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We simulate competitive two-component growth on a one-dimensional substrate ofL sites. One component
is a Poisson-type deposition that generates Kardar-Parisi-Zhang(KPZ) correlations. The other is random
deposition(RD). We derive the universal scaling function of the interface width for this model and show that
the RD admixture acts as a dilatation mechanism to the fundamental time and height scales, but leaves the KPZ
correlations intact. This observation is generalized to other growth models. It is shown that the flat-substrate
initial condition is responsible for the existence of an early nonscaling phase in the interface evolution. The
length of this initial phase is a nonuniversal parameter, but its presence is universal. We introduce a method to
measure the length of this initial nonscaling phase. In application to parallel and distributed computations, the
important consequence of the derived scaling is the existence of the upper bound for the desynchronization in
a conservative update algorithm for parallel discrete-event simulations. It is shown that such algorithms are
generally scalable in a ring communication topology.
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I. INTRODUCTION

In s1+1d dimensions, the roughness of a surface that
grows on a one-dimensional substrate of lengthL can be
expressed by the interface widthwstd at time t,

kw2stdl =K 1

L
o
k=1

L

fhkstd − h̄stdg2L , s1d

wherehkstd is the height of the column at sitek and h̄std is
the average height. The angular brackets denote the average
over many configurations and the bar over a symbol denotes
the average overL sites. The self-affined roughness of the
interface manifests itself by the presence of the Family-
Vicsek (FV) scaling[1],

w2std = L2afS t

LzD , s2d

where the scaling functionfsyd describes two regimes of the
width evolution,

fsyd , H y2a/z, y ! 1

const, y @ 1.
s3d

The dynamic exponentz gives the evolution of the lateral
correlation lengthjstd, t1/z. When jstd exceeds the system
sizeL, the width saturates. At saturation, fort@ t3, the width
scales asw,La, wherea is the roughness exponent. The
growth phase is the initial phase fort! t3 before the cross-
over timet3,Lz to saturation. The growth phase is charac-
terized by the single growth exponentb=a /z. The rough-
ness, growth, and dynamic exponents are universal. Their
values depend only on the underlying mechanism that gen-
erates the correlations and scaling.

A simple continuum model of nonequilibrium growth that
leads to the scaling of a noise-driven interface is provided by

the Kardar-Parisi-Zhang(KPZ) equation [2]. In the co-
moving frame, the KPZ equation is

ht = nhxx +
l

2
hx

2 + z, s4d

whereh=hsx,td is the height field(subscripts denote partial
derivatives). Coefficientsn and l give the strength of the
linear damping and the coupling with nonlinear growth, re-
spectively. The uncorrelated Gaussian noisezsx,td has zero
mean and covariance,

kzsx,tdzsx8,t8dl = Ddsx − x8ddst − t8d, s5d

where D is the noise strength. A renormalization-group
analysis[2,3] can provide a connection between the stochas-
tic growth equation and scaling exponents. The KPZ univer-
sality class, governed by dynamics given by Eq.(4), is char-
acterized bya= 1

2 andb= 1
3. A characteristic signature of the

KPZ scaling is the exponent identitya+z=2, valid in all
dimensions. Whenl=0 in Eq.(4), the growth is governed by
the linear Edwards-Wilkinson(EW) equation[4]. The EW
universality class is characterized bya= 1

2 and b= 1
4. Using

scaling arguments, it can be shown that ins1+1d dimensions,
the EW exponent identity is 2a+1=z [5]. When l=0 and
n=0 in Eq. (4), the growth belongs to the RD universality
class, characterized byb= 1

2 and the lack of saturation. The
RD interface is not self-affined.

The theory behind kinetic roughening and the origins of
scale invariance are well understood[3,5–9], but there are
numerous instances of growth processes that neither follow
one power law nor exhibit a clear-cut universality as it is
expressed by the FV scaling. One group of examples is the
anomalous roughening in epitaxial growth models[5,10,11],
fractures[12,13], and in models with subdiffusive behavior
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or quenched disorder[14]. These systems exhibit different
dynamic scaling on local and global scales, characterized by
different values of roughness exponents.

The super-rough dynamics of tumor growth[15] is the
first experimental observation of anomalous scaling ins1
+1d dimensions. Another issue is the clear experimental ob-
servation of the KPZ universality and the role of quenched
noise in the asymptotic KPZ scaling[5,8,16]. For one-
dimensional KPZ growth, by applying a weak noise canoni-
cal phase-space method, it has been shown recently that the
KPZ dynamic exponent is associated with the soliton disper-
sion law [17]. However, at saturation all KPZ correlations
are exactly the same as would result from the linear EW
equation[5,17,18]. The fact that the EW equation is sort of
“embedded” in the KPZ equation may give rise to ambigu-
ous values of scaling exponents for growth mechanisms(or
models) that interpolate between the weak and the strong
nonlinear coupling regimes. Even when the nonlinear cou-
pling is strong, the discrete models require sufficiently large
length and time scales to show clear KPZ scaling[19–23].
Likewise, large scales are essential in simulation studies of
roughening in the two-component growth models that com-
bine one process governed by linear EW dynamics with an-
other process governed by nonlinear KPZ dynamics[24].
Recently, Chame and Reis[25] simulated ins1+1d dimen-
sions a mixed growth where particles aggregated either by
ballistic deposition(with probability p) or by random depo-
sition with surface relaxation(with probability 1−p). They
show that for smallp and sufficiently largeL, the interface
width has three well-defined evolution stages. The first stage,
for early times, is the EW growth. The second stage, for
intermediate times before saturation, is the KPZ growth. The
third stage is the saturation.

Two distinct growth phases were also observed in experi-
ments with interfacial roughening in Hele-Shaw flows
[26–28], in simulations of electrophoretic deposition of poly-
mer chains [29,30], and in numerical studies of one-
dimensional restricted solid-on-solid models with two
growth components, each of which being a mechanism ruled
by dynamics that belongs to a distinct universality class
[31–38]. The latter examples suggest that the two-phase
growth may be an effect of mixing the universalities. In sup-
port of this hypothesis comes a two-component model con-
sidered by da Silva and Moreira[39], where the Kim-
Kosterlitz [40] deposition occurs with probabilityp and
ballistic deposition occurs with probabilitys1−pd. Both of
these growth mechanisms are governed by the KPZ dynam-
ics, except that their corresponding continuum equations dif-
fer in the sign of the couplingl. In this case, large-scale
simulations ins1+1d dimensions produce only one growth
phase with the growth exponentb parametrized byp [39].

The purpose of roughening studies presented in this paper
is to uncover the dynamics of desynchronization in conser-
vative parallel discrete-event simulations(PDES). The PDES
are a technical tool to uncover the dynamics of information-
driven complex stochastic systems. Their wide range of ap-
plications in contemporary sciences and technology[41] has
made them an active area of research in recent years. Parallel
and distributed simulation systems constitute a complex sys-

tem of their own, whose properties can be uncovered with
the well-established tools of statistical physics.

In PDES, physical processes are mapped to logical pro-
cesses(assigned to processors) that manage state updates of
assigned physical subsystems. The main challenge arises be-
cause logical processes are not synchronized by a global
clock. Consequently, to preserve causality in PDES, the al-
gorithms should incorporate the so-called local causality
constraint[42,43]. Depending on the way the local causality
constraint is implemented, there are two broadly defined
classes of update protocols[41], namely conservative algo-
rithms[42,44–46] and optimistic algorithms[47–49]. Impor-
tant efficiency considerations of these algorithms involve the
utilization of the parallel processing environment(as mea-
sured by a fraction of processors working simultaneously at a
time) and the memory per processor required by state sav-
ings. The latter is closely related to the statistical spread in
the processors’ local times, i.e., to desynchronization. Recent
applications of conservative PDES to modeling complex
physics systems include ballistic deposition[50], Ising spins
[51], and dynamic phase transition[52,53]. In an application
to simulating Ising spins, an onset of self-organized critical
behavior in optimistic PDES has been recently reported
[54,55].

