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We put forth the idea of treating coexisting phases as a composite system and express its free energy as the
average of its constitutent free energies weighted by their respective volume proportions. As a result, the
theoretical study of charged colloidal phase separation in the presence of electrolytes reduces to optimizing
solely the entities pertaining to colloids and small ions. As concrete illustrations, we demarcated the boundaries
of coexisting phases for the simplest colloidal dispersion driven by salts at moderate to high concentrations and
compared the results with those obtained in the usual manner to numerically show the robust efficiency of the
present theory. Also, for a charged colloidal dispersion at very low ionic strength, we crosshatched both the
homogeneous one phase and coexisting phases, and used the domains of coexisting phases to interpret an
anomalous “transition” of phase diagrams exhibited in dilute colloidal dispersions induced by salts on dilution.
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I. INTRODUCTION

A deionized charged colloidal dispersion consists of mac-
roions, oppositely charged counterions, and a dispersive me-
dium throughout which these charged particles are immersed
and distributed under the combined operation of their ther-
mal motion and the electrostatic interactions among them. At
a fixed temperature, it would be reasonable to expect the
addition of an electrolyte to the system to be structurally and
thermodynamically crucial since any variation in the salt
concentration would noticeably affect the colloidal equilib-
rium behavior, resulting in most cases in drastic changes in
the structure of the phase diagram. Figure 1(a) shows a phase
diagram calculated for a low density colloidal dispersion. At
an initial colloidal volume fractionh0<0.05, it is seen that
an increase in the initial salt concentrationr0

ssd spanning over
the range 0,r0

ssd,180 mM has the effect of inducing phase
separation; the system displays first a vapor-crystal(fcc)
which continues until in the vicinity ofr0

ssd<179 mM, and
then changes over to a liquid-crystal transition. When the
colloidal charge is reduced to beyond a threshold value,
keeping all other colloidal parameters unchanged, it is found
below that the vapor-crystal transition disappears and the
phase separation is characterized by the liquid-crystal transi-
tion only. These features are in marked contrast to the con-
centrated charged colloidal dispersions at appreciable
amounts of electrolyte concentrations where now the electro-
static repulsion between colloids is considerably weakened
and replaced by the gradually strengthened van der Waals
attraction. Here experiments, computer simulations, and
theories have been rather successful[1,2] in revealing con-
sistent phase diagrams. Typical phase boundaries are dis-
played in Fig. 1(b) for the liquid-liquid and liquid-crystal
transitions[3,4]. In view of these variant structures, an un-
derstanding of the charged colloidal phase equilibrium phe-
nomena from very low salt concentrations&1 mMd to mod-
erate and high regimess.1 mMd is thus a great challenge to
both theorists and experimentalists.

Already, ample experimental works on charged colloidal
suspensions have been reported in the literature. The aqueous
dispersions of polystyrene latices, polymer latex particles,
silica, etc., are few of the popular and well-studied types of
colloids. Generally, the measured phase diagrams for these
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FIG. 1. Phase diagram for ionic strengthrssd vs volume fraction
h of colloids for charge-stabilized colloidal dispersions induced at
(a) low, r0

ssd
&1 mM and(b) moderate to high,r0

ssd
*1 mM, concen-

tration of electrolytes. Notations used are(a) dashed line, low den-
sity branch fluid(vapor or liquid); solid line, high density branch
(fcc) solid; and(b) dashed line, low density branch fluid(vapor or
liquid); solid line, high density(fcc) solid; light dot-dashed line,
low density liquid labeledL1; heavy dot-dashed line, high density
liquid labeledLh.
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systems at higherr0
ssds.1 mMd were convincingly inter-

preted[4], although some often raised issue of concern in
globular proteins(e.g., the mechanism of crystallization phe-
nomena) remains to be understood. In contrast, many of the
experimental results for lyophobic colloids at dilute salt con-
centrations are, however, unexplained, unsatisfactorily un-
derstood, or have aroused controversial in interpretation.

