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I. INTRODUCTION

Material properties are often controlled by complex mi-
crostructures that form during nonequilibrium processing. In
general terms the dynamics that occurs during the processing
is controlled by the nature and interaction of the topological
defects that delineate the spatial patterns. For example, in
spinodal decomposition, the topological defects are surfaces
that separate regions of different concentration. The motion
of these surfaces is mainly controlled by the local surface
curvature and nonlocal interaction with other surfaces or
boundaries through the diffusion of concentration. In con-
trast, block-copolymer systems form lamellar or striped
phases and the topological defects are dislocations in the
striped lattice. In this instance the defects interact through
long-range elastic fields.

One method for modeling the topological defects is
through the use of “phase fields”[1]. These can be thought of
as physically relevant fields(such as concentration, density,
magnetization, etc.) or simply as auxiliary fields constructed
to produce the correct topological defect motion. In con-
structing phenomenological models it is often convenient to
take the former point of view, since physical insight or em-
pirical knowledge can be used to construct an appropriate
mathematical description. In this paper the construction of a
phase field model for the dynamics of crystal growth that
includes elastic and plastic deformations[2] is described.
The model differs from other phase field approaches to elas-
ticity [3–9] in that the model is constructed to produce phase
fields that are periodic. This is done by introducing a free
energy that is a functional of the local-time-averaged density
field, rsrW ,td. In this description the liquid state is represented
by a uniformr and the crystal state is described by ar that
has the same symmetry as a given crystalline lattice. This
description of a crystal has been used in other contexts
[10,11], but not previously for describing material processing
phenomena. For simplicity this model will be referred to as
the phase field crystal(PFC) model.

This approach exploits the fact that many properties of
crystals are controlled by elasticity and symmetry. As will be
discussed in later sections, any free energy functional that is
minimized by a periodic field naturally includes the elastic
energy and symmetry properties of the periodic field. Thus

any property of a crystal that is determined by symmetry
(e.g., the relationship between elastic constants, number and
type of dislocations, low-angle grain boundary energy, coin-
cident site lattices, etc.) is also automatically incorporated in
the PFC model. The model differs from standard phase field
models in that the field to be considered(the time-averaged
density) is only averaged in time and not in space. As will be
discussed in later sections this formulation allows a descrip-
tion of systems on diffusive time scales and interatomic
length scales. In this sense the model bridges a molecular
description(i.e., molecular dynamics) and a continuum field
theory.

The purpose of this paper is to introduce and motivate this
modeling technique, discuss the basic properties of the
model, and present several applications to technologically
important nonequilibrium phenomena. In the remainder of
this section a brief introduction to phase field modeling tech-
niques for uniform and periodic fields is discussed and re-
lated to the study of generic liquid-crystal transitions. In the
following section a simplified PFC model is presented and
the basic properties of the model are calculated analytically.
This includes calculation of the phase diagram, linear elastic
constants, and the vacancy diffusion constant.

In Sec. III the PFC model is applied to a number of inter-
esting phenomena including the determination of grain
boundary energies, liquid-phase epitaxial growth, and mate-
rial hardness. In each of these cases the phenomena are stud-
ied in some detail and the results are compared with standard
theoretical results. At the end of this section sample simula-
tions of grain growth, crack propagation, and a reconstruc-
tive phase transition are presented to illustrate the versatility
of the PFC model. Finally a summary of the results is pre-
sented in Sec. IV.

A. Uniform fields and elasticity

Many nonequilibrium phenomena that lead to dynamic
spatial patterns can be described by fields that are relatively
uniform in space, except near interfaces where a rapid
change in the field occurs. Classic examples include order-
disorder transitions(where the field is the sublattice concen-
tration), spinodal decomposition(where the field is concen-
tration) [12], dendritic growth[13], and eutectics[14]. To a

PHYSICAL REVIEW E 70, 051605(2004)

1539-3755/2004/70(5)/051605(18)/$22.50 ©2004 The American Physical Society70 051605-1



large extent the dynamics of these phenomena is controlled
by the motion and interaction of the interfaces. A great deal
of work has gone into constructing and solving models that
describe both the interfaces(“sharp interface models”) and
fields (“phase field models”). Phase-field models based on
free-energy functionals are constructed by considering sym-
metries and conservation laws and lead to a relatively small
(or generic) set of sharp interface equations[15].

To make matters concrete consider the case of spinodal
decomposition in AlZn. If a high-temperature homogeneous
mixture of Al and Zn atoms is quenched below the critical
temperature, small Al- and Zn-rich zones will form and
coarsen in time. The order parameter field that describes this
phase transition is the concentration field. To describe the
phase transition a free energy is postulated(i.e., made up) by
consideration of symmetries. For spinodal decomposition the
free energy is typically written as follows:

F =E dVffsfd + Ku¹W fu2/2g, s1d

where fsfd is the bulk free energy and must contain two
wells, one for each phase(i.e., one for Al-rich zones and one
for Zn-rich zones). The second term in Eq.(1) takes into
account the fact that gradients in the concentration field are
energetically unfavorable. This is the term that leads to a
surface tension(or energy/length) of domain walls that sepa-
rate Al and Zn-rich zones. The dynamics is postulated to be
dissipative and act such that an arbitrary initial condition
evolves to a lower-energy state. These general ideas lead to
the well-known equation of motion

] f

] t
= − Gs− ¹2da

dF
df

+ hc, s2d

whereG is a phenomenological constant. The Gaussian ran-
dom variablehc is chosen to recover the correct equilibrium
fluctuation spectrum and has zero mean and two-point corre-
lation:

khcsrW,tdhcsrW8,t8dl = GkBTs¹2dadsrW − rW8ddst − t8d. s3d

The variablea is equal to 1 iff is a conserved field, such as
concentration, and is equal to 0 iff is a nonconserved field,
such as sublattice concentration.

A great deal of physics is contained in Eq.(2) and many
papers have been devoted to the study of this equation.
While the reader is referred to[12] for details, the only sa-
lient points that will be made here is that(1) the gradient
term and double-well structure offsfd in Eq. (1) lead to a
surface separating different phases and(2) the equation of
motion of these interfaces is relatively independent of the
form of fsfd. For example it is well known[12,15,16] that if
f is nonconserved, the normal velocityVn of the interface is
given by

Vn = k + A, s4d

wherek is the local curvature of the interface andA is di-
rectly proportional to the free-energy difference between the
two phases. Iff is conserved, then the motion of the inter-
face is described by the following set of equations[15]:

Vn = n̂ ·¹W fms0+d − ms0−dg,

ms0d = d0k + bVn

] m/] t = D¹2m, s5d

wherem;dF /df is the chemical potential,d0 is the capil-
lary length,b is the kinetic undercooling coefficient,n̂ is a
unit vector perpendicular to the interface position,D is the
bulk diffusion constant, and 0+ and 0− are positions just
ahead and behind the interface, respectively.

It turns out that Eqs.(4) and(5) always emerge when the
bulk free energy contains two wells and the local free energy
increases when gradients in the order parameter field are
present[15]. In this sense, Eqs.(4) and(5) can be thought of
as generic or universal features of systems that contain do-
main walls or surfaces. As will be discussed in the next sub-
section, a different set of generic features arises when the
field prefers to be periodic in space. Some generic features of
periodic systems are that they naturally contain an elastic
energy, are anisotropic, and have defects that are topologi-
cally identical to those found in crystals. A number of re-
search groups have built these “periodic features” into phase-
field models describing uniform fields. This approach has
some appealing features such as mesoscopic length and time
scales. Unfortunately this approach leads to quite compli-
cated continuum models. For example, in Refs.[4,5], a con-
tinuum phase-field model was constructed to treat the motion
of defects, as well as their interaction with moving free sur-
faces. Although such an approach gives explicit access to the
stresses and strains, including the Burger’s vector via a ghost
field, the interactions between the nonuniform stresses and
plasticity are complicated, since the former constitutes a
free-boundary problem, while the latter involves singular
contributions to the strain, within the continuum formulation.