Since the introduction by Kornisset al. [56], an idea of
utilizing nonequilibrium surface growth methods[3,6,7] in
evaluating the scalability of algorithms for conservative
PDES, there have been a number of advances using such
efforts. The main concept behind this idea is the virtual time
horizon (VTH) of the algorithm. The VTH is a
s1+1d-dimensional nonequilibrium surface. Its time evolu-
tion can be simulated by applying a deposition rule that is
defined by a parallel-update protocol based on the algorithm.
Several properties of the algorithm can be deduced from ana-
lyzing its corresponding simulated VTH. One of them is the
utilization [57,58]. Another one is the desynchronization of
processors in the system as the PDES evolves in time. The
width of the simulated VTH provides a measure of this de-
synchronization. It has been demonstrated that an asymptotic
lack of synchronization[59] can be avoided in new genera-
tions of algorithms[60,61]. The focus of past studies was on
the worst-case performance scenario when each parallel pro-
cess consisted of only one computational object(or compu-
tational volume). Despite being informative(e.g., providing
the evidence of a lower bound on the utilization), such stud-
ies are of little practical value since taking full advantage of
parallelization implies many computational objects per pro-
cessor. Past simulation studies have demonstrated that when
the load per processor is increased, the utilization increases
significantly [57,58,60,62], and a mean-field-like method to
estimate the utilization in this general case has been devel-
oped [57,58]. The missing element thus far has been a de-
tailed investigation of the dynamic scaling properties of the
simulated VTH for the general case of many computational
objects per processor. This is the main theme of this paper.

We simulate three growth mechanisms for the VTH that
correspond to three implementations of a conservative up-
date algorithm in a ring communication topology, where
each processor communicates only with its immediate neigh-
bors. The models are variations of Poisson-random deposi-
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tions. Two of these rules are realizations of the worst-case
scenarios and present a situation when the system ofL pro-
cessors can be mapped onto a closed chain ofL spins. The
third model corresponds to the general case when each pro-
cessor carriesN computational volumes and it combines the
second model with random deposition(RD). In this work, we
do not attempt to obtain exact values of scaling exponents
that characterize these growth processes. Our primary inter-
ests are in the scaling functions for the interface width and in
the universal properties of the VTH interfaces.

Simulation studies of the VTH interface in the worst-case
scenario showed that for very largeL, this interface belongs
to the KPZ universality class[56]. However, for smallL or
for early times, before the KPZ growth is attained, the width
does not scale. This suggests the strong sensitivity of the
evolution to the initial condition. When the model is gener-
alized to accommodate many computational volumes per
processor, the evolution of the VTH width changes. Now
there are two distinct phases in the growth regime. The early
phase evolves in the RD fashion and the later phase has
signatures of the KPZ scaling. In this work, we investigate
the above issues in large-scale simulations. Unless stated
otherwise, configurational averages were obtained over an
ensemble of 800 independent simulations. The VTH models
and definitions are explained in Sec. II. Simulations are ini-
tiated from a flat substrate and carried on up to 107 time
steps, well beyond crossover times to the steady state for the
considered substrate sizes. In Sec. III, we analyze the inter-
face evolution for random depositions at local surface
minima (i.e., the worst-case scenario) and show that the ini-
tial lack of scaling is an artifact of the flat-substrate initial
condition. To identify nonuniversal features in the evolution,
in addition to Poisson-random depositions we also consider
both Gaussian and uniform-random depositions. In the
steady-state time averages, we omit the indext in the nota-
tion, e.g.,kw2l denotes the saturated surface width. In Sec.
IV, we perform an analysis of the interfaces generated by two
simultaneously acting growth mechanisms, one of which be-
ing RD and the other generating the KPZ correlations, and
we obtain a universal scaling function for this type of VTH
interfaces. Results obtained in this section show that the RD
admixture elongates the principal height and time scales,
leaving the KPZ correlations intact. In Sec. V, we derive a
general relation between the VTH interface velocity and the
utilization in conservative update processes. In Sec. VI A, we
generalize findings of Sec. IV to two-component models that
mix RD with a deposition that either classifies within the
KPZ or within the EW universality class. In particular, we
show that the RD admixture that happens with probability
s1−pd gives rise to ap-dependent affine component in the
scaling. Section VI B contains a discussion of finite-size ef-
fects observed in scaling of the VTH interfaces. An example
of false scaling is provided in Sec. VI C to illustrate the
importance of the relaxation from the flat-interface initial
condition in the scaling considerations. Applications to scal-
ing and scalability of conservative PDES algorithms are dis-
cussed in Sec. VI D. Conclusions are summarized in
Sec. VII.

II. SIMULATION MODELS

In simulations, a system ofL processors is represented as
a set of equally spaced lattice pointsk, k=1,2, . . . ,L. Each
processor performs a number of operations and enters a com-
munication phase to exchange information with its immedi-
ate neighbors. This communication phase, called an update
attempt, takes no time in our simulations. In this sense, we
simulate an ideal system of processors(the relation to PDES
is discussed in Sec. VI D). An update attempt is assigned an
integer indext that has the meaning of a wall-clock time(in
arbitrary units).

The local virtual timehkstd at thekth processor site rep-
resents the cumulative local time of all operations on thekth
processor from the beginning att=0 to time t. These local
processor times are not synchronized by a global clock. The
ring communication topology among processors is mapped
onto a lattice arrangement with periodic boundary condi-
tions,hL+kstd=hkstd. The set of local virtual timeshkstd forms
the VTH at t. The growth of the VTH is simulated by a
deposition rule, where local height incrementshkstd are
sampled from the Poisson distribution of unit mean. The
form of the deposition rule depends on the processor load, as
explained below.

A general principle that governs the conservative update
protocol requires a processor to idle if at the update attempt
t the local causality constraint may be violated. This happens
when att the kth processor does not receive the information
from its neighboring processor(or processors) if such infor-
mation is required to proceed in its computation. This corre-
sponds to a situation when the local virtual timehkstd of the
kth processor is ahead of either one of the local virtual times
hk−1std or hk+1std of its left and right neighbors, respectively.
In this unsuccessful update attempt, the local virtual time
hkstd is not incremented, i.e., thekth processor waits:
hkst+1d=hkstd. In another case, for example, when att the
kth processor does not need information from its neighbors it
performs an update regardless of the relation between its
local virtual time and the local virtual times on neighboring
processors.

One example of computations that follow the above
model is a dynamic Monte Carlo simulation for Ising spins.
In a parallel environment, a spin lattice is spatially distrib-
uted amongL processors in such a way that each processor
carries an equal load of one contiguous sublattice that con-
sists of N spin sites(i.e., each processor has a load ofN
volumes). Some of theseN spin-lattice sites belong to border
slices, i.e., at least one of their immediate neighbors resides
on the sublattice of a neighboring processor. Processors per-
form concurrent spin-flip operations(i.e., increment their lo-
cal virtual times) as long as a randomly selected spin-site is
not a border site. If a border spin site is selected, to perform
a state update that is consistent with and faithful to the un-
derlying physical spin dynamics, a processor needs to know
the current spin state of the corresponding border slice of its
neighbor. If this information is not available at thet update
attempt(because the neighbor’s local time is behind), by the
conservative update rule the processor waits until this infor-
mation becomes available, i.e., until the neighbor’s local vir-
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tual time catches up with or passes its own local virtual time.
The least favorable parallelization is when each processor

carries one computational volume,N=1. Computationally,
this system can be identified with a closed-spin chain where
each processor carries one spin site. At each update attempt,
each processor must compare its local virtual time with the
local times on both of its neighbors.

