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Roughening of the interfaces in(1+ 1)-dimensional two-component surface growth
with an admixture of random deposition
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We simulate competitive two-component growth on a one-dimensional substiateites. One component
is a Poisson-type deposition that generates Kardar-Parisi-ZtfeRg) correlations. The other is random
deposition(RD). We derive the universal scaling function of the interface width for this model and show that
the RD admixture acts as a dilatation mechanism to the fundamental time and height scales, but leaves the KPZ
correlations intact. This observation is generalized to other growth models. It is shown that the flat-substrate
initial condition is responsible for the existence of an early nonscaling phase in the interface evolution. The
length of this initial phase is a nonuniversal parameter, but its presence is universal. We introduce a method to
measure the length of this initial nonscaling phase. In application to parallel and distributed computations, the
important consequence of the derived scaling is the existence of the upper bound for the desynchronization in
a conservative update algorithm for parallel discrete-event simulations. It is shown that such algorithms are
generally scalable in a ring communication topology.
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I. INTRODUCTION the Kardar-Parisi-ZhandKPZ) equation [2]. In the co-

In (1+1) dimensions, the roughness of a surface tha{novmg frame, the KPZ equation is

grows on a one-dimensional substrate of lengtitan be

expressed by the interface widii(t) at timet, he = vhe + Ahf+ L, (4)
le — ’
(WA(t)) = EE [h(®) =h(®)]* /, (1) whereh=h(x,t) is the height fieldsubscripts denote partial
k=1

derivatives. Coefficientsy and \ give the strength of the

whereh(t) is the height of the column at siieandﬁ(t) is Iinear_ damping and the coupling Wi'Fh nonlinear growth, re-
the average height. The angular brackets denote the averae%BeCt'Vely' The uncorrelated Gaussian ngéet) has zero
over many configurations and the bar over a symbol denotd&€an and covariance,
the average ovek sites. The self-affined roughness of the
interface manifests itself by the presence of the Family- XD\ t)) =Ddx=x") 8t -t"), 5
Vicsek (FV) scaling[1],
where D is the noise strength. A renormalization-group
WA(t) = L2“f<i> ) analysis[2,3] can provide a connection between the stochas-
Lz)’ tic growth equation and scaling exponents. The KPZ univer-
sality class, governed by dynamics given by B, is char-
acterized bya:% and ,8:%. A characteristic signature of the
KPZ scaling is the exponent identity+z=2, valid in all
) { y2Z oy < dimensions. When=0 in Eq.(4), the growth is governed by
y ~

where the scaling functiof(y) describes two regimes of the
width evolution,

’ (3 the linear Edwards-WilkinsolEW) equation[4]. The EW
universality class is characterized h)yt:% and ,8:%. Using
The dynamic exponent gives the evolution of the lateral scaling arguments, it can be shown thatir 1) dimensions,
correlation length&(t) ~tY2 When &(t) exceeds the system the EW exponent identity is@+1=z [5]. When\=0 and
sizeL, the width saturates. At saturation, s t,, the width ~ »=0 in Eq. (4), the growth belongs to the RD universality
scales asv~ L% where « is the roughness exponent. The class, characterized b@:% and the lack of saturation. The
growth phase is the initial phase fot, before the cross- RD interface is not self-affined.
over timet, ~ L” to saturation. The growth phase is charac- The theory behind kinetic roughening and the origins of
terized by the single growth exponefta/z. The rough- scale invariance are well understof@i5—-9, but there are
ness, growth, and dynamic exponents are universal. Theimumerous instances of growth processes that neither follow
values depend only on the underlying mechanism that gerene power law nor exhibit a clear-cut universality as it is
erates the correlations and scaling. expressed by the FV scaling. One group of examples is the
A simple continuum model of nonequilibrium growth that anomalous roughening in epitaxial growth modé&sl0,17,
leads to the scaling of a noise-driven interface is provided byractures[12,13, and in models with subdiffusive behavior

const, y>1.
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or quenched disorddrl4]. These systems exhibit different tem of their own, whose properties can be uncovered with

dynamic scaling on local and global scales, characterized bihe well-established tools of statistical physics.

different values of roughness exponents. In PDES, physical processes are mapped to logical pro-
The super-rough dynamics of tumor growih5] is the  cessegassigned to processgrthat manage state updates of

first experimental observation of anomalous scaling(in ~ assigned physical subsystems. The main challenge arises be-

+1) dimensions. Another issue is the clear experimental ob¢a@use logical processes are not synchronized by a global

servation of the KPZ universality and the role of quenchect!oCK- Consequently, to preserve causality in PDES, the al-

noise in the asymptotic KPZ scalinp,8,16. For one- gorithms should incorporate the so-called local causality

. . : : . constraint{42,43. Depending on the way the local causality
dimensional KPZ growth, by applying a weak noise canoni gnstraint is implemented, there are two broadly defined

cal phase-space method, it has been shown recently that t :
' . . . - . sses of update protocdi41], namely conservative algo-
KPZ dynamic exponent is associated with the soliton d'Sperfithms[42,44—4@ and optimistic algorithm§47—49. Impor-

sion law [17]. However, at saturation all KPZ correlations yon¢ efficiency considerations of these algorithms involve the
are exactly the same as would result from the linear EW,gjization of the parallel processing environmeas mea-
equation[s,17,1§. The fact that the EW equation is sort of greq by a fraction of processors working simultaneously at a
‘embedded” in the KPZ equation may give rise to ambigu-time) and the memory per processor required by state sav-
ous values of scaling exponents for growth mechani@ns ings. The latter is closely related to the statistical spread in
modelg that interpolate between the weak and the stronghe processors’ local times, i.e., to desynchronization. Recent
nonlinear coupling regimes. Even when the nonlinear couapplications of conservative PDES to modeling complex
pling is strong, the discrete models require sufficiently largephysics systems include ballistic depositi@d], Ising spins
length and time scales to show clear KPZ scalit§-23.  [51], and dynamic phase transiti2,53. In an application
Likewise, large scales are essential in simulation studies ab simulating Ising spins, an onset of self-organized critical
roughening in the two-component growth models that combehavior in optimistc PDES has been recently reported
bine one process governed by linear EW dynamics with anf54,55.
other process governed by nonlinear KPZ dynaniiz4]. Since the introduction by Kornisst al. [56], an idea of
Recently, Chame and Rej&5] simulated in(1+1) dimen-  utilizing nonequilibrium surface growth method3,6,7 in
sions a mixed growth where particles aggregated either bgvaluating the scalability of algorithms for conservative
ballistic deposition(with probability p) or by random depo- PDES, there have been a number of advances using such
sition with surface relaxatiogwith probability 1-). They  efforts. The main concept behind this idea is the virtual time
show that for smalp and sufficiently largeL, the interface  horizon (VTH) of the algorithm. The VTH is a
width has three well-defined evolution stages. The first stagel + 1)-dimensional nonequilibrium surface. Its time evolu-
for early times, is the EW growth. The second stage, fortion can be simulated by applying a deposition rule that is
intermediate times before saturation, is the KPZ growth. Thejefined by a parallel-update protocol based on the algorithm.
third stage is the saturation. Several properties of the algorithm can be deduced from ana-
Two distinct growth phases were also observed in experityzing its corresponding simulated VTH. One of them is the
ments with interfacial roughening in Hele-Shaw flows utilization [57,58. Another one is the desynchronization of
[26-28, in simulations of electrophoretic deposition of poly- processors in the system as the PDES evolves in time. The
mer chains [29,3(0, and in numerical studies of one- width of the simulated VTH provides a measure of this de-
dimensional restricted solid-on-solid models with two synchronization. It has been demonstrated that an asymptotic
growth components, each of which being a mechanism rulehck of synchronizatiorj59] can be avoided in new genera-
by dynamics that belongs to a distinct universality classions of algorithmg60,61). The focus of past studies was on
[31-38. The latter examples suggest that the two-phaseéhe worst-case performance scenario when each parallel pro-
growth may be an effect of mixing the universalities. In sup-cess consisted of only one computational objectcompu-
port of this hypothesis comes a two-component model contational volume. Despite being informativée.qg., providing
sidered by da Silva and Moreirg89], where the Kim- the evidence of a lower bound on the utilizatipsuch stud-
Kosterlitz [40] deposition occurs with probability and jes are of little practical value since taking full advantage of
ballistic deposition occurs with probabilityl —p). Both of  parallelization implies many computational objects per pro-
these growth mechanisms are governed by the KPZ dynantessor. Past simulation studies have demonstrated that when
ics, except that their corresponding continuum equations difthe load per processor is increased, the utilization increases
fer in the sign of the coupling.. In this case, large-scale significantly [57,58,60,62, and a mean-field-like method to
simulations in(1+1) dimensions produce only one growth estimate the utilization in this general case has been devel-
phase with the growth exponegtparametrized by [39]. oped[57,58. The missing element thus far has been a de-
The purpose of roughening studies presented in this papéailed investigation of the dynamic scaling properties of the
is to uncover the dynamics of desynchronization in consersimulated VTH for the general case of many computational
vative parallel discrete-event simulatiof®DES. The PDES  objects per processor. This is the main theme of this paper.
are a technical tool to uncover the dynamics of information- We simulate three growth mechanisms for the VTH that
driven complex stochastic systems. Their wide range of apeorrespond to three implementations of a conservative up-
plications in contemporary sciences and technol@gdy has  date algorithm in a ring communication topology, where
made them an active area of research in recent years. ParalEdch processor communicates only with its immediate neigh-
and distributed simulation systems constitute a complex sysiors. The models are variations of Poisson-random deposi-
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tions. Two of these rules are realizations of the worst-case Il. SIMULATION MODELS
scenarios and present a situation when the systempb- _ _ .
cessors can be mapped onto a closed chain sins. The In simulations, a system df processors is represented as

