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Annihilation of edge dislocations in smecticA liquid crystals
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This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in
a bulk smecticA phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is
described by the complex order parameféf,t)= 7€'4. This quantity allows both the degree of layering and
the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes,
and distinguish different early and late behaviors within these regimes. The early precollision regime is driven
by changes in thep() configuration. The relative velocity of the defects is approximately inversely propor-
tional to the interdefect separation distance. In the late precollision regime the symmetry changes within the
cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk
layer order is approached exponentially in time. At very late times, however, there seems to be a long-time
power-law tail in the order parameter fluctuation relaxation.
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[. INTRODUCTION a result there are often profound mathematical similarities
between apparently completely different physical systems,
At low temperatures, almost all materials exhibit phaseganging from condensed matter to cosmological structures
with broken symmetries. The low-temperature phase is def6—8]. These similarities are nevertheless not apparent from a
scribed by an order parameter which exists on some reaaive nhonmathematical point of view.
stricted manifoldD. Its local position withinD is then de- In this paper we shall be interested in dynamical proper-
scribable in terms of some phase functibnThe dynamical ties of line defects. This class of defects is represented by
processes whereby the symmetries are broken are extremaljsclinations in nematic liquid crystals, in which case they
complicated. Almost always the order parameter at one placeepresent singularities in an orientational field, and by dislo-
is different from that at another. The resulting order param-<cations in smectic liquid crystals and solids, which involve
eter variation is sometimes relatively strong, but not singularsingularities in a displacement field. Analogous defect struc-
In this case the order parameter always remains arbitrariljures are also found in superconductors and superfluids. Our
close toD. Defects refer to regions where the phase functiormodel line defects are edge dislocations in smectic liquid
®(r) exhibits singular behavior. They may be points, lines,crystals(LCs) [4].
or surfaces in a bulk system, and it is now known that they From a practical point of view, the advantage of studying
may be understood in terms of a topological classificatiordefects in liquid crystals is that the time scale of any motions
related to the underlying group structure of the order paramis many orders of magnitude faster than that in solids. Now
eter manifold[1,2]. interesting effects can be observed on reasonable time scales.
There has long been interest in the physics of defects, A typical smectic phase consists of a stack of layers,
long predating the more sophisticated topological studieswithin which there exists liquidlike organization of molecu-
Not only do the defects induce long-range forces within alar mass center§9]. The resulting quasi-two-dimensional
structure, but also the bulk material properties of materialsystem gives rise to logarithmically divergent positional fluc-
filled with defects can be overwhelmingly dominated by thetuations with respect to the characteristic sample size. Con-
existence of those defects. For example, it is the presence sequently quasi-long-range positional ordering occurs in
dislocations[3] which essentially governs the yield stressesfinite-sized samples. For all but the mathematical physicist,
plastic deformations, and fracture properties in a solid. Likethese systems are one-dimensional solids.
wise, liquid crystal texture$4], which dominate the visual The different smectic phases are classified according to
impact of individual liquid crystal phases, are the product ofthe orientational order withigand betweenlayers. The sim-
defect structures in the order parameter configurations. Thelest phase is the smectic(SmA) phase. In this, the rodlike
defect structures are thus only a topologically mediated indimolecules tend to be aligned along the layer normal. How-
rect effect of the order parameter manifold itself, but this wasever, in describing the static and dynamic behavior of edge
nevertheless historically sufficient to identify the nature ofdislocations in various smectic LC phases the layer ordering
the phase$5]. plays the dominant rolg4,9], while the other degrees of
Given their essentially topological basis, it is perhaps nobrdering are only of secondary importance. Thus the rela-
surprising that defect structures exhibit much universality. Agively simple S\ phase, to which we henceforth restrict our
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interest, is often sufficient to illuminate the basic mecha-separated dislocations. At intermediate times, however, the
nisms behind these phenomena. proximity of the dislocations affects the order parameter pro-
Edge dislocations in smectics can be induced by a tensiofiles in each of them. Later still the defects collide and anni-
that tends to alter the equilibrium layer spaciidi@]. These hilate. However, there is still a ghostlike signature of the
dislocations induce far field stresses and strains, which Caprevious Configuration_ F|na||y all nonequi”brium compo-

be explored using standard liquid crystal elastic thed®®s  nents of the order parameter decay, leaving a uniform planar
But in addition, and of more interest to us here, there is thg mectic bookshelf geometry.

nature of the dislocation core. In a solid, the dislocation core ¢ plan of the paper is the following. In Sec. Il we
is best described by the equilibrium positions of the atomSegcribe our model and the geometry of the problem. In Sec.
In a liquid crystal, the density fluctuations underlying the”l, we focus in detail on the annihilation of a pair of edge

smectic layering undergo a profound rearrangement in thltciislocations. We treat separately the precollision and postcol-
neighborhood, and the relevant structure is represented by fion regimes. Finally in Sec. IV we summarize our results.

order parameter profile. : : ) .
TheF;e have bepen a number of attempts to explore defe%.ome important details of the study are described in appen-

equilibrium structures in smectics. The crucial input here is IXes.
the order parameter representing the smectic structure. de
Gennes[1]] introduced a complex order parameter with a Il. MODEL
local amplitude and a phase. He drew attention to an analogy . . .
between superconducting systems also described by this or- Our apprpach is phenomenological, in tha't.we seek equa-
der parameter. In particular, he pointed out that there migh'i'ons of motion for the order parameter. Specifically, we _shaII
be a smectic analog of the Abrikosov superconducting phasése the de Gennes complex order parameter to describe the
[12], which is defect dominated. Loginov and Terentjég] smectic wave. Although this _approach ha_s been questioned in
made analytical calculations of the order parameter distributecent year$22,23, no superior model exists at the moment.
tion inside screw and edge dislocations. Analogous calcula/Ve shall use the Landau-de Gennes free engidyl3,
tions have been made by Kralj and Sluckl®] and by Renn  Which we have ourselves used in recent years in a number of
and Lubensky[15], but the details of the structure have not studies of inhomogeneous smectic systgi¥,24. In this
yet been definitively resolved. initial study of smectic defect dynamics we use the most
Experimental verification is still lacking because of the naive time-dependent Ginzburg-Landau approach. This is
smallness of the core size. This is typically of the order of aequivalent to approaches to nematodynamics which ignore
few smectic order parameter correlation lengths. Apart fronbackflow. We believe that this will illuminate the most basic
close to phase transitions this is comparable to a typical mcfeatures of the problem. In future work we shall return to the
lecular size. Edge dislocations can also appear if a changgroblem and attempt to incorporate backflow properly. We

sudden with respect to a relevant smectic ordering relaxatiofow discuss the specific features of the model in more detail.
time is imposed on the system. An example is a sudden

quench into a smectic phase starting from the isotropic
phase.

