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A continuum field theory approach is presented for modeling elastic and plastic deformation, free surfaces,
and multiple crystal orientations in nonequilibrium processing phenomena. Many basic properties of the model
are calculated analytically, and numerical simulations are presented for a number of important applications
including, epitaxial growth, material hardness, grain growth, reconstructive phase transitions, and crack

propagation.
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I. INTRODUCTION any property of a crystal that is determined by symmetry

(e.g., the relationship between elastic constants, number and

Material properties are often controlled by complex mi-type of dislocations, low-angle grain boundary energy, coin-
crostructures that form during nonequilibrium processing. Incident site lattices, etgis also automatically incorporated in
general terms the dynamics that occurs during the processirtge PFC model. The model differs from standard phase field
is controlled by the nature and interaction of the topologicalmodels in that the field to be consider@te time-averaged
defects that delineate the spatial patterns. For example, idensity is only averaged in time and not in space. As will be
spinodal decomposition, the topological defects are surfacediscussed in later sections this formulation allows a descrip-
that separate regions of different concentration. The motiotion of systems on diffusive time scales and interatomic
of these surfaces is mainly controlled by the local surfacdength scales. In this sense the model bridges a molecular
curvature and nonlocal interaction with other surfaces oiescription(i.e., molecular dynamigsand a continuum field
boundaries through the diffusion of concentration. In con-theory.
trast, block-copolymer systems form lamellar or striped The purpose of this paper is to introduce and motivate this
phases and the topological defects are dislocations in theodeling technique, discuss the basic properties of the
striped lattice. In this instance the defects interact througimodel, and present several applications to technologically
long-range elastic fields. important nonequilibrium phenomena. In the remainder of

One method for modeling the topological defects isthis section a brief introduction to phase field modeling tech-
through the use of “phase fieldgl]. These can be thought of niques for uniform and periodic fields is discussed and re-
as physically relevant fieldsuch as concentration, density, lated to the study of generic liquid-crystal transitions. In the
magnetization, etg.or simply as auxiliary fields constructed following section a simplified PFC model is presented and
to produce the correct topological defect motion. In con-the basic properties of the model are calculated analytically.
structing phenomenological models it is often convenient toThis includes calculation of the phase diagram, linear elastic
take the former point of view, since physical insight or em-constants, and the vacancy diffusion constant.
pirical knowledge can be used to construct an appropriate In Sec. lll the PFC model is applied to a number of inter-
mathematical description. In this paper the construction of @&sting phenomena including the determination of grain
phase field model for the dynamics of crystal growth thatboundary energies, liquid-phase epitaxial growth, and mate-
includes elastic and plastic deformatiofy is described. rial hardness. In each of these cases the phenomena are stud-
The model differs from other phase field approaches to elased in some detail and the results are compared with standard
ticity [3—9] in that the model is constructed to produce phaseheoretical results. At the end of this section sample simula-
fields that are periodic. This is done by introducing a freetions of grain growth, crack propagation, and a reconstruc-
energy that is a functional of the local-time-averaged densityive phase transition are presented to illustrate the versatility
field, p(r',t). In this description the liquid state is representedof the PFC model. Finally a summary of the results is pre-
by a uniformp and the crystal state is described by that  sented in Sec. IV.
has the same symmetry as a given crystalline lattice. This
description of a crystal has been used in other contexts
[10,17, but not previously for describing material processing
phenomena. For simplicity this model will be referred to as Many nonequilibrium phenomena that lead to dynamic
the phase field crystalPFC model. spatial patterns can be described by fields that are relatively

This approach exploits the fact that many properties ofuniform in space, except near interfaces where a rapid
crystals are controlled by elasticity and symmetry. As will bechange in the field occurs. Classic examples include order-
discussed in later sections, any free energy functional that idisorder transitiongwhere the field is the sublattice concen-
minimized by a periodic field naturally includes the elastictration), spinodal decompositio(where the field is concen-
energy and symmetry properties of the periodic field. Thugration) [12], dendritic growth[13], and eutectic§14]. To a

A. Uniform fields and elasticity
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large extent the dynamics of these phenomena is controlled V.= - V[ (0" = w(0
by the motion and interaction of the interfaces. A great deal . Lp(07) = w(@)],
of work has gone into constructing and solving models that

describe both the interfacg$sharp interface model$”"and w(0) = dok + BV,

fields (“phase field modely” Phase-field models based on

free-_energy functlonals_ are constructed by conS|d_er|ng sym- 9 uldt=DVu, (5)
metries and conservation laws and lead to a relatively small

(or generig set of sharp interface equatiofis5]. where u= 6F/ 8¢ is the chemical potentialj, is the capil-

To make matters concrete consider the case of spinodgry length, 3 is the kinetic undercooling coefficient, is a
decomposition in AlZn. If a high-temperature homogeneousunit vector perpendicular to the interface positi@njs the
mixture of Al and Zn atoms is quenched below the criticalpulk diffusion constant, and*0and O are positions just
temperature, small Al- and Zn-rich zones will form and ahead and behind the interface, respectively.
coarsen in time. The order parameter field that describes this |t turns out that Eqs(4) and(5) always emerge when the
phase transition is the concentration field. To describe th@ulk free energy contains two wells and the local free energy
phase transition a free energy is postuldiegl, made upby increases when gradients in the order parameter field are
consideration of symmetries. For spinodal decomposition thgresen{15]. In this sense, Eq4) and(5) can be thought of

free energy is typically written as follows: as generic or universal features of systems that contain do-
main walls or surfaces. As will be discussed in the next sub-

]—“:f dVf(¢) + KW ¢|2/2], (1 section, a different set of generic features arises when the

field prefers to be periodic in space. Some generic features of

where f(¢) is the bulk free energy and must contain two periodic systems are_that they naturally contain an elastlg
wells, one for each phagee., one for Al-rich zones and one €N€rgy. aré anisotropic, and hgve defects that are topologi-
for Zn-rich zones The second term in Eql) takes into cally identical to those found in crystals. A nurr:t_)er of re-
account the fact that gradients in the concentration field arfeamh groups have built these “periodic features” into phase-
energetically unfavorable. This is the term that leads to a¢'d Mmodels describing uniform fields. This approach has
surface tensioror energy/lengthof domain walls that sepa- SOMe appealing features such as mesoscopic length and time

rate Al and Zn-rich zones. The dynamics is postulated to b&C@les. Unfortunately this approach leads to quite compli-
cated continuum models. For example, in R@ds5], a con-

dissipative and act such that an arbitrary initial condition’” ! )
evolves to a lower-energy state. These general ideas lead HguUm phase-field model was constructed to treat the motion
the well-known equation of motion of defects, as well as their interaction with moving free sur-
faces. Although such an approach gives explicit access to the
i _ (= V2 a5_ 2 stresses and strains, including the Burger’s vector via a ghost
at =¥9 8¢ ey @ field, the interactions between the nonuniform stresses and
plasticity are complicated, since the former constitutes a
wherel is a phenomenological constant. The Gaussian ranfree-boundary problem, while the latter involves singular
dom variabler, is chosen to recover the correct equilibrium contributions to the strain, within the continuum formulation.
fluctuation spectrum and has zero mean and two-point corre-
lation:

