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Using the fractional interaction law to model the impact dynamics of multiparticle collisions
in arbitrary form
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Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spheri-
cal particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary
forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so-called
fractional interaction law. We then illustrate and discuss how to coftmtelatg the energy dissipation and
the collisional time for an individual particle within multiparticle collisions. We included in the multiparticle
collisions the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling
friction to static friction. Analyzing simple simulations we found that binary collisions dominate in the strong
repulsive state. However, weak repulsion is observed to be much stronger within multiparticle collisions. The
presented numerical results can be used to realistically model the impact dynamics of an individual particle in
a group of colliding particles.
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I. INTRODUCTION collisions occur when an individual particle collides with

The nature of particle flows offers the physics and engi_Lne|ghbor|ng particles, so that those contacts have direct a

: > ) . influence on each other. Only an infinitesimally short colli-
neering communities an opportunity to analyse the interests; - time is required for binary collisior3]

ing be_haviour of granular materi_als. From a phenomenolog|- In all the considered cases the collision process between
cal point of view such a flow, being halfway between a solid h

d a liquid ) I und db he b the two particles is characterized through the collisional
and a liquid state, is not well understood because the aSKme, which is dependent on the impact energy, and the

fphysw? 's extremlely dcompl_ex. Ina I?le‘l stgtg, the S'rm_)llesbhysical properties of the contacting surfaces. Moreover, dis-
orm of the granular dynamics Is as follows: during particle i o5 of energy occurs between the colliding particles af-

er impact. Therefore the simulations of such dynamics are

motions the particles move individually and exchange thelrt
momenta and energies through particle collisions. Thereforﬁmited by assumptions concerning the collision process. One
f the major aspects which needs to be taken into account in

the collision process plays a dominant role in the develop-
he simulations is how to contr@torrelatg the collisional

ment of theoretical studies and also in the performance
simulations. For an understanding of the collision process We o and the energy dissipation associated with an individual
article during the dynamics of multiparticle collisions.

need to consider a simple situation, focusing on what hap-
pens when two particles collide. In other words, we need t Generally two different ways of modeling the dynamics
a granular material exist. The continuum appropldj is

be able to distinguish the following basic phenomena: stati%f
contacql],goh_l?r?IOWZ,i], attrition[4], er03|on[5],' anld frag- | based on binary collisions of smooth spherical particles. Un-
mentation[6]. These phenomena may occur simultaneously, v \nately the introduction of real quantities such as the

or respectively when an individual particle impacts with an-gjgyiption of particle dimensions, particle shapes, their sur-
other. After impact, separatidid] or clusterizatior{8] of the face wetness and roughness, etc., greatly limits the applica-

two particles occurs. In addition, the particles may gain Ofion of continuum models. Balzest al, [11] inform us that

loss mass. kinetic theory is useful for modeling gas-solid flow applica-

Here we will focus on the dynaml_cs Of_ the collision pro- tions in industry: where the geometry involved is complex
cess, which may be decomposed into impact and contagﬁe

H h st d any different inlets or/and outlgts However, kinetic
processes. However, as the contact process Is formed, we ¢ ory cannot reflect the real dynamics involved in multipar-
also notice reboungi7] or static contac{l1], or permanent

tact. called cohesi Th ‘st simult ticle collisions because the collisional time is defined only
contact, called cohesiof2]. These processes exist simulta- ¢ binary collisions.

neously when we analyze the dynamics of colliding particles. o iscrete deterministic approach more realistically re-
W'Ith regard to the granulgr dynamul:_s mv_ollvmg“r_ngny Pafiacts the collision process. Note that multiparticle collisions
ticles In mation, we can observe multiparticle co ISICISg, in the discrete approach are decomposed into several binary
esp.e_mally vyhen particle concentration Is very dense, becau%%Ilisions. One may distinguish two general methods in this
collisional times between several binary particle contacts arﬁpproach The molecular dynamics metHdd] takes into
higher in comparison to their separation times. Multiparticle, . nt an expression for the repulsive force acting between
a pair of contacting particles. In this method particles virtu-
ally overlap when a contact occurs. The overlap reflects the
*Electronic address: jale@imi.pcz.pl quantitative deformations of particle surfaces because the
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modeling of realistic deformations would be much too com-

plicated. The interaction lanfl3-13 in the molecular dy-

namics method define basic models of the repulsive force for

two colliding particles. They are valid for particle collisions

which are independent of one another. The next method,

called the event driven methdd6], assumes instantaneous

changes in the direction and value of particle velocities, ac- 2
cording to conservation equations, each time a binary contact

occurs. As shown irf17] the basic difference between the

event driven and molecular dynamics methods is the colli-

sional time between a pair of particles. In the event driven )/
method this time is ideally zero. Note that this situation is

quite different for the molecular dynamics method, where the

contact time is greater than zero and is dependent on param- Detail A ™ N
eters describing the structure of two contacting surfaces, and
is, of course, dependent on the impact energy. The repulsive
force models in the molecular dynamics method underesti-
mate the energy dissipation in multiparticle collisigt8,19

(This is the so-called “detachment effe;tivhile in the event
driven method an inelastic collap§20] occurs.

