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Sedimentation and multiphase equilibria in suspensions of colloidal hard rods
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Sedimentation and multiphase equilibria in a suspension of hard colloidal rods are explored by analyzing the
(macroscopigosmotic equilibrium conditions. We observe that gravity enables the system to explore a whole
range of phases varying from the most dilute phase to the densest phase, i.e., from the idoirupite
nematic(N), to the smectigSm), to the crystalK) phase. We determine the phase diagrams for hard sphero-
cylinders with a length-to-diameter ratio of 5 for a semi-infinite system and a system with fixed container
height using a bulk equation of state obtained from simulations. Our results show that gravity leads to multi-
phase coexistence for the semi-infinite system, as we obsgr¥dl, | +N+Sm, orl +N+Sm+K coexistence,
while the finite system showk N, Sm, K, I+N, N+Sm, Sm+, | +N+Sm,N+Sm+K, and [ +N+Sm+K
phase coexistence. In addition, we compare our theoretical predictions for the phase behavior and the density
profiles with Monte Carlo simulations for the semi-infinite system and we find good agreement with our
theoretical predictions.
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[. INTRODUCTION rods. The bulk phase behavior of hard-rod fluids has been
studied thoroughly in many theoretical and simulation stud-
Gravity is often non-negligible in colloidal suspensions, ies [16—19. Suspensions of colloidal rods show lyotropic
as the gravitational energy becomes comparable to the theliquid crystalline behavior and form isotropic, nematic,
mal energy for colloid sizes of about a micrometer. Hence, &mectic, and crystal phases upon increasing the concentra-
spatial inhomogeneous suspension is obtained due to thgn. Despite the fact that gravity is often non-negligible for
gravitational field, which is characterized by a density profilecolloidal rods, there are only a few theoretical studies that
p(2) that varies with altitude. The parameter that is associ- include its effect on the phase behavid®] and on the struc-
ated with a gravitational field is the so-called gravitationalture of the fluid[20]. In this paper we determine the phase
length and read€=(Smg~* wherem is the effective or diagram and density profiles from macroscopic equilibrium
buoyancy mass of the colloidal particl8=(ksT)™! the in-  conditions using the bulk equation of state of hard sphero-
verse temperature witkg Boltzmann’'s constant, and the  cylinders with a length-to-diameter ratio/D=5 obtained
gravitational acceleration. Typically, is of the order of mi- from Monte Carlo simulation§21]. We consider two situa-
crometers to millimeters for colloidal particles. The densitytions: (1) a semi-infinite system that extends to infinity in the
profile p(z) follows from a competition between minimal en- vertical z direction and(2) a finite system. References
ergy (all colloids at the bottomand maximum entropya  [19,20 were both focused on the finite system, while disre-
homogeneous distribution in the available volymia the  garding the situation of a semi-infinite system. Surprisingly,
case of a very dilute colloid concentration or at high altitude the phase behavior depends drastically on the boundary con-
where the suspension becomes sufficiently dilute, the systenlitions of the system. Finally, we compare our results de-
behaves like an ideal gas and the system obeys the Boltrived from macroscopic equilibrium conditions directly with
mann distribution, yielding an exponential density profile Monte Carlo simulations for the semi-infinite system. More-
with a decay length given by. In 1910, Jean Perrin mea- over, we examine the accuracy of the osmotic equation of
sured such a density profile under the microscope which erstate derived from an inversion of the sedimentation profiles
abled him to determine Boltzmann's constant and hencef hard spherocylinders.
Avogadro’s numbef1]. However, when the interactions be-  The paper is organized as follows. In Sec. Il we describe
come important, the density profile becomes highly nonexthe model and the macroscopic description of sedimentation
ponential. Density profiles have been calculated for susperequilibria. In Sec. Ill, we determine phase diagrams for the
sions of hard and charged colloidal spheres using densitfinite and semi-infinite systems. We present Monte Carlo
functional theory[2], and are measured by light scattering simulation results in Sec. IV and we end with some conclud-
techniqueq3]. The measured concentration profiles can beng remarks in Sec. V.
inverted to obtain the osmotic equation of sti2e4]. Non-

trivial sedimentation profiles have been predicted recently, \1ncroscoPIC DESCRIPTION OF SEDIMENTATION

for charged colloids[5—-9] (and measured experimentally EQUILIBRIUM
[10]), colloid-polymer mixtures[11-14, and binary hard-
sphere mixture$15]. We consider a system of hard spherocylinders with a

