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Ferrofluid aggregation in chains under the influence of a magnetic field
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The theory of particle association in flexible chains in dilute ferrofluids is generalized to the case of an
arbitrarily strengthened magnetic field. The chain distribution in dynamic equilibrium is obtained on the basis
of free energy minimization method under the neglect of interchain interaction. The chain partition function is
calculated analytically with the help of the rotation matrix technique under the condition when the interparticle
dipole-dipole interaction between the nearest neighboring ferroparticles in each chain is taken into account. At
weak fields, the chain distribution and the initial susceptibility are shown to be dependent on the value of the
correlation coefficient describing the zero field mutual orientational correlations between the magnetic mo-
ments of two neighboring ferroparticles in a chain. The internal chain orientational correlations and the field
dependent chain lengthening result in higher magnetization of the aggregated ferrofluid in comparison with the
Langevin magnetization.
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I. INTRODUCTION mor(ms-r) (Mo m.
Ud(ij):_ 3( i Ijzg J I])_( |r§ J) ’ rijzri_rj-

Magnetic fluids (ferrofluids, ferrocolloids are suspen- U .
sions of magnetic nanosized particlé@se oxides, Co, Ni, (1)
etc) covered by a solvent layer. The magnetic particles gen- The latter is of noncentral character, since it depends not
erally are approximately 10 nm in diameter. The ferro- oronly on the distance; between théth andjth ferroparticles,
ferrimagnetic particles of such a size are single domain. Sdyut also on the mutual orientation of their magnetic moments
each particle has its own magnetic momentthe value of ~m; andm;. Hence, chain aggregates composed of ferropar-
which is proportional to the magnetic core volume and dedicles the magnetic moments of which are in the most favor-
pends upon the saturation magnetization of the material. S&Pl€ energetic “head-to-tail” position prove to be typical for
particles are not only involved in Brownian motion, but also Magnetic fluids. Naturally, these microstructures may be

interact with each other forming different aggregates. Theformed only by rather Ilarge ferroparticles, intensively inter-
theological, hydrodynamic, diffusional, magnetic, and Opti_actmg magnetically which each other. As a measure of such

cal properties of a ferrofluid change by a hundred times yninteraction the magnetic dipolar coupling constaht

Z 2743 i i
der an applied magnetic field of moderate strength. So, such™ /0%kgT is usually used. This parameter represents the

o ; ; C lation between the magnetic interaction energy of two con-
material is a challenging subject for scientific research ag®'> ,
well as for different agpli%atior{s acting ferroparticles?/d® and the thermal enerdisT (here
Recent computer simulatiorﬂ$.2] have shown the micro- d is the particle diameter taking account of the surface non-

scopic structure of dipolar model fluids to be much moremagnetic and sterical laygrs-or real commercial ferrofluids

complex than previously expected. The system at a high dit—he mean _value of the dl_polar coupling const_ant does_ not
exceed unity. But a certain number of large sized particles

polar strength and low volume fraction has proved to asso

ciate in chain aggregates, the number and length of Whicﬁwilthd_diame_tters;#Sa_lS In”) alwalys eXiStStdu? fto f(tar:rofluid
represent increasing functions of the ferroparticle concentr Qolydispersity. The dipofar coupling constant for these par-

tion and of the strength of an external magnetic field. It is icles may reach values .Qf~,‘:3_5’ Wh'Ch. ,',S rather high f_or
well known that magnetic fluids become optically aniso_establlshmg an interparticle “head-to-tail” bond. The micro-

tropic [3] and demonstrate an abrupt viscosity increpde structure of ferrofluids with the dipolar constant varied in

when subjected to a magnetic field. The explanation of thes@'s :eglonzwaAs stu(cjj_led tbythmeans of moltelcular dynarpms
phenomena is usually made in terms of chain aggregates. Imulation[2]. According to these papers at low concentra-

lot of experimental studies, demonstrating not only chainlikeion the chain formation tends to increase the magnetization

aggregate existence but also their great influence upon dif‘fo!nd induces a larger initial susceptibility. At high densities,

; ; ; . he particle spatial distribution starts to homogenize again,
fr:zrr:?iloi?r?g?sy:em?grn:gri\glre[og]e;“es of ferrofiuids, are Worthand the significance of the chains goes down. This is due to

The physical reason for the chain aggregate formation iﬁhe fact that in dense ferrofluids the interparticle interaction
ferrofluids is the pair interparticle magnetic dipole-dipole in- results in chain disintegration. The main conclusion of these
teractionU(ij ): papers was that the chain aggregates are most conspicuous in

diluted ferrofluids, while dense ferrofluids are characterized
by a homogeneous fluid like structure.