In this paper we will focus on the molecular dynamics
method because this gives us a chance to correlate the colli-
sional time and the energy dissipation during multiparticle
collisions. We shall introduce a different mathematical de-
scription of this method taking into account the division of T v
the collision process into an impact phase, a contact phase @~ 77
and another phase occurring after the contact phase. We as-FIG. 1. Scheme illustrates particle collisions with useful
sume that the impact phase and the phase formed after thetations.
contact phase are infinitesimally short in time. Consequently,, , )
we will analyze the well-known interaction laws of the re- tclésnp. Several paper25-27 present different algorithms
pulsive force in the contact phase in order to examine severdfidt detect particle collisions, being dependent on their
difficulties within the collisions. On the base of preliminary s_hap(_as, and cons_equently _that to _fmd the fu_n_cp@h To
results[21] we shall introduce another form of the repulsive s!mpllfy our .notatlon we will usej instead ij(.')' For a
force defined under fractional calcul{®2,23. We will also b;]nary C.Oll'i'on we nfeglec_t dph_gnolmena_ I‘Nh'cn cause a
demonstrate the basic properties of this force and focus o ange in the mass of an individual particle. Thus, in our

what happens with the collisional time and the energy dissi- iscrete model, we do not take into account fragmentation,
al happens with o . S 9y attrition and erosion which eventually take place during the
pation in multiparticle collisions. This analysis is necessar

! . ) X _ Yeollision process. These phenomena will be the subject of
in computational simulations of the cluster dynamics becausg; e investigations
one may notice nonpermanent contact and/or cohesion phe- However, after the contact, which is the second phase of

nomena between several pairs of colliding particles withinghe collision process, rebound, nonpermanent corisdatic
the cluster. contacj) or cohesion can arise simultaneously. In this paper,
we will try to model the above phenomena by introducing a
different mathematical description and a different form of the
repulsive force into the molecular dynamics method.

Il. THE DISCRETE MODEL OF MOTION
FOR AN INDIVIDUAL PARTICLE

A. Mapping local coordinates onto global ones

Let us turn our attention to a set of spherical particles and defining the overlap

moving under extortion. The spherical shape of the particle _ o o _
makes only the mathematical description easier and does not Starting from the description shown in Fig. 1, let us intro-
make the model in any way poorer. The reader may find irffluce several definitions before formulating the motion equa-
[24] more information concerning the molecular dynamicstions. First, we assign local coordlna}tes(ﬁsn,g) and 9'0'_
technique adapted to particle shapes in arbitrary form. Th&al ones as(x,y,z). When we consider a contact, which
particles are numbered by the discrete index, ... np, eventually takes place between two particles, then the normal
where np is the total number of considered particles. WeUnit vectore; that connects the particles’ centers of mass
describe an individual particle through its radiygor diam- ~ reads

eterd;), massm;, inertia moment7;, positionx; of the mass X: = X;
center, linear speed and angular velocitys;,. With regard €= H_Xj—_X.H =€}, €. €51, 1)

to the collision of two individual particles we also introduce
the functionj(i) [j(i)#i by assumptiohof a particlei in  where|| represents a norm calculated from the relative co-
order to find the particle index of a particle in a set of par-ordinatex;-x;. Tangential unit vectors which operate on a
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tangent plangrotated byw/2 to the normgl become = u"” urot_ X=X + o X — @) X §j, 9
—[e) — ¢ 0] [x; =il ) whereli!" andU!® are linear and rotational relative velocities
ar T [[x X = |||X’y ands, § are branch vectors connecting the mass centers of
partlcle5| andj with the pointC; of application of the repul-
g =6, X &, 3) sive force. Note that the above values are defined for the

global system of coordinatdx,y,z). To change this to the
where|| -||ny represents the norm which is calculated only inlocal system of coordinates we need to use the scalar product
the tangent plane. When a particle hits a wall we redefin®f the base vector&) and the vector of the relative velocity.
unit vectors(1)—(3) putting xb; instead ofx;, wherexb; is a  Calculating the branch vectors we obtain the following de-
point whose coordinates issue from the line that crosses theendencies in the local syste®, %,¢) as

particle’s center of mass and is perpendicular to the wall. The

general form of the base vectors is presented as follows: g = [0,0,||~§j||], :j’ = [0,0,—||Z“j||], (10)
€ where
e=|e, |. (4)
Y Tl _ allgil -
€ 1gill = lle; = xill =ri = ||§J||W. (12)
j i T

Figure 1 presents the “virtual overlafZ;|| of two par-
ticles experiencing a contact. With regard[&8] we define

the overlap as Il =1lle; = xgll =r; = ||§j||||£_|| —(ri+r)
it e

1Gill =1y +ri = lIx; =, ©) .
In the global system of coordinates the branch vectors be-

which is associated with the particles having spherical formsgome
Note that only positive values of formu(&) indicate a con- B B ~ -
tact while negative ones confirm that the considered particles §=e-F", §=e-§. (13
are in separation, i.e., they move individually. As presented q | he li d ional
in previous section and in Fig. 1, the overlap reflects the U?lng Eqsl(4) and(9) t‘]"’e tlratr)1$| ate the mfear ag rotatlona;]
penetration depth of the particles in the direction which con Ire at||ve velocities in the global system of coordinates to the
nects the particles’ centers of mass, in the direction fraen ~ '0¢&! ON€:
j- We also introduce the penetration width of the particles, ~ lin