B. Periodic systems

In many physical systems periodic structures emerge.
Classic examples include block copolymers[17,18], Abriko-
sov vortex lattices in superconductors[19], oil-water systems
containing surfactants[20], and magnetic thin films[21]. In
addition many convective instabilities[22,23], such as
Rayleigh-Bénard convection and a Margonoli instability,
lead to periodic structures(although it is not always possible
to describe such systems using a free-energy functional). To
construct a free-energy functional for periodic systems it is
important to make the somewhat trivial observation that un-
like uniform systems, these systems are minimized by spatial
structures that contain spatial gradients. This simple observa-
tion implies that in a lowest-order gradient expansion the

coefficient ofu¹W fu2 in the free energy[see Eq.(1)] is nega-
tive. By itself this term would lead to infinite gradients inf
so that the next-order term in the gradient expansion must be
included(i.e., u¹2fu2). In addition to these two terms a bulk
free energy with two wells is also needed, so that a generic
free-energy functional that gives rise to periodic structures
can be written:
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F =E dVS K

p2F− u¹W fu2 +
a0

2

8p2u¹2fu2G + fsfdD
=E dVSf

K

p2F¹2 +
a0

2

8p2¹4Gf + fsfdD , s6d

whereK anda0 are phenomenological constants.
Insight into the influence of the gradient energy terms can

be obtained by considering a solution forf of the form f
=A sins2px/ad. For this particular functional form forf the
free energy becomes

F
a

= KA2F−
2

a2 +
a0

2

a4 + ¯G +
1

a
E dVfsfd

< −
KA2

a0
2 +

4KA2

a0
4 sDad2 +

1

a
E dVfsfd, s7d

where Da;a−a0. At this level of simplification it can be
seen that the free energy per unit length is minimized when
a=a0 or a0 is the equilibrium periodicity of the system. Per-
haps more importantly, it highlights the fact that the energy
can be written in a Hooke’s law form[i.e., E=E0+skDad2],
which is so common in elastic phenomena. Thus a generic
feature of periodic systems is that for small perturbation
(e.g., compression or expansion) away from the equilibrium
they behave elastically. This feature will be exploited to de-
velop models for crystal systems in the next section.

C. Liquid-solid systems

In a liquid-solid transition the obvious field of interest is
the density field since it is significantly different in the liquid
and solid phases. More precisely the density is relatively
homogeneous in the liquid phase and spatially periodic(i.e.,
crystalline) in the solid phase. The free-energy functional can
then be approximated as

F =E drW fHsfdg =E drWF fsfd +
f

2
Gs¹2dfG , s8d

wheref andG are to be determined andf is the deviation of
density from the average density. Under constant-volume
conditionsf is a conserved field, so that the dynamics is
given by

] f

] t
= G¹2

dF
df

+ h, s9d

whereh is a Gaussian random variable with zero mean and
two-point correlation:

khsrW,tdhsrW8,t8dl = Gkb¹
2dsrW − rW8ddst − t8d. s10d

To determine the precise functional form of the operator
Gs¹2d it is useful to consider a simple liquid sincef is small
and f can be expanded to lowest order inf—i.e.,

f liq = f s0d + f s1df +
f s2d

2!
f2 + ¯ , s11d

where f sid;s]i f /]fidf=0. In this limit Eq. (9) takes the form

] f

] t
= G¹2ff s2d + Gs¹2dgf + h, s12d

which can be easily solved to give

f̂sqW,td = e−q2v̂qGtf̂sqW,0d + e−q2v̂qGtE
0

t

eq2v̂qGt8hsqW,t8d,

s13d

whereqW is the wave vector,v̂q; f s2d+Gsq2d , f̂ is the Fourier
transform off, i.e.,

f̂sqW,td ; E drWeiqW·rWfsrW,td/s2pdd, s14d

and d is the dimension of space. The structure factor
Ssq,td;kudr̂u2l is then

Ssq,td = e−2q2v̂qGtSsq,0d +
kbT

v̂q

s1 − e−q2v̂qGtd. s15d

In a liquid system the density is stable with respect to fluc-
tuations which implies thatv̂q.0. The equilibrium liquid-
state structure factorSliq

eqsqd=Ssq,`d then becomes

Sliq
eqsqd =

kBT

v̂q

. s16d

This simple calculation indicates that the method can
model a liquid state if the functionv̂q is replaced with
kBT/Sliq

eqsqd or

Gsqd = kBT/Sliq
eq − f s2d. s17d

A typical liquid-state structure factor and the corresponding
v̂q are shown in Fig. 1. ThusGs¹2d can be obtained for any
pure material through Eq.(17).

In the solid state the density is unstable to the formation
of a periodic structure(i.e., to forming a crystalline solid
phase) and thusv̂q must go negative for certain values ofq.
This instability is taken into account by the temperature de-
pendence off s2d—i.e.,

f s2d = asT − Tmd. s18d

Thus, whenT.Tm, wq is positive and the density is uni-
form. WhenT,Tm, wq is negative(for some values ofq)
and the density is unstable to the formation of a periodic
structure. To properly describe this state, higher-order terms
in f must be included in the expansion offsfd, sincef is no
longer small. Before discussing the properties of a specific
choice for fsfd it is worth pointing out some generic elastic
features of such a model.

As illustrated in the Sec. I B a free energy that is mini-
mized by a periodic structure has “elastic” properties. The
elastic constants of the system can be obtained by formally
expanding around an equilibrium state in the strain tensor. If
the equilibrium state is defined to befeqsrWd and the displace-
ment field isuW, then f can be writtenfsrWd=feqsrW+uWd+e,
wheree will always be chosen to minimize the free energy.
Expanding to lowest order in the strain tensor gives
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F = F0 +E drWsCij ,kluijukl + ¯ d, s19d

whereCij ,kl is the elastic constant given by

Cij ,kl = U 1

2!

]2H

] uijukl
U

eq

. s20d

In Eq. (19) the Einstein summation convention is used,uij
represents the usual components of the strain tensor, i.e.,

uij ; S ] ui

] r j
+

] uj

] r i
+

] ul

] r i

] ul

] r j
D , s21d

and the subscripteq in Eq. (20) indicates that the derivatives
are evaluated atf=feqsrW d (i.e., uij =0). While Eq. (20) is
somewhat formal and difficult to use for a specific model, it
does highlight several important features. Equation(20)
shows that the elastic constants are simply related to the
curvature of the free energy along given strain directions.
Perhaps more importantly, Eq.(20) shows thatCij ,kl is pro-
portional toH which is a function of the equilibrium density
field feq. Thus if the free energy is written such thatF is
minimized by feq—that is, cubic, tetragonal, hexagonal,
etc.—thenCij ,kl will automatically contain the symmetry re-
quirements of that particular system. In other words, the elas-
tic constants will always satisfy any symmetry requirement
for a particular crystal symmetry sinceCij ,kl is directly pro-
portional to a function that has the correct symmetry. This
also applies to the type or kind of defects or dislocations that
can occur in any particular crystal system, since such defor-
mations are determined by symmetry alone.

In the next section a very simple model of a liquid-crystal
transition will be presented and discussed in some detail.
This model is constructed by providing the simplest possible
approximation forfsfd that will lead towards a transition

from a uniform density state(i.e., a liquid) to a periodic
density state(i.e., a crystal).