There have been only a few studies on dynamics of edge In the Landau—de Gennes approdti,13 the degree of
dislocationg[16-19 in smectics. In these studies the motion SmA layer ordering is described by a complex smectic order
of edge dislocations was studied as a function of imposeg@arameter)= ne'f/’. This quantity corresponds to the first har-
stress[16—-18 and boundary conditiongl9]. All these stud-  monic term in the Fourier expansion in the spatial variation
ies employ the classic displacement field description of theyf the molecular mass densipy The quantitiesy andp are
smectic ordering, in which order parameter variations argonnected through the relatigr= po(1+y+¢"), wherep, is
neglected. We shall henceforth refer to this description as thge spatially homogeneous density. The modujudescribes
classical mode[9,20). . the degree of layer ordering, and the phase fagtateter-

This theoretical study concerns the mutual annihilation ofnines the position of smectic layers. In a homogeneously
edge dislocations lying in the same smediphase layer. rdered smectic phase one fings=d,-f, where the wave
Now order parameter spatial variations play a necessary rolgector g, specifies the equilibrium layer spaciig=2/d,
and so the classic displacement field description is insuffiyng defines the direction of the one-dimensional layering.
cient. Note that in the frame of the classical model the edgyhen this homogeneous smectic is slightly perturbed the
dislocations in such a configuration do not intergi]. phase is commonly expressed with the layer displacement
~ We shall describe a system in which two line defects argje|q y(x,y,z) as$(x,y,2) =qy(z-u(x,y,2)). The average ori-
inserted in the same smectic plane. The layer width far fromyniation of molecules within layers is described by the nem-
the defects is equal to the equilibrium one. The equilibriumagic girector fieldri pointing along the mean molecular axis.

condition is that the layers attain their natural separationg, p,ik equilibrium phase the LC molecules point along the
everywhere. Obeying topological requirements this state ifayer normal, i.e.i=Gy/ Jo.

obtained via annihilation of dislocations. Our problem is to
describe the evolution of the starting system, containing the
two dislocations, into the equilibrium system, in which they
have disappeared. The free energy densitiyof the unconstrained Stnphase
The study begins with the order parameter configuratiorcontains two termsf,, and f.. The first term represents the
at early times. Here there are two well-defined and well-homogeneous contribution to the free energy density,

A. Order parameter

B. Free energy
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whereas the second represents the elastic contribution. Tledso equal, and we set, =§=§. Furthermore, so long as
free energyF of the system is obtained by integratihgver  order parameter variations can be neglected, as we show in

the entire volume of the sample: Appendix B, the Euler-Lagrange equation for the variation of
the phase factop alone is scale-free. As a result the varia-
F= f (F,+ o) OB (1) tions in ¢ adapt only to the constraints imposed by the ge-

ometry of the problem.

For a second order nematibl) to SmA phase transition the
free energy densit§, can be expressed as an expansiort in C. Dynamics

[11]. To lowest relevant order this is We adopt the time-dependent Ginzburg-Landau model, in

which
fo=algf+ Sl @
Y of
where a=ay(T-Tya), a@g and B are positive material con- 73 =- o
stants,T is the temperature, antj 5 the N-SmA phase tran-
sition temperature. The minimum &f determines the degree . L .

. . —_— where y represents the effective smectic viscosity constant.
of bulk smectic ordering, = ao(Tya=T)/B. We neglect  the fynctional derivative with respect t implicitly also
coupling between the smectic and nematic order parameterg,.| des derivatives with respect to derivatives iaf This
This can change the order of the smectic-nematic phase traffjogel has been labeled by Halperin and Hohenberg as model
sition, but involves physics which is not central to the o [25). Model A usually describes systems in which there is

present purpose. _ no interaction between order parameter dynamics and classi-
The elastic contribution of the free energy densiyde- 5| hydrodynamics. Here it is clear that there are in fact

scribes the elastic response to chag)ges in the smecEisc): ordefiastic stress tensor terms, and thus strong coupling between
) and smectic(f;”)  hydrodynamics and order parameter relaxation. However, the

(4)

ing. This consists of the nemati(o‘i,

components. It is known that the nematic elasticity interactgy|l inertial dynamical structure has not yet been clarified.
with the smectic phase to give a second gradient squaredome progress toward this goal has been made by Bruinsma
term in the displacement in the direction parallel to the smecand Safinyg26] and by Brancet al. [27]. In the absence of

tic layers[13,2]. The resulting long-range strain field is the g full and reliable dynamical theory, we restrict the study to
solution of a quartic equation. However, in order to simplify order parameter relaxation. We note that in the case of nem-
the problem, in this calculation we shall suppose the directogtic liquid crystals, the effect of ignoring backflative., hy-

n is homogeneously aligned along the direction in which thmrodynamic couplingcan in some cases simply change the
layers are stacked on average. The result of this assumptisfective viscosity constant. However in some specific ranges
is that we can neglect the nematic elastic tégﬁl Therefore  qualitative changes can take place that are not considered in
within our approach only the phase factor fiebdgives rise  our study[28,29. An attempt taking into account a flow into

to the long-range strain field. In Appendix A we show thatthe model is demonstrated in Appendix A.

spatial variations im give rise only to quantitative changes ~ We may remark that this approach is equivalent to making

in the behavior of our interest. an ansatz for the dissipation functi@n and supposing that
The smectic elastic term can be expresse{Pak3,15 the free energy gained per unit time is entirely dissipated.
© I . ) Accordingly -dF/dt=D, whereD=[g d*f. The full theory
fo' =CL|[(AX V)y*+C|(A -V —iqo) Y. (3 would include inertial effects as well as a more sophisticated

These two terms involve positive elastic constants associatd@mulation of the dissipation function. The simple time-
with smectic bendC,) and compressibilitXCH). The first ependent Ginzburg-Landau dissipation function takes the
term tends to align the smectic layer normal alangThe form
smectic compressibility term enforces the layer spadgg
Typically the ratio of the compressibility to the bend constant

is in the region of 1-109]. In our calculation, for simplicity,

we shall take this ratio to be unity and €&t =C;=C. The
changes introduced b@, # C; are analyzed in Appendix A. wherey is an effective smectic drag viscosity.