(T 07 1)) =TheT(VA?AF = )8t =), (3) In many physical systems periodic structures emerge.
The variablea is equal to 1 if¢ is a conserved field, such as Classic examples include block copolymét§,18, Abriko-
concentration, and is equal to Odfis a nonconserved field, Sov vortex lattices in superconduct¢is®], oil-water systems
such as sublattice concentration. containing surfactantg20], and magnetic thin film$21]. In
A great deal of physics is contained in Eg) and many addition many convective instabilitie$22,23, such as
papers have been devoted to the study of this equatiofRayleigh-Bénard convection and a Margonoli instability,
While the reader is referred {d.2] for details, the only sa- lead to periodic structurgglthough it is not always possible
lient points that will be made here is thé) the gradient to describe such systems using a free-energy functional
term and double-well structure df¢) in Eq. (1) lead to a  construct a free-energy functional for periodic systems it is
surface separating different phases g@Bfthe equation of important to make the somewhat trivial observation that un-
motion of these interfaces is relatively independent of thdike uniform systems, these systems are minimized by spatial
form of f(¢). For example it is well knowii12,15,16 that if structures that contain spatial gradients. This simple observa-
¢ is nonconserved, the normal veloci; of the interface is ~ tion implies that in a lowest-order gradient expansion the
given by coefficient of|[V¢|? in the free energysee Eq(1)] is nega-
Vo= k+ A 4) tive. By itself this term would lead to infinite gradients ¢
n ' so that the next-order term in the gradient expansion must be
where k is the local curvature of the interface aAdis di-  included(i.e., |[V?¢|?). In addition to these two terms a bulk
rectly proportional to the free-energy difference between thdree energy with two wells is also needed, so that a generic
two phases. i is conserved, then the motion of the inter- free-energy functional that gives rise to periodic structures
face is described by the following set of equati¢hs]: can be written:

B. Periodic systems
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F= a5 - V)2 + iWZ 2| +f a—d)—FVZ[f(ZHG(VZ)] + (12
= i ¢ 872 ¢ (d’) ot = b+,
K ag which can be easily solved to give
= [ dV| p—| V2+ 5V g+ f ) 6
f <¢ﬂ2[ 8.2 }d) (¢) (6) 2 2 -
T(AH) = a ot s —Qc@glt O N =)

whereK anda, are phenomenological constants. H(g1) =e T p(q,0) +e T fo et p(g,t'),

Insight into the influence of the gradient energy terms can (13

be obtained by considering a solution férof the form ¢
=Asin(2mx/a). For this particular functional form fog the
free energy becomes

F 2 a 1
—:KAZ[—;+9+:|+;def(¢)

whered is the wave vecto,= @ +G(q?), ¢ is the Fourier
transform of¢, i.e.,

a (14)

P(G,H) = f dred (7, 1)/(2m)",

KAZ 4KA?
~—-—+

1
2 o (Aa)®+ 3 J dVi(¢), (7)

and d is the dimension of space. The structure factor
S(q,)=(|p[*) is then

where Aa=a-—a,. At this level of_ simplifigation .it can be ,. kT ,.
seen that the free energy per unit length is minimized when S(q,t) = e 2" 'g(q,0) + %(1 —gdeqlty
a=ay or ag is the equilibrium periodicity of the system. Per- Wq

haps more importantly, it highlights the fact that the CNeTn a liquid system the density is stable with respect to fluc-
can be written in a Hooke's law forfi.e., E=Eo+(kA2)°],  yations which implies thab,>0. The equilibrium liquid-

which is so common in elastic phenomena. Thus a generig; () —
- ) ~''State structure factd®(q)=S(g,%) then becomes
feature of periodic systems is that for small perturbation a(@=50,)

(e.g., compression or expansjaway from the equilibrium 4o KgT
they behave elastically. This feature will be exploited to de- Sﬁq(q) - &)_
velop models for crystal systems in the next section. 9

This simple calculation indicates that the method can
model a liquid state if the functiora“uq is replaced with

ksT/Sig(a) or

(15

(16)

C. Liquid-solid systems

In a liquid-solid transition the obvious field of interest is B @
the density field since it is significantly different in the liquid Gla) = kBT/S?q -7 (17)

and solid phases. More precisely the density is relativelys typical liquid-state structure factor and the corresponding

homogeneous in the liquid phase and spatially peri@dic,

@q are shown in Fig. 1. Thu&(V?) can be obtained for any

crystalling in the solid phase. The free-energy functional Cansyre material through Eq17).

then be approximated as

$
2

wheref andG are to be determined ang#lis the deviation of

f:de[H(qs)]:de[f((pH G(V2)¢>], (8)

density from the average density. Under constant-volume
conditions ¢ is a conserved field, so that the dynamics is

given by

¢ SF
— =TV +7p, 9
ot 567 9)

where 7 is a Gaussian random variable with zero mean an

two-point correlation:

(p(F,O)p(F" 1)) =Tk, V28(F = ") 8t —t'). (10)

To determine the precise functional form of the operato

G(V?) it is useful to consider a simple liquid singeis small

andf can be expanded to lowest orderdn—i.e.,
£

fliq:f(0)+f(l)¢+?¢2+ e (11)

wheref) = (5'f/3¢') 4=o. In this limit Eq. (9) takes the form

In the solid state the density is unstable to the formation
of a periodic structurdi.e., to forming a crystalline solid
phas¢ and thusw, must go negative for certain values @f
This instability is taken into account by the temperature de-
pendence of ®—i.e.,

f@=a(T-T,). (18)

Thus, whenT>T,, wy is positive and the density is uni-
form. WhenT<T,,, w, is negative(for some values ofy)

and the density is unstable to the formation of a periodic
structure. To properly describe this state, higher-order terms
in ¢ must be included in the expansionfdfp), sinceq¢ is no
(#onger small. Before discussing the properties of a specific
choice forf(¢) it is worth pointing out some generic elastic
features of such a model.

As illustrated in the Sec. | B a free energy that is mini-
'mized by a periodic structure has “elastic” properties. The
elastic constants of the system can be obtained by formally
expanding around an equilibrium state in the strain tensor. If
the equilibrium state is defined to lg(r) and the displace-
ment field isd, then ¢ can be writtend(r) = g +U) +e,
where e will always be chosen to minimize the free energy.
Expanding to lowest order in the strain tensor gives
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from a uniform density stat¢i.e., a liquid to a periodic
density statdi.e., a crystal

Il. SIMPLE PFC MODEL: BASIC PROPERTIES

S(q)

In this section perhaps the simplest possible periodic
model of a liquid-crystal transition will be presented. Several
basic features of this model will be approximated analyti-
cally in the next few subsections. This includes calculations
of the phase diagram, the elastic constants, and the vacancy
diffusion constant.

A. Model

S(g)!

In the preceding section it was shown that a particular
material can be modeled by incorporating the two-point cor-
relation function into the free energy through E4j7). It was
also argued that the basic physical features of elasticity are
! ! ! ! ! ! ! ! naturally incorporated by any free energy that is minimized

4 5 6 7 8 by a spatially periodic function. In this section the simplest
a (&) possible free energy that produces periodic structures will be

FIG. 1. The points correspond to an experimental liquid struc-examlned in detail. This free energy can be constructed by

ture factor for®®Ar at 85 K taken fron{24]. The line corresponds to fitting the following functional form forG:

a best fit to Eq(22). G(Vz) — )\(q(z) + Vz)z, (22)
to the first-order peak in an experimental structure factor. As
F=Fo+ J dF(Cij,kIUijUkI + o), (19 an example such a fit is shown for argon in Fig. 1. At this
level of simplification the minimal free-energy functional is
whereC;;  is the elastic constant given by given by
1 PH {¢ *
Cin= — . (20) F= f dr(—[aAT+>\(q§+V2)2]¢+ u—>- (23
' 219 uijukl eq 2 4

In Eq. (19) the Einstein summation convention is useg, In principle other nonlinear termgsuch as¢®) can be in-

represents the usual components of the strain tensor, i.e., cluded in the expansion but retaining or}f simplifies cal-
culations. The dynamics ap is then described by the equa-