II. SIMPLE PFC MODEL: BASIC PROPERTIES

In this section perhaps the simplest possible periodic
model of a liquid-crystal transition will be presented. Several
basic features of this model will be approximated analyti-
cally in the next few subsections. This includes calculations
of the phase diagram, the elastic constants, and the vacancy
diffusion constant.

A. Model

In the preceding section it was shown that a particular
material can be modeled by incorporating the two-point cor-
relation function into the free energy through Eq.(17). It was
also argued that the basic physical features of elasticity are
naturally incorporated by any free energy that is minimized
by a spatially periodic function. In this section the simplest
possible free energy that produces periodic structures will be
examined in detail. This free energy can be constructed by
fitting the following functional form forG:

Gs¹2d = lsq0
2 + ¹2d2, s22d

to the first-order peak in an experimental structure factor. As
an example such a fit is shown for argon in Fig. 1. At this
level of simplification the minimal free-energy functional is
given by

F =E drWSf

2
faDT + lsq0

2 + ¹2d2gf + u
f4

4
D . s23d

In principle other nonlinear terms(such asf3) can be in-
cluded in the expansion but retaining onlyf4 simplifies cal-
culations. The dynamics off is then described by the equa-
tion

] f

] t
= G¹2m + h = G¹2

dF
df

+ h. s24d

For convenience it is useful to rewrite the free energy in
dimensionless units—i.e.,

xW = rWq0, c = fÎ u

lq0
4, r =

aDT

lq0
4 , t = Glq0

6t. s25d

In dimensionless units the free energy becomes

F ;
F
F0

=E dxWFc

2
vs¹2dc +

c4

4
G , s26d

whereF0;l2q0
8−d/u and

vs¹2d = r + s1 + ¹2d2. s27d

The dimensionless equation of motion becomes

] c

] t
= ¹2

„vs¹2dc + c3
… + z, s28d

where kzsrW1,t1dzsrW2,t2dl=D¹2dsrW1−rW2ddst1−t2d and D
;ukBTq0

d−4/l2.

FIG. 1. The points correspond to an experimental liquid struc-
ture factor for36Ar at 85 K taken from[24]. The line corresponds to
a best fit to Eq.(22).
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Equations(26), (27), and (28) describe a material with
specific elastic properties. In the next few sections the prop-
erties of this “material” will be discussed in detail. As will be
shown, some of the properties can be adjusted to match a
given experimental system and others cannot be matched
without changing the functional form of the free energy. For
example the periodicity(or lattice constant) can be adjusted
since all lengths have been scaled withq0. The bulk modulus
can also be easily adjusted since the free energy has been
scaled withl , u, andq0. On the other hand, this free energy
will always produce a triangular lattice in two dimensions
[10,11]. To obtain a square lattice a different choice of non-
linear terms must be made. This is the most difficult feature
to vary as there are no systematic methods(known to the
authors) for determining which functional form will produce
which crystal symmetry. Cubic symmetry can be obtained by
replacingc4 with u¹cu4 [25,26].

In the next few subsections the properties of this free
energy and some minor extensions will be considered in one
and two dimensions. The three-dimensional case will be dis-
cussed in a future paper.

B. One dimension

In one dimension the free energy described by Eq.(26) is
minimized by a periodic function when the average value of

csc̄d is small and a constant whenc̄ is large. To determine
the properties of the periodic state it is useful to make a

one-mode approximation—i.e.,c<A sinsqxd+c̄, which is
valid in the small-r limit. Substitution of this function into
Eq. (26) gives

Fp

L
=

q

2p
E

0

2p/q

dxFc

2
vs]x

2dc +
c4

4
G

=
c̄2

2
Fv̂0 +

3A2

2
+

c̄2

2
G +

A2

4
Fv̂q +

3A2

8
G , s29d

wherev̂q is the Fourier transform ofvs¹2d—i.e., v̂q=r +s1
−q2d2. Minimizing Eq. (29) with respect toq gives the se-
lected wave vectorq* =1. Minimizing F with respect toA

givesA2=−4sv̂q* /3+c̄2d. This solution is only meaningful if
A is real, since the density is a real field. This implies that

periodic solutions only exist whenr ,−3c̄2, since v̂q* =r.
The minimum free-energy density is then

Fp/L = − r2/6 + c̄2s1 − rd/2 − 5c̄4/4. s30d

Equation(30) represents the free-energy density of a periodic
solution in the one-mode approximation. To determine the
phase diagram this energy must be compared to that for a

constant state(i.e., the state for whichc c=c̄) which is

Fc/L = v̂0c̄2/2 + c̄4/4. s31d

To obtain the equilibrium states the Maxwell equal-area
construction rule must be satisfied—i.e.,

E
c̄1

c̄2
dcfmsc̄d − meqg = 0, s32d

where c̄1 is a solution ofmp=meq, c̄2 is a solution ofmc

=meq, and msc̄d=mps=mcd if Fp,Fc sFp.Fcd and m

=]F /]c̄. Using these conditions it is straightforward to show

that for r .−1/4 a periodic state is selected foruc̄u,Î−r /3

and a constant state is selected whenuc̄u.Î−r /3. For r ,
−1/4, there can exist a coexistence of periodic and constant
states. If the constant and periodic states are considered to be
a liquid and crystal, respectively, then this simple free energy
allows for the coexistence of a liquid and crystal, which im-
plies a free surface. The entire phase diagram is shown in
Fig. 2.

It is also relatively easy to calculate the elastic energy in
the one-mode approximation. Ifa;2p /q is defined as the
one-dimensional lattice parameter, then theF can be written

Fp/L = Fmin
p /L + Ku2/2 +Osu3d ¯ , s33d

whereu;sa−a0d /a0 is the strain andK is the bulk modulus
and is equal to

K = − sc̄2 + v̂q* /3dUd2v̂q

dq2 U
q=q*

, s34d

or for the particular dispersion relationship used here,

K=−8sr +3c̄2d /3. The existence of such a Hooke’s law rela-
tionship is automatic when a periodic state is selected since
F always increases when the wavelength deviates from the
equilibrium wavelength.

FIG. 2. One-dimensional phase diagram in the one-mode ap-
proximation. The solid line is the boundary separating constant(i.e.,
liquid) and periodic(i.e., crystal) phases. The hatched section of the
plot corresponds to regions of liquid-crystal coexistence.
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C. Two dimensions

1. Phase diagram

In two dimensionsF is minimized by three distinct solu-
tions forc. These solutions are periodic in either zero dimen-
sions (i.e., a constant), one dimension(i.e., stripes), or two
dimensions(i.e., triangular distributions of drops or “par-
ticles”). The free-energy density for the constant and stripe
solutions are identical to the periodic and constant solution
discussed in the preceding section. The two-dimensional so-
lution can be written in the general form

csrWd = o
n,m

an,meiGW ·rW + c̄, s35d

whereGW ;nbW1+mbW2 and the vectorsbW1 andbW2 are reciprocal
lattice vectors. For a triangular lattice the reciprocal lattice
vectors can be written

bW1 =
2p

aÎ3/2
sÎ3/2x̂ + ŷ/2d,

bW2 =
2p

aÎ3/2
ŷ, s36d

where a is the distance between nearest-neighbor local
maxima ofc (which corresponds to the atomic positions). In
analogy with the one-dimensional calculations presented(see
Sec. II B) a one-mode approximation will be made to evalu-
ate the phase diagram and elastic constants. In a two-
dimensional triangular system a one-mode approximation
corresponds to retaining all Fourier components that have the
same length. More precisely the lowest-order harmonics con-

sists of all sn,md pairs such that the vectorGW has length
2p / saÎ3/2d. This set of vectors includes sn,md
=s±1,0d , s0, ±1d , s1,−1d, ands−1,1d. Furthermore, sincec
is a real function, the Fourier coefficients must satisfy the
relationship an,m=a−n,m=an,−m. In addition, by symmetry,
a±1,0=a0,±1=a1,−1=a−1,1. Taking these considerations into ac-
count it is easy to show that in the lowest-order harmonic
expansionc can be represented by

ct = Atfcossqt xdcossqty/Î3d − coss2qty/Î3d/2g + c̄,

s37d

whereAt is an unknown constant andqt=2p /a. Substituting
Eq. (37) into Eq. (23) and minimizing with respect toAt and
qt gives