The second least favorable arrangement is when proces-
sors have a computational volumeN=2. As before, the sys-
tem can be mapped onto a closed-spin chain where each
processor carries two spin sites, each of which is a border
site. At each update attempt, every processor must compare
its local time with the local time of one of its neighbors.

In general, whenNù3, at update attemptt, the compari-
son of the local virtual times between neighbors is required
only if the randomly selected volume site is from a border
slice. In all cases, we start the simulation from a flat substrate
at t=0, hks0d=0.

At every successful update attempt, the simulated local
virtual time at thekth site is incremented for the next update
attempt:hkst+1d=hkstd+hkstd, wherehkstd=−lnsrktd, and rkt

P s0;1g is a uniform random deviate. The three cases de-
scribed above are realized in simulations by the following
three deposition rules.

Rule 1sN=1d. The update attempt att is successful iff

hkstd ø minhhk−1std,hk+1stdj. s6d

Rule 2sN=2d. At any sitek where the update attempt was
successful atst−1d, at t we first randomly select a neighbor
(left or right). This is equivalent to selecting either the left or
the right border slice on thekth processor. The update at-
tempt is successful iff

hkstd ø hnstd, s7d

wheren is the randomly selected neighborsn=k−1 for the
left, n=k+1 for the right). At any sitek where the update
attempt was not successful atst−1d, at t we keep the lastn
value.

Rule 3 sNù3d. At any sitek where the update attempt
was successful atst−1d, at t we first randomly select any of
the N volume sites(indexed bynk) assigned to a processor.
The selected site can be either from the border sites(either
nk=1 ornk=N) or from the interior. The attempt is successful
if the selected site is the interior site. When the border site is
selected, the attempt is successful if condition(7) is satisfied.
As in Rule 2, at any sitek where the update attempt was not
successful atst−1d, at t we keep the lastnk value.

Rule 3 is essentially different from rules 1 and 2 in that it
is a mixture of rule 2 and RD. At eacht, depending on the
selectednk, the local update(deposition) at sitek either fol-
lows rule 2, which requires checking with a neighbor, or it
follows RD, which just simply deposits a random positive
real numberhkstd. The probabilitys1−pd that rule 3 takes the
form of RD is parametrized byN. At eacht, the complemen-
tary probabilityp that rule 3 takes the form of rule 2 can be
obtained by a direct count of lattice sites that have the as-
signed value eithernk=1 or nk=N, and subsequently taking
the configurational mean of this count. The mean density of

these sites can be interpreted as the probabilitypsNd that att
a randomly selected site followed rule 2. In steady-state
simulations(defined in Sec. III), this density does not depend
on t and is found to be approximatelyp=Î2/N. This is be-
cause in simulating conservative PDES the random selection
of volume sitenk is not performed at everyt for all lattice
sitesk. If at somet the update condition(7) is not satisfied,
the selection ofnk must be postponed until some later timet8
when condition(7) is satisfied. Explicitly, in the spirit of
conservative PDES, if relation(7) does not hold, then the old
nk is kept for as many update steps as required until it finally
holds at latert8. Note, if the draw ofnk were performed at
each t for all k, the probability of selecting a border site
would have been 2/N, i.e., smaller thanp.

We define the utilizationkustdl as the configurational av-
erage of the fraction of sites that performed an update att.
When N=1, kustdl is simply the mean density of local
minima of the interface. WhenNù2, kustdl is the mean den-
sity of update sites. The velocityvstd of the interface is de-

fined askdh̄std /dtl.
One distinction between the deposition models studied

here and other restricted solid-on-solid models is that in the
former, the deposited random height incrementh is a posi-
tive real number that can take on any value from an assigned
real interval, while the latter usually consider integer height
increments. Although in the context of applications to PDES
this is the Poisson distribution with meanmP=1 and unit
variance that models the waiting times, represented here by
h, we also consider two other alternative depositions. One of
them is uniform deposition, whereh is sampled from the
uniform distribution with meanmU= 1

2 and variance1
12, re-

stricted to the intervals0;1g. The other one is a Gaussian
deposition, whereh is sampled from the Gaussian of unit
variance and zero mean, restricted to the positive semiaxis.
For this Gaussian, after normalization, the mean ismG

=Î2/p and the variance iss1–2/pd. We find that varying
the deposition type does not change the universality class of
the model. The purpose of introducing this variation is to
better identify nonuniversal features in the initial evolution
of the VTH interface.

III. FLAT-SUBSTRATE CONDITION

Rule 1 sN=1d is a realization of random deposition at
local surface minima. As demonstrated in simulations with
Poisson depositions[56], these interfaces belong to the KPZ
universality class when the system sizeL is sufficiently
large. Using standard finite-size scaling techniques[3] for L
of the order 103–105, the scaling exponents were determined
numerically to beb=0.326±0.005 anda=0.49±0.01[56]. A
peculiarity of this scaling, present for allL, is the existence
of the initial phase that does not scale, as illustrated in Fig.
1(a). Another feature is the lack of scaling for smallL, ap-
proximatelyL,100. In this section, we analyze the interface
evolution for processes that obey rule 1 with Poissonian,
uniform, and Gaussian depositions, and show that the above
lack of scaling is an artifact of the flat-substrate initial
condition.
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Figure 1 presents typical evolutions of the interface width
for moderate to largeL for both Poissonian and uniform
depositions. A similar behavior is also seen for Gaussian
depositions. A common feature is the existence of an initial
growth phase, 0ø t, t0, where the widths do not scale. For
t. t0, the widths obey the FV scaling, Eqs.(2) and(3), with
KPZ exponents. Figure 2 presents the FV scaling for Poisso-
nian depositions(with 2a=0.88) and for uniform depositions
(with 2a=0.94), both with a+z=2, when the scaling trans-
formation is applied for alltù0. A similar picture of the data
collapse is obtained for Gaussian depositions(with 2a
=0.92). The whiskerlike structures in the growth part, clearly
observed in Fig. 2, demonstrate the absence of scaling for
0ø t, t0. They vanish when the scaling is restricted to times
tù t0 (see the insets to Fig. 2) and full data collapse is
achieved for these later times. This initial transition phase is
not a finite-size effect sincet0 does not depend onL. For all
L, there is one commont0 that depends only on the deposi-
tion type. The largestt0 is observed for the deposition with
the largest variance of the random height incrementsh. In
our examples, the smallestt0 is for the uniform depositions
(variance 1

12) and the largestt0 is for Poissonian depositions
(variance 1). In Gaussian depositions[variances1–2/pd],
the initial t0 falls between these two values. Thus, while the
scaling shows that the mechanism of generating correlations
(i.e., rule 1) has KPZ dynamics, the lengtht0 of this initial
relaxation period to KPZ scaling is not universal.

The initial transition periodt0 is an artifact of the flat-
substrate initial condition. To investigate it further, we write
out w2std in its simplex form [60] as the convex linear
combination

w2std = føstdwø
2 std + f.stdw.