We now identify the important characteristic lengths that |t is now possible to make some initial observations based
enter our study9]. These arga) the smectic layer separation on dimensional analysis. The characteristic order parameter
do; (b) the separation distantebetween defects; an@) the  relaxation time is roughly given by~ y/|a| and is thus
smectic order parameter correlation lengths (C/2|a)>  proportional to the square of the smectic order parameter
and¢, =(C, /2|a])*2 correlation length. By contrast, there is also a timechar-

The quantities and§, measure the response of the sys-acterizing distortions in the smectic phage This depends
tem to locally induced perturbations in the smectic orderingon the typical linear size, of an imposed distortion. We find
in the directions respectively along the smectic laygrand  that 74~ yLﬁ/C, whereC stands for an appropriate smectic
perpendicular to i{&,). In our calculations, the equality of elastic constant. We develop this argument further in Appen-
the elastic coefficients implies that the correlation lengths arelix B.

Iy

at |’ ®

g=v
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L z measured in terms of the smectic order parameter correlation
lengthX=x/¢,2=z/ £,L=L1£,Gp=qpé, etc.;(d) time is mea-
R I — sured in units of the smectic order parameter relaxation time
L———F——— t=t/r.
I — The scaled order parameter can be expressed as

X W= ? =7l =y

- =

e where far from the defeat represents the conventional layer

displacement field. The nonsingular part of the order param-

eter in the defect region is contained in the exponential

expiggz. All singular contributions giving information about
FIG. 1. The geometry of the problem. The edge dislocations arélefect structure are contained W =7 exd-igeu(x,2)].

initially separated by a distantg. The distances, andL, describe ~ However, in order to circumvent problems with the definition

the simulation cell volume. Bold lines indicate the region over Of the phasep where the order parameter is small inside the

which calculations are carried out. Thin lines determine the smecti¢lefect cores, we represetit in terms of its real and imagi-

layers. The two dots mark the centers of defects. nary components¥ =7e 9'=A+iB [10,24. In all further
calculations we drop all the tildes.
D. Geometry of the problem The quantityW is a normalized order parameter which

includes the degree of order and departures from perfect

The geometry of the problem is depicted in Fig. 1. Thegeciic order. The free energy can now be rewritten in terms
smectic layers are stacked along thexis. The edge dislo- v he expiicit effect of the smectic wave is lost and the

cations lie along they direction. The defects are initially theory reduces to the well-known gradient theory with a
separated by a distancky, placed symmetrlca}lly a!>( complex order parameter. The free energy is now
=+Ly/2 andz=0. The presence of the defects gives rise to

an elastic displacement field, the value of which is set ini- 1 P T

tially using a mathematical ansatz which we describe in more fn= o\ 7 [W[*+ §|q’| ' (6)
detail, below. The defects subsequently approach each other

along thex axis as shown in the figure. The problem has fo=| VWP )

translational symmetry in the direction, and we shall sup-

pose that this symmetry is maintained in the solutions. Thus The time evolution equatio®) can now be written as

we do not expect spatial variations along yhaxis, implying P

that () = (x, 2). — =2V + V(1 - [V]D). (8)
The problem has further reflection symmetry in ttreO Jt

andz=0 axes. This symmetry permits us to restrict the cal- In terms of the parameter¥x, z,t),B(x,z,t), the dynami-

culation to a single quadrant, and we choose the quadralgtal Euler-Lagrange equations can be written as
x<0,z>0. The region over which calculations are actually

carried out is shown in Fig. 1 and is surrounded by bold 10A #A FA 1 —

lines. Only one of the two defects remains in our calculation I TR AR EA[l -(A+BY], ©)
domain; the behavior of the other can be inferred by reflec-
tion symmetry.

. , 1B _#B #B 1
We note that the symmetry conditions at the reflection =+ +-B[1-(B*+A)]. (10)
planesx=0 andz=0 are different. Reflection in the=0 20t 9 97 2
plane leads to the conditions(x,z)= (x,~-2z). This is
equivalent to the conditioni(x,z)=-u(x,-2), whereu(x,2) F. Boundary and initial conditions

is the displacement of a smectic layer from its equilibrium  The problem is parabolic in time and ellipsoidal in space.
position. By contrast, reflection in the=0 plane yields the \ye need to specify initial valueg(x, z,0), as well as bound-
conditiony(x,z) =¢(—x,2); this is equivalent to the condition ary conditions on the surfaces=0,x=0,z=L,,x=-L,. We
u(x,2)=u(-x,2). use the following boundary conditions.

These symmetry relations govern the boundary conditions (@) z=0. Here the symmetry relation(x,z)=-u(x,
at the walls of the calculation domain. This domain is cuboid_») 7 y(x,0)=-u(x,0)=0, i.e.,
with sidesL,,L,,L,. Because of the translational symmetry

in they direction, out of these, only the quantity enters the dA _ 0 B=0
nondimensionalization. gz -
E. Parametrizations and equations (b) x=0. Here the symmetry relation isi(x,2)

, . . o =u(-x,2). Now the condition is that
We use the following nondimensionalization&) The (.2

scaled smectic order parameterss n/ ny; (b) the dimen- dA _ 0 iB _ 0
sionless energy I=F/F,, whereFO:CngLy; (c) lengths are ax ' dx
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(c) z=L,. There is no symmetry relation, and so we
simply suppose that a stable situation has been reached su
ficiently far from the defects. This implies that the gradients 4
perpendicular to the wall are zero, or
2
dA JB
—=0, —=0.
dz dz up 0
N
(d) x=-L,. This is analogous to the previous case: 2
JA 0B 4
—=0, —=0.
dX 28 P L=30¢
L
We observe, however, that whereas conditi@sand (b) 25 30 45 G0 s 09,018 <16 14 12 10
are set by symmetry, conditioris) and (d) are set by con- X/E (b) x/&

venience, and approximate the situation as the distance fror(®
the defects approaches infinity. If other plausible conditions

are applied on the latter boundarigsg., we suppose that |, e ap=0. Left panel: smectic layer profile with contour plot of
they approximate to undisturbed smectic layarsgligible 7(x,2) superimposed. Contours correspondstbr,=0.95 (dotted

difference in our results is observed. _ line), 0.8 (dash-dot-dotted line 0.6 (dash-dotted ling 0.4 (short
We use the following initial ansatz for the amplitude and gashed ling 0.2 (solid line), and 0.05(solid line). Right panel:

phase of smectic complex order parameter. At the center afpatial variation of the order parameter along thexis atz=0, ¢

the defect we sey=0. We vary the ordering linearly with the (pottom line, 2¢, 3¢, 4¢,5¢, 6¢ (top line).