third model corresponds to the general case when each pr8-S€t of equally spaced lattice poiﬂt,sk_:1,2, ... L. Each
cessor carriedl computational volumes and it combines the Processor performs a number of operations and enters a com-
second model with random depositicRD). In this work, we munication phase to exchange information with its immedi-

do not attempt to obtain exact values of scaling exponent@te neighbors. This communication phase, called an update

that characterize these growth processes. Our primary inteﬁttempt' takes no time in our simulations. In this sense, we

ests are in the scaling functions for the interface width and in5|mulate an ideal system of processire relation to PDES

. - . Is discussed in Sec. VI DAn update attempt is assigned an
the gnlver_sal prop_ertles of the VTH mterfages. integer indext that has the meaning of a wall-clock tinie
Simulation studies of the VTH interface in the WorSt'Casearbitrary units
scenario show_ed tha_t for very large this interface belongs The local virtual timehy(t) at thekth processor site rep-
to the KPZ universality clasgs6]. However, for smalL or

; X X ..., resents the cumulative local time of all operations onktine
for early times, before the KPZ growth is attained, the W'dthprocessor from the beginning &t0 to timet. These local

does not scale. This suggests the strong sensitivity of thgyocessor times are not synchronized by a global clock. The
evolution to the initial condition. When the model is gener- ring communication topology among processors is mapped
alized to accommodate many computational volumes pepnto a lattice arrangement with periodic boundary condi-
processor, the evolution of the VTH width changes. Nowtions, hy,.(t) =h(t). The set of local virtual timek,(t) forms
there are two distinct phases in the growth regime. The earlyhe VTH att. The growth of the VTH is simulated by a
phase evolves in the RD fashion and the later phase hageposition rule, where local height incremenig(t) are
signatures of the KPZ scaling. In this work, we investigatesampled from the Poisson distribution of unit mean. The
the above issues in large-scale simulations. Unless staté@rm of the deposition rule depends on the processor load, as
otherwise, configurational averages were obtained over agxplained below.

ensemble of 800 independent simulations. The VTH models A general principle that governs the conservative update
and definitions are explained in Sec. Il. Simulations are ini{rotocol requires a processor to idle if at the update attempt
tiated from a flat substrate and carried on up td file tthe local causality constraint may be violated. This happens
steps, well beyond crossover times to the steady state for thghen att the kth processor does not receive the information
considered substrate sizes. In Sec. lll, we analyze the intefrom its neighboring processgor processonsif such infor-
face evolution for random depositions at local surfacemation is required to proceed in its computation. This corre-
minimai.e., the worst-case scenayiand show that the ini- sponds to a situation when the local virtual titmgt) of the

tial lack of scaling is an artifact of the flat-substrate initial kth processor is ahead of either one of the local virtual times
condition. To identify nonuniversal features in the evolution, h,_4(t) or h,,(t) of its left and right neighbors, respectively.

in addition to Poisson-random depositions we also consideln this unsuccessful update attempt, the local virtual time
both Gaussian and uniform-random depositions. In théy(t) is not incremented, i.e., thé&th processor waits:
steady-state time averages, we omit the intléxthe nota-  h,(t+1)=h,(t). In another case, for example, whentahe
tion, e.g.,(w?) denotes the saturated surface width. In Seckth processor does not need information from its neighbors it
IV, we perform an analysis of the interfaces generated by twgerforms an update regardless of the relation between its
simultaneously acting growth mechanisms, one of which belocal virtual time and the local virtual times on neighboring
ing RD and the other generating the KPZ correlations, angbrocessors.

we obtain a universal scaling function for this type of VTH  One example of computations that follow the above
interfaces. Results obtained in this section show that the RIhodel is a dynamic Monte Carlo simulation for Ising spins.
admixture elongates the principal height and time scaledn a parallel environment, a spin lattice is spatially distrib-
leaving the KPZ correlations intact. In Sec. V, we derive auted amond. processors in such a way that each processor
general relation between the VTH interface velocity and thecarries an equal load of one contiguous sublattice that con-
utilization in conservative update processes. In Sec. VI A, wesists of N spin sites(i.e., each processor has a load Nf
generalize findings of Sec. IV to two-component models thatolumeg. Some of thes&l spin-lattice sites belong to border
mix RD with a deposition that either classifies within the slices, i.e., at least one of their immediate neighbors resides
KPZ or within the EW universality class. In particular, we on the sublattice of a neighboring processor. Processors per-
show that the RD admixture that happens with probabilityform concurrent spin-flip operatiorise., increment their lo-
(1-p) gives rise to ap-dependent affine component in the cal virtual timeg as long as a randomly selected spin-site is
scaling. Section VI B contains a discussion of finite-size ef-not a border site. If a border spin site is selected, to perform
fects observed in scaling of the VTH interfaces. An examplea state update that is consistent with and faithful to the un-
of false scaling is provided in Sec. VI C to illustrate the derlying physical spin dynamics, a processor needs to know
importance of the relaxation from the flat-interface initial the current spin state of the corresponding border slice of its
condition in the scaling considerations. Applications to scalneighbor. If this information is not available at theipdate

ing and scalability of conservative PDES algorithms are disattempt(because the neighbor’s local time is behiray the
cussed in Sec. VID. Conclusions are summarized irconservative update rule the processor waits until this infor-
Sec. VII. mation becomes available, i.e., until the neighbor’s local vir-
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tual time catches up with or passes its own local virtual timethese sites can be interpreted as the probalpliy) that att