Ft

S
; E

0

a
2 dx

a/2
E

0

Î3
2

a dy

aÎ3/2
Fc

2
vs¹2dc +

c4

4
G

= −
1

10
Sr2 +

13

50
c̄4D +

c̄2

2
S1 +

7

25
rD

+
4c̄

25
Î− 15r − 36c̄2S4c̄2

5
+

r

3
D , s38d

where

At =
4

5
Sc̄ +

1

3
Î− 15r − 36c̄2D , s39d

qt=Î3/2, andS is a unit area. The accuracy of this one-mode
approximation was tested by comparison with a direct nu-
merical calculation for a range ofr ’s, using “method I” as
described in the Appendix. The time stepsDtd and grid size
sDxd were 0.0075 andp /4, respectively, and a periodic grid
of a maximum size of 512Dx3512Dx [27] was used. A com-
parison of the analytic and numerical solutions is shown in

Fig. 3 for a variety of values ofr (c̄ was set to beÎ−r /2).
The approximate solution is quite close to the numerical one
and becomes exact in the limitr →0. The analytic results can
in principle be systematically improved by including more
harmonics in the expansion.

To determine the phase diagram in two dimensions the
free energy of the triangular state[i.e., Eq. (38)] must be
compared with the free energy of a striped state[i.e., Eq.
(30)] and a constant state[i.e., Eq.(31)]. In addition, sincec
is a conserved field, Maxwell’s equal-area construction must
be used to determine the coexistence regions. The phase dia-
gram arising from these calculations is shown in Fig. 4.
While this figure does not look like a typical liquid-solid
phase diagram in the density-temperature plane, it can be
superimposed onto a portion of an experimental phase dia-
gram. As an example the PFC phase diagram is superim-
posed onto the argon phase diagram in Fig. 5.

2. Elastic energy

The elastic properties of the two-dimensional triangular
state can be obtained by considering the energy costs for
deforming the equilibrium state. The free-energy density as-

FIG. 3. In (a) the minimum of the free energy is plotted as a

function of r for c̄=Î−r /2. The solid line is Eq.(38) and the points
are from numerical simulations. In(b) the bulk modulus is plotted

as a function ofr for c̄=Î−r /2. The solid line is an analytic calcu-
lation fsqtAtd2/6g and the points are from numerical simulations.
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sociated with bulk, shear, and deviatoric deformations can be
calculated by considering modified forms of Eq.(37)—i.e.,
ct(x/ s1+zd ,y/ s1+zd)sbulkd , ctsx+zy,ydssheard, and ct(xs1
+zd ,ys1−zd)sdeviatoricd. In such calculationsz represents
the dimensionless deformation,qt=Î3/2, andAt is obtained
by minimizing F. The results of these calculations are

Fbulk/A = Fmin
t + az2 + ¯ ,

Fshear/A = Fmin
t + a/8z2 + ¯ ,

Fdeviatoric/A = Fmin
t + a/2z2 + ¯ , s40d

wherea=sqtAtd2/3. These results can be used to determine
the elastic constants by noting that, for a two-dimensional
system[10,28],

Fbulk = Fmin
t + fC11 + C12gz2 + ¯ ,

Fshear= Fmin
t + fC44/2gz2 + ¯ ,

Fdeviatoric = Fmin
t + fC11 − C12gz2 + ¯ . s41d

The elastic constants are then

C11/3 = C12 = C44 = a/4. s42d

These results are consistent with the symmetries of a two-
dimensional triangular system—i.e.,C11=C12+2C44. In two
dimensions this implies a bulk modulus ofB=a /2, a shear
modules ofm=a /4, a Poisson’s ratio ofs=1/3, and atwo-
dimensional[i.e., Y2=4Bm / sB+md] Young’s modulus ofY2

=2a /3. Numerical simulations were conducted(using the
parameters and numerical technique discussed in the previ-
ous section) to test the validity of these approximations for
the bulk modulus. The results, shown in Fig. 3, indicate that
the approximation is quite good in the smallr limit.

These calculations highlight the strengths and limitations
of the simplistic model described by Eq.(23). On the posi-
tive side the model contains all the expected elastic proper-
ties (with the correct symmetries) and the elastic constants
can be approximated analytically within a one mode analy-
sis. On the negative side, the model as written can only de-
scribe a system whereC11=3C12. Thus parameters in the free
energy can be chosen to produce anyC11, but C12 cannot be
varied independently.

3. Dynamics

The relatively simple dynamical equation forc [i.e., Eq.
(28)] can describe a large number of physical phenomena
depending on the initial conditions and boundary conditions.
To illustrate this versatility it is useful to consider the growth
of a crystalline phase from a supercooled liquid, since this
phenomenon simultaneously involves the motion of liquid-
crystal interfaces and grain boundaries separating crystals of
different orientations. Numerical simulations were conducted
using the “method I” as described in the Appendix. The pa-

rameters for these simulations weresr ,c̄ ,D ,Dx,Dtd
=s−1/4,0.285,10−9,p /4 ,0.0075d on a system of size
512Dx3512Dx with periodic boundary conditions. The ini-
tial condition consisted of large random Gaussian fluctua-
tions (amplitude 0.1) coverings10310d grid points in three
locations in the simulation cell. As shown in Fig. 6 the initial
state evolves into three crystallites, each with a different ori-
entation and a well-defined liquid-crystal interface. The ex-
cess energy of the liquid-crystal interfaces is highlighted in
Fig. 6(d) where the local free-energy density is plotted.

As time evolves the crystallites impinge and form grain
boundaries. As can be seen in Fig. 6 the nature of the grain

FIG. 4. Two-dimensional phase diagram as calculated in a one-
mode approximation. Hatched areas in the figure correspond to co-
existence regions. The small region enclosed by a dashed box is
superimposed on the argon phase diagram in Fig. 5. In this manner
the parameter of the free-energy functional can be chosen to repro-
duce certain aspects of a liquid-crystal phase transition.

FIG. 5. The phase diagram of argon. The hatched regions cor-
respond to the coexistence regions. The points are from the PFC
model.
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boundary between grains(1) and(3) is significantly different
from the boundary between grains(2) and (1) [or (3)]. The
reason for this is that the orientation of grains(1) and (3) is
quite close but significantly different from(2). The low-angle
grain boundary consists of dislocations separated by large
distances, while the high-angle grain boundary consists of
many dislocations piled together. A more detailed discussion
of the grain boundaries will be given in Sec. III A. Even this
small sample simulation illustrates the flexibility and power
of the PFC technique. This simulation incorporates the het-
erogeneous nucleation of crystallites, crystallites with trian-
gular symmetry and elastic constants, crystallites of multi-
orientations, the motion of liquid-crystal interfaces, and the
creation and motion of grain boundaries. While all these fea-
tures are incorporated in standard microscopic simulations
(e.g., molecular dynamics) the time scales of these simula-
tions are much longer than could be achieved using micro-
scopic models.