Turning to theories, related quantitative models[5,6] at a
microscopic level have only very recently appeared in the
literature. These theoretical efforts generally fall into two
categories. The first category considers the possibility of the
existence of attractive forces between colloidal particles in
addition to the well known Derjaguin-Landau-Verwey-
Overbeek[7] repulsive interaction. With the introduction of
the former contribution, an effective two-body colloid-
colloid potential is constructed, and in conjunction with a
computer simulation technique is applied to study the phase
transition of colloidal dispersions[8]. The presence of an
attractive interaction in charged colloids has been an issue of
controversy, however. The second category emphasizes the
importance of the so-called volume terms in the free energy
function [5,9,10] which is constructed from the well-
established liquid-state theory in conjunction with the den-
sity functional method. The emergence of the negative en-
ergy contribution in volume terms has been identified as an
important source for understanding the phase transition and
is of much relevance to the theory presented below. Surpris-
ingly, the rigorous theories in this category have so far not
been checked quantitatively against experiments. On the
other hand, the theoretical efforts in the first category have
been used to interpret structural anomalies manifested in di-
lute ionic colloidal dispersions. The situation here is that it
was reported earlier by Matsuokaet al. [11] and more re-
cently by Yamanakaet al. [12] that the presence of very low
salt concentrations in a system of dilute polystyrene latices
(silica) has an immediate consequence; the nearest neighbor
distance first increases(decreases) and the increment(decre-
ment) continues until it reaches a maximum(minimum) dis-
tance. The interesting feature is, that with further addition of
salt, the distance is observed to decrease(increase). The the-
oretical interpretation of this curious behavior within the the-
oretical framework in the first category was generally unsat-
isfactory. In this work, we propose a different means to study
the phase separation. As we will see below, the theory is
strategically elegant since it can be applied to charged col-
loidal dispersions induced atany salt concentration. More
importantly, the calculation appeals to the free energy func-
tion only, which can be handled more straightforwardly than
calculating the free energy function differentiation to obtain
the pressure and chemical potential. Furthermore, the theory
yields the domains of homogeneoussingle phaseandphases
in coexistencein addition to demarcating the phase bound-
aries of coexisting phases. Since colloidal experiments start
with a given initial number densityr0 of colloids wherer0
=6h0/ sps3d ,h0 ands being the volume fraction and particle
diameter, respectively, monitoring its behavior by changing
the control parameterr0

ssd or temperature, the present ap-
proach mimics closely the experimental condition.

II. THEORY

In this section, the general theory for calculating the do-
mains of phase separation is first presented. Then we give
essential equations needed in the numerical work. Since de-
tailed expressions have been well documented in the litera-
ture, we shall be brief in our description of the latter.

A. Helmholtz free energy: General

Consider a homogeneous charged colloidal system of total
volume V in which are containedN0 charged colloids and
N0

ssd small ions (counterions and coions); the total number
densities of colloids and small ions arer0=N0/V and r0

ssd

=N0
ssd /V, respectively. Suppose under favorable conditions

the colloidal system phase-separates into two coexisting sub-
systems. Let us assume thatVi , i =1, 2, are the volumes of
the subsystems and that insideVi are containedNi colloids
plus Ni

ssd small ions; the corresponding number densities are
ri =Ni /Vi and ri

ssd=Ni
ssd /Vi, respectively. Note that the sub-

scripts i =1 and 2 refer to phase-separated subsystems in
which are contained colloids of thesamespecies. We label
by xi =Vi /V the volume fraction of theith subsystem and
assume, in undergoing phase separation, that the system
“composite” free energy density reads

fmsr1,r1
ssd;r2,r2

ssdd = x1f1sr1,r1
ssdd + x2f2sr2,r2

ssdd, s1d

where f i is the ith subsystem free energy density which can
be a function describing a solid, liquid, or gas depending on
the thermodynamic equilibrium conditions. Now, if the com-
bined effects of the electrostatic interaction and thermal equi-
librium factor were to induce phase separation in the colloi-
dal dispersion, in that case the homogeneous system
decomposes intof1sr1,r1

