreases for a fixed temperature for decreasinga, because
for decreasinga, Fsad decreases[see Eq.(6) and Table II].

In Fig. 4 the dependence of the fraction of monomers on
the thickness of the adsorbed layer just below the threshold
is shown for two values ofa. Note that for a given value of
the fraction of monomers at the surface the thickness of the
adsorbed layer increases for decreasinga. Let us compare
two systems, characterized by different ranges of disorder
correlations,a1,a2. Each system contains a chain withN
monomers. Assume finally that the same number of mono-
mersN1 is adsorbed at the surface in each system[of course
the temperatures in these systems are different; see Eq.(6)

and Table II]. The number of monomers inside the solution,
N−N1, is the same in the two considered cases. Since
a1,a2, larger correlated patches have to be avoided by the
chain in the first system. By analogy with the polymer prop-
erties in the bulk[1] it is natural to expect that the same
number of monomers contained in the solution,N−N1, must
effectively occupy larger space in the case where larger cor-
related patches have to be surrounded by the chain. Our re-
sults are thus consistent with the previous results for bulk
systems[1].

We conclude that the long-range correlated disorder has a
significant effect on the adsorption of polymers on the sur-
face at and near the adsorption threshold. When one end of
the polymer is attached to the surface, the perpendicular part
of the average distance to the other end increases for increas-
ing range of correlations between the disorder. At the same
time, the fraction of monomers at the surface decreases for

FIG. 3. (Color online) The dependence of the
thickness of the adsorbed layerj / l on ucu, for
c,0, wherec~ sT−Tad /Ta is the reduced tem-
perature distance from the threshold, for different
values ofa. Both quantities are dimensionless.

FIG. 4. (Color online) The dependence of the
fraction of monomers at the surfaceN1/N on the
thickness of the adsorbed layerj / l for c,0 (i.e.,
below the threshold) and for two values ofa, a
=3.0 and a=2.3. Both quantities are
dimensionless.
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fixed temperature both at and below the threshold. Moreover,
just at the threshold the monomer concentration near the wall
(i.e., for l !z!jR) increases. We should stress that the above
conclusions follow from the results obtained in the one-loop
approximation, and the possibility that the real dependence
of the surface critical exponents ona is different cannot be
excluded. Two-loop calculations and/or computer simula-
tions, going beyond the scope of this work, might help to
draw definite conclusions.
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APPENDIX

The individual RG series expansions for the other critical
exponents can be derived through standard surface scaling
relations[19] with d=3

h' =
h + hi

2
,

b1 =
n

2
sd − 2 +hid,

g11 = ns1 − hid,

g1 = ns2 − h'd, sA1d

D1 =
n

2
sd − hid,

d1 =
D

b1
=

d + 2 −h

d − 2 +hi

,

d11 =
D1

b1
=

d − hi

d − 2 +hi

.

Each of these critical exponents characterizes certain
properties of the semi-infinite systems with long-range cor-
related quenched disorder, in the vicinity of the critical point.
The valuesn, h, andD=nsd+2−hd /2 are the standard bulk
exponents.
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