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Critical adsorption of polymers in a medium with long-range correlated quenched disorder
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The process of adsorption on a planar wall of long flexible polymer chains in a medium with quenched
long-range correlated disorder is investigated. We focus on the case of correlations between defects or impu-
rities that decay according to the power la@? for large distancex, wherex=(r,z). A field theoretical
approach ird=4-¢ and directly ind=3 dimensions up to one-loop order for the semi-infini m-vector
model(in the limit m— 0) with a planar boundary is used. The whole set of surface critical exponents at the
adsorption threshold=T,, which separates the nonadsorbed region from the adsorbed one, is obtained.
Moreover, we calculate the crossover critical exponénand the set of exponents associated with it. We
perform calculations in a double=4-d and §=4-a expansion and also for a fixed dimensida3, up to
one-loop order for different values of the correlation parameten 3. The obtained results indicate that for
systems with long-range correlated quenched disorder a different set of surface critical exponents arises. All the
surface critical exponents depend anHence, the presence of long-range correlated disorder influences the
process of adsorption of long flexible polymer chains on a wall in a significant way.
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[. INTRODUCTION boundary. As was found in Ref3], introducing into the
) ) ) . systemshort-range correlated random quenched surface dis-
The universal properties of long flexible polymer chains o rqer s jrrelevant for critical behavior, but long-range corre-

change when a small amount of long-range correlategyiqq quenched surface disorder wigfr) ~1/r can be rel-
quenched disorder is introduced into an infinite mediumevam ifa<d-1, and is irrelevant ih=d-1. The question
[1,2]. Correlated defectgi.e., regions that cannot be occu- ot oy the adsorption phenomena of long flexible polymer
pied by the chaipmay occur, for example, in a porous me-

. ) . . .~ chains depend on the presence of long-range correlated
dium orin a (_jlso_rdere_zd spongelike structure f(_)rmed by I'p'dquenched disorder in theulk remains open, however. The
membranes in biological systems. Intuitively, if the correla-

X X " o new universality class characterizing the polymer in the pres-
tions between the defects and/or impurities decay sufficientlyce of |ong-range correlated disorder indicates that the criti-

slowly, then the chain has to go around large correlated rés5| exnonents describing the properties of the polymer chain

gions, and effectively occupies a larger space, with the dezga; the wall should assume different values than in the pure

fects contained inside the region occupied by the coil. As %ystem. The purpose of this work is a determination of the

result, the polymer swells. If, however, the range of correlay,itace critical exponents to first order in the perturbation

tions is very large, then the polymer may be trapped betweeg, ,ansion, in order to gain information about a qualitative
the walls of defectsi.e., the probability of going beyond the .46 of adsorption of the chains when the range of corre-
defected region is loy and this may lead to a collapsed |a4ons petween the defects in the bulk increages, a is
state. These heuristic arguments suggest that the polymer gfacreasex It should be mentioned that our investigations are
ther swells or collapses, depending on the range of cormelgs;nected with the influence of the kind of quenched long-
tions between the defects or impurities. Indeed, recent resuli§nge correlated disorder that is well above the percolation
agree with the intuitive expectationd,2]. For different thresholdp> p,=0.59 [4], where 1 is the fraction of di-
ranges of correlationgi.e., different values ofa for the | o4 sites.
power-la\_/v decay of corre_lations £y the sw_elling of the _ Long flexible polymer chains in a good solvent are per-
polymer_ is described by different depender_lues of the radmgecﬂy described by a model of self-avoiding wal@AWs)
of gyration on the number of monomers. Finally, 2.3, 3'reqular latticgS]. Their scaling properties in the limit of
[1,2] a first-order transition to a collapsed state was found,, infinite number of stepl may be derived by a formal
[1.2. ) m— 0 limit of the O(m) vector model at its critical poir{6].
Motivated by the above results we focus our attention onr,, average square end-to-end distance, the number of con-

the effect of the presence of a small amount of long-rangg., , ations with one end fixed, and the number with both
correlated quenched disorder in the bulk on the adsorption o e o2

2 . ! nds fixed at the distances /(Xo—Xg)? exhibit the following
long flexible polymer chains on a planar surface forming the svmptotic behavior in the limikl— oo-
system boundary. In real systems different kinds of defect@SYMP '
and impurities may be localized inside the bulk or at the (R2) ~ N2, Zy ~ q'N™L, Zy(x) ~ N2, (1)
respectivelyy, y, and« are the universal correlation length,
*Electronic address: pylyp@ph.icmp.lviv.ua susceptibility, and specific heat critical exponents for e
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=0 model,d is the space dimensionalitg,is a nonuniversal tively. The characteristic length ratio igg/&,)®”~|c|N®,
fugacity, and 1N plays the role of a critical parameter analo- where cN® is the standard scaling variabj&]. The expo-
gous to the reduced critical temperature in magnetic systemaentsay anda, assume different values for different quanti-