. . . . . u;
defined as the direction perpendicular to the previous one.

i
Thus we have where u"n 'U“’t are the relative velocities operating in the
Tzl 2 normal ollrectlon to the contacting surfaces as shown in Fig.
Il =gl =23~ R T

: 1 and
gl = (ri + 1)

7 lin — i ~I|n T/ rot _ rrot ~rot
valid for [|£]|=0. Letc; be a vector which defines a poi fy ™ =Ly, Uy Ty =g, U 13
of the application of the repulsive force, and which is takendenote vectors of the relative velocities acting in the tangen-
as the mass center of the overlapping regnas shown in tial direction(rotated byz/2 to the normal Additionally we
Fig. 1. Taking into consideration the fact that the particlesuse the same translation as presented by expre&siprior
have only spherical forms and collide when their ovex@p  calculationsw/ =e-w;,  =e- wj in order to obtain the angu-

Liel =
al-r oy,

~ rot

—e. ulln U —e. urot (14)

is positive we obtain lar velocities for partchJes andj in the local system of co-
B ordinates(¢, 7, ).
Ci=X+ ( - I&ilCr; ||§'”)) . (7) If a collision between a particle and a wall takes place, the
ri+ri =gl overlap(5) is defined as
Thus, at the beginning of a collision we have ||§p|| =1, —|xb; - x| (16)
I
o = XX (8 and we also have
! rj +r;

JRE—

and one can find a tim& where the overlagb) is zero. ”77‘” 2\'”&”(2“ ”gb”) a7

Above the notation allows us to analyze multiparticle colli- WhICh is valid for||§b||>o In this case the point of applica-

sions where an individual particlecollides with neighboring  tion c is defined by the following formula:

particlesj. Therefore many overlap&) indexedj on the

particlei may occur. This allows us to formulate the motion b 5 b

equations in the right form. G = ri- 2l e,
Next we introduce the relative velocity of a parti¢land

a particlej at pointC; as where

(18
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b= X=X 19 collision, M§°" and M} *°" are collisional torques operating
b |Ixby = x| on particle-particle and particle-wall collision.

) o ) We need to define some of the criteria necessary for han-
becomes a normal unit vector which is perpendicular to thgjing the above sets of equations over the time of the calcu-
wall. V\/bhen a particle-wall collision begins e obtatl |ations. It was shown in the previous subsection that at the
=x;+r;e};. Moreover, one can find the tim&® when the beginning of a collision the overlap given by expressibn
overlap (16) is zero. Expression$9)-14), defined for a or (16) is zero. Thus we have the impact phase. However,
particle-particle collision, may be redefined for a particle-some of the criteria for determining when the collision ends
wall collision whenx; and w; are zeros, and the unit vectors are unclear. Correctly predicting the separation time of two
are also redefined as explained in previously. For example glliding particles is crucial in the calculation. Most papers
component of the branch vectadl) is redefined for a assume the particles separate at the time when the overlap

_ 5 changes direction at the time when the overlap returns to
IZ7] =1 - §||§f’||. (200 zero. This is contrary to experimental evidence, also shown

and compared with some models [iR9], when the force

We neglect here any additional expressions necessary to ddoes not change direction. An attractive force operating in
scribe the particle-wall collision. This can be done this veryoPposite direction to the repulsive force has different origins
easily in the same way as explained previously. and is not taken into account here.

Summarizing our considerations, we have introduced the At this crucial point of our considerations, we need to
above mathematical description as it is necessary for the fofdtroduce some definitions in order to predict correctly the
mulation of the motion equations and is also necessary foPeginning time of a particle collision and the time when the

some forms of the repulsive force in both particle-particlecollision ends. Let us consider the time of calculatidns
and particle-wall collisions. e(0,T) whereT represents the total time in which the cal-

culations are performed. We also define the time atsf) in

which we trace the system dynamics. It should be noted that

At <t wheret® is a minimal value of the collisional
The molecular dynamics method requires a discrete detetime of two contacting particles. This assumption makes it

ministic approach in order to model the motion of an indi- possible to solve motion equatio(®2) in which collisional

vidual particle. As the particle may collide or lose contactforces (torque$ are included. In the next section we will

with other particles, we need to add or reject some forms opresent numerical criteria concerning the estimation of the

the repulsive force and/or the attractive force in order tocollisional time. Following on from previous explanations

simulate the particle dynamics more realistically. In this pa-we start with some conditions:

per, we will neglect the attractive force and concentrate only Definition 1 If, within a time interval(t,t+At®") the be-

on the repulsive force. Against this background, let us deginning of a collision between a pair of particles is detected,

scribe the motion of an individual particle by the following then the overlag5) should fulfill the following conditions

two sets of equations

B. Motion equations

5 ®]=<0 and [|g(t+Ath)]=0

m% = 2 F,
|
and therefore [£(t))[ =0, (23
T = 2, My, (21)  and then tima e (t,t+At°") is the time when the collision
! starts.
suitable for particle motion without any collision, and _ Definition 2 1f the end of a collision is formed within a
time interval(t, t+At°", then the overlag5) and the normal
m; = 2 PO+ > POl YR, component of the repulsive forde,; should fulfill the fol-
jii#i jj#i I lowing conditions
Gin=S s S MM, (22 GO1=0 and [+ Ath] <0
J#i J#i |