ssdd and f2sr2,r2
ssdd, and fm given by

Eq. (1) must have a lower free energy density thanf1 and f2
separately evaluated at the homogeneous number densitiesr0

and r0
ssd. Since x1+x2=1, N1+N2=N0, and N1

ssd+N2
ssd=N0

ssd,
the subsystemsxi can be written as eitherx1=sr0−r2d / sr1

−r2d andx2=−sr0−r1d / sr1−r2d, or by the charge neutrality
constraint, x1=sr0

ssd−r2
ssdd / sr1

ssd−r2
ssdd and x2=−sr0

ssd

−r1
ssdd / sr1

ssd−r2
ssdd. In order thatfm achieves the lowest free

energy, we require

S ] fm

] r1
D

r2,r1
ssd,r2

ssd
= 0, s2d

S ] fm

] r2
D

r1,r1
ssd,r2

ssd
= 0, s3d

S ] fm

] r1
ssdD

r1,r2,r2
ssd

= 0, s4d

S ] fm

] r2
ssdD

r1,r2,r1
ssd

= 0, s5d

subject to the conditions of the conservation of volume and
number of particles. Equations(1)–(5) in conjunction with
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x1+x2=1, x1r1+x2r2=r0, and x1r1
ssd+x2r2

ssd=r0
ssd can be

shown by the method of Lagrangian multipliers[13] to lead
to

m1sr1d = m2sr2d, s6d

m1sr1
ssdd = m2sr2

ssdd, s7d

p1sr1,r1
ssdd = p2sr2,r2

ssdd, s8d

which are three familiar conditions for the chemical potential
mi and pressurepi satisfied by two subsystems in coexistence
[5]. Equations(6)–(8) are the necessary and sufficient condi-
tions customarily used in the literature for determining the
phase boundaries of two coexisting phases for a charge-
stabilized colloidal dispersion at very low ionic strength. In
the event that appreciable amounts of electrolyte are present
in the system,fmsr1,r1

ssd ;r2,r2
ssdd< fmsr1,r0

ssd ;r2,r0
ssdd, only

Eqs. (2) and (3) [and hence Eqs.(6) and (8) in which r1
ssd

=r2
ssd=r0

ssd] remain and we are led to the thermodynamic
equilibrium conditions of constant chemical potential and
pressure for colloids[4]. Thus, for a system of charged col-
loids with the addition of salts, one can crosshatch thedo-
mains (as well as the phase boundaries) of two coexisting
phases by minimizingfm defined by Eq.(1) only. Givenr0

andr0
ssd which are initial conditions for all experiments, Eqs.

(1)–(5) can be used to extractsr1,r1
ssd ;r2,r2

ssdd and hence the
phase diagramrssd−r. It is clear thus that in order to apply
Eq. (1) the liquid and solidf i under differentr0

ssd environ-
ment are required. We turn next to a brief documentation of
these functions.

B. Helmholtz free energy:r0
„s…œ1 mM

To study the phase transition of a charge-stabilized colloi-
dal suspension forr0

ssd that falls in this range, we apply a full
second-order perturbation equation to calculate the Helm-
holtz free energy densityf i , i =fluid or solid. According to
our recent work[4], f i can be written as

bf i = bfHSshd + 12h0
2E

S

`

dx x2fbvasxdggHSsx/S;hd − s6h0
2/bd

3S ] r

] pHSshdDES

`

dx x2fbvasxdg2gHSsx/S;hd, s9d

wherebfHS is the free energy density of hard spheres;S is
the Barker-Henderson diameter;vasxd is an attractive pertur-
bation defined according to the Week-Chandler-Andersen
method;gHSsx/S;hd is the hard-sphere pair correlation func-
tion calculated at the effectiveh ; s1/bds]r /]pHSd=f1/sZHS

+h]ZHS/]hdg is the macroscopic compressibility in which
ZHS is the hard-sphere equation of state which reads differ-
ently for a liquid and a solid. All these quantities are well
documented in Ref.[4] to which the interested readers are
referred for further details.