When the polymer solution is in contact with a solid sub-ties X andY. Let us first consider the mean square end-to-end
strate(or with vapoy, then the monomers interact with the gistance for one end attached to the surface and the other one
surface(or their chemical potential at the interface is differ- free 1n a semi-infinite system the translational invariance is
ent than in the bulk At sufficiently low temperature§<T,, broken, and the parall«éRf} and perpendicula(rRi) parts of

the attraction between the monomers and the surface leads . ()= (R
an adsorbed state, where a finite fraction of the monomers ﬁ?e average e”d'toge?,f dista >_<R++R‘2> ShO.UId be
Jistinguished. FokR] )" the exponent in the scaling form

attached to the system boundary. The deviation from the ad=">" \ k s
sorption thresholdgec (T-T,)/T,, changes sign at the tran- (3) is ax=v and the corresponding scaling functions assume
sition between the adsorbe@<0) and the nonadsorbed the form ~const forc=0 and ~1/y for c<0, wherey
states(c>0) and it plays the role of a second critical param- =ér/ & [7]. Thus, for the adsorbed state and fér- o the
eter. The adsorption threshold for infinite chains, wherdength associated with describes the thicknessof the ad-
1/N—0 andc—0, is a multicritical phenomenon. We shall sorbed layer,

assume that the solution of polymer chains is sufficiently

dilute so that interchain interactions and overlapping be- E=(R)M~ &, c<o0. (4)
tween different chains can be neglected, and it is sufficientto =~ ) o )
consider surface effects for configurations of a single chain! his thickness diverges far=1/N=0 and for finite negative
For pure solvents the investigation of adsorption phenomen¥alues ofc remains finite for an infinite chain. Fer=0 the

Of |Ong ﬂexib'e po'ymer Chains on the Surface was the Subasymptotlc behaVIOI‘ Of the mean d|Stance. Of the fl’ee end
ject of a series of workgfor the sake of brevity we notice from the other end attached to the surface is

only few of them[6—14]). The polymer adsorption on a wall 21

in the limit of an infinite chain is closely related to surface (R7)™~N", ¢c=0, (5)
critical phenomena in thervector model of a magnetina . . , , ,

semi-infinite geometry in the limin— 0 [6,15,14. Based on  -€- it has the same asymptotic ?ghawor as in the gullllé The
the above analogy, Eisenriegler and co-workgts9 de- asymgfhc Scd"‘:lll'”g form ofR;)™< for c<0 is (R)
scribed the scaling properties of long chains near a wall on-|c|” ~®N*" ", where»® ! is the correlation exponent in
the basis of the results of the field theory developed for semid—1 dimensions. Foc=0 the scaling form of(Rf}l’z is
infinite magnetic systems in Refgl7-19. Surface multi- given by Eq.(5), i.e., it is also the same as in the bulk.
critical phenomena in dilute polymer systeigag T=T, and For the fraction of monomers at the surfadg,/N, the

N— o) correspond to the special transition in semi-infinite following asymptotic behavior has been found fr— e
magnets. The special transitioce0) is characterized by one [7,9):

additional independent surface critical exponejpt which

characterizes critical correlations in directions parallel to the || &= ®r® it c<o0,

surface. The_ whole set of thg other surface criticall exponents N/N~{ N®L if c=0, (6)

can be obtained on the basis gf and the bulk critical ex- g

ponentsy and » with the help of surface scaling relations. (eN) if ¢>0.
The crossover critical exponedt characterizes the cross-
over behavior between the special and ordinary transition

IF-|ence, forlN— < and for finite, negative values of N;/Nis
(c#0). The latter exponent is related to the length s¢al€] '

nite, but forc=0 N;/N— 0 for N— . The thickness of the
adsorbed layer is closely related to the fraction of monomers
&~ |c[® (2)  atthe surfac&l;/N [7,9], since the more monomers are fixed

. . at the wall, the smaller the region occupied by the remaining
associated with the parameterin the polymer problem the monomers. In particular, for weakly adsorbed phese 0
length &, can be interpreted as the distance from the surfacgnd|c|<1) .we find N /N:vg“(l“p)“

1 .

up 1 wiich he properies of the pobymer depend on ™30 S LTt b e by e mean mumber
| ’ th Y % t 4 dist g’/<R—2>~NVg of the free ends in the layer betweerand z+dz which is
scales are the average end-to-end distafige, proportional to the partition function of a chain with one end

and the microscopic length—the effective monomer linear g atx,=(r »,2) and the other end fre&y(2). The density
dimension. Near the multicritical point the only relevant of monomers in a layer at the distanzdrom the wall to
lengths areg— < and ¢, —«e, and the properties of the Sys- \ nioh one end of the polymer is attachdd(z), scales ac-

in}n"(njeepff?g ?Jr:“;‘/r;ersg";‘t'%é ggiclr:l thia?qsti};irggﬁltlz)scgllgg cording to Eq.(3) as well. For the above quantities the ex-
g phy q , ponentay in Eq. (3) is y—1 and y;— v respectively. The

Y(zN,c) assume the scaling forms short-distance behavidr< z< &g) of the two quantities right
X(N,c) = NXS(&/E), Y(Z;N,C) = NYY5(Z g, ERIES), at the thresholdc=0) is
()

whereX; and Y denote the scaling functions with the sub-
scripts + and — corresponding tc>0 andc<0, respec- and

Z\(2) ~ ZAr )yl (7)
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MN(2) ~ Z TNy, (8) (k) ~ Up. (13)

v, as well as the whole set of the surface critical exponents Applying the replica method in order to average the free

can be obtained frory, and® through scaling relationsee  energy over different configurations of the quenched disor-

the Appendiy. The remaining quantities characterizing the der, it is possible to construct an effective Hamiltonian of the

adsorption process are described in detail in RgfS)]. |¢|* m-vector model with a long-range correlated disorder
Taking into account the results of Ref4,2] we conclude [1,2,2Q

that forc=0 the polymer with one end attached to the sur- .

face swells as in the bulk whem decrease$see Eq.(5)]. _ 1_ - 1,-, 1 -

However, in order to determine the effect of the long-range e~ 2_41 Vddx<§| Vol + §“0¢a+ ZUO(%)Z)

correlated disorder on the adsorption of the polymer right at “ .