distance from the defect center, reaching the bulk vajyat

the distance equal to the smectic order parameter correlatiogy|ting from the defect collision gradually decays into a bulk,
length. Elsewhere we sej=7,. For the phase shift we set \ndistorted state.

$=m-¢, wherep=arctaii(z-2y)/(x—xg)] and the defect is e are able further to distinguish in each of the pre- and
placed at(x,2)=(xq4,23=0). This ansatz for the phase shift postcollision regimes two different time regimes, resulting
corresponds to no displacement of layers on the left of thérom the different characteristic time scales fprand ¢. In
defect and to the half-layer displacement to the right of it.what follows we analyze in more detail the different stages in
Then the corresponding(x,z) and B(x,2z) profiles are cal- the annihilation process.

culated using Eqg9) and(10). Quasiequilibrium profiles for Some characteristic stages of the annihilation dynamics
relatively large separations of defects are obtained at a are shown in Figs. 2 and 3. In the left panel we show the
short time relatively to the annihilation time. We also usedlayer profiles with superimposed smectic order parameter

FIG. 2. The order parameter profile of an isolated dislocation

another initial ansatz for smectic layer displacenjedi. All contour plots. The contours label the valugsy,=0.95(the
ansatz profiles have retraced into the same solution after gutermost ong 7/ %,=0.8, 0.6, 0.4, 0.2, ang/ 7,=0.05(the
time period equal to a few correlation times innermost ong In the right panel the spatial variation of the

order parameter along theaxis is shown az=0 (the bot-

Il RESULTS tommost curveg z=¢,2¢,3¢,4¢£,5¢, and z=6¢ (the upper-

most curve.
We initially place the edge dislocation at a distarice In the early precollision regimesorresponding roughly to
=Ly> £ as shown in Fig. 1. The following physical processesL > 10¢, the defects are clearly distinguishable and can be
then occur. described as linelike objects. On a finer scale, each indi-

(i) After a relatively short time, of the order of a few vidual defect exhibits a parasmecticearly nematigregion,
relaxation times, the local core structure reaches the quasivhich extends over a distance of the order 6fBhis region
equilibrium order parameter profile. defines the defect core. In this regime, the defect cores are

(i) From this time on we monitor the annihilation dy- not affected by their mutual interaction. A representative or-
namics. In theprecollision regimewell-distinguished defects der parameter profile of a dislocation is shown in Fig. 2. The
approach each other to reduce the effective layer curvature spatial profile ofn enclosing the melte¢hematig core ori-
the system. The defects attract because in the absence of thig exhibits locally cylindrical symmetry in thé&,z) plane.
defects the elastic energy is reduced. If the defects approadrhe cylindrical symmetry is due to the equal elastic constant
each other, sufficiently far away, the two defects essentiallapproximation(¢, =¢). For a real elastic anisotropy, where
cancel each other out. If the defects are separated by a digr> ¢, the core is extended in thedirection.
tancelL, the critical distance over which the defects no longer  With time the defects gradually enter tlate precollision
give rise to a displacement field is of the orderlofThe  regime shown in Figs. @). Now the defect core structure of
smaller the separation, the smaller the elastic energy. a defect seems to be influenced by the interaction with its

(iii) The defects thewollide. In the collision the defects neighbor. The order parameter profiles in the cores gradually
merge and it is no longer possible to distinguish two separatise their cylindrical shape and become extended in the di-
entities. rection joining the defects. The inner contours remain cylin-

(iv) In the postcollisionregime the disturbed structure re- drical, but some outer contours in Figgagare now pear
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one from another. Detailed examination of Figga)3also
shows that the time evolution of the outer contours is de-
layed with respect to those near the defect centers. This is
probably the result of a relatively slow layer readjustment
which follows from a phase relaxation time-scale,

~ L2/ C. We discuss this point further in Appendix B.

In thecollision, shown in Figs. &), the melted regions of
both defects merge. After this event the “nonsinguleatly
postcollision stages entered. This stage is characterized by
the apparent growth of the order parameter at the collision
site on a time scale given by This feature is shown in Figs.
3(c). Gradually the quasiequilibrium order parameter profile
is established, adiabatically adjusting to the slower layer dis-
placement dynamics. During this period the degree of layer-
ing approaches that expected in an equilibrium smectic
phase. Finally, théate-postcollision stagées essentially char-
acterized by the layer displacement dynamics, by which the
exact thermodynamic equilibrium is asymptotically ap-
proached. During this period, the layer displacements disap-
pear.

Next we present a more detailed quantitative picture of
the annihilation. In Fig. @) we show the time evolution of
the interdefect separatiobh. The plots for different initial
separationd_, are superimposed. Apart from minor early-
time deviations, the curves fall more or less on the same
curve. We believe that the initial anomaldu@) dependence
is because the initial ansatz for the defect structure does not
correspond to a steady-state solution of B), and a short
period of relaxation is required. Once the defect core has
relaxed, the past history is irrelevant, and subsequent history
depends only on present position.

We find thatL(t) is rather close to a power-law depen-
dencel « (t.—t)*, where thecollision time { is the time taken
until the defects mutually annihilate. The exponext
~0.5+0.05. However, there are small departures from this
rule, and the best fitted exponent seems to depend monotoni-
cally on the total system size. The value foquoted above
is an extrapolation to infinite system size. We shall return to
the departure from the exact scaling law in the next section.