In this paper we consider suspensions of hard rods, whictength-to-diameter ratio df/D suspended in a solvent. The
serve as a simple model for colloidal rodlike particles, likesuspending solvent is regarded as an incompressible struc-
the tobacco mosaic virus, fd virus, and boehmite or silicatureless continuum, characterized by its mass defsifihe
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effective or buoyancy mass of a spherocylinder is, according 081

to Archimedes’ principle, > 0 o \&
m=my—pv, (1) |

where my is the bare mass of the rod and=m(LD?/4

+D?3/6) the volume of the rod. In a gravitational field ori- 3 051 0 o o o

ented along the direction of the vessel, the rods are sub-
jected to the external potential

$(2) =mgz (2 0O 00 0O OO0 O
wherez is the vertical coordinate, anglis the gravitational 02
acceleration. “05 3.0 55
When the density does not vary rapidly with the height of n P
the sample, which is usually the case if the particles are not s

too large and heavy, the macroscopic description of the sys- FIG. 1. Phase diagram for hard spherocylindeiloidal rods

tem is applicable and the equilibrium condition reg2g] with L/D=5 in a gravitational field for a semi-infinite system. We

dP(2) plot the gravitational length of the rod3/¢ versus the number of
—— =-mg(2), (3) rods per unit surface.D% The symbols denote the state points
dz employed in our simulations of spherocylindetsdenotes the iso-
whereP is the osmotic pressure. tropic phase,A the isotropic-nematidl +N) coexistence[] the

Equation(3) allows us to determine the equation of state!SOtropic-nematic—smectiél+N+Sm) coexistence, ando the
of the system from a single measurement of the concentrdSClroPic-nematic-smecti-crystal(l+N+Sm+K) coexistence.
tion profile, which is convenient in experimental or simula-
tion studies[2,4]. The pressure at arbitrary heightcan be tions of hard spherocylinders with a length-to-diameter ratio

obtained using L/D=5[21]. We determine the phase diagrams for two situ-
i ations:(1) a semi-infinite system, an@) a finite system. We
— _p-1 I show that the phase behavior depends sensitively on the
pP2)= pRO) ~ ¢ fo dzp(z) @ boundary conditions of the system. Below, we discuss the

two situations in more detail.
where 8=(kgT) ™t and €=(Bmg 2. If the concentration pro-

file p(2) is measured, elimination afbetweenp(z) andP(z) S

leads directly to the osmotic equation of std&é) of the A. Sem-infinite system

colloidal suspension. We first consider the case of a semi-infinite system ex-
On the other hand, if the temperature is assumed to bgending fromz=0 to «. We confineN rods in an open rect-

constant throughout the sample, the pressure depends ordygular vessel with a horizontal cross section of areg

on the local density and E@3) can be rewritten as a non- The bottom of the system is located z£0 and vertical

linear differential equation fop(z), confinement is determined by the gravitational force exerted
on the particles. We determine the phase behavior using the
dp(2) —_ x(p)p(2) (5)  Values for the pressure at phase coexistence determined by
dz € ’ previous simulations in Ref21]. Direct integration of Eq.

- (3) using the boundary conditiofi;dzp(z)=N/S=n,, i.e.,
keeping the number of particles per unit surface fixed, and
employingP(z=«)=0, yields a simple relation for the pres-
ure atz=0, i.e., at the bottom of the sample,

whereXT:(a,BP/ap)}l is the reduced osmotic compressibi
ity of the bulk fluid at densityp. If the osmotic equation of
stateP(p) is known explicitly, the density profile at various
values for the gravitational length can be obtained from qus

5). P(z=0) = mgn.. (6)

Equating the pressure at phase coexistence with the pressure
at the bottom of our sample, given by ), we can deter-
mine easily the phase boundaries of our system, i.e., which
We determine phase diagrams for colloidal rods in aphase appears at the bottom of our system followed by the
gravitational field using the macroscopic conditions for sedi-more dilute phases at higher altitudes. In Fig. 1, three phase
mentation equilibrium. We model the colloidal rods as hardboundaries denoted by the solid lines are shown in the phase
spherocylinders, for which the bulk phase diagram is welldiagram for a semi-infinite system. At low gravity, i.e., low
explored[18,21]. The phase diagram shows an isotropic fluidvalues ofD/¢, and lowngD?, we observe an isotropic phase
phase(l), nematic(N) and smecticA (Sm) phases, and a throughout the whole system. This regime is denoted iny
crystalline phas¢K). In order to determine the phase behav-our phase diagram. At higher gravity iy, P(z=0) becomes
ior for colloidal rods in a gravitational field, we employ fits larger thanP, i.e., the pressure &N coexistence, and we
to the equation of states obtained from Monte Carlo simulaebserve a nematic phase at the bottom of our sample. At