the thresholdsee Eqs(7) and(8)] or in the crossover region - -

[see Eq(2), (4), and(6)] it is necessary to find the depen- = 2| d%d%g(x — X1 dh(x) d5(x). (1)

dence of the surface critical exponentsan @p=1

In the next section the model is briefly described. In Secere greek indices denote replicas, and the replica limit
1l the surface multicritical behavior of the system with long- , . ¢ is implied. In the most general case when the disor-
range correlated disorder is outlined. The results of Sec. lljgred systems exhibit numerous local minima solutions of
enable us to obtain in Sec. IV the surface critical exponentg,e saddie point equation for the effective Hamiltonian)
to first order in the perturbation expansion. The final sectione propertyg=g.,, [whereg,,, are diagonal elements of the
contains a brief discussion of the results. no replica symmetric matrixg, (X —x;)) =g(lx,~X4|) S,

—Uug] does not holdi.e., the pair correlation function is not
symmetric anymore In such disordered systems there exist
Il. THE MODEL a macroscopic number of spatial “islands” with nonzero lo-

When a disorder is introduced into an infinite magneticcal mggnetlzatlon and V\gth local effective temperat_ure _below
system, the Landau-Ginzburg-Wilson Hamiltonian assumel® critical temperaturgg+57(x) <0. For study of this kind -
the form of disordered systems the Parisi replica symmetry breaking

scheme which has proved to be essential in the mean-field

1_-, 1 - 1 - theory of spin glass€®1,22 was proposed. In common, for

— dy | = 2,°r1,,2 2, = 2\2 . . .-

H= fvd X<2| Vot 2[“0+ Sr0]|¢l" + 4!UO(¢ ) ) such systems different thermodynamic characteristics are ex-

pected for kx m<4, wheremis a number component of the

(9 order parametej23-24.
T i . But the recent detailed analysis of critical behavior of

where ¢(x) is anm-vector field with the component;(x), systems with quenched disorder performed in the frames of

Hpp— 2 H “ ” H H
1=1,....m Hereu s the “bare mass,” which in the case _Of the field theoretical approach in the two-loop approximation
a magnet corresponds to the reduced temperature. The 'nh8|'rectly at three dimensionf27,2§ have shown that their

mogeneities in the system cause local deviations from th‘ca:ritical behavior is stable against the effect of replica sym-
average value of the transition temperature, ar@) repre- _metry breaking. It was established that for systems with a
sents Ehe quenched random temperature disorder, With,e componentm=1) order parameter the critical behavior
(67(x))=0 and is determined by the quenched disorder with a replica-
1 symmetric fixed point. In accordance with this we choose
g(&r(x)ﬁr(x’)>=g(|x|), (100 g(|x;—x1]) to be a replica-symmetric function. This means
that we can work in the frames of method proposed by Grin-
where the angular brackegs -) denote configurational aver- stein and Luthef29] for such kind of systems with quenched
aging over quenched disorder. Following Rqts,2,2q0 we  correlated or uncorrelated disorder. So we use the traditional
assume that the pair correlation functigfix|) falls off with  renormalization groupRG) approach which is only a pertur-
the distance as bation theory and integrate over the deviations of the field
around the ground-state configuration. The influence of weak
(11) quenched disorder on the critical phenomena has been stud-
ied for many yeargsee the two last reviews on this theme
[30,31)).

If a=d, then thew, term is irrelevant. This corresponds
to random uncorrelated pointlike disordgor short-range
(12) correlated random disordeAs noticed by Kim[32], in this

case in the limitm, n—0 bothv, and uy terms are of the
This corresponds to the so-called long-range correlated “rarsame symmetry. It indicates thatweak quenched uncorre-
dom temperature” disorder. In the case of random uncorrelated disorder is irrelevant for SAWS3]. If, on the other
lated pointlike(or short-range correlatgdiisorder the site- hand,a<d, the termwyk® ¢ is relevant for the critical be-
occupation correlation function gx) ~ &(x) and its Fourier  havior atk— 0, andthe long-range correlated disorder is
transform assumes the simple form relevant for SAWssee[1,2]). The limit m— 0 of this model

1
g(x]) ~ @

for largex=(r,z), wherea is a constant ang=|x|. The Fou-
rier transformg(k) of g(x) for smallk is

G(K) ~ ug + wolk|2.
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can be interpreted as a model of long flexible polymer chains

N M Ly
1
in a disordered mediurft,2]. GNMLY(fh {r R = TT s T oor)TT 2Ry ),
The presence of a hard wall leads to a modification of the i=1 =1 =1 2
interactions in the near-surface layer. Thus, in the semi- (18)

infinite system there should be an additional, surface contri- ) ) )
bution to the Hamiltonian. The effective Hamiltonian of the Where«...) denotes averaging with the Boltzmann factor, in

semi-infinite| | m-vector model with long-range correlated Which the Hamiltonian is given in Eq15). The correspond-
disorder in this case is ing full free propagator in the mixe@z representation is

given by[19]

- d afLioip,l 2o, 1 a5 G(p,z2,Z) = i(e-KoZ-Z’ _ S0~ ko Koe—'fo(m’)) (19)
Hor= 20 | d%| ZIV &+ a5l + Jroo(6) 2= P ’
n where ko=1p?+u3 with p being the value of the parallel
- ddxlddxiﬁ(lxl— ) (gi(xl) &fa(xi) momgntu_rrp a;sociated with thd—1 translationally invari-
a,8=1 ant directions in the system.
n There are two special case®) when two ends of the
C -
0 S do-1r dﬁ(r, 2=0), (15) polyme_r are attached. to the waih sugh a case we have .to
2w deal with the calculation of a two-point correlation function