The initial size-annihilation time dependence la¢) can
be inverted to yield a law for the defect approach velocity
v(L). The power law relatiorL = (t,—t)* implies an analo-
gous power law relatiow =< L1"**, Taking the extrapolated
A =0.5 suggests the relationship:L™*. In Fig. 4b) we make

FIG. 3. Order parameter profile at different stages during they |og-log plot of thev(L) dependence. One observes a slight
annihilation process. Left panel: smectic layer profile with contourchange in the behavior wher(t) ~ ¢ This is unsurprising

plot of 7(x,z) superimposed. Contours correspondsbrn,=0.95,
0.8, 0.6, 0.4, 0.2, 0.05. Right panel: spatial variation of the orde
parameter along the axis is shown az=0,&,2¢,3¢,4£,5¢,6¢. (a)
The late precollision regimd,=5¢; (b) exactly at the time of col-
L=0; (c) the early postcollision

lision,

7(0,0)/ 5,=0.23.

regimet=7 and

Igiven that structural variations in near the defects centers

become significant.

The asymmetry of the core in this regime is depicted in
Fig. 5. One sees that the core size alongZlwérection re-
mains approximately unaffected and gradually increases in
the x direction on approaching. In the mean time the size

shaped, and the very outermost contours even encircle botf the z direction slightly shrinks, revealing the tendency to
defects. As the defects further approach, these features beonserve the amount of the melted region.

come more pronounced, and the departures from a cylindri- An illustrative representation of the characteristjt)

cal shape begin closer and closer to the defect centers, bariation is shown in Fig. 6. We plot the time evolution of
which we mean the points at which the layering order pathe order parameter in the middle of the plane through both
rameter disappears. Eventually the defect core structures sigefects, i.e. = 7n(x=0,z=0). ForL>10¢ 5,~ 1 holds. At
nificantly overlap and it is no longer possible to distinguishlater distancegi.e., time$ 7,(t) monotonically decreases,
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tt tr
5
4 FIG. 5. Precollision regime: the time evolution of the character-
istic core size width in the direction along the line connecting the
3r defects and perpendicular to it. The diametgrand &, character-
2t izing the core shape, were measured in xhend z directions, re-
1l spectively, between opposite points at whigh 7,/2.
b~
3, 0 .
X : Lo \t.—t dependence. We concentrate on the behavior of
= A(x,t) at a defect site. Exactly at the defect oridir 0. For
-2 $»=0,A=7,B=0; and»=0 at the defect center, but the de-
3F rivatives of A andB have finite values. Exactly at the defect
4l ®) center, neglecting spatial variations in tkedirection (in
L. L=80¢ scaled units Eq. (9) reduces tajA/ gt~ Al Ix2.
T2 1 0 1 2 3 4 A possible solution to this equation is
In(L/&)

A=c[- (t.— 1) +x?/2], (12)
FIG. 4. The dynamics of the precollision reginm@) The L(t)

dependence. Neglecting the initial anomalous dependence wgherec is a constant. The defect position is given by the

roughly obtainL «/(t;—t). Care should be taken because the ob-implicit equationA(x,t)=0. Combining this with Eq(11)

servedL(t) dependence ohg is due to memory effects. The results yields

are obtained at a temperature where dy. (b) The dependence

v(L) on a log-log plot. The law «1/L would result in a straight

line with slope —-1.

X=V2(te—t), (12

o , which, as shown in Fig. (@), describes the whole precolli-
indicating the merging of the cores of defects. Just beforg;,n, regime rather well.

and after the collision the linear dependenggx|t—t | is
observed. This behavior also emerges from the approximate
solution Eq.(11). In it we follow the value ofy at the mirror
plate att<t. and gety,<t.—t.

After the collision 5, asymptotically approaches its bulk
thermodynamic valuey,. In the late precollision regime the
numerical calculations indicatg,— 7, 1/(t—t.). This sug-
gests adiabatic adjusting of, to the much slowerd time
evolution.

Note that the edge dislocations in the described geometry
do not interact within the classical approaf2i]. In our
approach the interaction is enabled by the smectic bend elas-
tic term weighted with the elastic constadt [see Eq(3)].

0.0 P
40 -30 20 -10 0 10
t't

IV. DISCUSSION

We first discuss thé(t) ~ (t.—t)*/? law, which as we have
seen above is equivalent taél) ~L™*. We derive a simple FIG. 6. 5(x=0,z=0) time evolution in the late precollision and
ansatz, using Eqg9) and(10), which gives insight into the postcollision regimes.

051704-7



AMBROZIC et al. PHYSICAL REVIEW E 70, 051704(2004

It is possible to estimate the experimental time scale cors(L) ~ (L In L)™*. HereC is a constant an&; is proportional
responding to the cases we have studied. We rewrit¢12y. to the core size of a defect. We do find a better fit to lo(y
in its dimensional formx?=2(&2/ 7)(t,.—t) =2D(t,—t), where  results in the early precollision regime with this ansatz, but it
D plays the role of a diffusion constant. Fob requiresR.< &. The significance of this result is unclear.
~1012m2s1[18] and ¢ of the order of nanometersvhich In a related worlk{38], some of the present authors have
holds true well into the S phasg, we obtain7~107°s. inv_estigated the cpmplete annihilation process of_ nematic
With this in mind, the longest calculations in Figaftextend ~ Point defects. In this study, using a semimicroscopic lattice-
over a time scale of T0 s. However, our approach is also tyPe model and Brownian molecular dynamics, we have
applicable close to th&l-SmA phase transition, where the found qualitatively similar annihilatiorgearly and late pre-

dynamics is considerably slower. In this regime our calcula®nd postcollisiongl stages. However, the core structure of

tions may correspond to longer experimentally accessibl@€Matic point defects in that study was considerably more
time scales. complex and adopted a ringlike biaxial structure. Other au-

Similar behavior is observed in annihilation of orienta- thors[34,3§ have also shown that the presence of backflow

tional line defects in the nematic and smedicohases Ca" significantly change the qualitative picture of final anni-
[30-38. The role of» and ¢ is in this case pIayeg by the hilation stages. A particular feature of those studies is the

nematic order parameter and nematic director field, respeé)—rea'(Ing of the mirror symmetry between defects of opposite

tively. All these studies, with the exception of RE38], con- parity.