Ill. PHASE DIAGRAMS FOR COLLOIDAL RODS
IN A GRAVITATIONAL FIELD
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204 of isotropic, nematic, and smectic phases. At rod densities

[+N+Sm+K pD3~0.125, a pure smectic phase can be transformed in a
three-phase(N+Sm+K) coexistence by increasing the
sample height. On the other hand, at sample heighté
N+Sm+K ~ 3, a singlel phase can be transformed upon increasing the
rod density to a two-phasé +N) coexistence, a singl&l
phase N+Sm coexistence, a single Sm phase, $hcoex-
istence, to a single crystal phase. At sample heidhté
Sm+K ~10 the sequence id, I+N,[+N+Sm N+SmN+Sm
+K,Sm+K, K, upon increasing the rod density. Four-phase
/ K coexistence is observed at rod densitig®3~0.115 at
0.07 0.09 0.11 0.13 0.15 sample heights more than about 11 gravitational lengths. It is
worth noting that there are striking differences with the semi-
infinite system. When phase coexistence is observed in the

FIG. 2. Phase diagram for hard spherocylindedloidal rodg s_emi-infinite SYStem- the mqst dilu_te phase at_ sgfficiently
with L/D=5 in a gravitational field for a closed vessel. We plot the high altitudes is always the isotropic phase. This is not the

reduced sample heigli/¢ with ¢ the gravitational length of the ~Case in the finite system, yielding many more possibilities for
rods versus the dimensionless rod denpb?. multiphase coexistence and resulting in a much more com-

plicated phase diagram as shown in Fig. 2 compared to the
gemi-infinite system in Fig. 1.

I+N+Sm

higher altitudes, we still observe an isotropic phase as th
system becomes more and more dilute at highétence, we

observe two phases simultaneously in our sample with the IV. SIMULATIONS
denser phaséN) at the bottom and the isotropic phase at the ) )
top. WhenP(z=0) becomes larger than the pressBfes, at In this section, we present a Monte Carlo study of a sys-

Higm of hard spherocylinders with a length-to-diameter ratio

smectic phase at the bottom of the container followed by thé‘lD:S in a gravitational field. Each spherocylinder consists

nematic and the isotropic phases at higher altitudes. Fo(?fr‘;‘1 qyli?drical pfa(rjt_ with Siamte;tel?l anéj aTlﬁngghlIkwiLh
P(z=0) > P, four-phase coexistence is predicted with theSPherical caps of diametd at both ends. The bulk phase

crystal phase at=0. The pressure at Sii-coexistence is diagram of hard spherocylinders is well explofé&,21 and

denoted byPg, k. It is worth mentioning that the phase dia- ShOWS. a rich phase behavior including isotropic, ngmatic,
gram shows one-, two-, three-, and four-phase coexisten smecticA, and crystaliine phases. In Ref23-29, the in-

regions and that the isotropic phase is always present in §rfacial behavior of a hard-rod fluid is investigated using
semi-infinite system at sufficiently high altitudes. ensity functional theory and computer simulations. The au-

thors find complete wetting of the nematic phase at the wall—
isotropic fluid interface and a uniaxial to biaxial surface tran-
sition well below the bulK-N transition. Moreover, when the