G©2(r,z=0;r’,7z/=0)], and(b) when one end of the poly-
wherec, describes the surface enhancement of interactionéne[]'s U”I[eéfg{gte‘?' n t,hieobullr an((jj the otger.onﬁ Is attached
In the polymer analogy«(T-T,)/T,, as already noted in to the wallf __(x,r ,2'=0)]. In order toc_) _tamt e univer-
the Introduction. The surface introduces an anisotropy int&aI surface critical exponents characte_nzmg st aQSorptlon

tgn the wall of long flexible polymer chains inserted into the

the problem, and the directions parallel and perpendicular 8

the surface are no longer equivalent. In accordance with thg‘Edlum with long-range correlated quenched disorder, it is

fact that we have to deal with semi-infinite geometrysumc'em to consider the correlation function of two surface

[x=(r,z=0)], only parallel Fourier transforms id—1 di- fields G_((_)'Z)(r’ZZO;r"Z’:O) (see[34]). The universal sur- .
mensions will be performed. The parallel Fourier transformfaCe ‘?”“C‘.i' exponents for such systems depend on the di-
%(q,2) of Eq. (10 is mensionality of spacd, the number of order parameter com-

' ponents m(m—0), and the range of the disorder
correlations, i.e., om.

In the theory of semi-infinite systems the bulk figlix)
and the surface fielgps(r) should be reparametrized by dif-
(16) ferent uv-finite renormalization factorZ(u,v,w) and

Zy(u,v,w) [17,34,

2( a-d+1)/2

_— (a—d+1)/2
I[(d-a)/2]\Nr

9(9,2) =W 298 DK g10)2(02),

where z=|z~7]| and K,_q.1)2(q2) is the modified Bessel B(X) = Z2pr(x) and ¢y(r) = 2422 ho(r).
function andg=|q|, whereq is a (d—1)-dimensional vector.

In the case of smali andz we obtain the relation Introducing the additional surface operator insertions

%dﬁ(R,) requires an additional specific renormalization fac-

tor Z 2
T(0,2) ~ U+ Wor® L+ wg L, (17) %

$5 =221 " blg.

The renormalized correlation function involviigbulk and
rM surface fields and.; surface operatorédﬁ(R,) can be
written as

which agrees with the predictions obtained[8}. We con-
centrate our attention on the case3 for d=3, for which
the long-range correlated disorder in the bulk is relevant. |
the general case of arbitra (from z=0 on the wall to
Z—) we must take into account the Fourier tra”SformG(RN'M'Ll)(p;,u,u,u,w,c):Z;N*'\")’ZZIM’ZZ?Z
9(g,2) of the form(16).

S
XG(N’M’Ll)(p?,U«OyUoﬁvo,Wo,Co)-
lIl. SURFACE CRITICAL BEHAVIOR NEAR (20

THE MULTICRITICAL POINT - c=c, It should be mentioned that the typical bulk short-distance
A. Normalization conditions singularities, which are present in the correlation function
G©2, can be subtracted after performing the mass renormal-
The correlation function which involveN fields ¢(x;) at  jzation. For distinguished parallel and perpendicular direc-
distinct pointsx; (1<i=<N) in the bulk, M fields &(r;,z  tions we obtain
=0) = ¢4(r;) at distinct points on the wall with parallel coor- 2 2 O 2\ 4Oy (. 2
dinatesr; (1<sj<M i i - Mo = po— 1 Il(lu‘)+t2 I5(u9),
j (1=<j=M), andL, insertions of the surface opera
tor ¢%(R)) at pointsR, with 1<I<L,, has the form where

(21)
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o_1 woud @ pn=c=0. This point corresponds to the multicritical point
b7 =3 UO_UO_—coiTr(a—d)/Z] , (u3.,Cc3), at which the adsorption threshold takes plaite
22) corresponds to the special transition
From the normalization condition of E¢R7) and the ex-
ty)=—+ , pression for the renormalized correlation function of Eg.
3w T'((d-a)/2) (20), we can find the renormalization factdy=2,Z, from
and the relation
L [dg 2= 2= [GO2()] o= lim 2 (G2 (p)]
11(u?) = — 23 | I P)I Tp2=0 P
l(M ) (27T)d_l f 2Kq ( ) z?p p—0pP &p
with x,=vq°+u” and
) The normalization condition for the correlation function
g% F 1, 3+a-dgq G©22, with the insertion of the surface operatp?,
1o(4?) fdd‘l 2 2 1
AV a1 q 2 - 0215 - -

(277) 2Kq GR (pvlu‘avywac)|p:0_ (,lL+ 0)21 (29)
According to the above mentioned notation, we have only . th ibility of obtaining th lization fact
two coupling constant¥y=vqy—ug and w, in the effective glvefs € possibility of obtaning the renormaiization factor
Hamiltonian(we keep the notation, for V). ¢Z from