coll
which takes into account multiparticle collisions. The above and Ry;(1) >0 and Ry(t+At™)>0 (24)

sets of equations exist simultaneously over time and are de-

pendent on the detection of a contact and the administration and therefore ||§j(tf)|| =0
of the repulsive force-overlap path during the contact. In
both Egs(21) and(22) F, denotes a long range force which Of
extorts the motion of a particled, is a long range torque,
P is a collisional force composed of the repulsive and
friction forces and acts between a pair of colliding particles,
PP ! is the collisional force operating on a particle-wall and R;()=0 and R;t+At)<0 (25

||€j(t)|| >0 and ||§J(t + Atcoll)” >0
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and therefore Rﬂ(tf) =0, cohesion are eventually formed after the impact and they
. . ] o represent completely different phenomena which result from
and then time e (t,t+At") is the time when the collision  the collision process. Generally, when we model impact dy-
ends. namics we need to consider the balance between the repul-
In formulas(24) and (25) R; ; represents a normal com- sjve force, which is a direct reaction to the impact, and the
ponent of the repulsive force. We will introduce a definition attractive forces which are a result of, i.e., cohesion of par-
of this force in the next subsection. ticles. Therefore, our collisional tim&®' also becomes the
Definition 3 If, within a time interval(t,t+At"), the  time of relaxation in which the collision process is stopped
overlap and the normal component of the repulsive f&ge and novel states are formed. Most papers neglect this fact
behave as follows: and identify the total contact time, which may increase to
infinity, as the collisional one.
”gi(t)” >0 and ||§]-(t +Ar>0 Extending our considerations we notice that definition 5 is
coll . suitable for the elastic collisions of particles because there
and Ry(t+At™) — 07, (26) are no deformations in the contacting particles—the overlap
then timeté=At"+t is the time when the collision ends.  ténds to zero faster than the repulsive force changes direc-
Definition 4 Within the binary collision fort (tjb,tje) the tion. In definition 6 we observe the opposite situation—the

linear and rotational component&4) of the relative velocity :epgls[[ve forcel changes d'reﬁt't?]n fa.T,It.e.r than the (.)V?rll?p
predict the following states: ends to zero. In our approach the collision process is fully

o L ~li ntroll he repulsive for X for the situation pre-
variations in time of the overlags) for u';;‘(t)#o [for controlled by the repulsive force except for the situation pre

~lin sented by formulg26) in definition 3. On the basis of defi-
Uy (t)>Q we have a compressed state butwj}(t)<0 nition 7, which results from definition 3, we are able to ex-
we obtain a decompressed slate

torsion for () —w,(t) 0 plain that the local stresses associated with the deformations
L A i T ; ~1 lin of contacting particles become sufficiently large so as to ex-
sliding for Ty ™(t) # Uy (1) or rolling for Ty ™ (1)  ceeq the elastic limit of the materials and as a result plastic
Uy (t) #0. - ) ) flow occurs[30] and the behavior of particle adhesion differs
Definition 5 When c_ondltlon(_24)_|s fulfilled then_ the_ from that predicted by the elastic deformation the¢{].
component Obf the relative velocity in the normal direction oghesion-induced plastic deformations of contacting materi-
(1) =T, (t}) predicts the elastic rebound of particles.  gis are shown in some experimeli&g]. Therefore we have
Definition 6 When condition(25) is fulfilled then the val-  two possible states resulting from the impact: particle clus-
ues of the relative velocitiesl4) predict the particle behav- terizations when the colliding materials are soft, and frag-
iors after the collision as follows: mentation of particles when the colliding materials are hard.
rebound with particle deformations féig;(t) < =T (t7), Summarizing this subsection—we formulated two general
dynamic contact foti;(t) =0, in which eventually torsion  forms of the motion equations and discussed precisely how
[w(t%) = w,(t) # 0] with sliding [T, " (t) #Tf; °(t?)] or  to handle them.
with rolling [t ""(t9) :Eﬁ’j () # 0] exists,
static contact for T/ "(t%)=T/ “'(t})=0 and wy(tf)

= (t9=0 C. Collisional forces, collisional torques and the fractional
Definition 7. When condition(26) is fulfilled then the nor- interaction law
mal componenﬁ'g'?(tf) of the relative velocity(14) predicts We introduce a mathematical description of the collisional