One fundamental time scale in the PFC model is the dif-
fusion time. To envision mass diffusion in the PFC model it
is convenient to consider a perfect equilibriumsctd configu-
ration with one “particle” missing. At the atomic level this
would correspond to a vacancy in the lattice. Phonon vibra-
tions would occasionally cause neighboring atoms to hop
into the vacancy and eventually the vacancy would diffuse
throughout the lattice. In the PFC model the time scales as-
sociated with lattice vibrations are effectively integrated out
and all that is left is long-time mass diffusion. In this in-
stance the density at the missing spot will gradually increase
as the density at neighboring sites slowly decreases. Numeri-

cal simulations of this process are shown in Fig. 7 using
method I (see the Appendix) with the parameters

sr ,c̄ ,D ,Dx,Dtd=s1/4,1/4,0,p /4 ,0.0075d. To highlight
diffusion of the vacancy, the difference betweencsrW ,td and a
perfect equilibrium statesctd is plotted in Fig. 7.

The diffusion constant in this system can be obtained by a
simple linear stability analysis, or Bloch-Floquet analysis,
around an equilibrium state. To begin the analysis the equa-
tion of motion for c is linearized aroundct—i.e., c=ctsrWd
+dcsrW ,td. To first order indc, Eq. (28) becomes

] dc

] t
= ¹2hsv + 3fc̄2 + 2c̄gt + gt

2dgdcj, s43d

wheregt=ct−c̄ [see Eq.(35)]. The perturbationdc is then
expanded as follows:

dc = o
n,m

bn,mstdeiqtfnx+sn+2mdy/Î3g+iQW ·rW. s44d

Substituting Eq.(44) into Eq. (43) gives

] bi,j

] t
= − ki,j

2 Ss3c̄2 + v̂dbi,j + 6c̄o
n,m

an,mbi−n,j−m

+ 3 o
n,m,l,p

an,mal,pbi−n−l,j−m−pD , s45d

where,v̂; r +s1−ki,j
2 d2 andki,j

2 ;siqt+Qd2+qt
2si +2jd2/3.

To solve Eq.(45) a finite number of modes are chosen and
the eigenvalues are determined. Using the modes corre-
sponding to the reciprocal lattice vectors in the one-mode
approximationfsm,nd=s±1,0d ,s0, ±1d ,s1,−1d ,s−1,1dg and
the (0, 0) mode gives four eigenvectors that are always nega-
tive and thus irrelevant and three eigenvalues that have the
form −DQ2. The smallestD arises fromb0,0 mode and can be
determined analytically if only this mode is used(the other
eigenvalues correspond toD<3,9). Since this is the small-
estD, it determines the diffusion constant in the lattice. The
solution is

FIG. 6. Heterogeneous nucleation of three crystallites in a su-
percooled liquid. The grey scale in(a), (b), and(c) corresponds to
the density fieldc and in(d), (e), and(f) to the smoothed local free
energy. The configurations are taken at timest=300, 525, and 3975
for sad+sdd , sbd+sed, and scd+sfd, respectively.(Note that only a
portion of the simulation is shown here.)

FIG. 7. Vacancy diffusion times. In this figure the grey scale is
proportional to thecsrW ,td−ceq. The times shown are(a) t=0, (b)
t=50, (c) t=100, and(d) t=150.
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D = 3c̄2 + r + 1 + 9At
2/8. s46d

The accuracy of Eq.(46) was tested by numerically measur-
ing the diffusion constant for the simulations shown in Fig.
7. In this calculation the envelope of profile ofdc was fit to
a GaussiansAe−r2/2s2

d and the standard deviationssd was
measured. The diffusion constant can be obtained by noting
that the solution of a diffusion equation(i.e., ]C/]t=D¹2C)
is C~e−r2/4Dt—i.e., s2=Dt /2. In Fig. 8, s2 is plotted as a
function of time and the slope of this curve givesD<1.22.
This is quite close to the value predicted by Eq.(46) which is
1.25.

III. SIMPLE PFC MODEL: APPLICATIONS

In this section several applications of the PFC model that
highlight the flexibility of the model will be considered . In
Sec. III A the energy of a grain boundary separating two
grains of different orientation is considered. The results are
compared with the Read-Shockley equation[29] and shown
to agree quite well for small orientational mismatch. This
calculation, in part, provides evidence that the interaction
between dislocations is correctly captured by the PFC model,
since the grain boundary energy contains a term that is due to
the elastic field set up by a line of dislocations. In Sec. III B
the technologically important process of liquid-phase epitax-
ial growth is considered. Numerical simulations are con-
ducted as a function of mismatch strain and show how the
model naturally produces the buckling instability and nucle-
ation of dislocations. In Sec. III C the yield strength of poly-
(nano-) crystalline materials is examined. This is a phenom-
enon that requires many of the features contained in the PFC
model (i.e., multiorientations, elastic and plastic deforma-
tions, grain boundaries) that are difficult to incorporate in

standard uniform phase-field models. The yield strength is
examined as a function of grain size and the reverse Hall-
Petch effect is observed. Finally some very preliminary nu-
merical simulations are presented in Sec. III D to demon-
strate the versatility of the technique. This section includes
simulations of grain growth, crack propagation, and recon-
structive phase transitions. While the applications presented
in this section are at an illustrative level, a connection to real
materials can be made by matching parameters of the model
to experimental ones through elastic constants, phase dia-
grams, etc., as discussed in Secs. I C and II C 1.

A. Grain boundary energy

The free-energy density of a boundary between two grains
that differ in orientation is largely controlled by geometry. In
a finite-size two-dimensional system the parameters that con-
trol this energy are the orientational mismatchu and an offset
distanceD (or alternatively a disclination angle), as shown in
Fig. 9. For smallu , u controls the number of dislocations per
unit length andD controls the average core energy. For an
infinite grain boundaryD becomes irrelevant, unless the dis-
tance between dislocation is an integer number of lattice con-
stants(and the integer is relatively small). Nevertheless, it is
straightforward to determine a lower bound on the grain
boundary energy in the small-u limit, by directly relating the
dislocation density tou and assuming that the dislocation
cores can always find the minimum-energy location. The lat-
ter assumption restricts the calculation to providing a lower
bound on the grain boundary energy.

For smallu, Read and Shockley[29] were able to derive
an expression for the grain boundary energy, assuming the
dislocation core energy was a constant independent of geom-
etry. In two dimensions the energy/length of the grain bound-
ary is [10]

F

L
= Ecore+

b2Y2

8pd
F1 − lnS2pa

d
DG , s47d

whereb is the magnitude of the Burger’s vector,a is the size
of the dislocation core,d is the distance between disloca-

FIG. 8. Vacancy diffusion. In this figure the average of the stan-
dard deviation in thex and y directions is plotted as a function of
time.

FIG. 9. Schematic of a grain boundary.
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tions,Y2 is the two-dimensional Young’s modulus, andEcore
is the energy/length of the dislocation core. To estimate the
minimum core energy it is convenient to assume that the core
energy is proportional to the size of the core[10]—i.e.,
Ecore=Ba2, where B is an unknown constant. The total
energy/length then becomes

F

L
= Ba2 +

b2Y2

8pd
F1 − lnS2pa

d
DG . s48d

To obtain a lower bound onF /L the unknown parameterB is
chosen to minimizeF /L; i.e., B is chosen to satisfy
dsF /Ld /da=0, which givesBa2=b2Y2/16pd. Thus the free
energy per unit length is

F

L
=

b2Y2

8pd
F3

2
− lnS2pa

d
DG . s49d

Furthermore, from purely geometrical considerations, the
distance between dislocations isd=a/ tansud, whereu is the
orientational mismatch. Finally in the small-angle limit
ftansud<ug Eq. (49) reduces to

F

L
=

bY2

8p
uS3

2
− lns2pudD , s50d

where the dislocation core sizeb was assumed to be equal to
the lattice constanta.