C. Helmholtz free energy:r0
„s…›1 mM

For a charge-stabilized colloidal suspension at very low
ionic strength, the Helmholtz free energy density can be
shown to read[5,9,10]

f i = fst-GB+ fvol, s10d

where fst-GB= f sidd+ fGB
ex in which f sidd and fGB

ex are, respec-
tively, the ideal gas part and the excess interacting part of the
free energy densities of colloids. Note that Eq.(10) was de-
rived [9,10] by reducing first of all a total potential of two
components(colloids plus small ions) to an effective one
component within the Born-Oppenheimer approximation.
The effective one-component total potential comprises two
contributions. One contribution is thestructure-dependentin-
teracting potential which is used infGB

ex and the other is the
state-dependent fvol in Eq. (10) which is the Helmholtz free
energy of an inhomogeneous fluid of small ions calculated
by treating the macroions as an external field at a given con-
figuration. We have employed the widely used Gibbs Bogo-
liubov inequality[14] to calculatefGB

ex . In doing so, the dis-
tribution function of the reference system is used to carry out
the thermal average. For the reference system chosen in the
variational calculation, we use the hard-sphere[14] and the
Einstein crystalline[15] models to account for the liquid and
solid phases, respectively. Also, density functional theory
[16] has been applied to derivefvol. This so-called volume-
term contribution is given by[5]

fvol = f+,−
m + fex-v + felecst. s11d

In Eq. (11), f+,−
m is the ideal gas free energy contribution

coming from the small ions(counterions, positive and nega-
tive ions); fex-v is the contribution due to the excluded vol-
ume interactions of small ions within the finite-size colloids
that occupy the “hard-sphere” volumes, andfelecst is the
negative energy terms arising from the electrostatic interac-
tions between each structure-independent macroion and its
surrounding clouds of small ions. Explicit expressions for all
of these quantities are given in Ref.[5] to which the inter-
ested readers are referred.

III. NUMERICAL RESULTS AND DISCUSSION

To illustrate the distinctiveness of the theory, we first
study the simplest two phases in coexistence. The system
considered is an aqueous dispersion of monodisperse
charged colloids. The size and surface potential of each col-
loid are 300 nm and 25 mV, respectively. For a concentrated
charged colloidal dispersion driven by salts at moderate to
high electrolyte concentrationss.1 mMd, the colloid-colloid
electrostatic repulsion is considerably weakened. In contrast,
the colloid-colloid van der Waals attraction comes into play
and its strength is governed by the Hamaker constantA
which we fix at 8.3310−20 J/K. Appealing to Eq.(9) for the
liquid and solid free energy density functions, we optimize
Eq. (1) for two selected colloidal densitiesr0 or volume
fractionsh0=ps3r0/6, namely,h0=0.45 and 0.25, and vary
r0

ssd in the range 10−4M ,r0
ssd,10−1M (or the reduced pa-

rameter 29,k=kDsø45 wherekD is the Debye screening
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constant[4]). The calculated phase boundaries for the liquid-
liquid and liquid-crystal(fcc) transitions are shown in Fig. 2.
We should emphasize that, in optimizingfm, we search and
compare at each initialsr0

ssd ,r0d all possible phases: three
single-phase (vapor, liquid, solid) and nine two-phase
(vapor-vapor, vapor-liquid, vapor-solid, liquid-liquid, etc.)
systems; the lowestfm among these single and two coexist-
ing phases is the one sought for. In Fig. 2 we compare the
phase diagram which contains the liquid-liquid-solid triple
points (open circles) with that calculated in our recent work
(Fig. 1 of Ref.[4]) by solving Eqs.(6) and(8); the excellent
agreement between the two results lends great credence to
our recent work on one hand, but on the other hand, the fact
that the same phase boundaries were reproduced demon-
strates further the robust efficiency of the present theory to
be strategically superior. Also, we depict in Fig. 3 the volume
proportionxi of each of the separated phases. We find that,
for two phases to coexist,xi andxj have to change oppositely
asr0