The least favorable parallelization is when each processa randomly selected site followed rule 2. In steady-state
carries one computational volumbl=1. Computationally, —simulations(defined in Sec. I, this density does not depend
this system can be identified with a closed-spin chain wherent and is found to be approximatefy=v2/N. This is be-
each processor carries one spin site. At each update attempguse in simulating conservative PDES the random selection
each processor must compare its local virtual time with theof volume siten, is not performed at every for all lattice
local times on both of its neighbors. sitesk. If at somet the update conditioKi7) is not satisfied,

The second least favorable arrangement is when procegie selection of, must be postponed until some later tite
sors have a computational volurhs=2. As before, the sys- when condition(7) is satisfied. Explicitly, in the spirit of
tem can be mapped onto a closed-spin chain where ea@onservative PDES, if relatiofT) does not hold, then the old
processor carries two spin sites, each of which is a borden, is kept for as many update steps as required until it finally
site. At each update attempt, every processor must compatmlds at latert’. Note, if the draw ofn, were performed at
its local time with the local time of one of its neighbors.  eacht for all k, the probability of selecting a border site

In general, wherN=3, at update attemyf the compari- would have been 2V, i.e., smaller tharp.
son of the local virtual times between neighbors is required We define the utilizatioqu(t)) as the configurational av-
only if the randomly selected volume site is from a bordererage of the fraction of sites that performed an update at
slice. In all cases, we start the simulation from a flat substratgyhen N=1, (u(t)) is simply the mean density of local
att=0, h(0)=0. minima of the interface. WheN= 2, (u(t)) is the mean den-

_ At every successful update attempt, the simulated locagiy, of update sites. The velocity(t) of the interface is de-
virtual time at thekth site is incremented for the next update . —
fined as(dh(t)/dt).

attempt:h,(t+1) =h,(t) + (), where (t)==In(r,,), andr, T . .
(0:1] is a uniform random deviate. The three cases de. One distinction between the deposition models studied
scribed above are realized in simulations by the followinghere and other regtrlcted sohd—onl—solu_j models. is that n the
three deposition rules. fprmer, the deposited random height incremens a posi-
Rule 1(N=1). The update attempt atis successful iff tive r_eal number_that can take on any valu_e fro_m an a53|_gned
real interval, while the latter usually consider integer height
he(t) < min{hy_1(t), hee 1 (1)} (6) increments. Although in the context of applications to PDES
) this is the Poisson distribution with meag=1 and unit
Rule 2(N=2). At any sitek where the update attempt was yariance that models the waiting times, represented here by
successful att-1), att we first randomly select a neighbor 5, we also consider two other alternative depositions. One of
(left or right). This is equivalent to selecting either the left or them is uniform deposition, wherg is sampled from the
the right border slice on thith processor. The update at- yniform distribution with meamU:% and variancell—z, re-
tempt is successful iff stricted to the interval0;1]. The other one is a Gaussian
he(t) < hy (1) 7 deposition, wherey is sampled from the Gaussian of unit
me variance and zero mean, restricted to the positive semiaxis.
wheren is the randomly selected neighbor=k-1 for the  For_this Gaussian, after normalization, the meanuis
left, n=k+1 for the righj. At any sitek where the update =V2/7 and the variance i$1—2/m). We find that varying
attempt was not successful @t1), att we keep the lash  the deposition type does not change the universality class of
value. the model. The purpose of introducing this variation is to
Rule 3(N=3). At any sitek where the update attempt better identify nonuniversal features in the initial evolution
was successful dt—1), att we first randomly select any of Of the VTH interface.
the N volume sitegiindexed byn,) assigned to a processor.
The selected site can be either from the border gieher . ELAT-SUBSTRATE CONDITION
n,=1 orn,=N) or from the interior. The attempt is successful
if the selected site is the interior site. When the border site is Rule 1 (N=1) is a realization of random deposition at
selected, the attempt is successful if conditidnis satisfied. local surface minima. As demonstrated in simulations with
As in Rule 2, at any sit& where the update attempt was not Poisson deposition®6], these interfaces belong to the KPZ
successful att—1), att we keep the lasny value. universality class when the system sikzeis sufficiently
Rule 3 is essentially different from rules 1 and 2 in that itlarge. Using standard finite-size scaling technigigor L
is a mixture of rule 2 and RD. At eadh depending on the of the order 18-1(, the scaling exponents were determined
selectedh,, the local updatédeposition at sitek either fol-  numerically to bg3=0.326+0.005 and=0.49+0.01[56]. A
lows rule 2, which requires checking with a neighbor, or it peculiarity of this scaling, present for dll is the existence
follows RD, which just simply deposits a random positive of the initial phase that does not scale, as illustrated in Fig.
real number,(t). The probability(1—p) that rule 3 takes the 1(a). Another feature is the lack of scaling for small ap-
form of RD is parametrized bi. At eacht, the complemen- proximatelyL < 100. In this section, we analyze the interface
tary probabilityp that rule 3 takes the form of rule 2 can be evolution for processes that obey rule 1 with Poissonian,
obtained by a direct count of lattice sites that have the asdniform, and Gaussian depositions, and show that the above
signed value eithen,=1 or n,=N, and subsequently taking lack of scaling is an artifact of the flat-substrate initial
the configurational mean of this count. The mean density o€ondition.
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FIG. 1. Time evolution of the simulated VTH width whe
=1 for various size4. (a) Poisson depositior(b) Uniform deposi-
tion. The initial phase fot<ty does not scale.

FIG. 2. Scaling of the VTH width wheN=1. (a) Poisson depo-
sition. (b) Uniform deposition. The insets show the data collapse for
t>ty. The slope B of the growth phase is consistent witht+z
=2 anda=pz

Figure 1 presents typical evolutions of the interface width
for moderate to largd. for both Poissonian and uniform (8)
depositions. A similar behavior is also seen for Gaussian i )
depositions. A common feature is the existence of an initiavhere f<(+f-()=1 is the convex sum, ie., 0
growth phase, &t<t,, where the widths do not scale. For < f<(t),f.(t)<1. The characteristic densitiés(t) andf..(t)
t>t,, the widths obey the FV scaling, Eq®) and(3), with are the fractions of sites that have their heights less than or
KPZ exponents. Figure 2 presents the FV scaling for Poissaequal to and larger than, respectively, the mean hdi¢it
nian depositiongwith 2«=0.88 and for uniform depositions  The corresponding widths, computed on subsets that consist
(with 2a=0.94), both with a+z=2, when the scaling trans- of these sites alone, awi(t) and W2>(t), respectively. In
formation is applied for alt=0. A similar picture of the data individual simulations, Eq(8) is strictly satisfied and it is
collapse is obtained for Gaussian depositigmgith 2o valid when averaged over many independent simulations.
=0.92. The whiskerlike structures in the growth part, clearly The convex sum is also valid for configurational averages of
observed in Fig. 2, demonstrate the absence of scaling fqtharacteristic densities. However, §&) does not need to
0=t<t,. They vanish when the scaling is restricted to timeshold when characteristic densities and widths are changed to
t=t, (see the insets to Fig.)2and full data collapse is their corresponding configurational averagémcause, in
achieved for these later times. This initial transition phase igyeneral,(ab) # (a)(b)). Configurational averages of charac-
not a finite-size effect sinc does not depend ado. For all  teristic widths and densities, and the interface velogity,