The renormalized coupling constamtav are fixed via the G020 We C) T2
standard normalization conditions of the infinite-volume [Zp2] =2 [ (0:410,00, W, Co) .
theory[2]: ° JCo Co=Co(C.ptith0)
- . 30
,LL4 dv = Fg,l%{,v ({q}:MZaU,W)|q:Ov ( )
Equation(29) follows from the fact that the bare correlation
p 2w =Tk (ad 42,0,w)| g0, (24)  function G©22(0; ug,v0,Wo,Co) May be written as a deriva-

tive —(9/ dc)G%2(0; o, vg, W, Co)-
wherel\”, andl“f)"‘)RW are thev- andw-term symmetry con- 0 0:Y0. %o, %0

tributions to the four-point vertex function. To the present

accuracy of calculation at one-loop order, the vertex renor- B. The Callan-Symanzik equations

malization givesy =vou?* andw=wyu? 4. _ . . :
In order to remove the short-distance singularities of the ASymptotically clos(s '\tﬂc)) the critical point the renormalized

correlation functionG©?2, located in the vicinity of the sur- correlation function&s."™" satisfy the corresponding homo-

face, the surface enhancement shiftc+&c is required. In ~ 9eneous Callan-Symanz{S) equations 34,39

accordance with this, a new normalization condition should P 9 N+M

be introduced for the surface enhancement skifand the (,u— + B,(v,w)— + B, (v,w)— +

surface renormalization fact@;. By analogy with magnetic I v w 2

systems[34—34, the renormalized surface two-point corre- o (NM)

lation function in our case is normalized in such a manner oM (v,w) |G (0;1,0,W,¢) =0, (31)

[34] that at zero external momentum it should coincide with

the lowest-order perturbation expansion of the surface sugvhere thes functions ares,(v,w)= u(d/d,)| rv, Bu(v,W)

7(v,W)

ceptibility x,(p)=G2(p): = u(dl3,)| .rw, the exponentsy and 73" are
(0,2( - — — 4 Sp _ J
G (P; 0,0, W0, Co) = —5—— + Ovo,Wo)- 7= p—INZylip 7= 07— INZyi5, (32
Co+ VP™ + uo O I

(25  and where LR is the long-range fixed point. It should be
entioned that up to one-loop order in thand 6 expansion

Thus, we obtain the necessary surface normalization Condme LR fixed point is located in the region of irrelevant dis-

tion, ordera>3, and up to two-loop order the LRtable fixed
0.2 point is found after performing the Borel-Chisholm resum-
Gr7(0;p,0,W,C) = e (26) mation[1,2].
) o ) The simple scaling dimensional analysiscag"z) and of
and for the first derivative with respect p3 we have the mass dependence of théactors allows us to express the
9GO (p; 0, W,C) - 1 o1 surface correlation exponent® as
ap? om0 2u(u+c)? o= 7+ 7. (33

Equation(26) defines the required surface enhancement shiffrom Egs.(28), (32), and (33), we obtain for the surface
oc and shows that the surface susceptibility diverges atorrelation exponent;® the following expression:
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sp d dln Z,(v,w) the corresponding renormalized correlation functions in the
i InZ p= Bolow)—— = vicinity of the multicritical point(ua,,cd),
dIn Z,(v,) GR™M(p; v, w,Ac) = Z,NMWI2(Z,) M2
+ BW(UIW) - ’ (34) (N M) .
LR XG5 0,00, Wo, Co) - (39
where theg functions areg2] These correlation functions depend on the dimension-

less variable c=Ac/u. The correlation functions
G(RN'M)(p;,u,v ,w,Ac) satisfy the CS equatiori81) (see also
Refs. [34,35) with the additional surface related term

Bylv,w) = -v+v%= (3fy(a) — f@))ow= -,

_ oW _ ~
B0 W) = = (4 =)W~ (@) = Fpl@)Wer - + -+ [1+7e(w . wcal oc, where
9 aIn Z g2(v,w)
(35) nowW) = p—| InZ,w) = B,v,w)————
. . . Iulir S v
In the above equation the renormalized coupling constants
andw are normalized in a standard fashion, so that a Z¢§(U'W)
+Bylo,W) —————— (40)
— 4 I W= | ow LR
v=gvin WEGWL should be calculated at the LR stable fixed point.

The asymptotic scaling critical behavior of the correlation
o " functi i h h il lysis of th
the case oti=4—e it is 1,=2 97 92I'(/2). The coefficients ggcgggg;;;sbg;t;;aa'ge;rgpggg% -2 d;;g;;g;gigsgm? the
fi(a) expressed via the one-loop integrs37] are given by ployed in the c’ase of semi-infinite systems{&id,4q. Taking

(a-2)(a-4) into account the scaling form of the renormalization factor

and the integral; in the case ofl=3 is equal to 1/& and in

f a :—! . i ~7 =
(&) 2 si{mal2] Zgp of !Eq (30) and th_e_ relation u~ 77, yvhere T _(T
-T.)/T. is the reduced critical temperature in magnetic sys-
tems, we obtain forAc and for the scaling variable the
(a=-2)(a-3)(a-4) . ; )
fo(a) = (36) following asymptotic forms:

48w siNm(al2 - 1)]° . .
Ac~ w T WIACy, Ac~ 7V WA, (41)
C. Crossover between the adsorbed and
and nonadsorbed states _ N _
. . N . C~ p B WAy, T~ 7 PAcy, (42)
As already discussed in the Introduction, it is particularly
interesting to investigate the adsorption threshold and th#here
crossover behavior between the adsorbed and the nonad-
R \ d=1[1+ *ow* 43
sorbed states, where the distribution of monomers in the AL+ elo )] (43
near-surface region changes character. In order to investigaie the surface crossover critical exponent. Equati4?) ex-
the crossover behavior from the nonadsorbed regis) to  plains the physical meaning of the surface crossover expo-
the adsorbed one<cf, let us consider a small deviation nent as a value which characterizes the measure of deviation
Aco=co—c§ from the multicritical point. The power from the multicritical point.
series expansion of the bare correlation functions Taking into account the above mentioned results, we ob-
GNM(p; uo,v0,Wo,Co) In terms of this small deviatiohc,  tain from the CS equation the following asymptotic scaling

has the form form of the surface correlation functic®®©-?,
“ (Acy)tt GO2(p; 10,00, Wo, Co) ~ w1
G(N’M)(p;l’«o,voywo,co) = E % P 0,00, Wo, Go) =~ 44
L,=0 1- XGg),Z)(E;l,U * ,W* ; M_d)/VACO)
XGNMLI(p; 1, 00,Wp,C5).  (37) M
Taking into account E¢20), we can rewrite the right-hand ~ TAG(pr ;1,7 Acy), (44)

side of Eq.(37) in terms of the renormalized correlation
functions and renormalized variabkkc:[z¢§(v,w)]‘1Aco.