2 std, s8d

where føstd+ f.std=1 is the convex sum, i.e., 0
ø føstd , f.stdø1. The characteristic densitiesføstd and f.std
are the fractions of sites that have their heights less than or

equal to and larger than, respectively, the mean heighth̄std.
The corresponding widths, computed on subsets that consist
of these sites alone, arewø

2 std and w.
2 std, respectively. In

individual simulations, Eq.(8) is strictly satisfied and it is
valid when averaged over many independent simulations.
The convex sum is also valid for configurational averages of
characteristic densities. However, Eq.(8) does not need to
hold when characteristic densities and widths are changed to
their corresponding configurational averages(because, in
general,kablÞ kalkbl). Configurational averages of charac-
teristic widths and densities, and the interface velocityvstd,
are presented in Fig. 3 for Poissonian depositions, in Fig. 4
for Gaussian depositions, and in Fig. 5 for uniform deposi-
tions. At t=0, the interface velocity and the utilization have
their highest valueskus0dl=1 because Eq.(6) is satisfied at
all sites. This first step att=0 is simply a random deposition

step. The mean heighth̄s0d=m is the mean of the distribution
from which h is sampled, which ismP=1, mG=Î2/p, and
mU= 1

2 for Poisson, Gaussian, and uniform depositions, re-
spectively. The fractionf.s0d of sites that have their heights

larger thanh̄s0d is easily computed from the corresponding
distributions as the probability of selecting a site that has
hs0d larger thanm. This gives for Poisson depositionf.s0d
=emP

` dx exps−xd=1/e<0.367; for Gaussian deposition

FIG. 1. Time evolution of the simulated VTH width whenN
=1 for various sizesL. (a) Poisson deposition.(b) Uniform deposi-
tion. The initial phase fort, t0 does not scale.

FIG. 2. Scaling of the VTH width whenN=1. (a) Poisson depo-
sition. (b) Uniform deposition. The insets show the data collapse for
t. t0. The slope 2b of the growth phase is consistent witha+z
=2 anda=bz.
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f.s0d=Î2/pemG

` dx exps−x2/2d=1−erfs1/Îpd<0.428; and

for uniform deposition f.s0d=emU

1 dx= 1
2. These fractions

and their complementsføs0d=1−f.s0d are clearly observed
in Figs. 3–5. Correlations between lattice sites start to build
up at t=1. Since initially the densityføstd is larger than

f.std, depositions take place more often at sites withhø h̄

than at sites withh. h̄. This causesføstd to fall and f.std to
rise [Figs. 3(b), 4(b), and 5(b)] and a faster growth ofwø

2 std
thanw.

2 std [Figs. 3(a), 4(a), and 5(a)]. On the average, as the
density kf.stdl rises, the density of local minimakustdl de-
creases. This initial evolution from the RD surface att=0 to
a surface with correlations att0 ends whenkf.stdl<kføstdl
< 1

2. As Figs. 3–5 illustrate, att0 the simulations attain what
we label as a steady state, one that is characterized by a
constant utilization. We show in Sec. V thatvstd is related to
kustdl by a simple linear relation, hence the steady state can
be alternatively defined by a constant velocity.

The correlated growth phase when the scaling is ob-
served, whent0, t! t3, is characterized by a slight but no-
ticeable excess ofkf.stdl over kføstdl. At saturation, fort
@ t3, kf.l<kføl. The densitieskføstdl and kf.stdl, and the
widths kwø

2 stdl and kw.
2 stdl, provide the information about

the height distributionFsh/ h̄d of the interface local heights

about the mean heighth̄std. It is transparent from Figs. 3–5

that for early times,t, t0, Fsh/ h̄d is characterized by a posi-

FIG. 3. Time evolutions forN=1 with Poisson depositionsL
=1000d. (a) The widths,w2= føwø

2 + f.w.
2 . (b) The interface veloc-

ity vstd and characteristic densities: the utilizationkustdl ( kus0dl
=1, not shown) and the simplex coefficientskf.stdl andkføstdl. The
time t0 marks the transition to the steady state(the KPZ growth),
and t3 is the crossover time to saturation. Here,mP=1.

FIG. 4. Time evolutions forN=1 with Gaussian depositionsL
=1000d. (a) The widths,w2= føwø

2 + f.w.
2 . (b) The interface veloc-

ity vstd and characteristic densities in analogy with Fig. 3. Here,
mG=Î2/p.

FIG. 5. Time evolutions forN=1 with uniform depositionsL
=1000d. (a) The widths.(b) The interface velocityvstd and charac-
teristic densities in analogy with Fig. 3. Here,mU= 1

2.
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tive skewness and evolves to approximately a symmetric dis-
tribution at t0. This distribution function for Poisson deposi-
tions at local minima is presented in Fig. 6. The computation
of Fsxd is outlined in the Appendix.

The skewness of the height distribution in the stationary
state of the KPZ growth has been analyzed before by den
Nijs and co-workers[63–65] for Kim-Kosterlitz models with
integer step-height differences. They report that KPZ scaling
is realized at times larger than a characteristic time scale that
is related to slope densities. Ins1+1d dimensions, the KPZ
dynamics is characterized by zero skewness because the
height distribution of the stationary state is Gaussian[64]. In
our models, the growth can be characterized alternatively
either by the density of local minima(i.e., the utilization for
N=1), which is the same as the density of local maxima[57],
or by the density of local slopes. Since all these densities
sum up to 1, the constant utilization in our model is equiva-
lent to a constant density of local slopes. Explicitly, we de-
fine the steady evolution state(or the steady-state simula-
tions) as the evolution that has the following characteristics:
(i) the density of update sites is constant, and(ii ) the skew-
ness of the height distribution is approximately zero. Starting
from the flat substrate, the steady growth state is achieved
after the initial relaxation timet0. In the steady state, the
KPZ scaling is clearly observed.

The initial time interval fromt=1 to t= t0 can be inter-
preted as the time scale over which the system retains the
memory of the flat-interface initial condition. This time is a
nonuniversal parameter that depends on the variance of the
distribution from which the random height incrementh is
sampled. The existence of this time scale accounts for the
absence of universal scaling for small system sizes, even if
the rule that simulates the growth represents a generic KPZ
process. For KPZ dynamics, the characteristic time scale on
which the correlations are being built is of the order of the
system sizet3,L3/2. If this time scale is smaller than the
memory scale,L3/2, t0, the interface saturates before the

simulations reach the steady state, and for suchL the KPZ
scaling is not observed. The universal KPZ scaling is clearly
observed when the system size is large enough to lose the
memory of the initial condition on time scales smaller than
L3/2, i.e., whent0!Lz.

IV. SCALING ANALYSIS

In this section, we analyze the interfaces generated by
deposition rule 3 that represents two simultaneously acting
growth mechanisms: one is RD and the other is deposition
rule 2, both with Poisson-random height increments. First
we show that rule 2 generates KPZ correlations. Then we
obtain the universal scaling function for interfaces produced
by rule 3.

Although rule 2 allows thekth site to accept a deposition
even if it is not a local minimum, this rule has all the essen-
tial characteristics of rule 1, examined in Sec. III. At each
time step, a site must compare its local height with the local
height of at least one of its immediate neighbors. As in rule
1, deposition may not happen at a local maximum. But, since
now it may happen either at a local minimum or at a local
slope, the utilization of rule 2 is larger than that of rule 1
[compare Figs. 3(b) and 7(b)] so the interface velocity is
larger. Other than that, there is no difference between these
two deposition mechanisms, and the analysis presented in
Sec. III for interfaces produced by rule 1 can be restated for
the interfaces that grow by rule 2. In particular, both growths
evolve on the same time scales(Fig. 7), with the initial
memory scalet0~100. Figure 8 shows the scaling function

FIG. 6. Poisson deposition at local surface minima forL
=1000: distribution functionFsxd of the interface local heightsx

=hstd / h̄std. (a) Early times tø t0. (b) The steady state fort. t0.
Cubic-spline curves through the simulation data(symbols) are
guides for the eyes. Here,t0~100.