L, there is one commot that depends only on the deposi- 5re presented in Fig. 3 for Poissonian depositions, in Fig. 4
tion type. The largest is observed for the deposition with ¢, Gaussian depositions, and in Fig. 5 for uniform deposi-
the largest variance of the random height incremept$n  ions. Att=0, the interface velocity and the utilization have
our 'examﬁ)les, the smallegtis for the uniform depositions  hejr highest valuegu(0))=1 because EqS) is satisfied at
(variances;) and the largest is for Poissonian depositions 5| sjtes. This first step at=0 is simply a random deposition
(variance }. In Gaussian depositiongvariance (1-2/)], h heightO) = u is th fthe distributi

the initial t, falls between these two values. Thus, while the SteP- T € mean heig (0)=p ~ gme_an ° _e J‘E' ution
scaling shows that the mechanism of generating correlationféOm which 7 is sampled, which igup=1, pg=v2/m, and

_1 ; ; ; i
(ie., rule ) has KPZ dynamics, the lengty of this initial ~ “u=3 for Poisson, Gaussian, and uniform depositions, re-
relaxation period to KPZ scaling is not universal. spectively. The fractiori- (0) of sites that have their heights

The initial transition period, is an artifact of the flat- h(

WA(1) = Fo (WA (D) + F- (WA (D),

larger thanh(0) is easily computed from the corresponding
substrate initial condition. To investigate it further, we write distributions as the probability of selecting a site that has
out wA(t) in its simplex form[60] as the convex linear h(0) larger thanu. This gives for Poisson depositidn (0)
combination :f:jpdx exp(-x)=1/e=0.367; for Gaussian deposition
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FIG. 3. Time evolutions foN=1 with Poisson depositiofL
=1000. (a) The widths w?=f_w2 +f_w2. (b) The interface veloc-
ity v(t) and characteristic densities: the utilizatiu(t)) ( (u(0))
=1, not showhmand the simplex coefficient$- (t)) and(f-(t)). The
time ty marks the transition to the steady stétiee KPZ growth,
andt, is the crossover time to saturation. Hergy,=1.

>(0)—\2/7rf Jdxexp(- -x2/2)=1-erf1/\m)~0.428; and
for uniform deposmonf>(0) fl dx—f These fractions

and their complements.(0)=1- f (0) are clearly observed
in Figs. 3-5. Correlations between lattice sites start to build

a surface with correlations & ends when(f- (t)) =(f(t))

~ % As Figs. 3-5 illustrate, at the simulations attain what
we label as a steady state, one that is characterized by a

| J
up att=1. Since initially the densityf_(t) is larger than %-0-5' oodgﬁ& eﬁ b -
fo(t), depositiqns t%e p!ace more often at sites Witk h < s Odg@ Eﬁ O y=<W>z(t)> .
than at sites witth> h. This cause$_(t) to fall andf.(t) to - ﬁ | A y=<w/(>| A
rise [Figs. 3b), 4(b), and §b)] and a faster growth of/(t) 13F R t O y=<w’(v> | ]
thanw2>(t) [Figs. 3a), 4(a), and Fa)]. On the average, as the 2 Iy ! Ly |
density (f-(t)) rises, the density of local minimau(t)) de- i \
creases. This initial evolution from the RD surface =0 to ] i .
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loglo(t)

FIG. 4. Time evolutions foN=1 with Gaussian depositiofL
=1000. (a) The widthsw?=f_w2 +f_w?.. (b) The interface veloc-
ity v(t) and characteristic densities in analogy with Fig. 3. Here,
ue=\2/m.

| 0| 00
vt

0.55F

1
i
ty oo y=<f,()>

constant utilization. We show in Sec. V thdt) is related to = :

(u(t)) by a simple linear relation, hence the steady state can 041 | AAy=<f (> ]
be alternatively defined by a constant velocity. 03sk i O y=<um>| ]
The correlated growth phase when the scaling is ob- I @@ ! o YVOMy
served, whery<t<t,, is characterized by a slight but no- 0.3F | =
ticeable excess off-.(t)) over (f_(t)). At saturation, fort QW SOSHID OOCHED O]
>t,, (f_)=(f_). The densitiesf_(t)) and(f- (1)), and the 0255 S T

widths (w2 (t)) and (w2 (1)), provide the information about log, (1)

the height distributiorﬁ)(h/ﬁ) of the interface local heights

FIG. 5. Time evolutions foN=1 with uniform deposition(L
=1000. (a) The widths.(b) The interface velocity(t) and charac-
teristic densities in analogy with Fig. 3. Hergy=5

about the mean heigrhT(t). It iitransparent from Figs. 3-5
that for early timest <tg, ®(h/h) is characterized by a posi-
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FIG. 6. Poisson deposition at local surface minima for [ ® Dd@: |
:100(£distribution functionb(x) of the interface local heights 045 @ 1 | -
=h(t)/h(t). (a) Early timest<t,. (b) The steady state for>t,. i £ f t
Cubic-spline curves through the simulation dagymboly are 04O Py ! ! .
guides for the eyes. Herg>100. i %MWM Sounh
R . Ty S SN A CA
. . - 0 1 2 3 4 5 6
tive skewness and evolves to approximately a symmetric dis- log. (©)
10

tribution atty. This distribution function for Poisson deposi-

tions at local minima is presented in Fig. 6. The computation FG. 7. Time evolutions for Poisson deposition whér2 and

of ®(x) is outlined in the Appendix. L=1000.(a) The widths.(b) Characteristic densities and the inter-
The skewness of the height distribution in the stationaryface velocity, in analogy with Fig. 3.

state of the KPZ growth has been analyzed before by den

Nijs and co-worker$63-63 for Kim-Kosterlitz models with  gimylations reach the steady state, and for sudhe KPZ
integer step-height differences. They report that KPZ scalingjing is not observed. The universal KPZ scaling is clearly
is realized at times larger than a characteristic time scale thafyserved when the system size is large enough to lose the

is related to slope densities. [d+1) dimensions, the KPZ  amory of the initial condition on time scales smaller than
dynamics is characterized by zero skewness because the2 o whent,<LZ

height distribution of the stationary state is Gaus$&4j. In
our models, the growth can be characterized alternatively
either by _the_densny of local minimae., the utilization for IV SCALING ANALYSIS
N=1), which is the same as the density of local maxii5d,
or by the density of local slopes. Since all these densities In this section, we analyze the interfaces generated by
sum up to 1, the constant utilization in our model is equiva-deposition rule 3 that represents two simultaneously acting
lent to a constant density of local slopes. Explicitly, we de-growth mechanisms: one is RD and the other is deposition
fine the steady evolution stater the steady-state simula- rule 2, both with Poisson-random height increments. First
tions) as the evolution that has the following characteristicswe show that rule 2 generates KPZ correlations. Then we
(i) the density of update sites is constant, @ingdthe skew- obtain the universal scaling function for interfaces produced
ness of the height distribution is approximately zero. Startindy rule 3.
from the flat substrate, the steady growth state is achieved Although rule 2 allows théth site to accept a deposition
after the initial relaxation time,. In the steady state, the even if it is not a local minimum, this rule has all the essen-
KPZ scaling is clearly observed. tial characteristics of rule 1, examined in Sec. lll. At each
The initial time interval fromt=1 to t=t, can be inter- time step, a site must compare its local height with the local
preted as the time scale over which the system retains thieeight of at least one of its immediate neighbors. As in rule
memory of the flat-interface initial condition. This time is a 1, deposition may not happen at a local maximum. But, since
nonuniversal parameter that depends on the variance of th®w it may happen either at a local minimum or at a local
distribution from which the random height incrementis  slope, the utilization of rule 2 is larger than that of rule 1
sampled. The existence of this time scale accounts for theEcompare Figs. @) and 1b)] so the interface velocity is
absence of universal scaling for small system sizes, even lérger. Other than that, there is no difference between these
the rule that simulates the growth represents a generic KP&Evo deposition mechanisms, and the analysis presented in
process. For KPZ dynamics, the characteristic time scale o8ec. Il for interfaces produced by rule 1 can be restated for
which the correlations are being built is of the order of thethe interfaces that grow by rule 2. In particular, both growths
system sizet, ~L32 If this time scale is smaller than the evolve on the same time scaléBig. 7), with the initial
memory scale%?<t,, the interface saturates before the memory scale,=100. Figure 8 shows the scaling function
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z=2-a, characteristic for KPZ scaling. Thus, these inter-
faces belong to the KPZ universality class and the scaling
function is given by Eqg2) and(3). A small departure of 2
from 1, also present foN=1, is discussed in Sec. VI B.
Deposition rule 3 produces a larger utilization than rule 2
because now, depending bip deposition at sité may some-
times be accepted regardless of the relation between its loc
height and local heights of its neighbors. Now at egdmy :
site may increase its height, including a local maximum.valid only fort=t(N). T _
Probability p(N) that a site has to compare its local height ~From the point of view of sca||.nggw (1)) is a family of
with a neighbor is the probability of applying the rule 2, curves parametrized by and N. Figure 11a) presents the
which is the only mechanism that creates correlations. AlterSaturated widtt{w?) plotted againsN for selected values of
natively, deposition at thk site may happen as RD. A com- L. These curves can be scaled.iso that they collapse onto
bination of these two deposition mechanisms produces @ne curve. Figure Ib) shows the scaled widtkw?)/L?,