To examine the validity of Eq.(50) the grain boundary
energy was measured as a function of angle. In these
simulations numerical method I(see the Appendix)
was used with the parameter setsr ,c̄ ,D ,Dx,Dtd
=s−4/15,1/5,0,p /4 ,0.01d. The initial condition was con-
structed as follows. On a periodic grid of sizeLx3Ly, a
triangular solution[i.e., Eq. (37)] for c was constructed in
one orientation between 0,x,Lx/4 and 3Lx/4,x,Lx. In
the center of the simulation(i.e., Lx/4,x,3Lx/4) a trian-
gular solution of a different orientation was constructed. A
small slab of supercooled liquid was placed between the two
crystals so as not to influence the nature of the grain bound-
ary that emerged. The systems were then evolved for a time
of t=10 000, after which the grain boundary energy was
measured. Small portions of sample configurations are
shown in Fig. 10 foru=5.8° andu=34.2° (the grain bound-
ary energy is symmetric around 30°). As expected the Read-
Shockley description of a grain boundary is consistent with
the small-angle configuration. In contrast the large-angle
grain boundary is much more complicated and harder to
identify individual dislocations.

The measured grain boundary energy is compared with
Eq. (50) in Fig. 11. As expected Eq.(50) provides an ad-
equate description for small angles but not for large angles.
The Read-Shockley equation does fit the measured result for
all u reasonably well if the coefficients that enter the equa-
tion are adjusted, as has been observed in experiment
[30,31]. This fit is shown in Fig. 12.

The situation is obviously more complicated in three di-
mensions since another degree of freedom exists. This de-
gree of freedom can be visualized by considering taking one
of the crystals shown in Fig. 9 and rotating it out of the page.

The extra degree of freedom can lead to interesting phenom-
ena, such as coincident site lattices that significantly alter the
grain boundary energy. The PFC model should provide an
excellent tool for studying such phenomena since it is purely
a geometrical effect that is naturally incorporated in the PFC
approach.

B. Liquid-phase epitaxial growth

Liquid-phase epitaxial growth is a common industrial
method[32] used to grow thin films that are coherent with a
substrate. The properties of such films depend on the struc-
tural integrity of the film. Unfortunately flat defect-free het-
eroepitaxial films of appreciable thickness are often difficult
to grow due to morphological instabilities induced by the

FIG. 10. The grey scale corresponds to the magnitude of the
field c for a grain boundary mismatch ofu=5.8° andu=34.2° in(a)
and(b), respectively. In(a) squares have been placed at defect sites.

FIG. 11. The grain boundary energy is plotted as a function of
mismatch orientation. The points correspond to numerical simula-
tions of the PFC model and the solid line corresponds to Eq.(50).
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anisotropic strain arising from the mismatch between film
and substrate lattice constants[33]. Consequently, there has
been a tremendous amount of scientific effort devoted to un-
derstanding the morphological stability of epitaxially grown
films [2,4,5,8,34–56].

The stability and resulting structural properties of epitax-
ial films are often compromised by at least two distinct pro-
cesses which reduce the anisotropic strain. In one process,
small mounds or ridges form as the surface buckles or cor-
rugates to reduce the overall strain in the film. This instabil-
ity to buckling can be predicted by considering the linear
stability of an anisotropically strained film as done by Asaro
and Tiller [34] and Grinfeld[35]. The initial length scale of
the buckling is determined by a competition between the
reduction in overall elastic energy which prefers mounds and
surface tension and gravity, both of which favor a flat inter-
face. Another mechanism that reduces strain is the nucleation
of misfit dislocations which can occur when the energy of a
dislocation loop is comparable with the elastic energy of the
strained film. Matthews and Blakeslee[53] and many others
[38–43] have used various arguments to provide an expres-
sion for the critical height at which a flat epitaxially grown
film will nucleate misfit dislocations.

The two mechanisms are often considered separately but
it is clear that surface buckling can strongly influence the
nucleation of misfit dislocations. Typically, as the film begins
to grow, it will deform coherently by the Asaro-Tiller-
Grinfeld instability. This leads initially to a roughly sinu-
soidal film thickness with a periodicity close to the most
unstable mode in a linear analysis. As time increases, the
sinusoidal pattern grows in amplitude and develops cusps or
local regions of high curvature[44–47] with a periodicity
similar to that of the initial instability although some coars-
ening may occur[4,46,47]. Eventually, the stress at the cusps
becomes too large and a periodic array of misfit dislocations
appears which reduces the roughness of the film. These dis-

locations eventually climb to the film-substrate interface.
The purpose of this section is to illustrate how the PFC

method can be exploited to examine surface buckling and
dislocation nucleation in liquid-phase epitaxial growth. Mod-
eling this process requires a slight modification of the model
to incorporate a substrate that has a different lattice constant
than the growing film. This can be accomplished by chang-
ing the operatorv given in Eq.(27) to be

v = r + sq2 + ¹2d2, s51d

where the parameterq controls the lattice constant of the
growing film and is set to 1 in the substrate. To incorporate a
constant mass flux the fieldc was fixed to bec, at a constant
distancesL=100Dxd above the film.

Numerical simulations were conducted using method I
(see the Appendix) for the parameterssr ,c, ,Dx,Dtd
=s−1/4,0.282,0.785,0.0075d. The width of the film grown
was Lx=8192Dx, corresponding to a width of roughly 900
particles. The initial condition was such that eight layers of
substrate atoms resided at the bottom of the simulation cell
with a supercooledsr =−1/4, c,=0.282d liquid above it. A
small portion of a simulation is shown in Fig. 13, forq
=0.93. As can be seen in this figure, and in Fig. 14 the film
initially grows in a uniform fashion before becoming un-
stable to a buckling or mounding instability. The film then
nucleates dislocations in the valleys where the stress is the
largest. After the dislocations nucleate the liquid-film inter-
face grows in a more regular fashion. To highlight the local
elastic energy, the free energy is plotted in Fig. 14. As can be
seen in this figure, elastic energy builds up in the valleys
during the buckling instability and is released when disloca-
tions appear. The behavior of the liquid-film interface was
monitored by calculating the average interface height and
width. Both quantities are plotted in Fig. 15. The data shown
in this figure are representative of all simulations conducted
at different mismatch strains, but the precise details varied

FIG. 12. The grain boundary energy of the PFC model is com-
pared with experiments on tin[30], lead[30], and copper[31].

FIG. 13. Epitaxial growth.(a), (b), (c), and (d) correspond to
times t=150, 300, 450, and 600, respectively. The grey scale is
proportional to the local density(i.e., c) in the film and liquid. The
substrate is highlighted by a darker grey background. To highlight
nucleated dislocations, small white dots were placed on atoms near
the two dislocation cores that appear in this configuration.
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from run to run. In all cases the width initially fluctuates
around a* /2 (where a* is the thickness of a film layer)
during “step-by-step” growth. The average width then in-
creases during buckling and decreases when dislocations
nucleate. While these quantities are difficult to measurein
situ, there is experimental evidence for this behavior in
SiGe-Si heterostructures[56].