! 0—'rJ ar; ar; (9r] ' d)
J

OF
and the subscriptqin Eq. (20) indicates that the derivatives P IVZu+ = FVZ% +7. (24)
are evaluated ath= ) (i.e., u;=0). While Eq. (20) is
somewhat formal and difficult to use for a specific model, itFor convenience it is useful to rewrite the free energy in
does highlight several important features. Equati@®  dimensionless units—i.e.,
shows that the elastic constants are simply related to the AT
curvature of the free energy along given strain directions. s _ u _aal _ 6
Perhaps more importantly, EQRO) shows thatC;; ,; is pro- X=1t. ¢=¢ A ' )\qg' r=Ihagt. (29
portional toH which is a function of the equilibrium density

field ¢oq Thus if the free energy is written such thatis In dimensionless units the free energy becomes

minimized by ¢.q—that is, cubic, tetragonal, hexagonal, F W o
etc.—thenC;; ,q will automatically contain the symmetry re- F= 7 :f dx Ew(Vz)zp+ | (26)
quirements of that particular system. In other words, the elas- 0

tic constants will always satisfy any symmetry requirementyhere 7, = N8 ¥/u and
for a particular crystal symmetry sineg;  is directly pro-
portional to a function that has the correct symmetry. This o(V?) =1+ (1+V?>2 (27)
also applies to the type or kind of defects or dislocations thaii.he dimensionless equation of motion becomes
can occur in any particular crystal system, since such defor-
mations are determined by symmetry alone. ay 5

In the next section a very simple model of a liquid-crystal ot VH(VA g+ 4 + L, (29
transition will be presented and discussed in some detail.
This model is constructed by providing the simplest possiblevhere ({(y,t1){(F5, 72))=DV28(f1~Fp)d(r—7) and D
approximation forf(¢) that will lead towards a transition EukBqu“‘/)\z.
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Equations(26), (27), and (28) describe a material with trrTr T T T

I ) . . L Constant J
specific elastic properties. In the next few sections the prop- Phase
erties of this “material” will be discussed in detail. As will be r v=v 1

shown, some of the properties can be adjusted to match a o
given experimental system and others cannot be matched L
without changing the functional form of the free energy. For
example the periodicityor lattice constantcan be adjusted

since all lengths have been scaled wjgh The bulk modulus

can also be easily adjusted since the free energy has beer;oz B
scaled with\ , u, andqy. On the other hand, this free energy -
will always produce a triangular lattice in two dimensions -

Periodic
Phase

¥ = A sin(x) + ¢,

55>

[10,17). To obtain a square lattice a different choice of non- L .’" _
linear terms must be made. This is the most difficult feature 04 ,0’0’\ |
to vary as there are no systematic methgisown to the | gO:O:\ |
authorsg for determining which functional form will produce :Q:Q:Q:Q‘

which crystal symmetry. Cubic symmetry can be obtained by i 20%%% 0

S
RS
I

S
ose!

replacingy* with |V ¢{* [25,24. - X
In the next few subsections the properties of this free -0.6 %

energy and some minor extensions will be considered in one -0.4 -0.2 0 0.2 0.4

and two dimensions. The three-dimensional case will be dis- v,

cussed in a future paper.

Q

TR

FIG. 2. One-dimensional phase diagram in the one-mode ap-
) ) proximation. The solid line is the boundary separating congtamt
B. One dimension liquid) and periodiqi.e., crysta) phases. The hatched section of the
In one dimension the free energy described by @6) is plot corresponds to regions of liquid-crystal coexistence.

minimized by a periodic function when the average value of _
() is small and a constant whehis large. To determine f"’zd N -0 32
the properties of the periodic state it is useful to make a " YLilY) = pegl =0, (32
one-mode approximation—i.ei=Asin(gqx)+, which is o o
valid in the smallr limit. Substitution of this function into  where ¢ is a solution of ;= pueq, ¥ is @ solution ofu.

Eq. (26) gives = Meqg _and /J«(‘//):/’Lp(::uc) if }_p<~7:c (Fp>~7:c) and u
g 27 v o =9FI . Using these conditions it is straightforlvard to show
T on dx[zw(ai)zﬁ Z} that forr >-1/4 a periodic state is selected ff <-r/3
ar 0 —

and a constant state is selected whgfr> V-r/3. Forr<

g? . 3A? Jz a2l apz —-1/4, there can exist a coexistence of periodic and constant

=5 | @ + 3 + Py +—| wgt B | (29)  states. If the constant and periodic states are considered to be
a liquid and crystal, respectively, then this simple free energy

allows for the coexistence of a liquid and crystal, which im-

O | i 2 — @ = . . . . .
wherew, is the Fourier transform ab(V*)—i.e., wg=r+(1 plies a free surface. The entire phase diagram is shown in

-q)?. Minimizing Eq. (29) with respect tog gives the se- £~
lected wave vectog* =1. Minimizing F with respect toA g« ; : ;
ec a” =4 9 P It is also relatively easy to calculate the elastic energy in

givesA?=—4(ag-/3+y7). This solution is only meaningful if  the one-mode approximation. #=2=/q is defined as the
A'is real, since the density is a real field. This implies thatone-dimensional lattice parameter, then fiean be written

periodic solutions only exist when<-3¢?, since wg =T
The minimum free-energy density is then FP/L = FRi/L + Ku?/2 +O(W) -+, (33

whereu= (a-ag)/ay is the strain and is the bulk modulus

P/l =2 201 _ A
FPIL=-r26 + 2(1 —1)/2 - 54?4 (30) and is equal to
Equation(30) represents the free-energy density of a periodic &
solution in the one-mode approximation. To determine the K=— (2 + gl3) 2% , (34)
phase diagram this energy must be compared to that for a a de? 4=

constant statéi.e., the state for whicly°=) which is : . . . .
@ W=y or for the particular dispersion relationship used here,

P P K=-8(r+3¢y?)/3. The existence of such a Hooke’s law rela-

c/| — 4

FIL = o2 + y1a. (31) tionship is automatic when a periodic state is selected since
To obtain the equilibrium states the Maxwell equal-areaF always increases when the wavelength deviates from the

construction rule must be satisfied—i.e., equilibrium wavelength.
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C. Two dimensions B T T T ]
. C ~Te " T e ) ]
1. Phase diagram F 7 : -
In two dimensiond= is minimized by three distinct solu- .t ]
. . .. . . E 15 &4 -
tions for . These solutions are periodic in either zero dimen- =" [ ]
sions(i.e., a constant one dimensior{i.e., stripe$, or two %10 - 3
dimensions(i.e., triangular distributions of drops or “par- r §
ticles”). The free-energy density for the constant and stripe 5F ]
solutions are identical to the periodic and constant solution F | | ]
discussed in the preceding section. The two-dimensional so- 0~ 1+ ]
lution can be written in the general form e TN b) 3
i) =2 a, €7+ g, (35 150 BN 3
nm T RN ]
whereG=nb,; +mb, and the vectory, andb, are reciprocal F A N ]
lattice vectors. For a triangular lattice the reciprocal lattice o5 [ 3
vectors can be written C ]
C | | I | I | | | | | | )
- 20— %06 0.4 -0.2 0
b= —=—(3/2x+Yy/2), r
ay3/2 . _
FIG. 3. In (a)Jhe minimum of the free energy is plotted as a

> function ofr for = \-r/2. The solid line is Eq(38) and the points

b, = f 2 (36) are from numerical simulations. ifp) the bulk modulus is plotted

as a function of for =\-r/2. The solid line is an analytic calcu-

ay3/2 f f f /2. The solid | | |

where a is the distance between nearest-neighbor Ioca‘ation [(g:A)?/6] and the points are from numerical simulations.

maxima ofy (which corresponds to the atomic positipnis
analogy with the one-dimensional calculations prese(ged _A(— 1 [ Cap
Sec. Il B a one-mode approximation will be made to evalu- A= 5 g 3 15 - 3647, (39
ate the phase diagram and elastic constants. In a two- ] ) ]
dimensional triangular system a one-mode approximatiodt=\3/2, andSis a unit area. The accuracy of this one-mode
corresponds to retaining all Fourier components that have th@PProximation was tested by comparison ‘YV'th a d'rfc'[ nu-
same length. More precisely the lowest-order harmonics cornerical calculation for a range ofs, using “method I as