The computer simulations and experimental observations
*Electronic address: Alexey.lvanov@usu.ru were accompanied by theoretical studies of the chain forma-
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tion proces§6-10. Two approaches for the chain aggregate Il. FREE ENERGY FUNCTIONAL
description were proposed. The first one used the so-called
dynamic method [6], where the particle combination/ .
recombination processes in chains are treated as reversit

e 3 : i i
chemical reactions. With the demand for dynamic equilib-— 79 /&, and magnetic momem with volume concentration

rium, the chain distribution as well as other important prop-¢- The particles might be associated in chain aggregates, and
erties of the system could be obtained. The second conjl€ concentration ofi-particle chains ig,. Itis well known
monly used approach is based on the minimization of thé?] that under the presence of a magnetic field the thermo-
free energy as a functional of the chain distribution densitydynamic properties of magnetic media are dependent on their
[8-10. So this method is called the density functional ap-shapes due to the demagnetization effects. Since we are go-
proach. The equivalence of these methods is an evident coff?g to study the microstructure and the magnetic properties
sequence of thermodynamic fundamentals. According t®f ferrofluids as functions of an external field, we choose the
these works, a considerable fraction of ferroparticles at lowshape of the container with the ferrofluid such that the influ-
densities and intensive magnetic dipole interaction is conence of the demagnetization field can be neglected. Thus, we
nected in chains, the mean length of which appears to be atonsider the volume of the system in a shape of infinitely
increasing function of ferroparticle concentration. This ap-elongated ellipsoid of revolutiothe ratio of the minor to
proach was also extended to the case of polydisperse ferrgnajor ellipsoid semiaxis tends to zgretretched along an
fluids [11]. external uniform magnetic fielth. It is important to stress
The general peculiarity of the mod€g8-1] is that only  that using the infinitely elongated ellipsoidal shape is of ad-
two limiting cases are studied: they are the zero field and th@antage because this is just the case when the demagnetiza-
saturation conditions. However, the phySiC&' model of thQion factor is of no consequence and does not need to be
ferrofluid chain aggregate microstructure is usually used fogccounted forthe external magnetic field coincides exactly
description of various properties induced by a magnetic fieldyith the internal ong For more general shapes of the con-
of moderate strength. Naturally, an external magnetic fieldainer, the demagnetization factor of the system needs to be
stimulates chain formation. Unfortunately, no theoreticaltgken into account.
model properly describing the magnetic field influence upon To use the energy density functional method the following
the chain formation process has been built yet. The fiel(jissumptions are traditiona”y adopte{@: Each chain is as-
orientation of stiff rodlike chain aggregates is the only sumed to be a single structural element having its own trans-
known approach to take the magnetic field influence intdational and rotational degrees of freedafiny structures that
account[8]. The rejection of chain flexibility results in the djffer from those of chains are ignoredii) only the inter-
Langevin orientational law for each rodlike chain and |ead%ction between the nearest neighboring partides in every
to a great overestimation of the chain response to an externghain is taken into accountiii ) diluted ferrofluids are stud-
field. Therefore, the rigid rodlike chain approach should beed (o <1), which is why an interaction between chains is
considered only as a qualitative assumption, which is apnot considered. Under these assumptions the free energy vol-
proximately valid for particles with high values of dipolar yme densityF is the sum of the following terms: the ideal
coupling constant. paramagnetic gas free enerigy, the free energy of the chain

This paper addresses the basic question of the ferrofluifjeal gas mixture, and the energy of each chain,
chain behavior under the influence of an external magnetic

field. In Sec. Il the chain distribution is obtained on the basis - gn(H)v

of the density functional approach, and the rotation matrix F=Fn+ kBTZ gn(H)('” e In Qn(H))*
technique is described. Since the chain distribution is depen- i
dent on the value of the chain partition function, its calcula-

tion is the main mathematical problem due to the necessity Frn=— kBTf In(
of averaging, that is integration, over a large number of the v
particle degrees of freedom. So, the averaging over the p
sitions of particlegSec. Ill) leads to some transformation of
the chain partition function. An example given in Appendix
A demonstrates this procedure for the system of dipolar har
spheres. The weak field asymptote is studied in Sec. IV, an
the initial susceptibility of the aggregated ferrofluid is ob-
tained. The detailed calculations are presented in Appendix @
B. Section V(and Appendix C as wellis devoted to the 2 ngy(H) ==, 3)
chain partition function in the presence of a moderate and/or n=1 v

strong magnetic field. Use of the saddle-point technique alznd the solution should be written in the form

lows us to develop an asymptotic approach for analytical
calculation of the chain partition function. The analytical ex-
pression appears to be very accurate in the whole region of  9n(H) =P(H)"Qn(H)/v, Z np(H)"QH) =,  (4)
magnetic field strength. The chain structure analysis and i

magnetization study are given in Sec. VI. We end with ourwhere the Lagrange multipligs(H) is to be determined nu-
conclusion in Sec. VILI. merically from the last algebraic equation. It is worth men-

Let us consider a monodisperse ferrofluid, consisting of
%entical spherical ferroparticles of diametdr volume v

inh a
sin ) L mH @

a keT’

NYere Q, stands for then-particle chain partition function;

and « has the meaning of the Langevin parameter. The final
roblem is to find the minimum of the free ener@®) as a

gmctional of the chain distributiog,, under the mass balance
ondition

o]

[}
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tioning that the application of the mod@)—4) is limited in

major part by the neglect of interchain interactions. The latter

cannot be linked only to the low density but also to the

magnitude of the dipolar interactions and of the external

field. For high fields and intensive dipolar interactiops

~10 and higher one expects the appearance of ordered

chain phasegnematic, columngr as can be seen, for ex-

ample, in Ref[12]. Such structures are observed in magne-

torheological suspensions at strong fields. In these suspen-

sions of micrometer sized magnetic particles the dipolar

coupling constant may amount to the values 10-50. So,

to use the mode(l2)—(4) we restrict our consideration to the

region\ ~3-5, which is typical for the coarse grained frac- 3
tions in real ferrocolloids with nanometer sized ferropar-
ticles. Besides that, we study only low concentration ferrof-
luids as previously noted.