centrate on the precollision regime. These theoretical, experi- Under these cireumstances a clos<_e .analogy.between our
results and studies of disclination annihilation might well be

mental, and simulation studies confirm the basievt—t.,  eypected, although naturally some differences would also oc-
i.e.,v 1/L behavior. We note that for point deficts the bal- o, hecause of the different order parameter symmetries. The
ance of forces is different, and in general the L™"law no  jnqex 1/2 nematic disclination and the index¥ disclina-

longer obtains. tion are each minimal from a topological point of view. In

The basic ingredient behind this law has been discusseghe qrientational picture the positive and negative index de-
on numerous occasioii9], and linked to the Peach-Kohler focis are not identical, and thus a breaking of the mirror
force on dislocations in sollds._ Let us repeat the arg“memsymmetry in principle is not only possible but expected.
The mogel system is described by the free eneRy owever, the mapping of thXY model onto a smectic in
=/K|V ¢|*dV. HereK stands for a representative elastic con-gome sense forces both positive and negative index disclina-
stant of the LC phase andl is the relevant order parameter jions to map onto identical dislocations but with opposite
fle[d (e.g., the phase factor'ln a smectic pha_se Or a represeRyrqers vector, thus restoring the mirror symmetry.
tative angle of the nematic director field in the nematic ¢ dynamics of our model is governed by one effective
phasg. The kinetics of the system is governed by the dissiiscosity constany introduced by the dissipation term in Eq.
pation relaxation law etF/dt= 132 where the dissipation func- 5, This term takes into account only dissipation related to
tion is given byD=y[[3¢/t*dV. The interacting pair of e time changes in the SWorder parameter. It introduces
defects are placed along thexis, separated by a distanice — yyq characteristic time scalesandr,, (see Appendix Bthat
Then the defect structure survives over a distance of the ot5.q related to the translational order paramegeand the

der of L in all directions, and is quenched on length scalesphase factorp dynamic behavior, respectively. In order to

greater than this. Then understand microscopic origins gfwe relate the Ginzburg-
b ad Landau (GL) model that we use with the classicéCL)
E ~ EU' (13 model. For the latter model the link with experimental pa-

rameters is relatively well established. We originate from Eq.

The dissipation function and the energy function will have(4), the time-dependent Ginzburg-Landau equatjon/ dt
the same dependence on separatiphecause they are both =—0f/ 6, describing local changes of the order parameter

gradient functions. Let this b&(L). Then y=ne?. To take into account flow effects we replace the
partial time derivative in Eq4) with the material derivative.
G(L)Uz ~ EG(L) ~ d_Gv, (14) We get'}/ dlp/dt: y(é’z///ﬁtﬂfvw):—é‘f/&p*, Wherelj repre-
dt dL sents the velocity of the material flow. The CL form of this
ieldi equation is obtained in the “phase approximation,” where
yielding spatial variations iny are neglected. We further introduce the
dinG displacement field in a “classical way” ag=qy(z—u) and
UL (15) neglect the nonlinear termi-V. The equatiorv,—du/dt=

—\pof/éu follows, which is commonly used to study the
between defects. IG(L) is power law or logarithmic, we dynamics of the displacement field. The quantiky,
obtainv ~1/L. :l/(yqé) is known as the permeation constant. The perme-

Some author§30-32,34 have derived logarithmic cor- ation refers to the motion of fluid through the layers. Close to
rections to the basie(L) law. In general these studies have the N-SmA phase transition the permeation is particularly
considered an orientational order parameter, but their consisasy and\,«1/(Tya—T). Deep in the Sm phase \,
erations probably apply to the present study. Pargetlial. ~ ~d3/ 7, holds. Heren, describes a fluid viscosity constant
suggested,—t=CLZIn(L/R,)—-0.5], which is equivalent to along the smectic layer normal. For< Ty, the permeation
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flow typical length is given by|p~\;‘T)\p~ V’mdo, the interaction force in th& direction between dislocations
where 7, stands for a typical viscous constant. In order tocan become repulsive fdr,# 0 for a sufficiently small sepa-
calculate the velocity field16] the Navier-Stokes equation rationL. Therefore for the case that gliding is apparently less
(in it 8f/éu plays the role of the restoring forges conven-  probable than climbing a pair of edge dislocations is ex-
tionally used together with the fluid incompressibility condi- pected to get caught in a metastable state at a sepatation
tion V-5=0. =L(A,. The system will then remain in this state until a
In our approach we neglect the velocity field. If the dif- fluctuation triggers a gliding event, enabling annihilation into
fusion within smectic layers, where liquidlike behavior is the defectless state. In order to simulate this case with our
expected, is an infinitely fast process, only the permeatiofinodel an anisotropic symmetry allowed dissipation tgsee
controls the motion of edge dislocations. But if diffusion EQ. (5)] including different viscosities in a layer plane and
cannot relax immediately the vacancies created by permd2erpendicular to it should be introduced, which is the focus
ation the viscosity within smectic layers is also important. Of our future work.
We also believe that the material flow plays a weaker role
in the annihilation of smectic edge dislocations in compari- V. CONCLUSION
son to the annihilation of nematic defects. In the latter case \yie have studied the annihilation of edge dislocations in

the flow is important and is the main reason behind thgpe hylk S phase using the phenomenological Landau-
asymmetric annihilation procegise., the defects with a POSI- Ginzburg approach. We have begun with a pair of facing
tive Frank index are fasteof defects. When the nematic g4ge dislocations at a distantg> & Within the classical

defects approach each other, the reorientation of molecule;pproach such dislocations would not interact. In our ap-

takes place, which is relatively strongly coupled with the5r5ach the interaction is enabled by the smectic bend elastic
fluid flow. In the absence of flow the main source of dissipa-ge energy term, weighted by the elastic constant

tion is the regiqn sgrrognding the_ defects. If the flow is_ trig_— The first stage is an equilibration period taking tirtte
gered the dissipation is delocalized through the region in_ 107), during which the cores relax to an quasiequilibrium

which thefﬂ%w |sd_p:esetr)t. Og the cotntrary the ar)nlrzllil_t|on frofile. We have then followed the dynamics of their mutual
process of edge dislocations does not require reonentation oy pinjjation. In the precollision regime the defects were
LC molecules; therefore the coupling with the flow is

. . . clearly distinguishable. For a large enough initial separation
weaker. In addition the flow would disrupt smectic layers y 9 g g P