In the previous subsection we considered the situation ofiard-rod fluid is confined by two walls, a significant shift of
a suspension in an open vessel unlimited in zldirection,  the I-N transition is found to lower densities compared to
which becomes infinitely dilute in the limit af —o°, i.e., no  bulk. In this section, we study the effect of a gravitational
gravity. In this section, we consider a suspensioNafol-  field on the phase behavior of hard rods using computer
loidal rods confined in all directions to a volumé& The  simulations. We compare our theoretical predictions based
bottom of the system is again located &0, while the on the macroscopic equilibrium conditions on the phase dia-
height of the vessel is fixed. In the absence of gravity, the gram with simulation results. We study a system with a fixed
suspension is homogeneously distributed with a uniforrmumber of hard spherocylindelsin a semi-infinite box with
densityN/V. Employing Eq.(5) using the boundary condi- lateral dimensiond., and L, applying periodic boundary
tion ['dzp(2)/H=N/V yields the density at the bottop{z  conditions in thex andy directions. Thez dimension of the
=0) and at the top(z=H) of the sample from which we can box is infinite. While az=0 a planar hard wall is located, the
determine the phase diagram. Figure 2 shows the phase ditpds are free to move upward. The confinement of the system
gram in the reduced sample heighf {—dimensionless rod is implemented by a gravitational field along thelirection.
density pD? representation. On the horizontal axis we find Each rod is subjected to the external potentigk)=mgz
bulk coexistence densities of the isotropic-nematic, nematicwith m the buoyancy mass, the acceleration of gravity, and
smectic, and smectic-crystal transitions for zero gravity, i.e.z the height of the center of mass of the rod. The number of
H/€=0. At sample heights of about three times the gravitaparticles and the dimensions of the box are varied in the
tional length, we observe an extremely rich phase behaviosimulations to adjust the pressure at the bottom of the sys-
For instance, at rod densitig®>~ 0.1, we find a pure nem- tem. The starting configuration is prepared as follows. A
atic phase at low sample heights, which is sandwiched by alose-packed face-centered-culicc) lattice of spheres of
more dilute phas¢l) at the top and a denser pha&m) at  diameterD with its (001) plane in thexy plane was stretched
the bottom, as soon as the sample height exca&#té in the x direction by a factor oL/D+1 in order to accom-
=3.55. The resulting sample exhibits three-phase coexisteneaodate the close-packed crystal of spherocylinders. This lat-

N-Sm coexistence, we find three-phase coexistence with t

B. Finite system
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FIG. 3. Density profilepD? versusz/D for a semi-infinite sys- FIG. 4. Density profilespD® versusz/D for a semi-infinite

tem with inverse gravitational lengtb/¢=0.30, and for varying system with inverse gravitational lengtB/¢=0.75, and for
number of particles per unit surfaceD?=0.756,2.268,4.348rom varying number of particles per unit surfaceD? of
bottom to top. The thin lines are the coarse-grained density profiles0.567,1.323,1.701,2.457,3.51,4.8om bottom to top. The thin
from computer simulations, while the thick lines are those obtainedines are the coarse-grained density profiles from computer simula-
from Eq. (5) using the equation of state of R¢21]. tions, while the thick lines are those obtained from &j.using the
equation of state of Refl21]. The inset shows the raw density
tice was subsequently expanded in rendy directions. For ~ Profile from simulations fonsD?=4.34.
inhomogeneous phases, such as the smectic and crystal
phases, it is often essential that the simulation box cagomparison, we also plot the density profiles obtained from
change its siz¢and maybe its shapein order to accommo- Eqg. (5) and employing the equation of state from Rfl].
date the changes in the phase structures without creating highte find good agreement of the simulation results with the
stresses in the sample. However, as the concentration varigfzeoretical predictions based on the macroscopic osmotic
with height in a gravitational field, it is impossible to avoid equilibrium conditions. We, therefore, believe that also the
stresses at each height We have chosen the area of the theoretical predictions on the phase behavior are reliable.
sample such that the phase at the bottom is well accommdrhe density fluctuations due to the ordering of the rods in-
dated or is commensurate with the dimensions of the crosguced by the wall or due to the ordering in the smectic and
section of the container. We check for equilibrium by moni-crystal phase is, of course, missing in the density profiles
toring the height of the center of mass of the system. Whembtained from the macroscopic osmotic equilibrium condi-
equilibrium is reached we perform samplingatl.5x 10°  tions. We wish to mention that the phase at the bottom of the
Monte Carlo cyclegone cycle is one attempted move per container, and hence the phase diagram can be determined by
particle), the profiles are sampled in bins of width D.IThe  comparing the theoretical or simulation contact densities at
sampled quantities are the density profile and the profiles af=0.5D with the bulk coexisting densities. The coexisting
the eigenvalues of the standarck 3 nematic order param- densities are determined by McGrothetral. using computer

eter tensor defined 426] simulations[21]. The reduced densities are laN coexist-
o encepD3=0.0914l) and pD3=0.0932N), at N-Sm coexist-
1/ < 3u U= dug ence pD®=0.1061N) and pD3=0.1094Sm), and at SK