To use the chain distributio@) one needs to calculate the
chain partition functiorQ,, representing the averaged Gibbs
distribution. In general, under the nearest neighbor condition
the partition function of then-particle chain is

a1

FIG. 1. Flexible chain and coordinate systems. The position and
1 o\ n U.+ Ui+ U thg dipole orient_atiop of thigh particle are s_pecified by its relatio_n-
Q,(H) = n—l( - ) H dr, exp(— M), ship to the previousi — 1)th monomer unit in the chain. The point
v sinh i=1 kgT of origin of theith coordinate system is placed at the center of
particle i-1 so that theOz axis is codirectional to théi—1)th
magnetic moment.

n-1 n-1
Ug= 2 Ugii +1),  Ug= 2 Uglii +1), o
i=1 i=1 COSw; COS{; —Sin{; sSin w; COS{;
Ti=| cosw; sing; cos sSinw;sing |. (6)
= Sin w; 0 COS w;

n n
Un=2 Un)=-2 (m;-H), Q=1. (5§ , _ , o ,
i=1 i=1 Eachith coordinate system point of origin is replaced in the
center of the(i—1)th particle, and theDz axis is directed
Here d7; stands for the differential volume element for the along the(i — 1)th magnetic momentFig. 1). So the orienta-
position and dipole orientation of thiéh particle in a chain; tion of the latter in théth coordinate system is determined
the particle volume plays the part of a normalizing coeffi- by the unit vector
cient; Uy(ii +1) denotes the magnetic dipole-dipole interac-
tion potential between two nearest neighboring particles in a 0
chain; as far as the potentidl(ii +1) is concerned, it stands

n=|0
for a central interparticle interactio(steric repulsion, van 1
der Waals attraction, electrostatic repulsion in ionic stabi-
lized ferrofluidg, andU,, describes the interaction of all par- In expressiong6) the vector;(r;; 6;; ¢;) connects the cen-
ticles with a magnetic fieldH. ters of the(i—1)th andith particles in a chairfi=2, ... n);

Since consideration is limited to chain aggregates, a moshe unit vector();(w;; ¢;) determines the direction of triéh
convenient coordinate syste(fig. 1) is one in which the magnetic momentm;=mq,). In terms of a coordinate sys-

p0|3|t_|on ";]‘Ud orlerr:tanon of thien pak:tmle are specified byh|ts tem based on the position and dipole orientation of particle 1,
relationship to the previousi—1)th monomer unit in the oy ession6) becomes, by successive rotations,
chain. In this cas¢6], the radius vector;_;; connecting the

centers of both particles and the magnetic moment oftthe [ =rTo T RN M =mT----T:n (7)
particle are defined with the help of the rotation matriBes mum e e 2
andT;: and the magnetic field is
ri-y =riRn, m;=mt;n, sin &
H=H[ 0 |. (8)
COS 6, cOS¢h; —sSin¢y; sin 6 cos ¢ cosé
Ri=| cosf sin¢; cos¢ sin g sind; |. With the help of this rotation matrix technique the parti-
- sin 6, 0 CoSs 6, tion function Eq.(5) is then
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( ) sin ¢dé lll. UNCOUPLING OF THE PARTITION FUNCTION
Qn(H) = sinh « f flzv

The analysis of expressia®) shows that the integration
over the translationatlr; and orientationald€); variables
Ug+Ug+ Uy, should be uncoupled. In the integra¢®j all the functionsz;
B kB—T ' are independent on the anglés ¢;, and only the dipole-
dipole potentialdJ4(i—1i) are functions of these angles:

n
H dQ, ex

i=2

Q, = (4m) Isin wdw,dg, dr;=rdr; sin 6d6dd;, Ug(i - 1i d\®
i = (4m) widwdg i— i d idéidd _ d( ):)\<_) [cosw(3 co§0i—l)
(9) kBT I
where the integrationdr; and dQ; correspond to averaging +3 sinw; sin 6, cos 6, cod ¢ = §)].
over all particle positions and orientations in the chain with (14)

respect to normalization in the space of particle degrees of _ ) ) _ ) _
freedom, and the integration siidé/2 stands for normalized Since we are interested in the integration of dipole-dipole
averaging over all orientations of the flexible chain in a fer-Potentials, the general transformation

rofluid volume. This expression for the partition function 27

was first suggested in Rgi6]. The peculiar feature of these f f(Acos¢ +Bsin ¢)d¢=f f(VA? + B? cos¢p)do
coordinate systems is that in each interparticle dipole-dipole 0

interaction(1) the orientation of théth magnetic moment is

. . allows us to use the dipole-dipole interaction potential in the
defined by the unit vectar. On the other hand, the magnetic P P P