log, (1)
FIG. 9. Time evolutions for Poisson deposition whidr 100

and L=1000. (a) The widths.(b) Characteristic densities and the
interface velocity, in analogy with Figs. 3 and 7.

?vlvz(t» does not scale, therefore the following analysis is

similar time evolution of characteristic densities and thewhere 2v=0.9. Since logy((w?)/L%%) ~log;(N+const
widths to that observed when rule 2 is acting alone, except

that now the transition to steady-state simulations and the — T T T T T T T 1

crossover to saturation take place on larger time scates- 51 DR i1

pare Figs. 7 and )9 In particular, the initial lack of scaling
extends tdy(N) «tgN/2, wherety marks the end of the initial
relaxation period in the worst-case scenario simulations.
This initial relaxation timetg(N), when the system “re-
members” the flat-interface initial condition, manifests itself

N
in the evolution of interface widths as an early growth phase “% C;@GM)CM)
(Fig. 10 that follows the RD power law Witfﬁl:%. The =
later growth phasefy(N)<t<t, follows the power law & |
with ,82:%—8, wheree is a small positive number. The evo- L=1000
lution of the interface width can be summarized as 0 N=1000
) O N=100 | H
2P, t <to(N) O N=10
(WD) ~ | 22, to(N) <t <ty (N) (9
1 1
g(N)Lzaa t>t><(N)1 5 6 7

whereg(N) is a monotonic function oN. After performing
scaling inL of the saturated width, it appears thgiN) is
linear. The first growth phase is the initial relaxation when

log, (t)

FIG. 10. Two growth phases in the time evolution of the width,

simulated with rule 3 foN>3 andL=1000.
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FIG. 11. The saturated interface width as a two-parameter fam- s A | . | ! | !
ily of curves obtained in simulations with rule @) as a function of T4 2 o 2 4
N volume elements per lattice site for several lattice slze@) as (b) log,,(2t/(NL )

a function ofN, after scaling irL of the data in(a) (the dashed line ) ) ) )
of S|0pe 1is p|otted as a referer)pec) data from(a) p|otted VS FIG. 13. Scallng for the curves of Flg 1@) in t with respect

(NL) to see global trends. The data align along a straight line of thd0 L, with the KPZ dynamic exponemt=2-a; (b) in t with respect
mean slope Ithe dashed-line envelope to N of the data in(a). Data labels displayed in the legend are

common for both(a) and (b).

[dashed line in Fig. 1b)], values at saturation may be fur- oy o . .
ther scaled inN, which gives the collapse to one point thatNL=* is multiplied by(1+¢), wheree is a small fraction
i.e., scaling inN can be followed by scaling ih, leading to saturation; the scaling is clearly seen witk0). Since the

the same result. Globally, the saturated width plotted versu@nlY mechanism that induces correlations in this model is
(NL) follows a line of slope 1Fig. 11(c)]. deposition rule 2, which produces surfaces from the KPZ

Time evolution of the scaled widthw2(t))/(NL2?) for universality class, it is e_xpe_cted that for_eakﬂthe Ier_1gth
t>1,(N) is displayed in Fig. 12. Here, to obtain a perfect scales should couple with time scales via a dynamic expo-

align at saturation with the curves fbi=2, which facilitates gzm aﬁhsctafiigsﬁs\,\,whereKspié??glﬁg&g'p:gdigi’)]afhfze
further scaling int, we introduced a small correction such ' :

choice gives a good data collapse for edthnd this is not
changed noticeably wher=1.5 is chosen. In Fig. 18),

= (é) o (bl) S reading from the left, the groups represéi#2, N=10, N
SE] 1 oo coum Coalr P o oaTEh =100, andN=1000. The last step is the scaling firwith
< fo fo respect toN of the results displayed in Fig. {&. Here the
2r % N=10 oy N=100 inspection of the dilatation witiN of the initial ty proves
g f%f o L=100 K o =100 useful since it leads to the observation that for anyhe
Zor §° oL T © S L initial to(N) can be expressed approximately @& 2)to(N
= S T T =1 or 2. The transformatiori—t/(N/2) shifts (to the lef)
~ (C') L L (d') S all the curves forN>2 into one position. The family of
& forN=2 is shifted into this position when—t/2. The
= w%mm CRiE Dk Seroh curves fo s shifte p
< o o ¢ final result is the scaling function shown in Fig.(b8 The
2 100 nﬁg mean slope of the growth part ig82=0.58+0.02, consistent
”\3/ DLl\_Iilo T N o L=1000 with the slope obtained for@=0.9 from the KPZ relation
= o N-100 o ¢ g Nelo 28=(2a)/(2-a)~0.58.
2 O N=1000 (f f O N=10 The final result, valid fot >t,(N), can be summarized as
2 " 1 " 1 L 1 " 1 1 " 1 L 1 N I N
2 3 4 5 6 7 3 4 5 6 7
log (1) log (1)

FIG. 12. The steady-state evolution for-t; of the scaled

2 _N 2a <2t)
(w (t)>—2|- Nz (10

widths obtained with rule 3 as a two-parameter family of curves forwheref(y) satisfies Eq(3), andz=2 -« with a= % Accord-
() N=10; (b) N=100; (c) L=100; and(d) L=1000.

ingly, the interfaces generated by the deposition/update rule
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3 belong to the KPZ universality class. In the scaling regimeijts height; however{u(t)) does not define a probability dis-

the evolution can be written out explicitly as

N\

(5) 28, to(N) <t <ty (N)
(WA(t)) ~ N (11
_L201
2 1

wheret (N) ~ (N/2)L%

t> tX(N)y

V. INTERFACE VELOCITY

tribution [57,58. Using a recently introduced discrete-event
analytic technique for surface growth problefb3,58, it is
possible to derive a mean-field-like expression for the utili-
zation (u) in the steady-state simulations. AdeE=2 andL
=3, this expressioffi58] is

w=(1-20)(1 09L-1)

2 4 L (16

Becaus€gu(t)) andu(t) are related by a constant multiplica-
tive factor up, by Eg. (15, in the scaling regime for