ssd increases at a givenh0. Let us scrutinize two cases in
detail. Consider the first caseh0=0.45 given in Fig. 3(a). The
solid phasex3 (vapor phasex1) decreases(increases) all the
way from high k till the proximity of ktr=37.4, and for
k,ktr (refer also to Fig. 2), the vapor to low density liquid
x1 (L18 branch) is replaced by theL2 branch, being a higher
density liquid characterized by the volume proportionx2.
This x2 increases at the expense of the solid phasex3 (S2
branch). The situation for the second caseh0=0.25 [Fig.
3(b)] is opposite. Here, the solid phasex3 (vapor phasex1)
first increases(decreases) slightly with decreasingk, and
these changes ofxi extend up to a common maximized
(minimized) value atk<39. Thenx3 sx1d begins decreasing
(increasing) till the proximity of the triple pointktr=37.4,
and for k,ktr, continues with the liquid-liquid phases in
coexistence. Physically, the latter corresponds to a high den-
sity liquid x2 (L28 branch) substituting the solid phasex3 (S28
branch) and thisL28 coexists with the low density liquidx1

(L1 branch) which is the continuation of the original vapor
phase(L18 branch). These two cases delineate straightfor-
wardly the fractional volume scenario which is less direct in
the approach of match-solving Eqs.(6) and (8).

We turn next to another example. Figures 4(a)–4(d) show
an anomaly in the phase diagrams of a suspension of mono-
disperse colloids induced by an extremely low concentration
of electrolyte. Each colloid is ideally modeled to have a di-
ameters=625 nm. The dispersions are limited to low mac-
roion concentrationssh0,0.1d and they are maintained at
room temperature. Equation(10) has been used for calculat-
ing the liquid and solidf i. We should emphasize a specific
aspect of our numerical calculations. In the present case of
very low salt concentrations, the determination of domains
(single phase as well two phases in coexistence) by optimiz-
ing f i is a straightforward procedure and numerically more
stable than match-solving Eqs.(6)–(8) [17]. Let us examine
Fig. 4(a). Each colloid carries a chargeZ=3500e. Given the
initial volume fractions in the range 0.005&h0,0.082, we
find the system undergoing an unambiguous phase separation
in two stages as the initial salt concentrationr0

ssd is added.
When r0

ssd is increased, the first stage exhibits a biphasic
equilibrium between a vapor and a crystal(fcc) with the
vapor phaserv

ssd spanning 0.75,rv
ssd&5.5 mM, but on in-

creasing r0
ssd further, the second stage makes an abrupt

change to the liquid-crystal coexisting phases with the liquid
phaserl

ssd assuming 5.5,rl
ssd,6 mM. WhenZ is reduced to

2700e, one can see from Fig. 4(b) that there is a drastic
shrinkage of the vapor-crystal domain withrv

ssd now re-
stricted to values 0.6,rv

ssd&2.8 mM. Away from the vapor-
crystal domain, the system shifts over to the liquid-crystal

FIG. 2. Phase diagram for reduced ionic concentrationk vs
packing ratioh for a charged colloidal dispersion at room tempera-
ture.L1,L18 ,L2,L28 ,S28, andS2 are branches to be referred to in Fig.
3 (see text). Solid circles are results obtained as described in Ref.
[4] compared with the present theory(full, dashed, and dot-dashed
lines). The crosses on the two vertical full curves are initial densi-
ties of electrolytes and colloids(see text) and open circles are the
liquid-liquid-solid triple points.