FIG. 7. Time evolutions for Poisson deposition whenN=2 and
L=1000.(a) The widths.(b) Characteristic densities and the inter-
face velocity, in analogy with Fig. 3.
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for the interface widths fort. t0, obtained with 2a=0.9 and
z=2−a, characteristic for KPZ scaling. Thus, these inter-
faces belong to the KPZ universality class and the scaling
function is given by Eqs.(2) and(3). A small departure of 2a
from 1, also present forN=1, is discussed in Sec. VI B.

Deposition rule 3 produces a larger utilization than rule 2
because now, depending onN, deposition at sitek may some-
times be accepted regardless of the relation between its local
height and local heights of its neighbors. Now at eacht, any
site may increase its height, including a local maximum.
Probability psNd that a site has to compare its local height
with a neighbor is the probability of applying the rule 2,
which is the only mechanism that creates correlations. Alter-
natively, deposition at thek site may happen as RD. A com-
bination of these two deposition mechanisms produces a
similar time evolution of characteristic densities and the
widths to that observed when rule 2 is acting alone, except
that now the transition to steady-state simulations and the
crossover to saturation take place on larger time scales(com-
pare Figs. 7 and 9). In particular, the initial lack of scaling
extends tot0sNd~ t0N/2, wheret0 marks the end of the initial
relaxation period in the worst-case scenario simulations.

This initial relaxation timet0sNd, when the system “re-
members” the flat-interface initial condition, manifests itself
in the evolution of interface widths as an early growth phase
(Fig. 10) that follows the RD power law withb1= 1

2. The
later growth phase,t0sNd! t! t3, follows the power law
with b2= 1

3 −«, where« is a small positive number. The evo-
lution of the interface width can be summarized as

kw2stdl , 5t2b1, t , t0sNd
t2b2, t0sNd ! t ! t3sNd
gsNdL2a, t @ t3sNd,

s9d

wheregsNd is a monotonic function ofN. After performing
scaling inL of the saturated width, it appears thatgsNd is
linear. The first growth phase is the initial relaxation when

kw2stdl does not scale, therefore the following analysis is
valid only for t. t0sNd.

From the point of view of scaling,kw2stdl is a family of
curves parametrized byL and N. Figure 11(a) presents the
saturated widthkw2l plotted againstN for selected values of
L. These curves can be scaled inL so that they collapse onto
one curve. Figure 11(b) shows the scaled widthkw2l /L2a,
where 2a=0.9. Since log10skw2l /L2ad, log10N+const

FIG. 8. Scaling fort. t0 whenN=2. The initial relaxation pe-
riod for t, t0 is clearly noticeable in the inset, which shows the
widths before scaling.

FIG. 9. Time evolutions for Poisson deposition whenN=100
and L=1000. (a) The widths.(b) Characteristic densities and the
interface velocity, in analogy with Figs. 3 and 7.

FIG. 10. Two growth phases in the time evolution of the width,
simulated with rule 3 forN.3 andL=1000.
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[dashed line in Fig. 11(b)], values at saturation may be fur-
ther scaled inN, which gives the collapse to one point
kw2l / sNL2ad<const. The order of scaling can be reversed,
i.e., scaling inN can be followed by scaling inL, leading to
the same result. Globally, the saturated width plotted versus
sNLd follows a line of slope 1[Fig. 11(c)].

Time evolution of the scaled widthkw2stdl / sNL2ad for
t. t0sNd is displayed in Fig. 12. Here, to obtain a perfect
align at saturation with the curves forN=2, which facilitates
further scaling int, we introduced a small correction such

thatNL2a is multiplied bys1±«d, where« is a small fraction
(explicitly, « is the relative spread of data about the fit at
saturation; the scaling is clearly seen with«=0). Since the
only mechanism that induces correlations in this model is
deposition rule 2, which produces surfaces from the KPZ
universality class, it is expected that for eachN the length
scales should couple with time scales via a dynamic expo-
nent that satisfies the KPZ identityz=2−a. Indeed, as the
partial scaling int with respect toL shows[Fig. 13(a)], this
choice gives a good data collapse for eachN and this is not
changed noticeably whenz=1.5 is chosen. In Fig. 13(a),
reading from the left, the groups representN=2, N=10, N
=100, andN=1000. The last step is the scaling int with
respect toN of the results displayed in Fig. 13(a). Here the
inspection of the dilatation withN of the initial t0 proves
useful since it leads to the observation that for anyL the
initial t0sNd can be expressed approximately assN/2dt0sN
=1 or 2d. The transformationt→ t / sN/2d shifts (to the left)
all the curves forN.2 into one position. The family of
curves forN=2 is shifted into this position whent→ t /2. The
final result is the scaling function shown in Fig. 13(b). The
mean slope of the growth part is 2b<0.58±0.02, consistent
with the slope obtained for 2a=0.9 from the KPZ relation
2b=s2ad / s2−ad<0.58.

The final result, valid fort. t0sNd, can be summarized as

kw2stdl =
N

2
L2afS 2

N

t

LzD , s10d

wherefsyd satisfies Eq.(3), andz=2−a with a< 1
2. Accord-

ingly, the interfaces generated by the deposition/update rule

FIG. 11. The saturated interface width as a two-parameter fam-
ily of curves obtained in simulations with rule 3:(a) as a function of
N volume elements per lattice site for several lattice sizesL; (b) as
a function ofN, after scaling inL of the data in(a) (the dashed line
of slope 1 is plotted as a reference); (c) data from(a) plotted vs
sNLd to see global trends. The data align along a straight line of the
mean slope 1(the dashed-line envelope).

FIG. 12. The steady-state evolution fort. t0 of the scaled
widths obtained with rule 3 as a two-parameter family of curves for
(a) N=10; (b) N=100; (c) L=100; and(d) L=1000.

FIG. 13. Scaling for the curves of Fig. 12:(a) in t with respect
to L, with the KPZ dynamic exponentz=2−a; (b) in t with respect
to N of the data in(a). Data labels displayed in the legend are
common for both(a) and (b).
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3 belong to the KPZ universality class. In the scaling regime,
the evolution can be written out explicitly as

kw2stdl , 5S
N

2
D1–2b

t2b, t0sNd ! t ! t3sNd

N

2
L2a, t @ t3sNd,

s11d

wheret3sNd,sN/2dLz.

V. INTERFACE VELOCITY

For the deposition/update models considered in this work,
it is possible to find the exact relation between the utilization
and the interface velocity. The velocityvstd is defined as

the configurational average of v̄std=dh̄std /dt
=s1/Ldok=1

L dhkstd /dt. Translating the update recipe to a con-
tinuum version with a continuum time-step incrementdt, the
update operation at sitek can be summarized as

hkst + dtd = Hhkstd + dthkstd on update

hkstd otherwise.
s12d

Substituting the above to the definition ofdhkstd /dt as the
limit when dt→0 gives att

dhkstd
dt

= Hhkstd k is the update site

0 otherwise.
s13d

In the set ofL sites, the number of update sites isMstd
=Lustd. Since only at these sitesdhkstd /dt is not zero, the
mean is

v̄std =
1

L
o
k=1

Mstd

hkstd = ustd
1

Mstd o
k=1

Mstd

hkstd. s14d

Let mP be the mean of the distributionPshd from which hk

is sampled. In the limit of M→`, s1/Mdok=1
M hk

→eV dhhPshd=mP. Thus, for sufficiently largeM, the sec-
ond factor in Eq.(14) is mP=const. Taking the configura-
tional average of Eq.(14) gives

vstd = kustdlmP. s15d

The above derivation can be repeated for the discrete case,
taking dt=1. Equation(15) is strictly satisfied by the simu-
lation data(Figs. 3–5, 7, and 9). In simulations,v̄std is com-

puted numerically withdt=1, v̄std= h̄std− h̄st−1d, andvstd is
obtained by averagingv̄std over many independent simula-
tions.