. . > described in the Appendix. The time stept) and grid size
sists of all(n,m) pairs such that the vectdd has length . L

s : . (Ax) were 0.0075 andr/4, respectively, and a periodic grid

27w/(ay3/2). This set of vectors includes(n,m) of a maximum size of 512x X 512Ax [27] was used. A com-
=(¢1,0), (0,%1), (1,-1, and(-1,1). Furthermore, since :

is a real function, the Fourier coefficients must satisfy theparison of the analytic and numerical solutions is_shown in
relationship a, n=a_nm=an-m IN addition, by symmetry, Fig. 3 for a_variety of \_/alu_es O'f (4 was set to bas“—r/_2).
a1 0= +1:a1’—1:6L1’ N Taking these considerations into ac- 1 N€ approximate solution is quite close to the numerical one
count it is easy to show that in the lowest-order harmonic@d becomes exact in the limit- 0. The analytic results can
expansiony can be represented by in principle be systematically improved by including more
harmonics in the expansion.
- [y _ [2 " To determine the phase diagram in two dimensions the
= A cogq; x)cogqy/V3) — cog2q,y/V3)/2] + i, ! .
1= Alcodax)cosay/v3) - cos2ayN3)/2] + ¢ free energy of the triangular stafee., Eq.(38)] must be
(37) compared with the free energy of a striped stgate., Eq.

whereA, is an unknown constant amg=2x/a. Substituting (301 @nd a constant stafee., Eq.(31)]. In addition, sincej

Eq. (37) into Eq.(23) and minimizing with respect té, and IS & conserved fielq, Maxwell's.equal—area. construction must
qtqgi(vens 9.3 g P ' be used to determine the coexistence regions. The phase dia-

~ gram arising from these calculations is shown in Fig. 4.
= Sdx (Z2a dy | ¥ ., J While this figure does not look like a typical liquid-solid
< E 2 [ E“’(V )‘/’+Z phase diagram in the density-temperature plane, it can be

0 o avd/2 . : ) \
superimposed onto a portion of an experimental phase dia-
1 13—\ P 7 gram. As an example the PFC phase diagram is superim-
( 2 501/%‘) (1 +2—5r> posed onto the argon phase diagram in Fig. 5.

S

10 2
4Z¢—— 4? " 2. Elastic energy
NPT AN 15 - 3647 5 T3/ (38) The elastic properties of the two-dimensional triangular
state can be obtained by considering the energy costs for
where deforming the equilibrium state. The free-energy density as-
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S o cl ety Fshea/A: F}nin+ a/8§2 T,
F onstant b
i Phase |
0r a Fde)iatoric/A = I:E'nin + a’/2§2 oy (40)
L _ where a=(g,A;)?/3. These results can be used to determine
| i the elastic constants by noting that, for a two-dimensional
| R | system[10,28,
| |
h—o.z B : E 7 Fouk= Frint [C11+ CiplP+ -+,
F : ! . Stripe Py B
TP Phase g _rt 2. ...
: ,‘{g;e p:f"/e,. : Fshear= Frmin + [C4d/ 210"+ )
—04 | — Faeiatoric = Frin + [C11= C1o]®+ -+ (41)
i Y The elastic constants are then
C11/3 = C12= C44= ald. (42)
-0.6 X N M L . These results are consistent with the symmetries of a two-
—04 —02 0 0.2 0.4 dimensional triangular system—i.&C;;=C;,+2Cy. In two
Yo dimensions this implies a bulk modulus BE«a/2, a shear

FIG. 4. Two-dimensional phase diagram as calculated in a nemOleles ofi.=a/4, a Poissan’s ratio ob=1/3, and awo-
- 4. Two-dimensional phase diag s cajcuate ° dimensionalfi.e., Y,=4Bu/(B+ )] Young’s modulus ofY,

mode approximation. Hatched areas in the figure correspond to co- . . . .
existence regions. The small region enclosed by a dashed box Fszal& Numerical simulations were conductédsing the

superimposed on the argon phase diagram in Fig. 5. In this manné)[arametgrs and numerica.l t_echnique discusseq in_the previ-
the parameter of the free-energy functional can be chosen to repr6’-us sectionto test the validity of thesg ap.proxw'nat.lons for
duce certain aspects of a liquid-crystal phase transition. the bulk modulus. The results, shown in Fig. 3, indicate that

the approximation is quite good in the smallimit.
sociated with bulk, shear, and deviatoric deformations can be These calculations highlight the strengths and limitations
calculated by considering modified forms of E§7)—i.e.,  Of the simplistic model described by E@®3). On the posi-
(X1 (1+0),y1(1+0)(bulk), g(x+Zy,y)(sheay, and y(x(1  tive side the model contains all the expected elastic proper-
+{),y(1-9)(deviatorid. In such calculations represents ties (with the correct symmgtriesanq the elastic constants
the dimensionless deformatiog,=13/2, andA, is obtained ~ ¢an be approximated analytically within a one mode analy-

by minimizing F. The results of these calculations are sis. On the negative side, the model as written can only de-
. ) scribe a system wherf@;;=3C;,. Thus parameters in the free
FouldA=Fryin t al™+ -+, energy can be chosen to produce &y, but C;, cannot be

varied independently.

250 T T T T = = e _
J 3. Dynamics

7 The relatively simple dynamical equation fgr[i.e., EqQ.

] (28)] can describe a large number of physical phenomena
1 depending on the initial conditions and boundary conditions.
. To illustrate this versatility it is useful to consider the growth

. of a crystalline phase from a supercooled liquid, since this
. phenomenon simultaneously involves the motion of liquid-

- crystal interfaces and grain boundaries separating crystals of
. different orientations. Numerical simulations were conducted
- using the “method I” as described in the Appendix. The pa-

. rameters for these simulations werér,,D,Ax,At)

1 =(-1/4,0.285,10°% 7/4,0.0075 on a system of size

] 512Ax X 512Ax with periodic boundary conditions. The ini-

. tial condition consisted of large random Gaussian fluctua-

. tions (amplitude 0.1 covering(10x 10) grid points in three

. locations in the simulation cell. As shown in Fig. 6 the initial

state evolves into three crystallites, each with a different ori-

entation and a well-defined liquid-crystal interface. The ex-

cess energy of the liquid-crystal interfaces is highlighted in
FIG. 5. The phase diagram of argon. The hatched regions cofFig. 6(d) where the local free-energy density is plotted.

respond to the coexistence regions. The points are from the PFC As time evolves the crystallites impinge and form grain

model. boundaries. As can be seen in Fig. 6 the nature of the grain

200

T (K)

150

100

051605-7



K. R. ELDER AND M. GRANT PHYSICAL REVIEW E70, 051605(2004)

a) : a) b)
. .i.
. LA A
i
c) d)
Y _ o.o.;.o.o .
AL L L
LA A SR
.-.o ) o.-. -.o.o.o.o.o.- :

FIG. 7. Vacancy diffusion times. In this figure the grey scale is
proportional to they(r,t) - ¢ The times shown aré) t=0, (b)
t=50, (c) t=100, and(d) t=150.

cal simulations of this process are shown in Fig. 7 using
method | (see the Appendjix with the parameters
(r,,D,Ax,At)=(1/4,1/4,047/4,0.0075. To highlight
FIG. 6. Heterogeneous nucleation of three crystallites in a sudiffusion of the vacancy, the difference betweg,t) and a
percooled liquid. The grey scale {a), (b), and(c) corresponds to  perfect equilibrium statéys) is plotted in Fig. 7.
the density field/ and in(d), (), and(f) to the smoothed local free The diffusion constant in this system can be obtained by a
energy. The configurations are taken at tifre800, 525, and 3975 simple linear stability analysis, or Bloch-Floquet analysis,
for (a)+(d), (b)+(e), and (c)+(f), respectively(Note that only a  around an equilibrium state. To begin the analysis the equa-
portion of the simulation is shown heye. tion of motion for ¢ is linearized aroundj—i.e., = y4(1)
+8y(r,1). To first order indy, Eq.(28) becomes

boundary between grairi&) and(3) is significantly different
from the boundary between grai@®) and (1) [or (3)]. The ey L

reason for this is that the orientation of graiily and(3) is — = V(0 + 3[¢P + 2yg, + g 16y, (43)
quite close but significantly different frof2). The low-angle Jt

grain boundary consists of dislocations separated by large — ) ]
distances, while the high-angle grain boundary consists ofthereg:=—y [see Eq(35)]. The perturbationsy is then
many dislocations piled together. A more detailed discussiogXpanded as follows:

of the grain boundaries will be given in Sec. Ill A. Even this . o

small sample simulation illustrates the flexibility and power 8= 2 by (1) M2V SIHQT (44)
of the PFC technique. This simulation incorporates the het- nm
erogeneous nucleation of crystallites, crystallites with trian-S