In this way we obtain

where y35=v(1-7), and 7{P= 7P+ 5 are the surface expo-
nents at the multicritical point. The knowledge gf gives
access to the calculation of the critical exponemfsand ¢

Z(;(NJ'M)IZ(Zl)'M/ZG(N’M)(P:,uo,vo,Wo,Co) of the layer and local specific heats via the usual scaling
" relations[19]
(Ac)s (N,M,Ly)
= > ——GML(p: u,v,w). (38) a=a+v-1+d=1-p(d-2-7,
L=0 Li! (45)
The above equation determines in a straightforward fashion q=atv=2+2b=-1d-3- 2]
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IV. THE PERTURBATION EXPANSION FOR short-range correlate@r uncorrelategdisorder is irrelevant
THE SURFACE CRITICAL EXPONENTS for SAWSs.

Combining the renormalization factd@y together with the
one-loop pieces of thg functions, according to E¢34), we
finally obtain the following expression for the surface critical
exponenty;®:

Applying the field theoretical renormalization group ap-
proach we perform calculations in a double expansio in
=4-d and in §=4-a up to the linear approximation, as was
proposed by Weinrib and Halper[20] for infinite systems.
Thus, after performing the integration of the corresponding v w(4-ag)

sp— _ U _
8 8 sin(wa/2)

Feynman integrals in the renormalized two-point correlation 7 (51)
theory the following result for the renormalization facir  Similarly, for the renormalization factdt 2 we obtain at the
S

functionG(®-2, we obtain at the first order of the perturbation

o ™ one-loop order
Z=1+ - €0, (46 _ _
T a0 zoogme- " 40 1Tz 2} T (i 90)
2= - - PN -
where %72 4) " 2sin(mal2) 4 )
8- (1 ) g) L, s U0+ yel2+ Ue112)] (52)
gleo= eJ1+s © 2I'(6-¢) whereh(a) is a combination of the Appell hypergeometric
1 s S34e-s functions of two variable§;[a,b;,b,,c,x,y],
X qu 51112_5 ’ 2+51 2 ’1 5-a
h(a) = Za“‘Fl{l, 1—,2,-1,- 1/2]
+FH132 5}{2+53+6_5} 1]) ’
oFa 11525 o ). o@D [g_ 5-a7-
2 2 2 2 + F]_ alli a! a’_ 11_ 2
(47) 5-a 2 2 2
Combining the renormalization factaf, together with the _ 43-a) (53)
corresponding3 functions derived in Refd.1,2], we obtain (7-a)6-a)
for the surface critical exponeng® the result . ,
Finally, for the exponent;; we obtain
e L. LY T o 1) wa-a @
m="7 €,0). v w4 -a ga
4(1+e) 2cos[(m/2)(6- € =—= 2——)——<h __>_ 54
. (m/2)(8-&)] e 2( N2 ) Dsinma\"@ ) 54

The above mentioned surface critical exponejit in the _

case ofe, & expansion can be calculated formally at the!n the case of short-range correlag@u uncorrelategidisor-

corresponding fixed pointv*=28%/(e-38), w*=-5(e  der for the functiorh(a) ata=d=3 we obtain In 2.

~268)/(e- &) obtained in the first order of, & expansion in The above values of the surface critical exponejtsand

[1]. 7 should be calculated at the long-range stable fixed point
In the special case of three spatial dimensidssS and obtained in Refs[2,37] for different fixed values of the cor-

for arbitrarya the renormalization factoZ, at the one-loop relation parameter, 2a< 3. The other surface critical expo-
order is given by nents can be calculated on the basis of the surface scaling

relations(see the Appendixand one-loop series for the bulk

v wg(@ critical exponents obtained in Refd, 2],

Z=l+— 4, 49
” 8  8sin(mal2) (49 T @) -1,
S AC R e
where we have introduced the functigta) by viE2-o > W
5-a 3-a
%) Lo
o) =2+ — 2+ (@3- m=gf@wt 9
7-a 5-
F( 2 ) F( 2 ) The results of our calculation dfL/0] and[0/1] Padé
5_ 3- approximants of the series of the surface critical exponents at
F(_a) F(_a) the adsorption threshold, and a group of critical exponents
(3-a 2 2 connected with the crossover expondntare presented in

(4-a) 7-a 5 (50 Table | and Table I, respectively.
F(T) F(T) In the casea=d=3, which corresponds to random uncor-
related pointlike disordgor short-range correlated disorger
From Eq.(50) it is easy to see that in the case of short-rangethe obtained one-loop results for the surface critical expo-
correlated(or uncorrelateyl disorder, i.e., fora=d=3, the nents coincide with the results for the pure modste
above mentioned function reducesgi@) =1, and bothv and  [34,35), Padé approximanfd /0] and[0/1], as they should.
w terms are of the same symmetry. This confirms that &or 2.3<a<3 the surface critical exponents belonging to
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TABLE |I. Surface critical exponents of the long flexible polymer at the special transitiory for
d=3 up to one-loop order calculated at the p[tree casea=3 with (v*=1.632,w*=0)] and LR stable fixed
points for different fixed values of the correlation parametera2< 3.