X . . form
part of the interaction energy becomes complicated: ,
i—1i d
n Yali =10 _ (—) [cosw;(3 cogh, — 1)
-U/keT =, Z,, (10) kT r

i=1 + 3 sinw; sin 6 cosé cos¢],  (15)

where the functionsz; are described by the recurring

X which does not contain the anglés This means that the
expressions

integrand exp-(Us+Uy)/ksT] should be averaged over vari-

Z; = X;_1 Sin w; oS¢ + Yi_1 Sin w; Sin {; + Z;_; cOS w;, ables dr; independently. Since the particle magnetic mo-
ments are correlated in a chain, this integrand has a sharp

Xi = Xi_1 COSw; cOS{;+ Yi_1 COSw; Sin {; — Zi_1 Sin w;, maximum of the height eXg\)> 1 at the point;=d, 6,=0,
;=0. On the basis of the saddle-point technique the follow-

Y,==X_;sin+Y_;cosf, 2<i<n, ing transformation approximately holds true:
. i i —1i) + Uy - i
X,=siné Y,=0, Zy=cosé, Xe+Y2+Z2=1, f dri exp(— Usli = 10) + Ui ')>
(11) ’

=0, exgalcosw;—1)], exp2\n)>1, 16
The partition functior(9) becomes simpler in two limiting 4 exial D A2N) (16

cases: the zero fiela=0) and saturatiofa— ) condi- Where the coefficienta andq.. depend on the dipolar cou-
tions. Successive integrations over particle degrees of fredling constant and on the form and intensity of the central

dom result in the factorization features interactionU(ij). It is worth mentioning that the zero field
partition functionqg of the ferroparticle doublet should be
QO =at q :f ﬂfdﬂ determined with the help of parametersndd..:
n - v 2 1-exp-2a)
Uy(12) + U412 Go = G f dQ; exa(cosw; — 1)] =0 —— —.
Xex T , Mp=mn, (12) 2a
(17
dr2 d(12) +Ug( 12) For example, a=\/2, q.=exp(2\)/3\?%, go=exp(2\)[1
Qn(>) = —exp(-\)]/3\3 for dipolar hard spheregsee Appendix A

(13) After that, the partition function should be written as
my =m,=mn.

ol @ sinédé

In an arbitrarily strengthened external field this factoriza- Qnl@) = (sinha) f H f ded,

tion of the partition function is absent, because the interac-

tion between the particle magnetic moments and an external

field leads to interparticle orientational correlations between xexpa(cosw; - 1)]exp(a2 Z). (18)

all particles in a chain. That is why the problem of chain -

structure under the presence of a magnetic field has not been The main idea of this uncoupling is the decrease of the
solved yet. integration variables. In expressi@8) the number of these
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variables is equal to 1{B-1), and in expressiol8) this L
number reduces to 1€2-1). -

09 -

IV. WEAK FIELD LIMIT sk 2

The weak field response of the aggregated ferrofluid is of 07
great interest since it allows us to calculate the initial mag-
netic susceptibility. For a weak magnetic figld<1) the o6, 5
partition function(18) should be transformed by using the 0 e s o &
Taylor series expansion:

n n 2 FIG. 2. Dependence of the relative mean squared magnetic mo-
exp<a§‘,z) ~1+— ( )

E ment(m,)/n of ann-particle chain on the correlation coefficigft
= Figures on the curves stand for the numbeif ferroparticles in the

= )
! chain.

_1+—Ezz+a2 2 2z, (19

23 ot} fact that in long chains the part of flexibility is more impor-

tant than in the case of short ones.
where the linear inv term vanishes due the symmetry of the  The obtained expression for the partition functic20)
problem. The calculations given in Appendix B show that inallows us to calculate the initial magnetic susceptibijtpf
a weak field the partition function depends on the zero fieldhe aggregated ferrofluid:
correlation coefficienK, describing the averaged projection

of one magnetic moment in a ferroparticle doublet onto the B N
direction of the other: X= k_T E gn(0){ N+ 2( )2(n 1+K"=nK)
B' n=1
n
Qla<1)= q8‘1< , ) _ 14pK
sinha XLl —poK’
o? K
x[1+g(n+2m(n—l+K”—nK))]. o 1+2g ,—1+4q
- ¢ ¢
9n(0) = —>, pp=—"" <1, (29
(20) Qov’ 2009
Using expressiort16) in the definition of the correlation wherey, =m?e/3vksT=2\¢/ 7 stands for the Langevin sus-
coefficient(B5), we get ceptibility, and the Lagrange parameigy defines the zero