: ; . Substituting Eq(44) into Eq. (43) gives
gular symmetry and elastic constants, crystallites of multi- 9 Eqa4 a-(43 9

orientations, the motion of liquid-crystal interfaces, and the ab; . ol .

creation and motion of grain boundaries. While all these fea- _l& Lo ki,j((3¢/f2 + @)y + 642 ay pbion jom

tures are incorporated in standard microscopic simulations nm

(e.g., molecular dynamigghe time scales of these simula- +3 b .. 45
tions are much longer than could be achieved using micro- ng’,p 8nmpDi-n-t,j-m-p | (45)

scopic models.

One fundamental time scale in the PFC model is the difwhere,a=r+(1-k’))? andk? = (ig,+Q)?+07(i +2))%/3.
fusion time. To envision mass diffusion in the PFC model it To solve Eq(45) a finite number of modes are chosen and
is convenient to consider a perfect equilibriigh) configu- the eigenvalues are determined. Using the modes corre-
ration with one “particle” missing. At the atomic level this sponding to the reciprocal lattice vectors in the one-mode
would correspond to a vacancy in the lattice. Phonon vibraapproximation[(m,n)=(x1,0),(0,+1),(1,-1,(-1,1] and
tions would occasionally cause neighboring atoms to hoghe (0, 0) mode gives four eigenvectors that are always nega-
into the vacancy and eventually the vacancy would diffusdive and thus irrelevant and three eigenvalues that have the
throughout the lattice. In the PFC model the time scales aform -DQ?. The smallesb arises fromb, ; mode and can be
sociated with lattice vibrations are effectively integrated outdetermined analytically if only this mode is usétie other
and all that is left is long-time mass diffusion. In this in- eigenvalues correspond @=3,9). Since this is the small-
stance the density at the missing spot will gradually increasestD, it determines the diffusion constant in the lattice. The
as the density at neighboring sites slowly decreases. Numersolution is
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0 100 200 300 200 500 FIG. 9. Schematic of a grain boundary.

t

standard uniform phase-field models. The yield strength is

examined as a function of grain size and the reverse Hall-

Petch effect is observed. Finally some very preliminary nu-

merical simulations are presented in Sec. Ill D to demon-

strate the versatility of the technique. This section includes

simulations of grain growth, crack propagation, and recon-

structive phase transitions. While the applications presented
in this section are at an illustrative level, a connection to real

. . ) ) “materials can be made by matching parameters of the model
7.1n th|s_calcula2t|or; the envelope of profile @_Was fit to to experimental ones through elastic constants, phase dia-
a GaussianAe""?”) and the standard deviatiofw) was  grams, etc., as discussed in Secs. | C and Il C 1.

measured. The diffusion constant can be obtained by noting

that the solution of a diffusion equatigne., 9C/dt=DV>C)

is Coce™P_j e ¢2=Dt/2. In Fig. 8,02 is plotted as a
function of time and the slope of this curve gives=1.22.

This is quite close to the value predicted by Etf) which is

1.25.

FIG. 8. Vacancy diffusion. In this figure the average of the stan-
dard deviation in thex andy directions is plotted as a function of
time.

D=3y2+r+1+9AY8. (46)

The accuracy of Eq46) was tested by numerically measur-
ing the diffusion constant for the simulations shown in Fig

A. Grain boundary energy

The free-energy density of a boundary between two grains
that differ in orientation is largely controlled by geometry. In
a finite-size two-dimensional system the parameters that con-
trol this energy are the orientational mismattand an offset
distanceA (or alternatively a disclination angleas shown in
Fig. 9. For small, 6 controls the number of dislocations per
unit length andA controls the average core energy. For an
In this section several applications of the PFC model thatnfinite grain boundaryA becomes irrelevant, unless the dis-
highlight the flexibility of the model will be considered . In tance between dislocation is an integer number of lattice con-
Sec. Il A the energy of a grain boundary Separating twostants(and the integer is relatively SmﬁlNeVertheleSS, itis
grains of different orientation is considered. The results arétraightforward to determine a lower bound on the grain
compared with the Read-Shockley equatj@8] and shown boundary energy in the smaflimit, by directly relating the
to agree quite well for small orientational mismatch. Thisdislocation density tof and assuming that the dislocation
calculation, in part, provides evidence that the interactiorfOres can always find the minimum-energy location. The lat-
between dislocations is correctly captured by the PFC model€ assumption restricts the calculation to providing a lower
since the grain boundary energy contains a term that is due #eund on the grain boundary energy.
the elastic field set up by a line of dislocations. In Sec. 1B For small§, Read and Shocklej29] were able to derive
the technologically important process of liquid-phase epitax&N expression for the grain boundary energy, assuming the
ial growth is considered. Numerical simulations are con-dislocation core energy was a constant independent of geom-
ducted as a function of mismatch strain and show how thé&try. In two dimensions the energy/length of the grain bound-
model naturally produces the buckling instability and nucle-ary is [10]
ation of dislocations. In Sec. IIl C the yield strength of poly- F b2Y, oma
(nano) crystalline materials is examined. This is a phenom- + 1-In /!
enon that requires many of the features contained in the PFC
model (i.e., multiorientations, elastic and plastic deforma-whereb is the magnitude of the Burger’s vectarjs the size
tions, grain boundarigsthat are difficult to incorporate in of the dislocation cored is the distance between disloca-

Ill. SIMPLE PFC MODEL: APPLICATIONS

E = Ecore % (47)
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tions, Y, is the two-dimensional Young's modulus, aBg,e I a) .:.:.:.:.:.'.',-.-.'..'..
is the energy/length of the dislocation core. To estimate the looal Y
minimum core energy it is convenient to assume that the core Y
energy is proportional to the size of the corE0—i.e., :.:
E.oe=Ba&, where B is an unknown constant. The total OCX
energy/length then becomes APy
F b2y, ( 2wa> ] KX
—=Ba?+—=|1-Inl—||. 48 Py
L 87-rd{ d “48) o
LA
To obtain a lower bound oR/L the unknown parameté is E-:-:-.-.-.-.o.
chosen to minimizeF/L; i.e., B is chosen to satisfy Fooe
d(F/L)/da=0, which givesBa?=b?Y,/16xd. Thus the free o
energy per unit length is X X -
F_ ‘bZYZF - In(zia” (49 AL AR LU
L 8md|2 d ' FIG. 10. The grey scale corresponds to the magnitude of the

field ¢ for a grain boundary mismatch 6£5.8° and§=34.2° in(a)

Fyrthermore, from _purely. geometrical ConSideraﬁons’ theand(b), respectively. Ia) squares have been placed at defect sites.
distance between dislocationsdsa/tan(6), whered is the

orientational mismatch. Finally in the small-angle limit

- The extra degree of freedom can lead to interesting phenom-
[tan(6)= 0] Bq. (49) reduces to ena, such as coincident site lattices that significantly alter the
F by, (3 grain boundary energy. The PFC model should provide an

L EH 5 In(276) |, (50)  excellent tool for studying such phenomena since it is purely

a geometrical effect that is naturally incorporated in the PFC
where the dislocation core sibewas assumed to be equal to approach.
the lattice constard.