7 N B Y11 Y1
a v w  [1/0] [o/1  [1/0]  [0/4]  [1/0] [0/1] [1/0]  [L/0]

3.0 163 0.00 -0.204 -0.169 -0.102 -0.114 0250 0.250 0.704 1.255
29 413 1.47  -0.342 -0.255 -0.171 -0.146 0.247 0.248 0.837 1.418
28 473 1.68 -0.402 -0.287 -0.200 -0.167 0.244 0.244 0.891 1.480
27 531 181 -0468 -0.319 -0.233 -0.189 0.241 0.241 0.951 1.550
26 5.89 1.87 -0.542 -0.351 -0.270 -0.212 0.238 0.238 1.018 1.630
25 648 1.89 -0.620 -0.383 -0.308 -0.236 0.235 0.236 1.090 1.715
24 710 187 -0.704 -0413 -0.350 -0.259 0.233 0.233 1.169 1.810
23 7.76 1.84 -0.793 -0.442 -0.394 -0.283 0.230 0.231 1.253 1911

the universality class associated with the LR fixed point ofcan only be determined with the help of the surface critical
the RG equations depend an similarly to the bulk expo- exponents, as discussed in some detail in the Introduction.
nents. This fact indicates that all the characteristics of thd he latter exponents have been calculated in this work up to
process of adsorption on a clean wall, described in the Introone-loop order and we can describe the effect of the long-

duction, depend on the range of the correlations between tH@nge correlated disorder on the basis of our results. Our
defects in the bulk. one-loop results show that for decreasiaghe exponent

v,(a) strongly increases, wheredxa) decreases. We should
point out that we cannot exclude the possibility that the de-
V. DISCUSSION OF THE RESULTS pendence of the surface critical exponentsaois different

i ) beyond the one-loop approximation.
Let us first discuss the effect of the long-range correlated | ot s describe the effect of the long-range correlated

disorder on the distribution of monomers at and above thejisorder at the adsorption threshold and at the crossover to
adsorption thresholc=0). From Eq.(5) and the fact that the adsorbed state assuming that the qualitative trends are
v(a) is a decreasing functioft,2], it follows that the poly- properly captured by the one-loop results. For small dis-
mer with one end attached to the surface swells as in the bultances(l <z< £g) and forc=0 the partition functionZy(z)
when a decreases. The behavior of the average end-to-enand the number of monomers in the layerzatre shown in
distance at and above the threshold is independent of thigs. 1 and 2 respectively for several valuesoFrom these
surface critical exponen{see Eq(5)], and the relevant ex- plots[see also Eqq7) and(8) and Tables | and II; and also
ponenty(a) has been obtained at two-loop ordér2]. the table in Ref[1]] we can see that the number of free ends
Right at the threshold the average number of polymemand the number of monomers in the near-surface region
ends and the average number of monomers depend on tlile<z< &g) both increase for decreasiagMoreover, the de-
distance from the surface. The distribution of monomers apendence oz is the stronger, the larger the range of corre-
different distances from the surface at the adsorption threshations between the defects. This result suggests that the
old, as well as the crossover behavior to the adsorbed statiarger is the range of correlations between the defects, the

TABLE Il. Surface critical exponents of the long flexible polymer at the special transitrar for d=3 involving the RG functioryg;
calculated at the pur@ghe casea=3) and LR stable fixed points for different fixed values of the correlation parameter<23.

e aq o ) 1-D)/v

a v* w* [1/0] [0/1] [1/0] [0/1] [1/0] [0/1] [1/0] [0/1] [1/0] [0/1]

3.0 1.63 0.00 -0.362 -0.266 0.217 0.280 -0.362 -0.266 0.421 0.427 0.954 0.956
2.9 4.13 1.47 -0.607 -0.378 0.031 0.181 -0.607 -0.378 0.363 0.379 0.942 0.945
2.8 4.73 1.68 -0.710 -0.415 -0.045 0.147 -0.710 -0.415 0.335 0.358 0.950 0.953
2.7 5.31 1.81 -0.822 -0.451 -0.128 0.114 -0.822 -0.451 0.306 0.337 0.955 0.957
2.6 5.89 1.87 -0.943 -0.485 -0.219 0.082 -0.943 -0.485 0.276 0.317 0.954 0.956
2.5 6.48 1.89 -1.066 -0.516 -0.314 0.051 -1.066 -0.516 0.247 0.298 0.944 0.947
2.4 7.10 1.87 -1.192 -0.544 -0.413 0.023 -1.192 -0.544 0.222 0.282 0.922 0.928
2.3 7.76 1.84 -1.309 -0.567 -0.511 -0.003 -1.309 -0.567 0.203 0.271 0.881 0.894
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140
120
100 +
80 FIG. 1. (Color onling The partition function
S Z\(2) just at the adsorption threshate 0 and for
;’T’z N=100, as a function o/ for 1<z/l <N” and
60 for different values ofa. Zy(2) is dimensionless
andl is the microscopic length scale.
40 <
20
"""""" - e Al st Lt St At
0 d = e tad 4
0 z 10

more efficient is the trapping of the chain between the attracmer dimensior, MX(1)/N~N®"*7171 Sincey, >1 beyond

tive surface and the region occupied by the defects. Fomean field(MF), the concentration of monomers close to the
smallera more steps are necessary for the chain to go arounsurface is larger than just at the boundary, amlde(I)

the defected region, which is larger for smalgerFrom the  ~N'"1—0 for N—o andc=0. Our one-loop results indi-
fact that ® decreases for decreasiragit follows that the cate that this effect is enhanced in the presence of long-range
fraction of the monomers adsorbed at the surface also deorrelated disorder.