Assigning a value to the critical heightHc at which dis-
locations nucleate is subjective. Typically a first wave of dis-
locations is nucleated at a density that is determined by the
buckling instability. Since this is not the correct density to

reduce the strain to zero, a subsequent buckling and disloca-
tion occurs above the first wave. To complicate matters the
nucleated dislocations climb towards the substrate-film inter-
face. To illustrate these points the dynamics of a sample dis-
tribution of defects is shown as function of height in Fig. 16.
As can be seen in this figure the first wave of dislocations
appears roughly between a film height of 6 and 13 layers.
Comparison of Figs. 16(b) and 16(d) shows that as time
evolves the overall distribution of dislocation climbs toward
the surface. To obtain an operational definition ofHc, the

average heightH̄std of the first wave of dislocations was

monitored as a function of time. TypicallyH̄std is a maxi-
mum when all dislocations in the first wave have appeared
and then decreases as the dislocation climb to the substrate-

film interface.Hc was defined as the maximum value ofH̄std.
The critical height, as defined in the preceding paragraph,

was calculated as a function of mismatch strain,e=safilm

−asubstrated /asubstrate. The equilibrium lattice constant in the
film afilm was obtained by assuming it was directly propor-
tional to 1/q (note that, in the one-mode approximation,a
=2p / fÎs3dq/2) and determining the constant of proportion-
ality by interpolating to where the critical height diverges.
The numerical data were compared with the functional form
proposed by Matthews and Blakeslee[53], i.e.,

Hc ~
1

e
S1 + log10FHc

a*
GD , s52d

in Fig. 17. This comparison indicates that the data are con-
sistent with a linear relationship betweene and f1
+log10sHc/a* dg / sHc/a* d, where the constant of proportion-
ality depends on whether a compressive or tensile load is
applied to the substrate.

FIG. 14. Epitaxial growth.(a), (b), (c), (d), and(e) correspond to
timest=150, 300, 450, 600, and 750, respectively. The grey scale is
proportional to the free-energy density. To highlight the excess
strain energy in the film the grey scale near the defect was saturated.
The region enclosed by dashed lines corresponds to the configura-
tion shown in Fig. 13.

FIG. 15. Epitaxial growth. In(a) and(b) the average film-liquid
interface height and width is shown as a function of time. Both the
width and height have been scaled bya*, which is the one-mode
approximation for the distance between layers in the appropriate
direction.

FIG. 16. Epitaxial growth. In this figure a histogram of the
number of defects is shown as a function of height above the sub-
strate. (a), (b), (c), and (d) correspond tot=300, 450, 600, and
1000.
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C. Material hardness

It is well known that mechanical properties of materials
depend crucially on the microstructure and grain size[57].
For example, Hall[58] and Petch[59] calculated that for
large grain sizes, the yield strength of a material is inversely
proportional to the square of the average grain radius. This
result is due to the pileup of dislocations at grain boundaries
and has been verified in many materials including Fe alloys
[60–62], Ni [63], Ni-P alloys [64], Cu [65], and Pd[65].
However, for very small grain sizes the Hall-Petch relation-
ship must break down, since the yield strength cannot di-
verge. Experimentally it is found that materials “soften” at
very small grain sizes, such that the yield strength begins to
decrease when the grain sizes become of the order of tens of
nanometers. This “inverse” Hall-Petch behavior has been ob-
served in Ni-P alloys[64], Cu and Pd[65], and molecular
dynamics experiments[66,67]. Determining the precise the
crossover length scale and mechanisms of material break-
down has become increasingly important in technological
processes as interest in nanocrystalline materials(and nano-
technology in general) increases.

The purpose of this section is to demonstrate how the PFC
approach can be used to study the influence of grain size on
material strength. In these simulations a polycrystalline
sample was created by heterogeneous nucleation(see Sec.
III D 1 for details) in a system with periodic boundary con-
ditions in both thex and y directions. A small coexisting
liquid boundary of width 200Dx was included on either side
of the sample. To apply a strain the particles near the liquid-
crystal boundary(i.e., within a distance of 16Dx) were
“pulled” by coupling these particles to a moving field that
fixed the particle positions. Initially the system was equili-
brated for a total time of 4000(2000 before the field was
applied and 2000 after). An increasing strain was modeled by
moving the field every so many time steps in such a manner

that the size of the polycrystal increased by 2Dx. To facilitate
relaxation,c was extrapolated to the new size after every
movement of the external field. The parameters of the simu-
lations to follow were sr ,csol,cliq ,Lx,Ly,Dx,Dtd
=s−0.3,0.312,0.377,2048Dx,2048Dx,0.79,0.05d and the
pseudospectral numerical method described in the Appendix
was used.

A sample initial configuration is shown in Fig. 18. This
particular sample contains approximately 100 grains with an
average grain radius of 35 particles. As can be seen in this
figure there exists a large variety(i.e., distribution of mis-
match orientations) of grain boundaries as would exist in a
realistic polycrystalline sample. The same configuration is
shown after it has been stretched in thex direction in Fig. 19
corresponding to strain of 7.8%, respectively. Comparison of
these figures reveals significant distortion of the grain bound-
aries. For small strains the grain boundaries locations are
relatively unaffected.

As the polycrystalline sample is pulled the total free en-
ergy was monitored and used to calculate the stress—i.e.,
stress;dF/dz, wherez is the relative change in the width of
the crystal. Stress-strain curves are shown in Fig. 20 as a
function of grain size and strain rate. In all cases the stress is
initially a linear of function of strain until plastic deforma-
tion occurs and the slope of the stress-strain curve decreases.
In Fig. 20(a) the influence of strain rate is examined for the
initial configuration shown in Fig. 18. It is clear from this
figure that the strain rate plays a strong role in determining
the maximum stress that a sample can reach, or the yield

FIG. 17. Epitaxial growth. In this figureHc is the critical height
as defined in the text ande is the mismatch strain between the film
and substrate.

FIG. 18. In this figure the grey scale corresponds to the local
energy density before a strain is applied. The dark black regions on
the left and right of the figure are the regions that are coupled to the
external field.
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stress, as has been observed in experiments[68]. The yield
strength increases as the strain rate increases as would be
expected.

The influence of grain size on the stress-strain relationship
is shown in Fig. 20(b) for four grain sizes. The initial slope
of the stress-strain curve(which will be denotedY0 in what

follows) increases with increasing grain size as does the
maximum stress, or yield stress, sustained by the sample.
The yield strength and elastic modulisY0d are plotted as a
function of inverse grain size in Figs. 21 and 22, respec-
tively, for several strain rates. For each strain rate the yield
stress is seen to be inversely proportional to the square root
of the average grain size, except for very small grains where
the amorphous limit is reached. The constant of proportion-

FIG. 19. The same as Fig. 18, except at a strain of 7.8%.

FIG. 20. In (a) the stress is plotted as a function of strain for a
system with an average grain radius of 35 particles. The solid lines
from top to bottom in (a) correspond to strain rates of 24
310−6, 12310−6, and 6310−6, respectively. In(b) the solid lines
from top to bottom correspond to systems with average grain sizes
of 70, 50, 35, and 18 particles, respectively. In both(a) and(b) the
dashed line corresponds to a unit slope.

FIG. 21. The yield stress is plotted as a function of average
grain radius. The solid, open, and starred points correspond to strain
rates of 24310−6, 12310−6, and 6310−6, respectively. The
dashed lines are guides to the eye.

FIG. 22. The elastic moduliY0 (see text) are plotted as a func-
tion grain radius. The solid, open, and starred points correspond to
strain rates of 24310−6, 12310−6, and 6310−6, respectively.
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ality decreases with decreasing strain rate. Thus the PFC
approach is able to reproduce the inverse Hall-Petch effect or
the softening of nanocrystalline materials.

It would be interesting to observe the crossover to the
normal Hall-Petch effect where the yield stress decreases
with increasing grain size. However, it is important to note
that the initial conditions in these simulations was set up to
explicitly remove the Hall-Petch mechanism; i.e., each nano-
crystal was defect free. In addition thermal fluctuations were
not included in the simulations. Nevertheless it is unclear
whether or not a crossover may occur, due to the fact that
low-angle grain boundaries may act as sources of movable
dislocations. Further study of this interesting phenomenon
for larger grain sizes would be of great interest.