adhesion-induced plastic deformations of particles or breakforces and torques occurring in motion equatiggg). We
age of particles depending on the hardness of the contactirgpply only a repulsive force in the normal direction to the
surfaces. contacting surfaces, completely neglecting any attractive
On the basis of previous assumptions and definitions forces. One can find some forms of attractive forces and their
and 2, we introduce the collisional time between a pair ofphysical meanings ifi3]. We introduce a system of friction
contacting particles as®'=t°~t°. This time is determined by forces and torques in a tangential plane. According to the
conditions (24) and (25) simultaneously. In other words, friction mechanism, the tangential friction force is one of
when the overlap changes sign faster than the repulsive fordeur types: torsion with sliding friction, sliding friction, roll-
changes direction or vice versa then the collision is finisheding friction or static friction. Torsion friction occurs when
If particles are still in contact, then the total contact time iscolliding particles differ by their angular velocities in the
significantly greater than the collisional time. If particles arenormal directionw,; and ;. Torsion with sliding friction is
separated, then the total contact time equals the collisiondbr colliding particles which have different angular velocities
time. As presented in the first section, the collisional proces# the normal direction and different linear velocities in the
is composed of the impact phase, the contact phase and tk@ngential plane. Sliding friction happens when slipping oc-
last phase formed after the contact phase. When the form@urs in colliding particles. When the relative linear velocity
lation of the first and the last phases is infinitesimally short inof the particles in the tangent direction reduces to zero, slid-
time then the collisional time is predicted by the contacting friction is replaced by rolling friction. If the external
phase. The contact phase is predicted by the repulsive forcésrces are sufficiently small, rolling friction reduces the ve-
overlap path. The adhesion or cohesion states extend the cdecity until particle motion stops and static friction occurs.
tact phase over time to infinity. In our approach adhesion an€onsidering the impact dynamics, we implemented the fol-
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lowing mechanism in general form: torsion with sliding fric- Tg' Trol

tion can change to rolling friction, and rolling friction tends pr si_| s pr ol — T“’-' (29
to static friction. More details concerning the modeling of ] o mo|

torsion, sliding and rolling friction can be found [83,34. —Ry - Ry

Here we show a description of the collisional force in global, expression29) TSl_I, -I-sn T20I1 -I—rol represent components of
coordinategx,y,z) as J

the friction force |n a plandg 77) for torsion-sliding and
rolling states,R;; is a sum of the normal components of

psta ¢ T’ )= w2 Y = attractive and repulsive forces operating during a collision.

P for g ™| = TG Y = e -

ol - 2 in ot As assumed in this paper, we neglect attractive forces and

P =1P/> for |tg™ -T;"™=0, (27)  concentrate only on forms of the repulsive force. Some
pj5|i for | lin - ol > 0, forms of the attractive forces can be found[l3] but the

most well-known forms of the repulsive force are#8—15.

On the basis of preliminary resulf21] we now introduce
wherePSta is the force acting in a static friction stal®® is  a model of the repulsive force in general form called the
the force occurring in a rolling state arf" is the force  fractional interaction law. Thus we have
coupling the torsion-sliding state. The emphasis in this paper ot A ot
is on the impact dynamics of static friction which is only o, _ ) MaX{0.cjk; 't}’th(”Q”)] for gl =0, 30)
implemented in a simple form. A more detailed model of the 9 ~ 0 for ||| <0
static friction state requires analysis of the tangential dis- !
placement and possibly the inclusion of time dependent efwhere c;, k; are damping and spring coefficients with the
fects. According to Fig. 1 we need to define the collisionalsame meanlng as in the linear interaction @8], ||| rep-
force in the local system of coordinatég, »,¢). Using a  resents the overlap defined by form, tb t7 are start and
matrix of the base vectorg) we introduce transition from stop times of a collisior{not a total contagtpredicted by
the local system to the global ones as several definitions in the previous subsectiapjs the con-
version degree of impact energy into viscoelasticity of the
material andDE(|¢)[) represents the general form of the

differential and integral operator of fractional order as ex-
plained in[21]. According to fractional calculuf22,23,35
whereP; st , P "l are forces defined in the local system of we introduce the definition of this operator in the following
coordmates as form:

Pjsli — leI’ . Pj’ in1 PJroI — e}r . Pj, roI, (29)

2 (=)

o (l-a;+1)
PG Ol = o J(||§,—(t)||) for @, <0, (3)

||5')(tb)|| +tht L (lGOl) for =0,

wheret denotes actual time of calculationg: (t/,t), the  number, angsl(|¢;(1)) is the Riemann-Liouville fractional
sum represents the initial condltlongD J(||§J(t)||) is the integral !

Caputo fractional derivative

Cpar ol (||§,(t)||)
thtjeJ(||§j(t)||)
| ( f I (DI(tf = DA~ tdr  for B e RY,
||§J 7) _ r'(g;) ) i
df‘ gr forn-l<a;<n,
=19 F(I’lJ aJ) b (t -7 -n;+1 1)|f ”gJ(T)”(te_T),BJ 47 for ,81 c N

(32) and B8;=-«;. Equation(30) represents the form of the repul-
sive force acting in the normal direction to the contacting
wheren;=[q;]+1 and[-] denotes an integer part of a real surfaces.
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Now we introduce additional definitions of forces operat- 1— -, 1= o
ing in the tangent plane. Here we define the normal force as __5%[ XN X5+ __351’ XINj X § —A;
N;=[0,0,R;]. According to[33] we define the friction force T rol — -
which is coupled between torsion-sliding friction as (|| ||)2 (Igh?
mi m] ~7| ~7]
sgr('fj"m Eg’) where
T] == ([T MDFON, 5| sgrdhyy - T |, (34)

0 's§ = —[llnjllsgrtn“"t) l;llsgn@s"), 01, (39

where the friction coefficient is = =
sy =-sg and
i~ lin
w5 ") = g+ (s = pg)e @ (35 1