C . ; . ~'they approached each other in a climbing manner. For suffi-
which is relatively energetically costly, particularly deep in ciently large initial separatioh, we find Lo (t.—t)", where
the SmA pha_se. . . . N~0.5, or equivalently relative velocityo<1/L. With de-
It is possible that our S|mulat|_o_n does not approprlatelycreasmg_ the effective value ok seems to decrease mono-
recover events close to the collision of defects, where th?onically 0
relative velocity .Of defects IS very high. The Important pa- We a.re further able to distinguish between the early and
gﬁ?:;%g)%?;ﬁ”:gntge chelemIlé;éf?;e%u;;ijpp_r(r)acn;etre SQate precollision regimes. In the former regime the defects

qe9] De, e” T exhibit nearly symmetric, equilibriumlike core structures.

stands_for the shear rate ands the relevant order paramgter For this case one can treat the defects as linelike objects
relaxatlpn time, IfD<1 then.the role of hydrodynamlps which interact via a displacement field that does not affect
effects is expected to be negligible. We proceed by estimat;

ing the critical velocity, for which our calculations are not heir internal core structure. In the late precollision regime
4 . ¢ . h r f def me modifi heir proximity.
reliable by requiremeriD,=1. We set ~ dv,/dz and 7 is the the cores of defects become modified due to their proximity.

. X < irecti
translational order parameter relaxation time. The shear ratWhenL 10¢ the cores become extended along the direction

is largest close to defects. If we set that the velocit fieldgf the effective interaction. At the collision time=t; the
9 ) Y melted centers of both cores merge and defects become in-
drops to zero overNy layers, we get the condition

(e Ngdg) 7= 1. For 7— 10 5.dy~3 nm, andNg=3 we get distinguishable. The relaxation after the collision has two

"1 em/s. Thi | £ velocity i hiah. Tvoicall qualitatively different stages. In the early postcollision re-
UE dqnl] S i IS value O.tr\]/?hoc' yI 'S.nve?'(ﬂ'g '/ yrilé:a y gime the order parameter profile at the collision site expo-
€ gNet'S olca I?hnst Thove WI'h'I sve OCily~ ¢ gnl S]E ”]' nentially (with characteristic time~1.57) approaches the
quali?a?ivaelsyodiff:rentes:g:;riloahl‘oirr]litli;I?/XVF\)/EE gepz:rat?a(;) ‘(’jveaquasiequilibriumn(F) profile, fingerprinting the momentary
fects(in comparison tcg) are not in the same plane. Let us ¢(r) pattern. In the late postcollision regime the equilibrium

assume that they are displaced for a distakzandL in the profile is approached a7 1/(t_t°.)' . .
z andx directions, respectively, in the geometry that we use Most of our calculations were carried out for the isotropic

(Fig. 1). In this case the annihilation could be accomplishedxr Ilimti)t, ;/r\:here thle dynéamics of the E'ystem is ders]cribed
by a combination of gliding and climbing dynamics. The SCI€!y by the complex order parameterHowever, we have

dislocations are said tolimb if they move in the smectic shown _that deviations fr_om. this approa<_:h in generallgive rise
plane as opposed to perpendicular to it, representiiipa to relatively small quantitative changes in the behavior of our

In a conventional smectic phase a climb of a dislocation idnterest.
much easier than a glide because a glide necessitates layer
breaking. Therefore a relevant characteristic time scale in a

layer plane direction and perpendicular to it are expected to This research was supported by an ESF network project
be apparently different. The classical thep4y predicts that COSLAB and Slovenian Office of Science.

ACKNOWLEDGMENTS

051704-9



AMBROZIC et al.

APPENDIX A: DEVIATIONS FROM THE ISOTROPIC XY
BEHAVIOR

In this appendix we estimate how tli¢ nematic director
field variations,(ii) smectic elastic anisotropy, andi) the
flow influence the results obtained in the main part of the
article.

We first study caseg) and(ii). We parametrize the direc-
tor field asn=(sin 6,0, cosé), whered=6(x,z). For the sake
of simplicity we restricti to vary in the(x,z) plane. In the
single Frank nematic elastic constant approximation the
nematic elastic free energy contribution is given )
=(K/2)[(96] 9x)*+(96/ 92)?], whereK is the representative
Frank nematic elastic constant. The dissipation function of
the system[see Eq.(5)] is approximately expressed as
=199yl o[>+ (961 at)?, where y® and 4 approximate

PHYSICAL REVIEW E 70, 051704(2004

0 1 1
0 500 1000 1500 2000
tr

FIG. 7. Influence of elastic anisotropy, nematic distortions, and

the viscosity properties in the smectic and nematic degrees ®fydrodynamics on thé(t) dependence. In all casés=60¢. (a)

freedom, respectively. We use the parametrization given irC,/C, =1,«x,=, the solid line;(b) C,/C, =5,x,=, the dashed

Sec. Il E, measure all distances in unitséof and we get

LiA_ AL PR PR AL IR
2 gt Xox2 T z2 szax(?z Eogx gy A
(A1)
19B _ #B ‘e aZB #B c@+ C(9_|3+C
29t Ogye Ty p T ECay T T EC S T eG e,
(A2)
190 (&0 #0\ c
== ( >+—”. (A3)
29t ax2 az K,
Here
IO S
C. N e T

Cw=1+esirtd, c,,=1+ecosh,

. a6 . aJ0
Cy,=SiN(26), c,= Esm(za) + 5005(20),

J0 060
c,= —co09260) — —sin(260),
2= g20) Py (26)

J6 J6
Cp= qOBE[(l +g)cosh— e coq26)]+ qOBE[_ (1+e)
. . B . .
Xsin @+ e sin(26)] + %5[2(1 +¢e)sin 60— e sin(20)]
B
+ 2q05[(1 +g)cosf— & coso— 1]

+ %A[l - (A?+B?)] - Ag[(e + 1)(1 - cos6)? + sirfé],

line; (c) C,/C, =1,k,=0, the dotted line(d) C,/C, =1,k,=%, ad-
dition of advection terms, the dash-dotted line. The raji@, =4,
typical for nematogenic molecules, is taken. Note that in céses
and(d) the curves nearly overlap.