To examine the validity of Eq(50) the grain boundary

energy was measured as a function of angle. In these
simulations numerical method I(see the Appendix Liquid-phase epitaxial growth is a common industrial
was used with the parameter se(tr,Z,D,Ax,At) method[32] used to grow thin films _that are coherent with a
=(-4/15,1/5,07/4,0.00. The initial condition was con- subst_rate. The properties of such films depend on the struc-
structed as follows. On a periodic grid of sitex L., a tural integrity of the film. Ur_]fortune_ltely flat defect-free_ h_et-
triangular solutioni.e., Eq.(37)] for ¢ was constructgd in eroepitaxial films of apprec!able_ th|ckng§s are often difficult
one orientation between<0x<L,/4 and 3,/4<x<L,. In to grow due to morphological instabilities induced by the

the center of the simulatio@.e., L,/4<x<3L,/4) a trian-

gular solution of a different orientation was constructed. A AL
small slab of supercooled liquid was placed between the two 20 - A A A
crystals so as not to influence the nature of the grain bound- r RS (RPN ]
ary that emerged. The systems were then evolved for a time | /N RVAN
of t=10000, after which the grain boundary energy was L / \ _
measured. Small portions of sample configurations are 15
shown in Fig. 10 ford=5.8° and#=34.2° (the grain bound-
ary energy is symmetric around 30As expected the Read-
Shockley description of a grain boundary is consistent with
the small-angle configuration. In contrast the large-angle
grain boundary is much more complicated and harder to
identify individual dislocations.

The measured grain boundary energy is compared with
Eqg. (50) in Fig. 11. As expected Eq50) provides an ad- 5
equate description for small angles but not for large angles.

The Read-Shockley equation does fit the measured result for Pl AP R PR
all 9 reasonably well if the coefficients that enter the equa- 0 2 4 6 |
tion are adjusted, as has been observed in experiment L. . .1 .. 0101 A
[30,31. This fit is shown in Fig. 12. 0 10 20 0 30 40 50

The situation is obviously more complicated in three di-
mensions since another degree of freedom exists. This de- FIG. 11. The grain boundary energy is plotted as a function of
gree of freedom can be visualized by considering taking onenismatch orientation. The points correspond to numerical simula-
of the crystals shown in Fig. 9 and rotating it out of the pagetions of the PFC model and the solid line corresponds to(&Q).

B. Liquid-phase epitaxial growth
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a Tin, 8, = 12.2°
* Lead, 6, = 25.0° 7
a Copper 8, = 25.0° J
e This Work, 8_ = 27.85° 1

0.2

. FIG. 13. Epitaxial growth(a), (b), (c), and(d) correspond to
1 times t=150, 300, 450, and 600, respectively. The grey scale is
0 0.5 1 15 proportional to the local density.e., ¢) in the film and liquid. The
6/6, substrate is highlighted by a darker grey background. To highlight
nucleated dislocations, small white dots were placed on atoms near
FIG. 12. The grain boundary energy of the PFC model is com+the two dislocation cores that appear in this configuration.
pared with experiments on tif80], lead[30], and coppef31].

. . . " ) __locations eventually climb to the film-substrate interface.
anisotropic strain arising from the mismatch between film The purpose of this section is to illustrate how the PFC

‘Ede substrate g;lttice constarﬁ%ﬁ]._Cor_lf_seqlfjfentlg, therz has nethod can be exploited to examine surface buckling and
deen a (tjr.emerr: ous alg]olun.t 0 | Sc'ebf?lt.' ic effort eyzte {0 Ungjsiocation nucleation in liquid-phase epitaxial growth. Mod-
erstanding the morphological stability of epitaxially grown eling this process requires a slight modification of the model

films [2,4,5,8,34-55 to incorporate a substrate that has a different lattice constant

The stability and resulting structural properties of epitax-i,41 the growing film. This can be accomplished by chang-
ial films are often compromised by at least two distinct Pro-ing the operato given in Eq.(27) to be

cesses which reduce the anisotropic strain. In one process,
small mounds or ridges form as the surface buckles or cor- w=r+(g?+V??2 (51)
rugates to reduce the overall strain in the film. This instabil- )
ity to buckling can be predicted by considering the linearWhere the parametey controls the lattice constant of the
stability of an anisotropically strained film as done by Asaro9rowing film and is set to 1 in the substrate. To incorporate a
and Tiller [34] and Grinfeld[35]. The initial length scale of ~constant mass flux the fieldwas fixed to be), at a constant
the buckling is determined by a competition between theistance(L=1004x) above the film. .
reduction in overall elastic energy which prefers mounds and Numerical simulations were conducted using method |
surface tension and gravity, both of which favor a flat inter-(S€e the Appendix for the parameters(r,y;,Ax,At)
face. Another mechanism that reduces strain is the nucleation(-1/4,0.282,0.785,0.0075 The width of the film grown
of misfit dislocations which can occur when the energy of awas L,=8192Ax, corresponding to a width of roughly 900
dislocation loop is comparable with the elastic energy of theparticles. The initial condition was such that eight layers of
strained film. Matthews and Blakes|gg3] and many others substrate atoms resided at the bottom of the simulation cell
[38-43 have used various arguments to provide an expreswith a supercooledr=-1/4, ,=0.282 liquid above it. A
sion for the critical height at which a flat epitaxially grown small portion of a simulation is shown in Fig. 13, for
film will nucleate misfit dislocations. =0.93. As can be seen in this figure, and in Fig. 14 the film
The two mechanisms are often considered separately binitially grows in a uniform fashion before becoming un-
it is clear that surface buckling can strongly influence thestable to a buckling or mounding instability. The film then
nucleation of misfit dislocations. Typically, as the film beginsnucleates dislocations in the valleys where the stress is the
to grow, it will deform coherently by the Asaro-Tiller- largest. After the dislocations nucleate the liquid-film inter-
Grinfeld instability. This leads initially to a roughly sinu- face grows in a more regular fashion. To highlight the local
soidal film thickness with a periodicity close to the mostelastic energy, the free energy is plotted in Fig. 14. As can be
unstable mode in a linear analysis. As time increases, theeen in this figure, elastic energy builds up in the valleys
sinusoidal pattern grows in amplitude and develops cusps afuring the buckling instability and is released when disloca-
local regions of high curvaturp44—-47 with a periodicity ~ tions appear. The behavior of the liquid-film interface was
similar to that of the initial instability although some coars- monitored by calculating the average interface height and
ening may occuf4,46,47. Eventually, the stress at the cusps width. Both quantities are plotted in Fig. 15. The data shown
becomes too large and a periodic array of misfit dislocation# this figure are representative of all simulations conducted
appears which reduces the roughness of the film. These digt different mismatch strains, but the precise details varied
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FIG. 14. Epitaxial growth(a), (b), (¢), (d), and(e) correspond to H
timest=150, 300, 450, 600, and 750, respectively. The grey scale is C
proportional to the free-energy density. To highlight the excess ol
strain energy in the film the grey scale near the defect was saturated. 0 5 10 15 0 5 10 15
The region enclosed by dashed lines corresponds to the configura- Height/a" Height/a"

tion shown in Fig. 13.
g FIG. 16. Epitaxial growth. In this figure a histogram of the

number of defects is shown as a function of height above the sub-

from run to run. In all cases the width initially fluctuates grate. (a), (b), (c), and (d) correspond tat=300, 450, 600, and
arounda*/2 (where a* is the thickness of a film layér 1000.

during “step-by-step” growth. The average width then in-
creases during buckling and decreases when dislocatio
nucleate. While these quantities are difficult to measare
situ, there is experimental evidence for this behavior in
SiGe-Si heterostructurg§6].