1 ~
Aj==2> ¢ Fj- Hz & - Fig) 2 (& M) X5

wherea is a numerical constanjys and uy are static and

dynamic coefficients of friction. Moreover in formul@4) 1 5 iSL d_“L
the functionF(\;) is defined according tf33] as - Jj% (€ - M) X § + ey X at 9% gt (40)
r The above expressions are necessary for the definitions of
4(N2+ DE(\) + (A2 = DK(N) some collisional torques. Therefore we have the collisional
J J J J f - . . . .
3 —y oras<l, torque operating from particleto particlej as
i
FA)=y ., 1 ) 1 0 for |fGg"™ =] =0,
4()\1 +1E )\_ _()\j - DK )\_ for A\ >1 ~ coll _J = rol ~ 1 lin _~ rot|| —
4 ] ;) for : M= { M for G " -4y =0, (41)
3 ™ Mst for ;"™ =T Y >0,

(36)

whereM 3" is the coupled torsion-sliding torqus™® repre-
sents the coupled torsion-rolling torque. It should be noted
that transition from the local system of coordinates to the
global ones reads

whereK(\;) andE();) are the complete elliptic integral func-
tions of the first and the second king, is the dimensionless
quantity defined as

MjS" — e}r . (M]' sl 4 Mj, tor)1

||~r lin ~/' rot” - _ _
)\j ) (37) M rol — e‘_r . (M-’ rol + M-’ tor)_ (42)
E”nﬂn% - oy We define the torsion torque M;’ r=10,0, Mtor T and ac-

cording to[33] we obtain
The limiting values of the functior(\;) are 7(0)=0 for _ 1 _
torsion without sliding and lig.....7(x;) =1 for sliding with- ME" =~ 5701)”71,»”#(”?1{] MIIN, | sgriwg — @), (43)
out torsion.
According to[34] we define the rolling friction force as  where the functiorZ(\;) reads

.
4(4-22EMN) + (A= DK(\
4( DEN)) + (A = DK()) for \ =<1,
9 T
) =1 1 3 1 44
T0\) (4_2K5)E<_)+(2M2_5+_2>K(_> (44)
4_1 A A A for)\j>1
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The limiting values of the functior7(\;) are 7(0)2% for R({) = ck ™ ,D(£). (48)
torsion without sliding and Iimj_,gﬂ()\j)=0 for sliding with-
out torsion. Moreover, we introduce the sliding torque as Introducing novel variables

M/ Si=g s sl MyXy + MyX
M =g x T/ ol (45) W:—tnl:é J—— (49)
. . . . . . 1
Using an idea included ifi34] we determine the rolling
torque as we transform syster7) to the following form:

M/ =% x T 55 X N, (46) w=0,

where s§ XN is the torque created on the penetration 5 :_Cakl—a<i + i)Lng(v) +(ry+1,),DAD)].
width (6). As noted in[34], the torque 8§ XN/ exists be- m M
cause the contact between two particles is not a single point (50)
but, due to deformation of both bodies, is a finite area.

Summarizing this subsection: we determined a full de-t should be noted that the fractional derivatiyB(1) cal-
scription of the forces and torques occurring in a collision.culated from the unit function is not zero.
We neglect here a mathematical description of the collisional The above system of differential equations can be solved
force pr coll 5nd torque|\~/lf’ coll acting between the particle- analytically. Using the Laplace transformation and introduc-

wall because one can easily produce these formulas takirigg initial conditions v(t®)=r;+r,, Z(t°)=X;(t®)—%,(t") we
into accountx;=0, «;=0, etc., in the above expressions. obtain a solution to the syste(B0) as
More details concerning particle-wall interaction can be ) )
found in[36]. wit) = My (t°) + My¥o(t) (-t + My (t°) + mpXo(t?)
my +m, my +my ,

Ill. SOLUTION PROCEDURE

— — i (10 — 5 (b b
Throughout this section we will show how to handle the O =0 + 11+ 2= Pu(t) )] - 1)

system of ordinary differential equatiorf&1) and (22) in XEp_ (= Alt =727, (51
order to simulate the dynamics of multiparticle collisions.
The above system is mathematically complex, and therefor®
requires a numerical approach. However, estimation of col- 1 1
lision duration is needed for numerical stability. Therefore A=c“k1‘“(— + —) (52
the analytic solution for a simplified two-particle collision m, M

requires the calculation of important quantities, i.e., colli-5nq E,_., is the Mittag-Leffler function. According t§22]

here

sional time. this function is defined as
A. Analytic solution for a binary collision - t
_ , . , Esu() =2 Tatn (53
In this subsection we present an analytical solution for the =0 ['(dl +v)

simplified case of a two-patrticle collision in one dimension. _ _ ,
In this case, we use the fractional interaction law of the re!n formula (51) w(t) represents the motion of the particles

pulsive force(30). Additionally, we neglect all forces even- Ccenters of mass angt) denotes the overla®). Differenti-
tually acting on a particle and we assume a central collision@ting {(t) over time we find a normal component of the rela-
We alos omit angular motion and all friction phenomena oc-ive velocity of colliding particles as follows