VI. DISCUSSION

In our steady-state simulations forN.1, the mean den-
sity of sitespsNd=Î2/N can be interpreted as the probability
that at t a randomly selected site followed rule 2. The
complementary densityp̄=1−p is the probability that a ran-
domly selected site followed RD. A similar interpretation can
be given to the mean density of update siteskustdl as the
probability that att a randomly selected lattice site increased

its height; however,kustdl does not define a probability dis-
tribution [57,58]. Using a recently introduced discrete-event
analytic technique for surface growth problems[57,58], it is
possible to derive a mean-field-like expression for the utili-
zation kul in the steady-state simulations. ForNù2 andL
ù3, this expression[58] is

kul = S1 −
psNd

2
DS1 −

psNd
4

L − 1

L
D . s16d

Becausekustdl andvstd are related by a constant multiplica-
tive factor mP, by Eq. (15), in the scaling regime for
t. t0sNd, Eq. (16) also gives the interface velocity. However,
for early timeskustdl is unknown.

A. Kinetic roughening

The scaling expressed by Eq.(10) can be written in a
more general form by incorporating the probabilityp
=Î2/N. This gives

kw2stdl = SLa

p
D2

fSp2t

Lz D . s17d

The analysis of Sec. IV can be repeated forkwstdl, which
gives equivalently

kwstdl =
La

p
fSp2t

Lz D . s18d

The transition time to the scaling regime ist0spd= t0/p2,
wheret0 marks the end of the initial nonscaling period in the
case of simulations with the deposition/update rule 2 acting
alone. The crossover time to saturationt3 can be read di-
rectly from Eqs.(17) and (18), p2t3spd /Lz<1. This gives
t3spd< t3 /p2, where t3 is the saturation time when rule 2
acts alone.

Our results for the scaling function, Eqs.(10) and(11) and
Eqs.(17) and (18) are generally in accord with the work of
Horowitz and Albano[38] and Horowitzet al. [37], who
analyzeds1+1d-dimensional two-component solid-on-solid
models mixed with RD. In Ref.[38], the growth is simulated
by ballistic deposition(of the KPZ universality class) that
takes place with probabilityp and by RD that happens with
probability s1−pd. In Ref. [37], the deposition model mixes
RD [taking place with probabilitys1−pd] and random depo-
sition with surface relaxation(of the EW universality class)
that takes place with probabilityp. A common characteristic
of these two models and our model is the presence of two
growth phases in time evolution of the interface width[Fig.
10 and Eq.(9)], where the early phase follows RD growth
and this is the phase that defies the universal scaling(Fig. 4
in Refs. [37,38]). Although this initial absence of scaling is
not studied in Refs.[37,38], based on our analysis of Sec. III,
we infer that this early RD growth seen in Refs.[37,38] must
be a long-time effect of some particular initial condition(not
stated in [37,38]) adopted in these simulations. As we
showed in Sec. III, the length of this initial memory scale is
a nonuniversal parameter, so comparing crossover times to
the scaling regime does not contain useful information. But,
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the existence of this initial memory scale and the existence
of scaling for times larger than the initial relaxation time are
both universal. The scaling law reported in Refs.[37,38] is

Wst,L,pd ~
Lã

pd FSpyt

Lz̃ D , s19d

where the exponentsã and z̃ are characteristic for the uni-
versality class of the model(i.e., KPZ in [38] and EW in
[37]). For the mixture of RD and random deposition with
surface relaxation(the EW-type model), the numerics give
d<1 and y<2 [37], in agreement with our findings, Eq.
(18). However, for the mixture of RD and ballistic deposition
(the KPZ-type model), it is conjectured in[38] thatd< 1

2 and
y<1. In this latter scaling, although the relation betweeny
and d, y=2d, agrees with our findings, these powers are
smaller by a factor of 2 than our values. As we analyze later
in this section, this difference implies that according to Ref.
[38], the admixture of RD should affect time scales aspt,
while our findings clearly indicate thep2t behavior.

The sensitivity of the surface evolution to the initial con-
dition has been recently pointed out by Kortlaet al. [32] in
relation to phase ordering in two-component solid-on-solid
models. In our modeling, to incorporate fully the dynamics
of the growth, the KPZ equation should contain the mean
interface velocityvstd,

ht = vstd + nhxx +
l

2
hx

2 + z. s20d

Equation(4) can be valid only for the steady-state simula-
tions, whenvstd=const. Therefore, it does not describe the
initial dynamics att, t0 of our deposition models, while Eq.
(20) does. Results obtained in Sec. IV, summarized by Eqs.
(17) and(18), indicate that the admixture of the RD process
[present with probabilitys1−pd in rule 3] elongates time
scales in Eq.(20). We now scrutinize this effect from the
point of view of the affine transformations involved.

Consider the following transformations that are expressed
by Eqs.(17) and (18):

x → x8 =
x

L
, h → h8 =

gspd
La h, t → t8 =

p2

Lzt, s21d

wheregspd is to be determined[note,gspd is not independent
becausex, h, and t are transformed simultaneously]. Denot-
ing v=−hx, in s1+1d dimensions, the convective derivative
in Burger’s flow isDtv=vt+lvvx [3]. It is straightforward to
show thatDtv is invariant(up to a multiplicative factor) un-
der transformations(21) if a+z=2, gspd=p, and if l→l8,
l8p3=l. Then w2std transforms to w82st8d, w82st8d
=w2std / sL2a /p2d,Fst8d, or, equivalently, wstd
→wstd / sLa /pd,Fst8d. This gives Eqs.(17) and (18). If we
setl=0 in Eq.(20) [assuming the scaling regime of constant
vstd], then the resulting EW equation is invariant under the
same transformations providingz=2, 2a+1=z and n→n8,
n8p2=n. This, again, gives Eqs.(17) and (18) but with z=2
anda= 1

2. Transformations defined by Eq.(21) can be seen as
superpositions, where the first scaling

x → x/L, h → h/La, t → t/Lz s22d

is followed by

x → x, h → ph, t → p2t. s23d

[The order in which transformations(22) and(23) are super-
imposed to form transformation(21) can be reversed.] The
second transformation, defined by Eq.(23), leaves the KPZ
equation(20) invariant provided that new coefficientsn8 and
l8 are related to the old coefficients by the relationsn8p2

=n andl8p3=l (which is the result obtained before) and the
old velocity vstd changes to a new velocityv8std=vst8d /p.
Notice, in the absence of the RD admixture we havep=1
and the transformation(23) is the identity. Then transforma-
tion (21) is the usual FV scaling, Eqs.(2) and (3), with
proper choices fora andz, depending on the process at hand
(either KPZ or EW). When the RD process is present, we
have p,1. Then, inverting transformation(23) gives the
changes in the local-height fieldh/p and in time scalest /p2.
Since the elongation of the time scale is inversely propor-
tional to p2, this effect is more pronounced than the stretch-
ing in h. These phenomena take place for alltù0 since
transformation(23) is valid for all t, while the FV scaling or,
equivalently, affine mapping given by Eq.(22) takes place
only in steady-state simulations at timest@ t0spd when the
system has lost the memory of the initial condition.