field chain distributiorg,(0). For low concentration ferroflu-
ids (goe<<1) it follows that pg= qoe, 91(0) = ¢/v, and this
whereL(a) stands for the Langevin function. It means thatmeans that the system is nonaggregated. In the region of the
the correlation coefficient reaches the maximum allowablgoroduct valuesjye~1-10 the Lagrange parametgs rap-
value, that is unity, in the limit of a highly intensive dipole- idly increases to the valugp~ 0.7—0.8, and with the further
dipole interactiorK — 1, A>1. The combination increase ofgye it slowly tends to unity. According to this
K behavior ofpy the concentration dependence of the initial
_ n magnetic susceptibilityy (24) is the following. It linearl
(my = \/n ¥ 2(1 K)? 3(N=1+K"=nK), (22 incrgeases accorging t())/Xth(e L)angevin [gyv= X,_g @) at ver))//
ow concentrations. Then it grows nonlinear. And for rather
evidently, has the meaning of a dimensionless mean squar(?gge concentratiorip,~0.9-1 the susceptibility also in-
ngz(ﬁg?n TP? mf)n':tolfst?rr; ;;ar:claengh?rl]r; Fgrrutt?oen ”f%lgc;f:)?; creases linearly i, but the slope angle is larger than for the
S . n . P Langevin susceptibility y = x, (1+K)/(1-K)]. This concen-
coincides with that suggested in RE: tration behavior of the initial susceptibility?4) is demon-

K=L(a) =cotha-1/a, (21

a \N a?n strated in Figs. @) and 3b) in comparison with the Lange-
Qla<1)= qB'l( inh ) (1 + 6 ) vin susceptibilityy, for dipolar coupling constants=3 (a)
sinha and 4(b). The result of the rigid rodlike chain modgg] for
_ naf a \"sinhan the initial susceptibility also follows from the expression
=% \Sinha an <1. (23 (24) under the condition when the correlation coefficient is

equal to unity:K=1, y=x.(1+pg)/(1-pgy). The last expres-
The relationim,)/n is presented in Fig. 2 as a function of sjon is also presented in Figga3and 3b). The boxes dem-
the correlation coefficier. This figure shows that the chain onstrate the data of the molecular dynamics simulatj@8s
might be considered as a rigid o0ém,)/n~0.9 and higher  for the initial susceptibility of the system of noninteracting
only for rather large values of the correlation coefficientchains. The rejection of internal chain orientational fluctua-
(K>0.9). The short chaingdoublets and triplejsbecome tions in the rigid rodlike chain mod€8] leads to a great
rigid at lower values oK than long ones do. This is due the overestimation of the initial susceptibilittand magnetiza-
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4my, . Qu(@)-Q,(0)
3.7 2 Q=)0
15F e ]
7 oSy 0.6
g 1
r 2
//,, 0.4
0.5 #
a
1 L 0.2
0 0.02 0.04 @
4y,
7 0
3F 3/ 2
,,’ FIG. 4. Field dependence of timeparticle chain partition func-
o1 // a tion Qp(«) for dipolar hard spheres in comparison with the numeri-
s e cal calculationgpointg for A\=4.
1r /”’.."' N
il b instead of the external one This effective strengthening of
1 1 . . . . . . .
0 0.02 0.04 ? the field, acting on each particle in a chain, is connected with

the mutual orientational correlations due to the influence of
FIG. 3. (@ Concentration dependence of the initial susceptibility dipole-dipole interactions. The orientational response of one

4y (24) (solid curve 2 in comparison with the Langevin suscep- particle stimulates an additional reaction of the rest, since the
tibility 4y, (dotted curve 1 and with the initial susceptibility in  dipole-dipole interaction tends to align the particle magnetic
the rigid rodlike chain mode{dashed curve )3for a hard sphere  mopments in a chain. In this sense, the recurring coefficients
ferrofluid with A=3; (b) the same dependencies ag@n for A=4. fj define the effectively acting magnetic field.
The molecular dynamics dafa3] are presented by boxes. The approximate expressiqi25) is examined with the

help of numerical calculation of theparticle chain partition
tion as wel) in comparison with the present flexible chain function (18) for dipolar hard sphereg=2,...,5, and the
theory and with the computer simulation data. The point isresults are illustrated in Fig. 4 for=4. The analytical ex-
that the account of the chain flexibility is very important for pression(25) agrees well with the numerical data in the
proper description of computer and experimental studies ofvhole range of dimensionless magnetic fietdsmall devia-
the magnetic properties of aggregated ferrofluids. And evefions appear in weak fields. In addition, Fig. 4 demonstrates
for diluted ferrofluids the presence of flexible chain aggre-that the longer the chain is, the lower is the field growth rate
gates leads to higher values of the initial magnetic susceptif the chain partition function. This evident result is caused
bility as compared with the Langevin one. by the fact that in long chains the role of flexibility is more

important than in the case of short ones.