curring between contacting particles. Against this back-

ground, let us describe the motion of two colliding particles {0 = [3¢(?) = () [ Epog o~ At~ 12)27)
s ~ AR - a)(t- )2 ER, (- At =197, (54)
Mm%, = = R(J), WhereE(;)V(t) is the first derivative of the Mittag-Leffler func-
tion, which can be calculated as
Mm%, = R(¢), (47) oo 1
ER=SIE,01=S = —. (9
where {=r;+r,—(X,—X;) andR({) represents the fractional S T gt o T TS+

interaction law(30). It should be noted that the above system

of equations is valid fot=t", wheret® is the time when the To calculate the algebraic form of the repulsive force we
collision starts. According to definition 1 we obtajtt®)=0.  need to put(t), which is included in expressiof51), into
Assuming the conversion degree is positive=0) we de-  formula(48). According to fractional calculug22,23,3% we
rive a simplified form of the repulsive fora@0) as apply Leibniz rule and we obtain the repulsive force as
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R(Z(1)) = ¢k (t°) andt,=t°+IAt" for 1=0,... AN. If a function f(t) is con-
B stant within the stepAt®' then the discrete form of the
— (]S F(a+1) Caputo fractional derivativé32) becomes
2 Ta-1+ )P+ )1 - a+2)
X(t- )" gD (- A-t9)2) ¢, 56 GDEf(t) = ———| At -t
(t-1) 2 a2 At =19 (56) #Def () Th-a+1) a( )
AN
where Ey) (-A(t-t%)>") represents the derivative of the +§(A| “AL)E-4)T L (59

Mittag-Leffler function of ordeld. The limiting value of the
function R({(t)) is lim,_R(£(t))=0. This limit determines
the collisional time of two contacting particles #8"=t®  wherea e R*, n=[a]+1 and[-] denotes an integer part of a
—tP. An explicit solution of formula’56) in order to findt®®  real numberA,=f"(t,)) wheref™ is the derivative of integer
is impossible. Therefore we use some approximation to estierder n. Note that in formula(59) f(t) denotes the overlap

mate the collisional time by the following expression (5). Taking the above assumptions into account we obtain the
discrete form of the Riemann-Liouville fractional integral
I(4 - )\ H2-0) (33) as
o = | (1.641 0 —— : (57)
A AN
thif(t) = r(g+1) B (t°~t°)F + % (B = B_)(t*=t_)” |,

where A is predicted by formulga52). Expression(57) is
suitable for rough estimation of the time incremexic®" (60)
used in numerical calculations.

Extending our considerations concerning the behavior o
formula (57) we found that fore=0 this formula reduces to
t'=\9.84/A. This expression agrees well with the colli-
sional time calculated by the linear interaction 1dd3],
where the damping coefficient is assumed to be zero.

{Nhereﬂe R* andB,=f(t)). The discrete forms of the frac-
tional operators make it possibile to integrate sysi@®)
using any predictor-corrector procedyB¥] with correction

of the time stepAt®. The correction of the time step pro-
vides measures that allow us to determine the begin time,
when particles enter into a collision, and the end time of
particle collisions. It should be noted that the begin and end
times are determined by several definitions presented in the

An accurate solution to this problem was obtained by in-Previous section. Using fractional calcul@i2] we found
tegrating the system of ordinary differential equatigad)  that the accuracy of the discrete form of the fractional de-
for particles moving individually using Numerical Recipe "vative (59) is equaled _td)((AN)__4)- _ _
routines[37]. Tracing the motion of individual particles over ~ We perform a numerical test in order to find the appropri-
time we need to detect particle collisions in order to take intcAt€ value ofAN. This test concerns the impact of a steel
account collisional forces and torques in the system of difarticle onto a bottom plate. Figure 2 shows the influence of
ferential equations. Using results presented6—27 we the division numberAN on the behavior over time of the
have chosen the linked cell method to detect a collision. ©verlap(5), the relative velocity14) and the repulsive force

It should be noted that during particle collisions we need30). The analytic solution which we presented in the previ-
to solve systen(22), where the fractional interaction law OUS subsection is included in the figure. In the figure3
(30) occurs. In this case we have a system of ordinary dif-<10°m,  ¢=7680 kg/nf,  k=4615380kg/5 ¢
ferential equations with a mixture of operators: the integer~128.1 kg/s«=0.2 and the initialimpacy particle velocity
derivative of maximal order equals two, the fractional inte-is set atZ(0)=1 m/s. In this case we obtained a value of the
gral of order «; and the fractional derivative of ordex;. collisional time ag®"=38.6x 10°° s. Using formulg57) we
Using fractional calculus[22,23,33 we present discrete estimated® to betc®'=37.8x 1076 s. This underestimation
forms of the fractional operators which are suitable in ourof the collisional time(fc®" < t¢°") issues from the linear ap-
algorithm. Let us consider the duration of a collision overproximation of the solution to equatioR({(t))=0, where
time te (t°, 1) whgretb represents the time .vv.hen the colli- Res(1)) is represented by formulgs6). Extending our con-
sion starts and® is the time when the collision ends. We sjgerations we can observe plausible agreement between the
introduce the division\N of the collisional timet®'=t*-t°  nymerical data obtained for differettN and the analytic
into several time steps. Thus we obtain solution. Nevertheless we should analyze what happens to

the overlap, the relative velocity and the repulsive force at

ol the time when the collision ends. Table | shows the quantities
Atcoll = L3 (59) which are dependent on the divisidxN for the assumed
AN value of the collisional time at®'=38.6x107%s. Direct