One possibility for the behavior seen in this paper for an
admixture of the KPZ fixed point with the RD fixed point
could be for a reason similar to the floating-fixed point seen
in critical phenomena[66–68]. In that case, two physical
fixed points(in integer dimensions) are joined by a line of
fixed points that are inaccessible(in that case in noninteger
dimensions). The result is that for a finite system size, and
depending on the boundary conditions involved, there is an
effective critical exponent[69–72].

Only in the limit of infinitely large systems is the physical
fixed point approached. The effective critical exponents
along this line of fixed points satisfy(hyper)scaling relation-
ships, just as here the relationshipa+z=2 holds. Further
investigations studying much larger systems would be
needed to see if the floating-fixed point picture holds in our
case where properties of both the RD and KPZ fixed points
are mixed into the nonequilibrium surface model.

In summary, the only effect of the RD admixture to either
a genuine KPZ or EW process is the dilatation of growth
scales. The RD blending does not change the universality
class of the interface since it does not change the dynamics
of mechanisms that are responsible for building correlations.
However, such dilatation, when combined with the initial
flat-substrate condition, may obscure a clear observation of
KPZ scaling in simulations as well as in experiments.

B. Roughness

In this section, we discuss finite-size effects in scaling for
the VTH interfaces simulated by the worst-case-scenario
deposition/update rules 1 and 2. Despite the fact that these
interfaces belong to the KPZ universality class, the precise
value of the roughness exponent depends on the lattice sizeL
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and on the type of deposition. In the case of Poisson depo-
sition, it requires largeL to attain scaling with 2a<1 [56]
(a approaches1

2 from below asL is increased), while for
uniform depositions the requiredL is approximately two or-
ders smaller than that for Poisson depositions.

At saturation, the growth of as1+1d-dimensional KPZ(or
EW) surface can be mapped onto a diffusion problem with
column-height fluctuationsdh,1/zw, where zw is the dy-
namic exponent of a random walker[3,9] that connects with
the roughness exponent,azw=1. The exacta= 1

2 indicates
the total lack of correlations anda.

1
2 indicates their pres-

ence. The random-walk interfaces are characterized by the
following width distribution functionFsw2/ kw2ld [18]:

Fsxd =
p2

3 o
n=1

`

s− 1dn−1n2expS−
p2

6
n2xD . s24d

In simulations of growth models wherew2 depends on a
single length scale,F is obtained by normalizing a histogram
Psw2d of the width distribution[18,73–76],

FS w2

kw2l
D = kw2lPsw2d. s25d

This technique of describing surfaces in terms of their scal-
ing functionsF gives very good agreement between theoret-
ical functionsF (whenever available) and simulated curves
for growth models with integer height increments
[18,73–76]. Figure 14 showsF obtained in simulations with
severalN andL for our deposition/update models with Pois-
son and uniform depositions. We observe that these curves
closely follow the theoretical curve given by Eq.(24). In the
computation of the quantities in Eq.(25) (see the Appendix),
we used a variable step sizeD in binning thew2 data (D
=0.05,0.1,0.5, and 1) and a variable numberNdata of data
points at saturations6.43106,Ndata,108d to ensure that the
results of Fig. 14 represent the true limit ofF obtained in our
models.

The exact collapse of the distributionsF obtained in
simulations on the theoretical curve of Fotlinet al. [18],
given by Eq.(24), is not related to the type of the deposition,
as is illustrated by the data in Fig. 14 and is observed even
for small system sizessL~100d. Therefore, an explanation
for the sensitivity ofa to L and to the deposition type must
lie elsewhere. For moderate to largeL presented in this work,
whenN=1, data collapse at saturation required 2a>0.94 for
uniform deposition, 2a>0.92 for Gaussian deposition, and
2a>0.88 for Poisson deposition. Similarly, whenN=2, the
collapse was achieved with 2a>0.94 for uniform deposition
and 2a>0.9 for Poisson deposition. This variation ofa with
the deposition type suggests that a small departureda

=1–2a from the exact value 2a=1 is a nonuniversal param-
eter. As observed, the largest differenceda is for depositions
that have the largest variance(i.e., Poisson) and the smallest
da is for depositions of the smallest variance(i.e., uniform).
This observation strongly indicates thatda is related to the
system memory(introduced in Sec. III), i.e., to time scalesT
on which the interface does not remember past depositions.
In other words,da depends on the minimal intervalT such

that, on average, a deposition at timet does not affect depo-
sitions at time st+Td. Long memory scalesT lead to a
build-up of temporal correlations, thus producing a variation
to Gaussian noise in Eq.(4), possibly modifying noise
strengthD in Eq. (5). Such a variation may influence the way
in which the system attains the stationary state[77] and,
possibly, the value ofa. We leave this issue open to future
investigations.

C. False scaling

A blind application of the scaling technique to numerical
data sets, without supporting analysis of temporal scales and
invariants involved, may lead to false conclusions. For ex-
ample, assuming a global linear behavior ofkw2l versus the
variablesNLd [Fig. 11(c)], it is possible to collapse the satu-
rated widths by using an effective exponent 2a<1. Per-
formed for all t.0, such scaling shows two distinct growth
regimes in the evolution curves(Fig. 15). For eachL, these
can be further collapsed into groups by scalingt→ t /Nz1 for
all t, taking z1=1 [Fig. 16(a)]. The excellent total data col-
lapse in the first growth regime(of slope 2b1 in Figs. 15 and
16) is obtained whent→ t / sNLdz1, but at the expense of only
an approximate collapse in the second growth regime(of
slope 2b2 in Figs. 15 and 16). This final result[Fig. 16(b)]

FIG. 14. DistributionsFsxd of the interface widths at saturation,
x=w2/ kw2l. Results of simulations(symbols) are compared to Eq.
(24) (continuous curve). (a) Uniform deposition whenL=1000 and
N=1,2 (binning intervalDU=0.05; the data forN=1 fall on the top
of data for N=2). (b) Uniform and Poisson depositions whenL
=1000 and N=1,2(DU=0.05, DP=0.5). (c) Poisson deposition
whenL=1000,10 000 andN=1,10, 100sDP=1d.
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seems to look plausible because 2b1=1 and 2a=1 give a
hypothetical exponentz1=1, and the curves fall exactly on
the top of each other in the early growth phase and at satu-
ration. However, upon closer inspection it appears that the
length of the intermediate regime of slope 2b2 expands when
L is increased. In the limit of large but finiteL, the scaled
curves in Fig. 16(b) will cover the lower right-hand semi-
plane, bounded by linesy=log10fkw2l / sNLd2ag=const andy
=2b1log10ft / sNLdz1g+const. Hence, there is no scaling. In

fact, this example supports our earlier conclusion that the
initial growth phase fort, t0sNd, the artifact of the initial
condition, does not scale.