For the deposition/update models considered in this workt > to(N), Eq. (16) also gives the interface velocity. However,
it is possible to find the exact relation between the utilizationfor early times(u(t)) is unknown.

and the interface velocity. The velocity(t) is defined as

the configurational average of wv(t)=dh(t)/dt

:(1/L)Ek:l dhy(t)/dt. Translating the update recipe to a con-

tinuum version with a continuum time-step increméntthe
update operation at sitecan be summarized as

he(t) + 8t (t) on update
hy(t)

Substituting the above to the definition dh.(t)/dt as the
limit when &t— 0 gives att

dh(t) { 7(t) kis the update site

12
otherwise. (12

h(t + ét) ={

13
dt 0 otherwise. (13
In the set ofL sites, the number of update sites M)
=Lu(t). Since only at these sitedh,(t)/dt is not zero, the
mean is

1 M(t) 1 M(t)
o= k21 (b = u(t)M_(t) k21 (). (14)

Let up be the mean of the distributioR(7) from which 7,

is sampled. In the limit of M—o, (1/M)ZM, 7
— [ dpmP(75)=up. Thus, for sufficiently largéM, the sec-
ond factor in Eq.(14) is up=const. Taking the configura-
tional average of Eq.14) gives

v(t) = (u(®) pp. (15

The above derivation can be repeated for the discrete Casﬁrobability(l—p)

taking ét=1. Equation(15) is strictly satisfied by the simu-
lation data(Figs. 3-5, 7, and 9 In simulationsp(t) is com-
puted numerically withst=1, v(t)=h(t)—h(t—1), andv(t) is
obtained by averaging(t) over many independent simula-
tions.

VI. DISCUSSION

In our steady-state simulations fof>1, the mean den-

A. Kinetic roughening

The scaling expressed by E@LO) can be written in a
more general form by incorporating the probability
=\2/N. This gives

Le 2 p2t
wo-(5i(2)
(WA(t)) 0 [z
The analysis of Sec. IV can be repeated faxt)), which
gives equivalently

_Le p_t)
(W(t)) = pf( )

17

(18

The transition time to the scaling regime ftg(p)=ty/p?,
wheret, marks the end of the initial nonscaling period in the
case of simulations with the deposition/update rule 2 acting
alone. The crossover time to saturatipncan be read di-
rectly from Eqgs.(17) and (18), p’ty(p)/L?=1. This gives
t.(p) =t /p? wheret, is the saturation time when rule 2
acts alone.

Our results for the scaling function, Eq40) and(11) and
Eqgs.(17) and(18) are generally in accord with the work of
Horowitz and Albano[38] and Horowitzet al. [37], who
analyzed(1+1)-dimensional two-component solid-on-solid
models mixed with RD. In Re{.38], the growth is simulated
by ballistic deposition(of the KPZ universality clagsthat
takes place with probabilitp and by RD that happens with
. In Ref.[37], the deposition model mixes
RD [taking place with probability1-p)] and random depo-
sition with surface relaxatiofof the EW universality clags
that takes place with probability. A common characteristic
of these two models and our model is the presence of two
growth phases in time evolution of the interface wiglhg.

10 and Eq.9)], where the early phase follows RD growth
and this is the phase that defies the universal scakiw 4

in Refs.[37,38). Although this initial absence of scaling is
not studied in Refq4.37,38, based on our analysis of Sec. lll,

sity of sitesp(N)=+2/N can be interpreted as the probability we infer that this early RD growth seen in Ref37,3§ must
that att a randomly selected site followed rule 2. The be a long-time effect of some particular initial conditiomot

complementary densifg=1-p is the probability that a ran-

stated in[37,38) adopted in these simulations. As we

doml_y selected site followed _RD. A similar in_terpretation canshowed in Sec. lIl, the length of this initial memory scale is
be given to the mean density of update sife&)) as the a nonuniversal parameter, so comparing crossover times to
probability that at a randomly selected lattice site increasedthe scaling regime does not contain useful information. But,
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the existence of this initial memory scale and the existence X—Xx/L, h—h/L% t—t/L? (22
of scaling for times larger than the initial relaxation time are
both universal. The scaling law reported in RgB7,3g is S followed by
L/ ph Xx—X, h—ph t—p. (23
WIt,L,p) = FF<F) (19 [The order in which transformatiorf22) and(23) are super-

imposed to form transformatio(21) can be reversefThe
where the exponent& andz are characteristic for the uni- second transformation, defined by Eg3), leaves the KPZ
versality class of the moddl.e., KPZ in[38] and EW in  equation(20) invariant provided that new coefficieni$ and
[37]). For the mixture of RD and random deposition with A’ are related to the old coefficients by the relatiarig?
surface relaxatiorithe EW-type modg| the numerics give =v and\’p®=\ (which is the result obtained befgrand the
5=1 andy=2 [37], in agreement with our findings, Eq. old velocity v(t) changes to a new velocity'(t)=v(t")/p.
(18). However, for the mixture of RD and ballistic deposition Notice, in the absence of the RD admixture we hawel
(the KPZ-type modg] it is conjectured i 38] that5w§ and and the transformatio(®3) is the identity. Then transforma-
y=1. In this latter scaling, although the relation betwgen tion (21) is the usual FV scaling, Eqg2) and (3), with
and 8, y=26, agrees with our findings, these powers areproper choices forr andz, depending on the process at hand
smaller by a factor of 2 than our values. As we analyze lateteither KPZ or EW. When the RD process is present, we
in this section, this difference implies that according to Ref.have p<1. Then, inverting transformatio(23) gives the
[38], the admixture of RD should affect time scalesmis changes in the local-height field p and in time scales/p?.
while our findings clearly indicate thg?t behavior. Since the elongation of the time scale is inversely propor-

The sensitivity of the surface evolution to the initial con- tional to p?, this effect is more pronounced than the stretch-
dition has been recently pointed out by Koréaal. [32] in ing in h. These phenomena take place for &#0 since
relation to phase ordering in two-component solid-on-solidtransformation23) is valid for allt, while the FV scaling or,
models. In our modeling, to incorporate fully the dynamicsequivalently, affine mapping given by E(R2) takes place
of the growth, the KPZ equation should contain the mearpnly in steady-state simulations at times ty(p) when the
interface velocityv(t), system has lost the memory of the initial condition.

One possibility for the behavior seen in this paper for an
admixture of the KPZ fixed point with the RD fixed point
could be for a reason similar to the floating-fixed point seen
in critical phenomeng66—-6§. In that case, two physical
Equation(4) can be valid only for the steady-state simula-fixed points(in integer dimensionsare joined by a line of
tions, whenu(t)=const. Therefore, it does not describe thefixed points that are inaccessihlie that case in noninteger
initial dynamics att <t of our deposition models, while Eq. dimensions The result is that for a finite system size, and
(20) does. Results obtained in Sec. IV, summarized by Eqsdepending on the boundary conditions involved, there is an
(17) and(18), indicate that the admixture of the RD processeffective critical exponent69—72.

[present with probability1-p) in rule 3] elongates time Only in the limit of infinitely large systems is the physical
scales in Eq(20). We now scrutinize this effect from the fixed point approached. The effective critical exponents
point of view of the affine transformations involved. along this line of fixed points satisffhypenscaling relation-

Consider the following transformations that are expresseghips, just as here the relationship-z=2 holds. Further
by Egs.(17) and(18): investigations studying much larger systems would be

needed to see if the floating-fixed point picture holds in our
t, (21) case where properties of both the RD and KPZ fixed points
' are mixed into the nonequilibrium surface model.