V. MODERATE AND STRONG MAGNETIC EIELDS At weak fields, the partition function25) coincides

with (12):
For the case of an arbitrarily strengthened external field 1-exg-a)\™*
the evaluation ofQ,(H) requires further approximations, Qn(a=0)=<qw—) qu‘l_ (26)
valid as long as ex@\)>1. As shown in Appendix C, an 2a
asymptotic approximation of Eq9) yields Moreover, the strong field asymptote of the expression
n-1 (25) demonstrates the factorization in the form
Qu() =42 Drs(@) 11 Ci(a0), Qula> 28) =[a./(1 + /)", (27)
J:
The analysis shows that this saturation asymptote is actu-
a sinfa(l+aB, ;)] ally valid beginning from fieldsy~ 10.
Dpq(@) = snha  a(l+aB_y) The described algorithm of the partition function calcula-

tion may be easily extended to the case of polydisperse fer-
rofluids [11], as well as to the account of interparticle inter-

Ci(e) = — @ sinhA; exgd-a(l+aB)], A=af +a, action between all particles in a chain without restriction to
sinha A nearest neighbors. The last case will lead to an evident minor
increase of the partition function, and this has an insignifi-
B; = fiL(A)/A, cant influence on further results.
fj+1: 1 +afJ—L(afJ- + a)/(af]- +a), f;=1. (25) VI. CHAIN AGGREGATE STRUCTURE

. _ . IN A MAGNETIC FIELD
Here the recurring coefficienfs= 1 take into account the

effect of superposed magnetization. It means that each par- The combination of the calculated partition functi@b)
ticle is orientationally influenced by an effective fietd;, and general solutiod) allows us to study the chain aggre-
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0.015

0.01

0.005

0 1 2 3 4 [

FIG. 7. Magnetization curves of aggregated hard sphere ferrof-

FIG. 5. Volume densitwng, of the n-particle chains in hard luids with ferroparticle concentratiop=0.05 and dipolar coupling

sphere ferrofluids foh =4, ¢=0.05 and various values of the di- constants\=3,4,5 (curves 1-3, respectivelyThe difference be-
mensionless magnetic fiele=1,5, 10. tween the magnetization (29) and the Langevin magnetization

M, is presented for clarity.

gate structure under the influence of an external magnetic . . o o

field of arbitrary strength. The dependence of the chain volits rigid rodlike behavior in a magnetic field. In other words,
ume concentratiomng, on the numbemn of particles in a & field strengthening leads to an evident weakening of the
chain is shown in Fig. 5 for the hard sphere ferroflgid internal chain fluctuations. At first sight this conclusion is
=4, ¢=0.05; the curves correspond to different values of theCPPOSite to the theoreticgll0] and numerica[14] predic-
dimensionless magnetic field. Naturally, field strengthen- tions of globule formation. But in reality the chain-globule
ing results in a shift of the chain distribution to the region of ransition is possible only for rather long chains, containing
longer chains, and it means that the system considered pdozens of ferroparticles. For the considered region of ferrof-
comes more aggregated. Such an influence is confirmed H(Y'd parameters ¢<0.05,A<5) the presented model pre-

the field dependence of the mean chain lergth which is icts the existence of relatively short chaiisee Figs. 5 and

demonstrated in Fig. 6 for a diluted hard sphere ferrofiui®): The obtained decrease of the flexibility of these short

with concentrationp=0.05. The mean chain lengthening is chains With field strengthening Seems to be physically nqtu-
very intensive in the region of moderate magnetic fiedds ral, and this effect does not contradict the globule formation

~1-4, and further field strengthening is accompanied by #f long chaing(10,14.

slow approach of the ferroparticle system to the equilibriumf_ I'(Ij'h_e correlated _ogetr;tatlonal chain re;saonse to a_mz;'gnetlc
chain distribution in saturation conditions. leld is accompanied by an increase of the magnetizaion

With field growth the chains proved to be more rigid. This as comparet_j with th]fa Il_anlgefvin magr_1e|tiza1M[1 of ?\n ideal .
conclusion follows from the field behavior of the correlation Paramagnetic gas of single ferroparticles. From the magneti-

coefficientK(H), which is defined according to expression zation definition and the free energy volume dengy it

(B5) for nonzero magnetic field. On the basis of the methoJOIIOWS that

described in Appendix C the approximate simple dependence Pr= * JIn Q,(H)

should be obtained: M(H) = = — =M (a) + kgT2, gy(H)——>—

dH =1 dH

K(H) =K(a) = L(a+a), (28) .

which coincides with expressid1) for zero magnetic field. =M (a) + &SE p(a)”m, (29