Assigning a value to the critical height. at which dis-
locations nucleate is subjective. Typically a first wave of dis-
locations is nucleated at a density that is determined by th
buckling instability. Since this is not the correct density to

"Bduce the strain to zero, a subsequent buckling and disloca-
tion occurs above the first wave. To complicate matters the
nucleated dislocations climb towards the substrate-film inter-
face. To illustrate these points the dynamics of a sample dis-
tribution of defects is shown as function of height in Fig. 16.
As can be seen in this figure the first wave of dislocations
gppears roughly between a film height of 6 and 13 layers.
Comparison of Figs. 16) and 1&d) shows that as time
evolves the overall distribution of dislocation climbs toward

s L o - ] ] the surface. To obtain an operational definitiontyf the
C ] average heighH(t) of the first wave of dislocations was
O ] monitored as a function of time. Typicall(t) is a maxi-
> 20 — . . . .
Er : mum when all dislocations in the first wave have appeared
R . and then decreases as the dislocation climb to the substrate-
10 - ] film interface.H. was defined as the maximum valuetd(ft).
r ] The critical height, as defined in the preceding paragraph,
o was calculated as a function of mismatch straim,(asm
—agypstratd/ Asubstrate 1HE equilibrium lattice constant in the
1| v . film ag,, was obtained by assuming it was directly propor-
L £ ] ; ; ; ;
. r & b tional to 1/ (note that, in the one-mode approximatian,
E 0.8 - S M dislocation ¥ :Zw/[\/ZS)q/ 2) and determining the constant of proportion-
5 :step by step | l . lati h h itical heiah .
5 L6k nucleation L ality by interpolating to where the critical height diverges.
= [l ] The numerical data were compared with the functional form
0.4 [ ] proposed by Matthews and Blakeslgs], i.e.,
L 1 1 1 | 1 1 1 | 1 1 1 I 1 1 : 1 H
02, 200 400 600 He o _(1 + |0910{_:} ) : (52)
time € a

FIG. 15. Epitaxial growth. Ia) and(b) the average film-liquid N Fig. 17._ This comparison |_nd|ca'ges that the data are con-
interface height and width is shown as a function of time. Both theSistent with a linear relationship betweea and [1
width and height have been scaled &% which is the one-mode  *+10g10(Hc/@*)]/(Hc/a* ), where the constant of proportion-
approximation for the distance between layers in the appropriatélity depends on whether a compressive or tensile load is
direction. applied to the substrate.
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FIG. 17. Epitaxial growth. In this figurkl, is the critical height
as defined in the text angdlis the mismatch strain between the film
and substrate.

C. Material hardness

It is well known that mechanical properties of materials ~ FIG. 18. In this figure the grey scale corresponds to the local
depend crucially on the microstructure and grain §&8. energy dens!ty before a strain is applled: The dark black regions on
For example, Hall[58] and Petch[59] calculated that for the left an_d right of the figure are the regions that are coupled to the
large grain sizes, the vyield strength of a material is inverselyxternal field.
proportional to the square of the average grain radius. This
result is due to the pileup of dislocations at grain boundarieghat the size of the polycrystal increased yx2To facilitate
and has been verified in many materials including Fe alloygelaxation, ¢ was extrapolated to the new size after every
[60-62, Ni [63], Ni-P alloys [64], Cu [65], and Pd[65]. = movement of the external field. The parameters of the simu-
However, for very small grain sizes the Hall-Petch relation-lations  to  follow  were (r, Yo, g, Lx, Ly, AX, At)
ship must break down, since the yield strength cannot di=(-0.3,0.312,0.377,204%,2048\x,0.79,0.05 and the
verge. Experimentally it is found that materials “soften” at pseudospectral numerical method described in the Appendix
very small grain sizes, such that the yield strength begins twas used.
decrease when the grain sizes become of the order of tens of A sample initial configuration is shown in Fig. 18. This
nanometers. This “inverse” Hall-Petch behavior has been olparticular sample contains approximately 100 grains with an
served in Ni-P alloyg64], Cu and Pd65], and molecular average grain radius of 35 particles. As can be seen in this
dynamics experimentf66,67. Determining the precise the figure there exists a large varietye., distribution of mis-
crossover length scale and mechanisms of material breaknatch orientationsof grain boundaries as would exist in a
down has become increasingly important in technologicatealistic polycrystalline sample. The same configuration is
processes as interest in nanocrystalline mate(ais nano-  shown after it has been stretched in théirection in Fig. 19
technology in generalincreases. corresponding to strain of 7.8%, respectively. Comparison of

The purpose of this section is to demonstrate how the PFhese figures reveals significant distortion of the grain bound-
approach can be used to study the influence of grain size aaries. For small strains the grain boundaries locations are
material strength. In these simulations a polycrystallinerelatively unaffected.
sample was created by heterogeneous nucledtiea Sec. As the polycrystalline sample is pulled the total free en-
[1l D 1 for details) in a system with periodic boundary con- ergy was monitored and used to calculate the stress—i.e.,
ditions in both thex andy directions. A small coexisting stress=dF/d{, where{ is the relative change in the width of
liquid boundary of width 20Q@x was included on either side the crystal. Stress-strain curves are shown in Fig. 20 as a
of the sample. To apply a strain the particles near the liquidfunction of grain size and strain rate. In all cases the stress is
crystal boundary(i.e., within a distance of 1®x) were initially a linear of function of strain until plastic deforma-
“pulled” by coupling these particles to a moving field that tion occurs and the slope of the stress-strain curve decreases.
fixed the particle positions. Initially the system was equili- In Fig. 2Qi@) the influence of strain rate is examined for the
brated for a total time of 40002000 before the field was initial configuration shown in Fig. 18. It is clear from this
applied and 2000 aftgrAn increasing strain was modeled by figure that the strain rate plays a strong role in determining
moving the field every so many time steps in such a mannethe maximum stress that a sample can reach, or the yield
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FIG. 21. The yield stress is plotted as a function of average
grain radius. The solid, open, and starred points correspond to strain
rates of 24<10°° 12x10°° and 6x10° respectively. The
dashed lines are guides to the eye.

FIG. 19. The same as Fig. 18, except at a strain of 7.8%.

stress, as has been observed in experim@ds The yield
strength increases as the strain rate increases as would
expected.

The influence of grain size on the stress-strain relationshi
is shown in Fig. 2(b) for four grain sizes. The initial slope
of the stress-strain curv@vhich will be denotedy in what

R)Fflows) increases with increasing grain size as does the
aximum stress, or yield stress, sustained by the sample.
he yield strength and elastic modul,) are plotted as a

function of inverse grain size in Figs. 21 and 22, respec-

tively, for several strain rates. For each strain rate the yield
stress is seen to be inversely proportional to the square root

15————FTFT T ] T € n ;
[y ] of the average grain size, except for very small grains where
« T / 1 the amorphous limit is reached. The constant of proportion-
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FIG. 20. In(a) the stress is plotted as a function of strain for a i | | | ]
system with an average grain radius of 35 particles. The solid lines o1 o5 oz oz
from top to bottom in(a) correspond to strain rates of 24 1/vVR/a

X106, 12x 1075, and 6x 1078, respectively. Inb) the solid lines

from top to bottom correspond to systems with average grain sizes FIG. 22. The elastic modul, (see text are plotted as a func-
tion grain radius. The solid, open, and starred points correspond to
strain rates of 241076, 12x 1075, and 6x 1075, respectively.

of 70, 50, 35, and 18 particles, respectively. In b@hand(b) the

dashed line corresponds to a unit slope.
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ality decreases with decreasing strain rate. Thus the PFC
approach is able to reproduce the inverse Hall-Petch effect or
the softening of nanocrystalline materials.

It would be interesting to observe the crossover to the
normal Hall-Petch effect where the yield stress decreases
with increasing grain size. However, it is important to note
that the initial conditions in these simulations was set up to
explicitly remove the Hall-Petch mechanism; i.e., each nano-
crystal was defect free. In addition thermal fluctuations were
not included in the simulations. Nevertheless it is unclear
whether or not a crossover may occur, due to the fact that
low-angle grain boundaries may act as sources of movable
dislocations. Further study of this interesting phenomenon
for larger grain sizes would be of great interest.