In summary, the only effect of the RD admixture to either
whereg(p) is to be determinefhote,g(p) is notindependent a genuine KPZ or EW process is the dilatation of growth
because, h, andt are transformed simultaneouslyDenot-  scales. The RD blending does not change the universality
ing v=-h,, in (1+1) dimensions, the convective derivative class of the interface since it does not change the dynamics
in Burger’s flow isDw =v,+\vv, [3]. It is straightforward to  of mechanisms that are responsible for building correlations.
show thatDw is invariant(up to a multiplicative factorun-  However, such dilatation, when combined with the initial
der transformation$21) if a+z=2, g(p)=p, and if A —\’, flat-substrate condition, may obscure a clear observation of
NMp3=N. Then w2(t) transforms to w'%(t’), w'2(t’)  KPZ scaling in simulations as well as in experiments.
=w2(t)/(L?¢/ p?) ~ D (1), or, equivalently,  w(t)

—w(t)/(L*/ p)~d(t’"). This gives Eqs(17) and(18). If we

A
hy=o(t) + thx+5h>2<+g- (20)

2

)

La

p

X
X—x'=—, h-—h h, t—t' ==
L L?

setA=0 in Eq.(20) [assuming the scaling regime of constant B. Roughness
v(D)], then the resulting EW equation is invariant under the In this section, we discuss finite-size effects in scaling for
same transformations providing=2, 2a+1=z and v— v/, the VTH interfaces simulated by the worst-case-scenario

v'p?=v. This, again, gives Eq$17) and(18) but withz=2  deposition/update rules 1 and 2. Despite the fact that these
anda:%. Transformations defined by E@1) can be seen as interfaces belong to the KPZ universality class, the precise
superpositions, where the first scaling value of the roughness exponent depends on the latticé size
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and on the type of deposition. In the case of Poisson depo- Fa

sition, it requires largd. to attain scaling with @2~=1 [56]
(@ approache% from below asL is increasey] while for
uniform depositions the requirddis approximately two or-
ders smaller than that for Poisson depositions.

At saturation, the growth of @l +1)-dimensional KPZor

EW) surface can be mapped onto a diffusion problem with D S T I bt .

column-height fluctuationsh~ 1/z,, where z, is the dy-
namic exponent of a random walkig,9] that connects with
the roughness exponeniz,=1. The exacta:% indicates

the total lack of correlations and> 3 indicates their pres-

ence. The random-walk interfaces are characterized by the 04r

following width distribution functiond(w?/(w?)) [18]:

2~ 2
D(x) = %E (- 1)”’1n2exp<— %nzx> . (24)

n=1

In simulations of growth models whene? depends on a
single length scaleb is obtained by normalizing a histogram
P(w?) of the width distribution[18,73-76,

2

@(%) = (WAPWA). (25)

This technique of describing surfaces in terms of their scal;
ing functions® gives very good agreement between theoret—(

ical functions® (whenever availableand simulated curves
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FIG. 14. Distributionsb(x) of the interface widths at saturation,
=w?/{w?). Results of simulationgsymbolg are compared to Eq.
24) (continuous curve (a) Uniform deposition wheh.=1000 and
N=1,2 (binning intervalA;=0.05; the data foN=1 fall on the top

for growth models with integer height increments of gata forN=2). (b) Uniform and Poisson depositions whén

[18,73—76. Figure 14 showsb obtained in simulations with
severalN andL for our deposition/update models with Pois-

=1000 andN=1,2A,=0.05, Ap=0.5. (c) Poisson deposition
whenL=1000,10 000 antN=1,10, 100(Ap=1).

son and uniform depositions. We observe that these curves

closely follow the theoretical curve given by EQ4). In the
computation of the quantities in E(R5) (see the Appendix
we used a variable step sizein binning thew? data (A
=0.05,0.1,0.5, and)land a variable numbéx,, of data
points at saturatiof6.4x 10° < Ny,,< 10%) to ensure that the
results of Fig. 14 represent the true limit®fobtained in our
models.

The exact collapse of the distributionB obtained in
simulations on the theoretical curve of Fotlat al. [18],
given by Eq.(24), is not related to the type of the deposition,

that, on average, a deposition at titndoes not affect depo-
sitions at time(t+T). Long memory scaled lead to a
build-up of temporal correlations, thus producing a variation
to Gaussian noise in Eq4), possibly modifying noise
strengthD in Eq. (5). Such a variation may influence the way
in which the system attains the stationary stpfé&] and,
possibly, the value ofr. We leave this issue open to future
investigations.

as is illustrated by the data in Fig. 14 and is observed even

for small system sizesl ««100. Therefore, an explanation
for the sensitivity ofa to L and to the deposition type must
lie elsewhere. For moderate to larig@resented in this work,
whenN=1, data collapse at saturation requiree=20.94 for
uniform deposition, 2=0.92 for Gaussian deposition, and
2a=0.88 for Poisson deposition. Similarly, whé&+2, the
collapse was achieved withw2=0.94 for uniform deposition
and 2v= 0.9 for Poisson deposition. This variation @fvith
the deposition type suggests that a small deparifye
=1-2a from the exact value2=1 is a nonuniversal param-
eter. As observed, the largest differengeis for depositions
that have the largest varian@ee., Poissonpand the smallest
8, Is for depositions of the smallest variange., uniform.
This observation strongly indicates théf is related to the
system memoryintroduced in Sec. I)| i.e., to time scale¥

C. False scaling

A blind application of the scaling technique to numerical
data sets, without supporting analysis of temporal scales and
invariants involved, may lead to false conclusions. For ex-
ample, assuming a global linear behavior(af) versus the
variable(NL) [Fig. 11(c)], it is possible to collapse the satu-
rated widths by using an effective exponent=21. Per-
formed for allt> 0, such scaling shows two distinct growth
regimes in the evolution curve§ig. 15. For eachL, these
can be further collapsed into groups by scalirgt/N* for
all t, taking z;=1 [Fig. 16a)]. The excellent total data col-
lapse in the first growth regim@f slope 28, in Figs. 15 and
16) is obtained when— t/(NL)%, but at the expense of only

on which the interface does not remember past depositiongn approximate collapse in the second growth regiofe

In other words,é, depends on the minimal interval such

slope 28, in Figs. 15 and 16 This final result{Fig. 16b)]
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log,(<w (O>/(NL)*)

N=1000

o L=100 |}
o L=1000]| ]

¢ N=100
O N=1000

log,o(<w (H>/(NL)**)

L=1000

o N=10 [T
< N=100
O N=1000|7
P I I N

log,,(t)

FIG. 15. The false-scaling time evolution for 0 of the scaled
widths, obtained with Poisson depositions in rulga8:N=100; (b)

N=1000;(c) L=100; and(d) L=1000.

seems to look plausible becausg;21 and 2vr=1 give a

3 4 5 6 7
log,,(®
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fact, this example supports our earlier conclusion that the
initial growth phase fort<ty(N), the artifact of the initial
condition, does not scale.