a0 a0
Cg= qua[— (1+e)cosh+ e coq26)]+ QOAE
. . JA .
X[(1+¢&)sin@—esin(20)] + QOE[‘ 2(1+¢)sing
. JA
+esin(20)] + 2qOE[— (1 +¢&)cosf+e cos+1]

+ %B[l - (A?+B?)] - Bgi[(e + 1)(1 - cosh)? + sirtd],

Co=eCp+(L+e)Cyy,

[(aA)Z (ﬁA)Z (aB)z (aB)Z
Cn=|\"2| ~\>5o) T\ =2) ~{ =T
dz X dz X
9B __IA) oo, }
+2q0(A&Z Baz>+q°(A +B) [sin(26)

2{ IAIA 3BIB (aA
axdz dxdz °

B
B— -A— [coq20),
ax axﬂ 26)

JA 0B .
Cpp= Z{qo( BE - AE) - Q5(A% + BZ)}sm 0

B _JA
+2qo| A— - B— |cosé.
IX X

The dynamics exhibits only relatively small quantitative
changes if the nematic distortions or the anisotropy of smec-
tic elastic constants are allowed. This can be inferred from
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Fig. 7 where we compare the(t) dependencies fora) If the fluid is incompressible then the velocity field at the
C/C,=1,kp=%, (b) C/C, =5,k,=», and (c) C//C, defect origin can be approximately expressed @s
=1,k,=0. In the limit x,= the nematic director field is =v4(1,0,a/2a,). Herevy describes the velocity of the de-
strictly aligned along the coordinate. Fok,=0 the smectic fect. We further assume that the velocity field decays toward
elastic constants dominate the behaviomofrhereforenis  zero linearly with the distance=/(x—xq)2+(z—z4)? from

forced to be_aligned along the smectic layer norma}#0.  the defect origin. The velocity is set to zero fpr= ¢.
For cr?nvekr]monal LCs one efo’eOtﬁr: 10. Note tt‘j?t forcn In order to estimate the maximal influence of the advec-
=1 the characteristic times for the nematic director and, =~ ... e  set G-V)h=0g(L-pl [|dys/dX

smectic phase factor variations are comparable. The (@ase +(a/2a,)|dy;/d2] for p< & and ys stands for eitheA or B
I I .

is treated in the main part of the article. Comparison of case S . .
(a) and (c) reveals the magnitude of variations in the is shoyvn in Flg_. 1the _dash-dotted linghe influence of the
advection term is relatively small.

=L(t) dependence if variation is allowed within the model.
Note that the time in Fig. 7 is set to zero at the start of the APPENDIX B: TYPICAL RELAXATION TIMES
simulation.

Maximal departures ofi from thez axis take place close We_analyze typical relaxation times of a slightly distorted
to the core of a defect at a distanze z4 &,x=x4. The ~ SMECHCA phase. We assume that the layers are stacked along
defect is located atx,z)=(x4,zy). Note that exactly at de- the z axis andn=(0,Q¢,]). The smectic order parameter is
fects the smectic ordering is melted and consequently ~ Parametrized ag=»e'®.
there not pushed along the smectic layer normal. In the limit We first consider variations i and set¢=gz. We ex-
x,=0, where maximal deviations of the director field take Pand »=7n,+ &7 about its equilibrium values,=v-a/B up
p|ace’ we get for the maximal tilt ang@naxf\, 30°. For Kn to a quadrat|c term |r§77 With this in mind one getS

=10 we getba—3°. - 2 2

We also find that the dynamics in the postcollision regime F=To(m) +2alon”+ C[V 5% BD
is negligibly influenced for the described variations. 9 5m\2

We have also checked the change of shape of the smectic g~ ),<_77) ) (B2)
order parameter contour plots encircling an isolated edge dis- Jt

location as the rati€,/C, is varied. Circular contours in the
case of equal smectic constants are deformed into elliptical 5 .1 5. defining a tvpical relaxation distande \C/2
ones forC,/C, >1. For C;/C, =5, the ratio between the o, gatyp i .

g T Neglecting spatial variations the dynamic equation yields
longest and shortest diameters of the ellipsis roughly equal§|a|5n:_7557]mt' defining the relaxation time= /2|

2, in line with the scaling predictior/ £, =\C,/C, =15 ~ yl|al. Note that taking into account spatial derivatives in
~2.2. o7 affects the dynamics only quantitatively. For example, let
We next estimate the influence of hydrodynamic flow onys take into account in E¢B1) spatial variations along the

L=L(t). For simplicity we seC,;/C, =1 andi=(0,0,1. The  axis. In typical cases the contributiorC(d5n/x)?
influence of hydrodynamics can be roughly estimated by in-— C(87l €)%~ 2|a|67? renormalizes the second term in Eq.
cluding advection terms in the dynamical equationsf@nd  (B1), leading tor~ y/4|al.

dynamical equations with total derivatives. For example ing spatially homogeneous profilgr) = 7,. Consequently, we
Eq. (8) we introduce the replacemen&z///at—>d¢///d} get

:a¢/m+(6-€)¢, wherey is the mass flow velocity an¥ ) 5 )
- ¢ ¢ ¢
stands for the gradient operator. fff) =CA| [ Z2] +[Z2) +[Z2-q,) |, (B3
We consider the case that is schematically shown in Fig. X aay Jz
1, focusing on the defect to the left. The defect is moving to
the right, pushing forward the molecules in front of it. These ap\?
-S> . . , g=vyl —| . (B4)
molecules initially constitute the “inserted” layer that gives YN ot
rise to the pair of defects. In the mean time the molecules _ o _
from the neighboring layer abov@elow) the inserted layer The static Euler-Lagrange equation is n&#=0, which
move downwardsiupwards to fill the established empty does not introduce any scale into the system. Therefore the
space. Therefore, when a molecule in the inserted layer jusariations ing typically adjust to the constraints imposed by
in front of the defect moves for a distanae to the right, the  boundary conditions. .
nearby molecules in the surrounding layers move in the ver- Let us assume that evolves over the distandg; there-
tical direction for a distance,/2. Herea, anda, estimate fore f¥ ~ C72(#/Ly2 The dynamic equation readp/L3
the width and length of a rodlike LC molecule, respectively.=-yd ¢/ dt, defining the time scale,~ yLﬁ/C.

The static Euler-Lagrange equation readsV25y
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