With field growth the correlation coefficieri28) monotoni- ® n=2 Jda

cally increases and asymptotically reaches the maximum

value, which is unity. When the dimensionless magnetic field * me

is strong enoughia>10) the correlation coefficient takes > np(a)"Qu(a) =, Mg=—,

values over 0.9. This means that the particle magnetic mo- n=1 v

ments in a chain become codirectional, and the chain eXh'tiNhereMS stands for saturation magnetization. The term ad-
ditional to M| takes into account the correlated contribution
(n) of all particles, associated in chains. It is worth noting that
3 expression29) is valid only for a system of noninteracting
3t chains, similar to the ideal paramagnetic gas mixture of
chains, the magnetic moments of which fluctuate inside the
0 2 chains. But the magnetization of the last system proves to be
//——— higher than the Langevin magnetization due to the internal
//———‘— chain correlations. An additional influence is also exerted by
1 - - . . chain lengthening in a magnetic field. The relative magneti-
zation differencéM —M, )/ M for the system of dipolar hard
FIG. 6. Field dependence of the mean chain ledgior a hard ~ spheres is presented in Fig. 7 as a function of the Langevin
sphere ferrofluid with concentratiop=0.05. Curves 1-3 corre- parametelx for various values of dipolar coupling constant
spond to dipolar coupling constants=3,4,5. N=3,4,5 andferroparticle volume concentratiogp=0.05.
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The maximal excess lies in the region of moderate fields actionUg(ij) is the hard sphere potentidl(ij) of repulsion
~1 and increases with concentratigpnlt should be pointed between particles of equal diameterSince the integrand in
out that the effect of aggregated ferrofluid magnetization inthe partition function9) has a sharp maximum of the height
crease was reported in R¢R] and was unambiguously ex- exp(2\)>1 at the point;=d, 6, =0, w;=0, a significant con-
plained by the chain aggregate influence. tribution should be found using the saddle-point technique.
For strong magnetic fields the magnetization differenceThe expansion of the dipole-dipole potenii&b) into Taylor
decreases parabolicallyl =M, ~ a2, and it follows from  series up to the second order terms givES d3(1+x), X
the asymptotical behavig27). In other words, the magneti- <1, <1,w;<1]
zation (29) reaches the saturation vali# according to the
Langevin lawM=My(1-1/a),a— . This fact is quite well = Uq(i = 1)/kgT = N(2 = 2 — ! = 367 + 3w; 6; COS ).
substantiated physically, because the rapid growth of the ag- (A1)
gregated ferrofluid magnetization in the region of weak and ) . ] )
moderate magnetic field&ig. 7) is caused not only by the ~ Using the expanded dipole-dipole potential) in the
internal chain correlations but also by the chain lengthenindntegrand(16), we get within the limits of the considered
(Fig. 6); whereas, in saturation fields the chain lengtheningccuracy

stops, and the magnetization behavior is determined by th dr Upelii = 10) + Ui = 10)
haadl _ZH
7 1% ex% kBT :|

single ferroparticle orientation only.

VII. CONCLUSION 2 (~ 2w *
. . . = _f aidaiJ d¢if dx
In conclusion, the problem of equilibrium chain lengthen- mJo 0 0

ing, caused by an external magnetic field, is solved analyti- 2
cally for the case of noninteracting flexible chains in low XexHN(2 =2~ ] = 367 + 3wif) cosh)]
concentration magnetic fluid. The flexible chain orientational exp(2\) o [
response to a magnetic field is shown to be weaker than for =2~ €Xp(= Ao )f 6,dé; exp(=3\6)1o(3N 6 w;)
the rigid rodlike chains assumed in R¢8]. The last ap- 0
proximation holds true only for very high values of the = exp(- )\wi2/4)exp(2)\)/(3)\2)
dipole-dipole coupling constant.

Even for flexible chains, the obtained results demonstrate = SXHN(COS @ = 1)/2]exp(20)/(3)?). (A2)
the great influence of the chain aggregates on the magneto- Here we use the integrals
static properties of ferrofluids due to orientational correla- o
tions between the magnetic moments of ferroparticles inside
a chain. The amount of chain flexibility decreases with field f
strengthening, and in strong fields the chain aggregate re-
sembles a stiff rodlike chain. Due to the existence and w0
lengthening of chains, the magnetization and initial suscep- f exp(— B#)1,(CH) 6 do = exp(C?/4B)/2B,
tibility of the aggregated ferrofluid turn out to be higher than 0
those for a colloidal suspension of single ferroparticles. This

conclusion is proved by the computer simulation data reyvherelo(z) is the zero order modified Bessel function. The

ported in Ref[2]. At the same time, in computer simulations comparison of gxpressmnjﬁ.G) and(Ag) allows us 1o write
this effect was much more pronounced than is shown in Figlown (for the dipolar hard sphere fluid

3 and 7. Apparently, it is caused by the interchain interac- O = exp(2V)/(3NY), a=\/2. (A3)
tions, and the model should be extended to account for these

interactions. Unfortunately, this makes it impossible to carry ~For the zero field partition function of the hard sphere
out an exact quantitative comparison at this time. ferroparticle doublet we get then

_ exp(2\)

3\2

The present research was carried out with the financial exp(2\)
support of RFBR Grants No. DFG 03-02-04001, No. 04-02- = xp(s
16142, and No. 04-02-16078, INTAS Grant No. 03-51-6064, 3\

the President of Russian Federation Grant No. MD- The last expression coincides with the well known asymp-

336.2003.02 and “Universities of Russia” Grant No. - 3 i ;
tote qg= 2\)/(3N\°) [7] for high val f the dipol
ur.01.01.061. The research was also made possible in part %%Sp(lqi%geé(&st;n(h>)l [7] for high values of the dipolar

CRDF Award No. REC-00%EK-005-X1).

exp(A cos ¢)deo =27l y(A),
0

ACKNOWLEDGMENTS o j dQ; exd\(cosw; — 1)/2]

[1-exg-N)]. (A4)

APPENDIX A APPENDIX B

As an example of the transformatigh6) let us study the Substitution of the weak field asymptqt9) allows us to
dipolar hard sphere system. So the central interparticle inteintegrate the partition functio(®) over the angleg; and &.
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All diagonal elementa?j2 give the same contribution:

Tsingd¢ 2_f”sin§d§ 21
fo Y Zi= 2 cos’-§—3,

2
fsmgdgf dgz jsmgdg[ 7

+(3 cog w, - 1)Z3]

3!

f smgdgfz”l ldgi
|227T

X [sir? w; + (3 codw; - 1)Z74]

f smgdgf’” dg“,
,2217

In other words,

f”sing dgjz’fn dg% N
0 0

Bl
i=p 275 3 (B1)

Let us consider the cross eleme#ig;,k<j, in expres-
sion (19):

—ZkZ
i=2 2

f singdg (27 dgl

f sinédé Z’Tlldgi

—Z,Z;_1 COSw;
i=2 277 i wJ
Tsingdé (27— d
:f —Zg Ef H2§|Zz H coSwp,
0 0 i=2 €T mek+l
i
== 11 coswpy,.
3m=k+1

In all, the averaging of weak field expansi@®) for an
n-particle chain over the angles and ¢ gives

271' n
f sm&dff 1 2 exp— U JkeT)

2 n ]
zl+%<n+2 > 11 COSwm>.

k<j=1 mek+1

(B2)

Then, the weak field behavior of the partition functi@
is determined by the general formula

PHYSICAL REVIEW E 70, 051502(2004)

'

i=2

1
Qn(a< 1)_ n 1(

sinha

fﬂ Sin wj dwi %
X exp —
O 2

2 nooi
x[1+%(n+22 11 COSwm)], (B3)

k<j=1 m=k+1

Ug+ ud>
keT

where all dipole-dipole potentials are defined by expression
(15). The point is that this general formula is also factorable,
since it represents the combinatorial sum of the independent

items:
a \" a? . .
1+—(n+2 > K™k
sinha> ! 6 ( k<zj=1 )}

= ”'1( = )n{1+£<n+2—K
=% \Sinha 6 (1-K)?2

><(n—1+K”—nK))}.

Qnla<1)= qg_l(

(B4)

Here we use the symbd#l indicating the zero field corre-
lation coefficient between the orientations of two neighbor-
ing particle magnetic moments in a chain:

K:qalf%fdﬂz COS wy ex;<_w)'
(BS)

keT
With the help of expression@l6), (A3), and (A4) for a
dipolar hard sphere fluid we obtain

K =L(N2) = coth(\/2) — 2/\.

APPENDIX C

The combination of expressioli8) and(16) allows us to
write down the chain partition function in the following
form, which is easy to use in the chain structure analysis
under the presence of a strong and moderately strengthened
external field:

ol a \"[Tsinédé
Qnl@) =0 (sinha) fo 2
xexpaZ)[] | dQ; expW),
i=2

W, =-a+acosw; + aZ. (Cy

Let us successively integrate over the orientations of par-
ticle magnetic moments beginning from the last one. Using
the recurring formulagll), let us expres§V, as

W, = \7Vn =-a+ (afZ,.1 +a)cosw, + af (X,_; cOS{,

+Y,1singysinw,, f,=1.
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After that, the integralsglQ2,, should be calculated exactly:

~ 7 sin w.d
Jn:f dQ, expW,) = exp(— a)f m
0

X exd (af Zyq +a)coswp)lo(af VX2, + Y2_; sinw,)

sinhu
=exp-a) i
un

XUu2=a?+ (af,)?+ 2aaf Z, ;. (C2)

In view of the fact that the chain is a correlated object, the

functionu,, has a sharp maximum at the poifjt. ;= 1. This
allows us to expand

sinhu, sinh(af,+a aaf L(af,+a
n_ I"(an )ex% an(a’n )(Zn—l_l))-
U, af ,+a af,+a
(C3
Then
_sinhA,

dQy-1 expWy-1)Jn = exgd—a(l +aBy)]Jdp-1,

J

An

Jn-1= f dQ-y exr(\7Vn_1).

PHYSICAL REVIEW E 70, 051502(2004)

Wi-1=-a+ (afy1Z, 5+ @)coswy;

+ af 1 (Xno2 COSEn-1 + Yo SIN 9)SIN @y,

A =af,+a, B,=fLA)A,,

fri=1+afL(af,+a)/(af,+a), (C4
where the functiondV, differs from W, [Eq. (C1)] by the
recurring coefficientd;=1. The preceding arguments may
now be repeated sequentially with the result

Tsinédé
2

)

expaZ)[] | dQ;expw)
i=2

" sinh A

) ,11 A
xexd a(l+aB,)cosé]

_sinfa(1+ aBZ)]ﬁ sinh A
~ a(1+aBy A

In the last expression the recurring calculation of the co-
efficientsA;, B; should be done beginning from the last par-
ticle of the indexn up to the second one. Summation from
the first particlgsee Fig. 1 seems to be more convenient. So
the summation index is replaced byj=n-i+1 in the final
expression25) for the n-particle chain partition function.

sinédé

- 1 CMBi
exd-a(l+ )]f0 5

exd-a(l+aB)].
i=2
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