FIG. 3. Phase diagram for reduced ionic concentrationk vs
volume proportionxi [i =1, vapor;i =2, liquid; i =3, (fcc) solid] for
a charged colloidal dispersion at room temperature.
L1,L18 ,L2,L28 ,S2, andS28 are branches defined in Fig. 2. The label
xi :Lj or xi :Sk means the volume proportion of phasei along the
branchLj or Sk. Open circles are the liquid-liquid-solid triple points
defined in Fig. 2.
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domain with the coexisting phases(solid triangles) confining
to a limited region. These coexisting liquid and solid phases
prolong thereon withrl

ssd reducing somewhat in magnitude
s2.4,rl

ssd&4.5 mMd. Less amount ofr0
ssd is needed for a

vapor or a liquid to coexist with a crystal when the colloidal
charge is smaller. AtZ=2515e, the domain of the vapor-
crystal coexisting phases(solid triangles) narrows still more
as does the area between the liquid and crystal branches
above the dashed line in Fig. 4(c). Thus, depending on the
initial r0

ssd andh0, the colloidal dispersion in this case phase
separates into the coexisting phases of either a vapor and a
crystal withrv

ssd=0.6–1.77mM or a liquid and a crystal with
rl

ssd=1.6–2.82mM. At this value Z, the delimiting area of
the vapor-crystal coexisting phases has been reduced sub-
stantially. Beyond a threshold valueZth (lying somewhere in
the range 2100e,Zth,2515e), keeping all other colloidal
parameters unchanged, it is observed in Fig. 4(d) that the
vapor-crystal transition disappears, and the phase transition
is characterized wholly by the liquid-crystal transition. No-

tice thatrl
ssd has by now been reduced to values much less

than those atZ=3500e.
This anomalous “transition” of the phase diagrams

sr0
ssd ,h0d raises three immediate questions. Why is it that on

decreasing the chargeZ=3500e to a lower Z the vapor-
crystal and liquid-crystal branches are restricted to narrower
coexisting domains? What happens to those regions previ-
ously showing vapor-crystal and liquid-crystal phase separa-
tions? Since the vapor-crystal biphasic equilibrium vanishes
at Z=2100e, would it be possible that other kinds of phase
separations creep in because they are thermodynamically
more favorable than the vapor-crystal and liquid-crystal tran-
sitions? We believe that the latter is a reasonable conjecture
for the transition from the vapor-crystal to the liquid-crystal
domain proceeds in an abrupt juxtaposition, and as shown in
Figs. 4(b) and 4(c), the correspondingrv

ssd or rl
ssd has consid-

erably diminished also. To delve deeper into these curious
changes in phase diagrams, we appeal tofm, studying the
phase diagramssr0

ssd ,h0d in quantitative detail. Figures

FIG. 4. (Color) Phase diagrams for electrolyte concentrationrssd vs colloidal packing fractionh. The left column(a)–(d) shows the
boundaries of the vapor to low density liquid(open circles) coexisting with the(fcc) solid (solid circles). Solid triangles in(b) and (c) are
coexisting phases and solid circles in(e)–(h) are either one phase or two coexisting phases. Notations for solid circles in the right column
(e)–(h) are cyan, liquid; black, liquid-solid; blue, solid; green, liquid-liquid; orange, solid-solid; red, solid-liquid.
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4(e)–4(h) summarize the equilibrium stable phases(homoge-
neous and coexisting) of charged colloidal dispersions ob-
tained by optimizingfm. The first striking feature we notice
is indeed the emergence of several kinds of stable coexisting
phases. In Fig. 4(f), for instance,fm predicts the coexistence
of a stable liquid-liquid domain within the region bounded
by 0.006,h0&0.023 and 2.6mM &r0