Qus(z)=—{ 2 (7

coexistencepD®=0.1319Sm) and pD3=0.138@K) [21]. For
, the two lowest density profiles in Figs. 3 and 4, we find that
whereu!, is thea component of the unit orientation vector of the contact density is lower than the coexisting density of the
particlei with =X, y, z, andn; is the number of particles nematic phase &N coexistence; hence, the whole sample is
present in binj. The Kronecker delta i$,z. Diagonalizing in the isotropic phase in agreement with the theoretical phase
this tensor gives three orientational ordering eigenvaluesliagram in Fig. 1. The contact densities faD?=4.348 in
N+, Ao, andX_ for each bin. Fig. 3 andn,D?=1.701 in Fig. 4 are higher than the coexist-
We perform simulations of spherocylinders witiD=5  ing density of the nematic phase BN coexistence, but
at three values of the inverse gravitational lenBtht=0.3,  lower than that aN-Sm coexistence, and we find two-phase
0.5, and 0.75, and for varying number of particles per unitcoexistence of the isotropic phase and the nematic phase. We
surfacen,D?. The explicit values fobD/¢ andn,D? which are ~ find that the contact density fan,D?=2.457 in Fig. 4 is
employed in the simulations are displayed by the dots in Fighigher than the coexisting density of the smectic phase at
1. We display coarse-grained density profiles Bof¢ =0.30  N-Sm coexistence, but lower than that at ncoexistence.
and 0.75 for varying values @,D? in Figs. 3 and 4. Similar  For this state point, we observe three-phase coexistence of
results were obtained fd» /¢ =0.50. We show plots for only smectic, nematic, and isotropic phases. For all these density
a few values oh,D? for clarity. At high altitudeglargez) we  profiles, we find good agreement with the theoretical predic-
find that the density tends to zero, while the highest densityions for the phase behavior, as one might expect on the basis
is observed at the bottom of the sample as expected. Faf the good agreement of the density profiles with the theo-

N \is1 2
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FIG. 5. Snapshots of typical configurations, two sidevigasand (b), and a bottom view(c), obtained from simulations of hard
spherocylinders with./D=5, for number of particles per unit surfangD?=4.34 and for an inverse gravitational lendd¢=0.75.

retical ones. Closer inspection of Fig. 1 shows thatlthBl  clearly observe the formation of crystalline layers at the bot-
coexistence starts at lowegD? for D/¢=0.5 and 0.3 com- tom and smectic layers at higher altitudes: the density drops
pared with the theoretical predictions. A similar shift wasto zero between the density peaks close to the (eajistal

also found in previous simulations of a hard-rod fluid in phase, while only pronounced peaks are observed at higher
contact with a planar hard wall: the uniaxial to biaxial sur-z (smectic phase The system is in the four-phase coexist-
face transition occurs well below the bulkN transition ence region fongD?=4.34 andD/¢=0.75. This multiphase
[23-25. However, it is impossible to determine the contactcoexistence can also be appreciated from the snapshots in
density from the density profiles obtained from simulationsFig. 5 that shows nice crystalline ordering at the bottom of
at highn,D? due to the large density fluctuations close to thethe container in Fig. ) and hexagonal ordering in Fig.
wall. Even coarse-graining the density profiles does not givé(b). At higher altitudes, the hexagonal ordering is destroyed,
us a sufficiently accurate value for the contact density. Howand a smectic phase appears. The smectic layers disappear at
ever, the appearance of the crystal phase can be observedaven higher heights as can be seen in F{g),%nd we ob-

the raw (not coarse-graingddensity profiles. The inset of serve a nematic phase. At high altitudes, we observe the iso-
Fig. 4 shows the raw density profile for,D°=4.34. We tropic phase.
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FIG. 7. Equation of state of hard spherocylinders with a length-
to-diameter raticL/D=5 obtained by inverting the coarse-grained
density profiles from Fig. 4 versus reduced densitib$ for n,D?
=3.21(x) andnD?=4.34(0O), while — represents the bulk equa-
tion of state from Ref[21].