D. Application to PDES

In modeling of the conservative update mode in PDES,
we represent sequential events on a processor in terms of
their corresponding local virtual times. The column height
that rises at thekth lattice site in the simulated VTH repre-
sents the total time of operations performed by thekth pro-
cessor. These operations can be seen as a sequence of update
cycles, where each cycle has two phases. The first phase is
the processing of the assigned set of discrete events(e.g.,
spin flipping on the assigned sublattice). This phase is fol-
lowed by a messaging phase that closes the cycle, when a
processor broadcasts its findings to other processors. But the
messages broadcasted by other processors may arrive any
time during the cycle. Processing related to these messages
(e.g., memory allocations/deallocations, sorting, and/or other
related operations) is handled by other algorithms that carry
their own virtual times. In fact, in actual simulations, this
messaging phase may take an enormous amount of time,
depending on the hardware configuration and the message
processing algorithms. In our modeling, the time extent of
the messaging phase is ignored as though communications
among processors were taking place instantaneously. In this
sense, we model an ideal system of processors. The local
virtual time of a cycle represents only the time that logical
processes require to complete the first phase of a cycle.
Therefore, the spread in local virtual times represents only
the desynchronization that arises due to the conservative al-
gorithm alone.

The measure of this desynchronization is provided by
kwstdl. Since in PDES the memory request per processor,
required for past-state savings, is determined by the extent to
which processors get desynchronized,kwstdl can be consid-
ered as an indirect approximate measure of this memory re-
quest. Its growth during the entire time span of the PDES
computations is given explicitly by Eq.(9).

We showed that in conservative PDES, given the PDES
size (finite L and N), this memory request does not grow
without limit but varies as the computations evolve. The fast-
est growth, proportional toÎt, characterizes the initial
start-up phase. The length of the start-up phase depends on
the load per processor(represented here byN). The start-up
phase is characterized by decreasing values of both the uti-
lization and the progress of the global simulated time(i.e.,
the smallest local virtual time from all processors at each
simulation step). In the steady-state simulations, when the
utilization has already stabilized at a mean constant value
(and so has the progress of the global simulated time), the
memory request grows slower, at a decreasing rate,1/t2/3.
In this phase, the mean request can be estimated globally
from Eq. (10) or Eq. (11). The important consequence of
scaling, expressed by Eq.(10), is the existence of the upper
bound for the memory request for any finite numberL of
processors and for any finite loadN per processor. As is
stated by Eq.(11), on the average, this upper bound increases

FIG. 15. The false-scaling time evolution fort.0 of the scaled
widths, obtained with Poisson depositions in rule 3:(a) N=100; (b)
N=1000;(c) L=100; and(d) L=1000.

FIG. 16. False scaling for the curves of Fig. 15(a). Scaling with
N in t, z1=1. (b) Scaling withL in t for the data in(a).
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proportionally toÎNL with the size of conservative PDES.
The characteristic time scalet0sNd from the first step to

the steady-state simulations can be estimated by monitoring
the utilization for the minimal processor load(to determine
t0) and, subsequently, scaling this time withN. Similarly, the
characteristic time scale tot3sNd, when the desynchroniza-
tion reaches its steady state, can be scaled with the processor
load to determine an approximate number of simulation steps
to the point when the mean memory request does not grow
anymore.

During the steady-state simulations, the utilizationkul is
given by the approximate Eq.(16), wherepsNd=Î2/N. The
smallest utilizationkupl for any processor load is obtained by
taking the limitL→` of Eq. (16),

kupl = f1 − psNd/2gf1 − psNd/4g. s26d

Since asN→`, psNd decreases as,1/ÎN, Eq. (26) shows
thatkupl grows very fast when the processors’ load increases.
For example,kupl for N=100 is about 90%, close to its
asymptotic limit of 100%. For the minimal processors’ load
sp=1d, Eq. (16) gives forLù3

ku0l =
3

8
+

1

8L
. s27d

In the limit L→`, ku0l is the smallest possible value of the
utilization. As Eq.(27) shows, this value is a nonzero con-
stant(equal to 3

8 when derived from simulations with Pois-
sonian distribution of waiting times). This nonzero lower
bound on the utilization and the finite upper bound for the
memory request for finiteL show that conservative PDES are
generally scalable with the number of computing processors
when performed in the ring communication topology. The
extension of this conclusion to other communication topolo-
gies requires a separate study.

VII. SUMMARY AND CONCLUSIONS

We considered a two-component growth ins1+1d dimen-
sions. One of the components is RD that takes place with
probability s1−pd. The other component, which takes place
with probabilityp, is a deposition process that generates cor-
relations typical of KPZ dynamics. The growth is simulated
from an initially flat substrate.

We show that the flat-substrate initial condition is respon-
sible for the existence of the initial nonscaling regime in
simulations. The length of this initial phase is a nonuniversal
parameter(it depends on the type of depositions and on the
particulars of the model). However, its presence is a univer-
sal phenomenon.

During the initial phase, the simulations relax to a steady
state. For the models considered in this work, the transition
time to the steady state can be defined as the time when the
mean interface velocity attains a constant value. We showed
that for these models, the mean interface velocity is a mul-
tiple of the mean utilization.

During the steady state, the interface width satisfies FV
scaling. We derived the universal scaling function for the

width and showed that the RD admixture acts as a dilatation
mechanism to the time and height scales, but leaves the KPZ
correlations intact. This conclusion has been generalized to
two-component models that mix RD with depositions that
classify within the EW universality class. In particular, we
showed that the RD admixture is responsible for the
p-dependent affine change of scales(h→h/p and t→ t /p2)
that is superimposed on the usual scaling and leaves the dy-
namics invariant.

The models, studied in this work, that give rise to the
KPZ correlations are the Poisson, the Gauss, and the
uniform-random depositions either to local interface minima
or to local minima and randomly selected local slopes. De-
spite the fact that the simulated interfaces belong to the KPZ
universality class, the precise value of their roughness expo-
nent depends on the deposition type. This observation sug-
gests that such noisy deposition mechanisms may produce
relatively long-scale temporal correlations. Secondly, this
small departure from the exact value is nonuniversal. Further
studies are required to investigate this issue.

In application to conservative PDES, we showed that the
memory request per processor, required for state savings,
does not grow without limit for a finite number of processors
and a finite load per processor but varies as the PDES
evolve. The important consequence of the derived scaling is
the existence of the upper bound for the desynchronization,
and thus for this memory request. Also, the utilization of the
parallel processing environment has a nonzero lower bound
as the number of processors increases infinitely. Thus, the
conservative PDES are generally scalable in the ring com-
munication topology.

ACKNOWLEDGMENTS

The authors thank P. A. Rikvold, R. B. Pandey, and G.
Korniss for stimulating discussions. This work is supported
by NSF Grants No. DMR-0113049 and No. DMR-0120310;
and by the ERC Center for Computational Sciences at MSU.
This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC03-76SF00098.

APPENDIX: DISTRIBUTIONS

Both hkstd and w2std are real numbers that take on con-
tinuous values. SupposeS=hf1, f2, . . . ,fNj is a set ofN such
numbers obtained in simulations. Leta=minsSd and b
=maxsSd. The intervalsb−ad is partitioned intoM segments,
each of lengthD=sb−ad /M. Each segment is a bin that
is indexed by its left endyi =a+si −1dD, i =1,2, . . . ,M. Let
mi be the multiplicity of theith bin, i.e.,mi is the number of
points fromS that fall betweenyi andyi+1. The mean value
of S is kfl=1/Nok=1

N fk=oi=1
M Pikf il, where kf il

=s1/midon=1
mi f in is the mean value taken on a subset ofS that

belongs to theith bin, and Pi is the frequency function
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Pi =smi /Nds1/Dd. The abscissasxi and function valuesFi

=Fsxid arexi =kf il / kfl andFi =kflPi. These values are plot-
ted in Figs. 6 and 14.

Here,Fsxd is properly normalizede0
` dxFsxd=1. The ab-

solute spreadsb−ad determines a suitableD in the computa-
tion of kf il within acceptable precision. This gives the total
numberM of bins. For a givenM, the accuracy ofPi de-
pends onN.
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