ssd&3.0 mM (green
solid circles), whereas for 0.023&h0&0.03 and 2.0mM
&r0

ssd,2.9 mM, the stable biphasic equilibrium is between
the (low density) crystal and the(high density) liquid as well
as between the(low density) crystal and the(high density)
crystal. As Z is reduced to 2515e, we obtain the growing
predominance of the liquid-liquid and crystal-liquid biphasic
domains. As shown in Fig. 4(g), these domains enlarge at the
expense of the vapor-crystal and liquid-crystal domains. In
particular, there is a tendency for the crystal-crystal and
crystal-liquid coexisting phases to protrude downward, erod-
ing the vapor-crystal domain in the region of low salt con-
centrationsr0

ssd. Perhaps more interesting is the scenario
showing the seed of formation of the stable liquid-liquid
phases near the low concentration region spanning between
0.004&h0&0.007 and 0.4mM &r0

ssd&0.6 mM. Within the
phase boundaries, the seeding of the coexisting liquid-liquid
phases is seen to develop, and asZ decreases further, em-
braces the stable liquid-liquid domain on top[the shaded
green in Fig. 4(g)]. Eventually, a stable loop boundary of the
liquid-liquid domain appears atZ=2100e [Fig. 4(h)]. Note
that there exists also a very small region of crystal-liquid
coexisting phases. Consequently, the vapor-crystal biphasic
domain at Z=3500e has been greatly substituted atZ
=2100e by the homogeneous liquid, partly by the liquid-
liquid, and non-negligibly by the crystal-liquid domain.

IV. CONCLUSION

Experimentally, the present method is appealing forfm
yields naturally the volume proportions pertaining to the co-
existing subsystems that are ubiquitously observed[18] and
have actually been measured[19] for charged colloidal sys-
tems. Theoretically, the present approach is sound for mini-
mizing the Helmholtz free energy function is generally more
efficient and numerically more stable than working with the
pressure and chemical potential. This is especially so for
charged colloids driven at very low ionic strength where the
numerical root-finding procedure for solving Eqs.(6)–(8) is a

delicate matter. Most importantly, the theory does notper se
assume any phase coexisting with any other phase; the opti-
mized fm will tell the story, yielding either one homogenous
phase or two phases in coexistence. In principle, the idea put
forth here can be generalized to crosshatch the domains of
coexisting multiphases which are rather tedious to determine
numerically with an approach like solving Eqs.(6)–(8). We
should perhaps note at this point that a quite similar line of
thought has independently been advanced by Bodnár and
Oosterbaan[19] and Renthet al. [20] in their studies of
colloid-polymer mixtures.

To summarize, the calculated results given here reproduce
many characteristics often obtained in the literature by
match-solving Eqs.(6) and (8) for r0

ssd*1 mM (e.g., Ref.
[4]) or Eqs. (6)–(8) for r0

ssd&1 mM (e.g., Ref. [5]). The
present theory is certainly far more general strategically and,
within the context of phase diagram study, has many attrac-
tive features. The theory yields naturally thedomainsof
single phaseas well as thecoexisting phasestogether with
their corresponding physical volume proportions. It can be
generalized, in principle, to study the complex multiphases
in coexistence such as the triphasic equilibrium of a
polymer-colloid mixture reported experimentally[21]. Fur-
thermore, our numerical results reveal clearly the role of an
electrolyte in a charged colloidal suspension and exemplify
its sensitivity to the electrostatic interactions between col-
loids. As demonstrated above for the two salt regimes, the
present theory may serve as the paradigm for a variety of
phase equilibrium phenomena in charged colloidal disper-
sions driven by electrolytes from the very low concentration
regimes&1 mMd, like those communicated recently by Roij
et al. [5] and Warren[6] in phase diagram studies and Mat-
suokaet al. [11] in their observation of an anomalous struc-
tural transition, to electrolytes at moderate and high concen-
trationss*1 mMd, as those reported by Sirotaet al. [22] and
us[4,23] in calculations of phase diagrams. Since the present
approach starts withsr0

ssd ,r0d resembling closely the experi-
mental condition, the idea put forth may be of great interest
to experimentalists working in colloidal systems.
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