D. Other phenomena

There are many phenomena that the PFC method can be
used to explore. To illustrate this a few small simulations
were conducted to examine a number of interesting phenom-
ena of current interest. In the next few sections some pre-
liminary results are shown for grain growth, crack propaga-
tion, and reconstructive phase transitions.

1. Grain growth

When a liquid is supercooled just below the melting tem-
perature small crystallites can nucleate homogeneously or
heterogeneously. The crystallites will grow and impinge on
neighboring crystallites, forming grain boundaries. Depend-
ing on the temperature and average concentration the final
state(i.e., in the infinite-time limit) may be a single crystal or
a coexistence of liquid and crystal phases since there exists a
miscibility gap in density for some regions of the phase dia-
gram. For deep temperature quenches the liquid is unstable
to the formation of a solid phase and initially an amorphous
sample is created very rapidly which will evolve into a poly-
crystalline sample and eventually become a single crystal(in
the infinite-time limit). All these phenomena can be studied
with the simple PFC model considered in this paper.

In this section the PFC model is used to examine the
heterogeneous nucleation of a polycrystalline sample from a
supercooled liquid state. A simulation containing 50 initial
seeds(or nucleation sites) was conducted. The initial seeds
were identical to those described in Sec. II C 3 as were all
other relevant parameters. The results of the simulations are
shown in Fig. 23. Comparison of Figs. 23(b) and 23(c)
shows that there is a wide distribution of grain boundaries
each with a different density of dislocations(which appear as
black dots in the figure). Comparison of Fig. 23(c) with later
configurations indicates that the low-angle grain boundaries
disappear much more rapidly than the large-angle ones. The
simple reason is that it is easy for one or two dislocations to
glide in such a manner as to reduce the overall energy(this is
usually accompanied with some grain rotation). The simula-
tion was run for up to a time oft=50 000(or approximately
1200 diffusion times) and contained approximately 15 000
particles. The simulation took roughly 70 h of CPU on a
singlea chip processor(xp1000).

2. Crack propagation

The PFC model can be used to study the propagation of a
crack in ductile(but not brittle) material. To illustrate this
phenomena a numerical simulation was conducted on a pe-
riodic system of sizes4096Dx,1024Dxd for the parameters

sr ,c̄ ,Dx,Dtd=s−1.0,0.49,p /3 ,0.05d. Initially a defect-free
crystal was set up in the simulation cell that had no strain in
thex direction and a 10% strain in they direction. A notch of
size 20Dx310Dx was cut out of the center of the simulation
cell and replaced with a coexisting liquidsc=0.79d. The
notch provides a nucleating cite for a crack to start propagat-
ing. A sample simulation is shown in Fig. 24.

3. Reconstructive phase transitions

The simple PFC model can be used to study a phase tran-
sition from a state with square symmetry to one with trian-
gular symmetry. In the model described by Eq.(26) a state
with square symmetry is metastable; i.e., a state with square
symmetry will remain unchanged unless boundary conduc-
tion or fluctuations are present. Boundary conduction or fluc-
tuations allow for the nucleation of a lower-energy state
which in this particular model is the state of triangular sym-
metry discussed in Sec. II C 1. A small simulation was per-
formed to illustrate this phenomenon. In this simulation a
crystallite with square symmetry coexisting with a liquid was
created as an initial condition. The parameters for this simu-
lation were sr ,cliq ,csol,Dx,Dtd=s1.0,0.68,0.52,1.0,0.02d.
The simulations depicted in Fig. 25 show the spontaneous
transition from a square lattice to a triangular one. Two vari-
ants of the triangular structure(differing by a rotation of 30°)

FIG. 23. Heterogeneous nucleation and grain growth. In this
figure the grey scale corresponds to the smoothed local free energy.
(a), (b), (c), (d), (e), and (f) correspond to times 50, 200, 1000,
3000, 15 000, and 50 000, respectively.
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form in the new phase as highlighted in Fig. 25(d).
A better method for studying this phenomenon is to create

a free energy that contains both square and triangular sym-
metry equilibrium states. This can be done by including a

u¹W cu4 term (which favors square symmetry) in the free en-
ergy. This is, unfortunately not the most convenient term for
numerical simulations. A better approach is to simply couple
two fields in the appropriate manner as was done in an earlier
publication[2]. In either case an initial polycrystalline state
can be created of one crystal symmetry.

IV. SUMMARY

The purpose of this paper was to introduce the PFC
method of studying nonequilibrium phenomena involving
elastic and plastic deformations and then to show how the
technique can be applied to many phenomena. Those phe-
nomena included epitaxial growth, material hardness, grain
growth, reconstructive phase transitions, crack propagation,
and spinodal decomposition. In the future, we intend to ex-
tend this model to study these phenomena in three dimen-
sions.
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APPENDIX: NUMERICAL METHODS

Equation(28) was numerically solved using two different
methods as described below. In what follows the subscripts
n, i, and j are integers that correspond to the number of time
steps and distance along thex andy directions of the lattice,
respectively. Time and space units are recovered by the

simple relationst=nDt , x= iDx, andy= jDx. In the methods
discussed below the maximum size of the spatial mesh is
determined by the periodicity of the selected states. For the
models used here the periodicity isl<7.3, so thatDx,7.3.
In most of the simulations presentedDx<0.785, implying
that each “particle” was described by 939 grid points.Dx
was chosen so that the numerical solutions converged to the
analytic one-mode approximations in the appropriate limit
(e.g., see Fig. 3).

Method I

In method I a Euler discretization scheme was used for
the time derivative and the “spherical Laplacian” approxima-
tion was used to calculate all Laplacians. For this method the
discrete dynamics reads

cn+1,i,j = cn,i,j + ¹2mn,i,j , sA1d

wheremn,i,j is the chemical potential given by

mn,i,j = fr + s1 + ¹2d2gcn,i,j − cn,i,j
3 . sA2d

All Laplacians were evaluated as follows:

¹2fn,i,j = fsfn,i+1,j + fn,i−1,j + fn,i,j+1 + fn,i,j−1d/2 + sfn,i+1,j+1

+ fn,i−1,j+1 + fn,i+1,j−1 + fn,i−1,j−1d/4 − 3fn,i,jg/sDxd2.

sA3d

Method II

In method II a Euler algorithm was again used for the
time step, except that a simplifying assumption was made to
evaluatefr +s1+¹2d2cn,i,jg in Fourier space. In this approach
the Fourier transform ofcn,i,j was numerically calculated
then multiplied bywsqd and then an inverse Fourier trans-
form was numerically evaluated to obtain an approximation
to fr +s1+¹2d2cn,i,jg. If wsqd is chosen to bewsqd=r +s1
−q2d2, then, to within numerical accuracy, there is no

FIG. 24. A portion of a simulation is shown where the grey scale
corresponds to the local energy density. The size of both figures is
2048Dx31024Dx, where Dx=p /3. (a) and (b) are at timest
=25 000 and 65 000 after the rip was initiated, respectively.

FIG. 25. The grey scale corresponds the fieldc. (a), (b), (c), and
(d) correspond to timest=2, 20, 40, and 180, respectively. In(d) the
solid lines are guides to the eye.
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approximation. In this workwsqd was chosen to ber +s1
−q2d2 if wsqd,−2.5 andwsqd=−2.5 otherwise. Thuswsqd is
identical to the exact result for wave vectors close to
q=1—i.e., the wavelengths of interest. The advantage of in-

troducing a large wave vector cutoff is that the most numeri-
cally unstable modes arise from the largest negative values
of wsqd. This allows the use of much larger time steps. Other
than this approximation the method is identical to method I.
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