creasegsee Eq.(6) and Table I). This result is somewhat Let us now consider the crossover to the adsorbed state.
surprising, since it shows a trend just opposite to the one foAssume that one end of the infinite polymer chain is attached
the fraction of monomers contained in the layer at the disto the surface, and the temperature is decreased below the
tancez from the wall forl <z< &s. A possible explanation threshold, i.e., —¥xc¢<0. The thickness of the adsorbed
might be that once the polymer leaves the surface, the largayer [Eq. (4)] starts to decrease from infinity wheg| in-
disordered patches in the bulk make it difficult for the poly- creases from zer(see Fig. 3. From Eq.(2) and Table Il we

mer to return back. As a result, the fraction of the monomersee that for a givere such thatic|<1, the thickness of the
near the wall can be higher than right at the wall. Recall thanear-surface, polymer layer increases when the range of cor-
also in the pure systems fa=0 there is a discrepancy be- relations increase& decreasgs Moreover, the dependence
tween the behavior of the fraction of monomers right at theon a of the exponent(a)/®(a) is stronger than in the case
surface,N;/N~N®1 and the fraction of monomers at a of »(a). Hence, the dependence of the thickness of the ad-
distance from the surface of the order of the effective monosorbed layerg~ |c|™®/*@ on a is stronger than the corre-

304 a=3.0
------- a=2.9
wo aea a=2.6
] e a=2.5
250 -
-=-=--a24
200 4 a=23 FIG. 2. (Color onling The density of mono-
—_ mersM(2) in the layer at the distancefrom the
N T surface to which one end of the chain is attached
s s I for 1<z/I <N just at the threshold=0 and for
e N=100 for different values o&. M(2) is in ar-
100" ~o._..___ bitrary units andz/| is dimensionless.
| et e U S R T EE P
0L
0 1 1 ) ) 1
0.0 0.2 04 0.6 0.8 1.0
Z
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FIG. 3. (Color onling The dependence of the
thickness of the adsorbed layéfl on |c|, for
€c<0, wherecx(T-T,) /T, is the reduced tem-
perature distance from the threshold, for different
values ofa. Both quantities are dimensionless.

—7tr r r 1 -~ 1 1 1111
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

sponding dependence of the mean end-to-end distgace and Table I]. The number of monomers inside the solution,
~N"® in the bulk. It indicates that the effect of the long- N-N;, is the same in the two considered cases. Since
range disorder on the adsorbed layer just below the threshola <a,, larger correlated patches have to be avoided by the
is stronger than the corresponding effect on the polymer coithain in the first system. By analogy with the polymer prop-
in the bulk. The fraction of monomers, on the other handgerties in the bulk[1] it is natural to expect that the same
decreases for a fixed temperature for decreaajngecause number of monomers contained in the solutibiy; N;, must
for decreasin@, ®(a) decrease$see Eq(6) and Table I]. effectively occupy larger space in the case where larger cor-
In Fig. 4 the dependence of the fraction of monomers orrelated patches have to be surrounded by the chain. Our re-
the thickness of the adsorbed layer just below the thresholdults are thus consistent with the previous results for bulk
is shown for two values o&. Note that for a given value of systemg1].
the fraction of monomers at the surface the thickness of the We conclude that the long-range correlated disorder has a
adsorbed layer increases for decreasind.et us compare significant effect on the adsorption of polymers on the sur-
two systems, characterized by different ranges of disordeface at and near the adsorption threshold. When one end of
correlations,a; <a,. Each system contains a chain with  the polymer is attached to the surface, the perpendicular part
monomers. Assume finally that the same number of monoef the average distance to the other end increases for increas-
mersN, is adsorbed at the surface in each sysfefrcourse  ing range of correlations between the disorder. At the same
the temperatures in these systems are different; se¢6kq. time, the fraction of monomers at the surface decreases for

1.0+
0.8
-==-3a=3.0
a=2.3
0.6

FIG. 4. (Color onling The dependence of the
fraction of monomers at the surfabg/N on the
thickness of the adsorbed layé&i for c<O (i.e.,

N/N

0.4 - below the thresholdand for two values of, a
=3.0 and a=2.3. Both quantities are
dimensionless.

0.2 4

00 1 L) 1 1 1

2 4 6 8 10
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fixed temperature both at and below the threshold. Moreover, n+ 7
just at the threshold the monomer concentration near the wall n= T
(i.e., forl <z< &) increases. We should stress that the above

conclusions follow from the results obtained in the one-loop »
approximation, and the possibility that the real dependence Bi==(d-2+17),
of the surface critical exponents @nis different cannot be 2

excluded. Two-loop calculations and/or computer simula-

tions, going beyond the scope of this work, might help to y1=v(l-n),
draw definite conclusions.

n=v2-1.), (A1)
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APPENDIX Each of these critical exponents characterizes certain

properties of the semi-infinite systems with long-range cor-
The individual RG series expansions for the other criticalrelated quenched disorder, in the vicinity of the critical point.
exponents can be derived through standard surface scalifidhe valuesy, 5, andA=v(d+2-7)/2 are the standard bulk
relations[19] with d=3 exponents.
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