D. Other phenomena

There are many phenomena that the PFC method can be
used to explore. To illustrate this a few small simulations
were conducted to examine a number of interesting phenom-
ena of current interest. In the next few sections some pre-
liminary results are shown for grain growth, crack propaga-
tion, and reconstructive phase transitions.

FIG. 23. Heterogeneous nucleation and grain growth. In this
) figure the grey scale corresponds to the smoothed local free energy.
1. Grain growth (@, (b), (c), (d), (e), and (f) correspond to times 50, 200, 1000,

When a liquid is supercooled just below the melting tem-3000: 15000, and 50 000, respectively.

perature small crystallites can nucleate homogeneously or _
heterogeneously. The crystallites will grow and impinge on 2. Crack propagation

neighboring crystallites, forming grain boundaries. Depend- The PFC model can be used to study the propagation of a
ing on the temperature and average concentration the fingkack in ductile(but not brittle material. To illustrate this
state(i.e., in the infinite-time limif may be a single crystal or phenomena a numerical simulation was conducted on a pe-
a coexistence of liquid and crystal phases since there existsiydic system of sizg4096Ax, 1024Ax) for the parameters
miscibility gap in density for some regions of_the_ p_hase dia-‘r ,Z,AX,AI)I(—l.O,0.4977/3,0.05. Initially a defect-free
gram. For deep temperature quenches the liquid is unStabce}ystal was set up in the simulation cell that had no strain in
to the formation of a solid phase and initially an amorphousthex direction and a 10% strain in thedirection. A notch of
sample is created very rapidly which will evolve into a poly- _. 0 A )

: : . size 2A\x X 10Ax was cut out of the center of the simulation
crystalline sample and eventually become a single cryital I and laced with isting liquid=0.79. Th
the infinite-time limiy. All these phenomena can be studied cell and replaced with a coexisting lquidy=0.79. The
with the simple PFC model considered in this paper. _notch provides a nuclgatlng cite for.a cr.ack to start propagat-

In this section the PFC model is used to examine theé"9: A sample simulation is shown in Fig. 24.

heterogeneous nucleation of a polycrystalline sample from a
supercooled liquid state. A simulation containing 50 initial
seedg(or nucleation sitgswas conducted. The initial seeds  The simple PFC model can be used to study a phase tran-
were identical to those described in Sec. Il C 3 as were alsition from a state with square symmetry to one with trian-
other relevant parameters. The results of the simulations aigular symmetry. In the model described by ER6) a state
shown in Fig. 23. Comparison of Figs. @3 and 23c)  with square symmetry is metastable; i.e., a state with square
shows that there is a wide distribution of grain boundariessymmetry will remain unchanged unless boundary conduc-
each with a different density of dislocatiofshich appear as tion or fluctuations are present. Boundary conduction or fluc-
black dots in the figune Comparison of Fig. 28) with later  tuations allow for the nucleation of a lower-energy state
configurations indicates that the low-angle grain boundarievhich in this particular model is the state of triangular sym-
disappear much more rapidly than the large-angle ones. Thaetry discussed in Sec. Il C 1. A small simulation was per-
simple reason is that it is easy for one or two dislocations tdormed to illustrate this phenomenon. In this simulation a
glide in such a manner as to reduce the overall enghiyis  crystallite with square symmetry coexisting with a liquid was
usually accompanied with some grain rotajiohhe simula-  created as an initial condition. The parameters for this simu-
tion was run for up to a time df=50 000(or approximately lation were (r, jq, ¥s01, AX,At)=(1.0,0.68,0.52,1.0,0.02
1200 diffusion timep and contained approximately 15000 The simulations depicted in Fig. 25 show the spontaneous
particles. The simulation took roughly 70 h of CPU on atransition from a square lattice to a triangular one. Two vari-
single a chip processo(xp1000. ants of the triangular structurdiffering by a rotation of 30f

3. Reconstructive phase transitions
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a)

b)

S

FIG. 24. A portion of a simulation is shown where the grey scale  FIG. 25. The grey scale corresponds the figlda), (b), (c), and
corresponds to the local energy density. The size of both figures igl) correspond to times=2, 20, 40, and 180, respectively. () the
2048Ax X 1024Ax, where Ax=7/3. (a) and (b) are at timest  solid lines are guides to the eye.
=25000 and 65 000 after the rip was initiated, respectively.

simple relationd=nAt, x=iAx, andy=jAx. In the methods
form in the new phase as highlighted in Fig.(@p discussed below the maximum size of the spatial mesh is

A better method for studying this phenomenon is to creatéletermined by the periodicity of the selected states. For the
a free energy that contains both square and triangular synmodels used here the periodicityNs=7.3, so thatAx<7.3.
metry equilibrium states. This can be done by including aln most of the simulations presentexk~0.785, implying
|§¢|4 term (which favors square symmejrjn the free en- that each “particle” was descri_bed by@ grid points.Ax
ergy. This is, unfortunately not the most convenient term forVas chosen so that the numerical solutions converged to the

numerical simulations. A better approach is to simply couplé?nalytic one-mode approximations in the appropriate limit

two fields in the appropriate manner as was done in an earlidf-9- se€ Fig. 3
publication[2]. In either case an initial polycrystalline state
can be created of one crystal symmetry. Method |

In method | a Euler discretization scheme was used for
the time derivative and the “spherical Laplacian” approxima-
The purpose of this paper was to introduce the PFQion was used to calculate all Laplacians. For this method the
method of studying nonequilibrium phenomena involvingdiscrete dynamics reads
elastic and plastic deformations and then to show how the
technique can be applied to many phenomena. Those phe- et = i +V2Mn,i,jr (A1)
nomena included epitaxial growth, material hardness, grain ) ) o
growth, reconstructive phase transitions, crack propagatiofyhereu,;; is the chemical potential given by
and spinodal decomposition. In the future, we intend to ex-

IV. SUMMARY

tend this model to study these phenomena in three dimen- fanij = [0+ (L +V2 i = Ui (A2)
sions.
All Laplacians were evaluated as follows:
ACKNOWLEDGMENTS VP05 = [ nieny + fricey * Frigen + Frio0/2 + (Frjva o
This work was supported by Research Corporation Grant +ficnjen * Frisjor + Fricaj-0/4 = 3fn; J-]/(Ax)z.

No. CC4787 (K.R.E), NSF-DMR Grant No. 0076054

(K.R.E), the Natural Sciences and Engineering Research

Council of CanadgM.G.), and “le Fonds Québécois de la Method 11
Recherche sur la Nature et les Technologi@g’G.).

(A3)

In method Il a Euler algorithm was again used for the
time step, except that a simplifying assumption was made to
evaluater +(1+V?)?2y,; ] in Fourier space. In this approach

Equation(28) was numerically solved using two different the Fourier transform ofj,;; was numerically calculated
methods as described below. In what follows the subscriptghen multiplied byw(q) and then an inverse Fourier trans-
n, i, andj are integers that correspond to the number of timeform was numerically evaluated to obtain an approximation
steps and distance along tk@ndy directions of the lattice, to [r+(1+V2)2¢n,i,j]. If w(g) is chosen to bawv(g)=r+(1
respectively. Time and space units are recovered by theg?)? then, to within numerical accuracy, there is no

APPENDIX: NUMERICAL METHODS
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approximation. In this worlw(g) was chosen to be+(1  troducing a large wave vector cutoff is that the most numeri-
-g?)? if w(q) <-2.5 andw(q)=—2.5 otherwise. Thug/(q) is  cally unstable modes arise from the largest negative values
identical to the exact result for wave vectors close toof w(q). This allows the use of much larger time steps. Other
g=1—i.e., the wavelengths of interest. The advantage of inthan this approximation the method is identical to method I.
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