D. Application to PDES

In modeling of the conservative update mode in PDES,
we represent sequential events on a processor in terms of
their corresponding local virtual times. The column height
that rises at théth lattice site in the simulated VTH repre-
sents the total time of operations performed by kte pro-
cessor. These operations can be seen as a sequence of update
cycles, where each cycle has two phases. The first phase is
the processing of the assigned set of discrete events,
spin flipping on the assigned sublattic&his phase is fol-
lowed by a messaging phase that closes the cycle, when a
processor broadcasts its findings to other processors. But the
messages broadcasted by other processors may arrive any
time during the cycle. Processing related to these messages
(e.g., memory allocations/deallocations, sorting, and/or other
related operationss handled by other algorithms that carry
their own virtual times. In fact, in actual simulations, this
messaging phase may take an enormous amount of time,

hypothetical exponer#;=1, and the curves fall exactly on depending on the hardware configuration and the message
the top of each other in the early growth phase and at satyprocessing algorithms. In our modeling, the time extent of

ration. However, upon closer inspection it appears that théhe messaging phase is ignored as though communications
length of the intermediate regime of slopg,2xpands when among processors were taking place instantaneously. In this

L is increased. In the limit of large but finite, the scaled
curves in Fig. 1@) will cover the lower right-hand semi-
plane, bounded by lineg=log,(w?)/ (NL)?>*]=const andy
=2B;log;t/(NL)%]+const. Hence, there is no scaling. In

—~ -l
8 L
2 2 -
A R 2R
R e TN
9 ~ > L=100, N=100
— 4 O L=100,N=10
@ & L=1000, N=1000
< @ v L=1000, N=100
- A L=1000,N=10
} ] . ] ] I . I
3 0 2 4 6
(a) log, ,(t/N")
0 ! I T I I
O -1+ D
2 o
2 af . & L=100, N=1000
~ S v L=100, N=100
oLk R O L=100,N=10
=7 ,f O L=1000, N=1000
& sl A L=1000, N=100
’d& A L=1000,N=10
. 1 1 1 1 \
Q 4 2 0 2 4
(b) log (t/(NL)"")

FIG. 16. False scaling for the curves of Fig. (. Scaling with

N int, z=1. (b) Scaling withL in t for the

data in(a).

sense, we model an ideal system of processors. The local
virtual time of a cycle represents only the time that logical
processes require to complete the first phase of a cycle.
Therefore, the spread in local virtual times represents only
the desynchronization that arises due to the conservative al-
gorithm alone.

The measure of this desynchronization is provided by
(w(t)). Since in PDES the memory request per processor,
required for past-state savings, is determined by the extent to
which processors get desynchronizéd(t)) can be consid-
ered as an indirect approximate measure of this memory re-
quest. Its growth during the entire time span of the PDES
computations is given explicitly by E@9).

We showed that in conservative PDES, given the PDES
size (finite L and N), this memory request does not grow
without limit but varies as the computations evolve. The fast-
est growth, proportional toyt, characterizes the initial
start-up phase. The length of the start-up phase depends on
the load per processdrepresented here ky). The start-up
phase is characterized by decreasing values of both the uti-
lization and the progress of the global simulated tithe.,
the smallest local virtual time from all processors at each
simulation step In the steady-state simulations, when the
utilization has already stabilized at a mean constant value
(and so has the progress of the global simulated )tirte
memory request grows slower, at a decreasing ratét?’>,

In this phase, the mean request can be estimated globally
from Eq. (10) or Eq. (11). The important consequence of
scaling, expressed by E¢L0), is the existence of the upper
bound for the memory request for any finite numhenof
processors and for any finite load per processor. As is
stated by Eq(11), on the average, this upper bound increases
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proportionally toNL with the size of conservative PDES. width and showed that the RD admixture acts as a dilatation
The characteristic time scatg(N) from the first step to mechanism to the time and height scales, but leaves the KPZ
the steady-state simulations can be estimated by monitoringorrelations intact. This conclusion has been generalized to
the utilization for the minimal processor lodth determine two-component models that mix RD with depositions that
to) and, subsequently, scaling this time with Similarly, the  classify within the EW universality class. In particular, we
characteristic time scale g (N), when the desynchroniza- showed that the RD admixture is responsible for the
tion reaches its steady state, can be scaled with the procesgsdependent affine change of scal@s—h/p andt—t/p?)
load to determine an approximate number of simulation stepthat is superimposed on the usual scaling and leaves the dy-
to the point when the mean memory request does not growamics invariant.
anymore. The models, studied in this work, that give rise to the
During the steady-state simulations, the utilizatiom is  KPZ correlations are the Poisson, the Gauss, and the
given by the approximate E16), wherep(N)=y2/N. The  uniform-random depositions either to local interface minima
smallest utilization(u,) for any processor load is obtained by or to local minima and randomly selected local slopes. De-

taking the limitL — o of Eq. (16), spite the fact that the simulated interfaces belong to the KPZ
universality class, the precise value of their roughness expo-
(U =[1 - p(N)/2][1 - p(N)/4]. (26)  nent depends on the deposition type. This observation sug-

Since asN— =, p(N) decreases as1/\N Eq. (26) shows gests that such noisy deposition mechanisms may produce
' S relatively long-scale temporal correlations. Secondly, this

that(u,) grows very fast when the processors’ load increases, . ;
P . . small departure from the exact value is nonuniversal. Further
For example(u, for N=100 is about 90%, close to its

RN o : studies are required to investigate this issue.
asymptotic limit Qf 100%. For the minimal processors’ load |, application to conservative PDES, we showed that the
(p=1), Eq.(16) gives forL.=3 memory request per processor, required for state savings,
3 1 does not grow without limit for a finite number of processors
(Upy==+—. (27) and a finite load per processor but varies as the PDES
8 8L evolve. The important consequence of the derived scaling is
In the limit L — oo, (Uuo) is the smallest possible value of the the existence of the upper bound for the desynchronization,
utilization. As Eq.(27) shows, this value is a nonzero con- and thus for this memory request. Also, the utilization of the
stant(equal to2 when derived from simulations with Pois- Parallel processing environment has a nonzero lower bound
sonian distribution of waiting times This nonzero lower &S the number of processors increases infinitely. Thus, the
bound on the utilization and the finite upper bound for theconservative PDES are generally scalable in the ring com-

memory request for finite show that conservative PDES are Mmunication topology.
generally scalable with the number of computing processors
when performed in the ring communication topology. The
extension of this conclusion to other communication topolo- ACKNOWLEDGMENTS
gies requires a separate study.
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relations typical of KPZ dynamics. The growth is simulated

from an initially flat substrate.

We show that the flat-substrate initial condition is respon-
sible for the existence of the initial nonscaling regime in
simulations. The length of this initial phase is a nonuniversal 5
paramete(it depends on the type of depositions and on the Both h(t) andw*(t) are real numbers that take on con-

particulars of the modgl However, its presence is a univer- inuous values. Supposs={fy,f,,....fy} is a set ofN such
sal phenomenon. numbers obtained in simulations. Let=min(S) and b

During the initial phase, the simulations relax to a steady- MaX(S). The interval(b-a) is partitioned intdM segments,
state. For the models considered in this work, the transitiofach of lengthA=(b-a)/M. Each segment is a bin that
time to the steady state can be defined as the time when ti& indexed by its left eng;j=a+(i-1)A, i=1,2,... M. Let
mean interface velocity attains a constant value. We showe@l be the multiplicity of theith bin, i.e.,m is the number of
that for these models, the mean interface velocity is a mulpoints fromS that fall betweery; andy;,;. The mean value
tiple of the mean utilization. of S is (H=1INZY, =3, P(f), where (f;)

During the steady state, the interface width satisfies F\=(1/my)E, f;, is the mean value taken on a subseSdtiiat
scaling. We derived the universal scaling function for thebelongs to theith bin, and P; is the frequency function

APPENDIX: DISTRIBUTIONS
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P,=(m;/N)(1/A). The abscissag; and function valuesb,
=d(x;) arex;=(f;)/(f) and®;=(f)P;. These values are plot-
ted in Figs. 6 and 14.

Here,®(x) is properly normalized; dx®(x)=1. The ab-

PHYSICAL REVIEW E 70, 051602(2004)

solute spreadb-a) determines a suitabl& in the computa-
tion of (f;) within acceptable precision. This gives the total
numberM of bins. For a giverM, the accuracy oP; de-
pends onN.
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