In Fig. 6, we plot the order parameter profiles fof¢
=0.75 and varying values of,D?. In bulk, the value of the
largest eigenvalue of this tensor determines the nematic or-
dering, which is zero for an isotropic fluid phase and 1 for
perfectly aligned rods. In the presence of the wall at the
bottom of the sample the lowest eigenvalue of this tensor
approaches -1/2 as the rods close to the wall have to be
oriented parallel to the surface. Consequently, the two largest
eigenvalues are equal to 1/4 when there is no in-plane order;
see Fig. Gthe short-dashed lines fotD?=0.567. The onset
of biaxial and nematic ordering at the bottom can be ob-
served from the difference of the two largest eigenvalues,
which shows the appearance of a preferred in-plane orienta-
tion (the dash-double-dotted lines fogfD?=1.323. As n,D?
increases this difference increases. The nematic phase ap-
pears at the bottom of the container when the largest eigen-
value exceeds 0.5 at0 (dash-dotted line fon,D?=1.701),
which corresponds well with the value of the nematic order
parameter of 0.471 for the nematic phasé-Btcoexistence
[21]. Three-phase coexistence is observed when the largest
eigenvalue is roughly 0.9 at the bottamotted and dashed
lines fornyD?=2.457 and 3.51, respective)yagain in agree-
ment with the fact that the nematic order parameter of the
smectic phase in bulk is about 0.893 MdSm coexistence
[21]. A crystal phasésolid line for nD?=4.34) is found at
the bottom of the container when the largest eigenvalue ap-
proaches 1, while the order parameter of the crystal phase in
bulk is about 0.974 at Sri{-coexistencg21].

Finally, we obtain the osmotic equation of state for hard
spherocylinders by inverting the coarse-grained simulation
sedimentation profiles using E¢4) and by eliminatingz
betweenp(z) andP(z). In Fig. 7, we show the results using
the profiles for inverse gravitational lengih/€=0.75 and
number of particles per unit surfangD?=3.21 and 4.34. For
comparison, we also plot the osmotic equation of state ob-
tained from bulk simulations performed at many different

FIG. 6. The profiles of the eigenvaluas, Ny, and \_ of the dens?t?es Of Ref[21] and we find QOOQ agreem(.ant', even for
nematic order parameter tens@ versusz/D for a semi-infinite ~ densities higher than th_OSG lalN coexistence. Slmllar good
system with inverse gravitational lengih/€¢=0.75, and varying agreement of the equation of state of the isotra@pid of the

number of particles per unit surfag@) nD?=0.567, (b) n,D?

nematic phase was also found by inverting sedimentation

=1.323,(c) nD?2=1.701, andd) nD?=2.457(short-dashegd 3.51  profiles for D/¢=0.30 and 0.50, and other values mD?

(dashegl 4.34(solid).
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V. CONCLUSIONS phase. This surprisingly good agreement for densities beyond
] ) ] . _I-N coexistence can be understood as the interfacial width of
We have investigated sedimentation and phase equilibrighe isotropic-nematic interface is very small for the gravita-
in suspensions of hard spherocylinders with a length-totional lengths considered in this work.
diameter ratioL/D=5 by analyzing the(macroscopig os- It is interesting to study the effect of the addition of an
motic equilibrium conditions. We present phase diagrams foextra component to the sedimentation profiles of a suspen-
a semi-infinite system and for a finite system. We find thaksjon of hard rods, e.g., a nonadsorbing polymer that might
the phase behavior depends in great detail on the boundagye|d a floating liquid phase similar to that found in Refs.
conditions of the system. To the best of our knowledge, w§13,14, or thinner rods that might give a nontrivial density
believe that this is the first Study that inVeStigateS the deperbrof”e of ﬂoating thick rods in a Suspension of thin rods
dence of the phase behavior on the boundary conditions Gfimilar to that in Ref[15]. We plan to study the sedimenta-
the system. In addition, we compare our theoretical prediction profiles of colloidal rod mixtures in future work.
tions for the phase behavior and sedimentation profiles with
Monte Carlo simulations for the semi-infinite system. We
find very good agreement between the two sets of results.
Moreover, we find excellent agreement of the osmotic equa- We thank René van Roij for stimulating discussions and
tion of state obtained from inverting the coarse-grained sediwe wish to thank the Dutch National Computer Facilities
mentation profiles from a single simulation with the bulk foundation for access to the SGI Origin3800. The High Per-
equation of state determined from bulk simulations at manyormance Computing group of Utrecht University is grate-
different densities[21], even for densities in the nematic fully acknowledged for ample computer time.
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