B. Numerical solution
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p
121 -1 for x< - e,
T ] 1 €
t? 8 ;‘;laoeogkl;m’ —O—AN=5 ~ X+ _l for —E=X= €,
= dc(OVdt=1mis || —O= aN=10 €7 €6 €27 €
=4 k=4615380 kg/s®|[ == aN=20 ~
= c=128.1 kglskg’s O AN=40 sgrx) = (0 for —e <x< ¢,
a=02 —s— analytic solution
0 T — 1 €1
10 . 20 30 40 X = for ¢, < x< ¢,
10- t(107s) €27 € €€
v
£, (1 for x= e,
g (62)
0.0 _ . .
© wherex is the actual value registered during a confgdle
0.5 relative velocity, €, e, are numerical coefficients. This
0 1({(10} s 30 40 function is robust fox— 0 and gives a satisfactory result.
604
. IV. RESULTS AND THEIR ANALYSIS
Z 40
- To illustrate the benefits of the fractional interaction law
(14 : . . T 7
20 (30) in the dynamics of arbitrary multiparticle collisions, we
will first demonstrate how this law operates in simple cases
00 e o connected with a one dimensional problem. First, we simu-

late a central collision between two particles. Figure 3 shows
the dynamics of a two-particle collision, which is represented

FIG. 2. Behavior of the overlafiop), relative velocity(middle), by some variations in the overldg| (5), the linear relative

and force(bottom) over time for different lengths of the time ste PN | ; ;
Aol ( ) 9 P velocity (= ug'n (14) and the repulsive forcB, (30) over time

for different levels of the conversion degree Here we ne-

comparison of the numerical results with the analytic squ—gleCt the indexj because only two particies collide. More-

tion shows thaAN=5 does not present satisfactory results.g;lmegnzlilo\ézlctorsroirleenc]oni\éerts:n;? dz::(ljar Yﬁlu?:si Whg: aone
However, we can observe that within the range fram =My, (m +mp)_7 06858< 10 ka. r —.r _Bxlg;g m fkf
=20 to AN=40 the repulsive force is close to zero and the_ _1 2" 41 172/~ " X9, T1=12= L
other numerical quantitieehe overlap and the relative ve- ‘5.000 kg/$, ¢=0.1 kg/s. The initial relative velocity is set
locity) agree well with the analytic solution. Based on theat {=0.5 m/s and three groups of variations in the conver-
above resultsAN=30 was chosen order to keep good agreesion degree are taken into account. The first group is for
ment with the analytic solution. a<0 (left column), the second is for & <1 (middle col-
Next, taking formulag27) and (41) into account in cal- umn and the third representg>1 (right column). Within
culations of particle contacts, we need to find an accuratéhe range 6= a<1 we observe that collisional tim&" in-
time needed to detect the switching between torsion-slidingéreéases whem is increased. It should be noted that the col-
sliding and rolling processes. A simple way to calculate thdisional time is registered when the repulsive forég
switching time is to use a linear approximation method, ageaches zero, as presented in several definitions in the previ-
described in the papgB4]. ous sections. Therefore, the overlgf has some values at
Next we consider a problem occurring in the calculationsthe time when a collision ends and deformations of the par-
of friction forces(34) and(38) and the torsional torquet3).  ticles’ surfac_es are noted. Analyzing the behavior of the rela-
When the relative velocity at the contact point changes frontive velocity £ over time we notice that this velocity changes
negative to positive or vice versa, it indicates that the signundlirection for small values ofr, which means that particle
function sgiix) changes sign very fast in the above expres+ebounds dominate. Whem increases we can see that the
sions. This is not desirable as it influences the stability andelative velocity tends to zero, which means that particles
convergence of the numerical calculations in a significanstick together. In other words, #=0, no viscous term in Eq.
way. Therefore we modified the signum function introducing(30) may occur and all the impact energy must be due to

TABLE |. Influence of the division numbeaN of the collisional timet®® on the overlap, the relative
velocity, and the repulsive force farte.

AN=5 AN=20 AN=40 Analytic
Ateol (1077 5) 77.20 19.30 9.65 -0
] (1076 m) 3.65856 3.94248 3.94429 3.94422
Z(mly -0.67213 -0.66377 -0.66317 -0.63317
R, (N) -0.84688 -0.01383 -0.00006 0

051315-10



USING THE FRACTIONAL INTERACTION LAW TO ...

llll (10%m)
8

1l (10°mm)

3
—r— 1.0/
—g— 1.3|
—b—16)

00 o1

0.504
025
.00
<0251
0.60{
0.75]

02 03 04
1(10%)

dz/dt (mis)

-0.50-

02 03
t(10%)

02 03
t(10%s)

04 05

00 o4

042
0.10
Z os
006
0.04.
002

02 03 04
t(10%)

Z o0

01

02 03
t(10%s)

04

05 00 o1

02 03
t(10%s)

0.04
002

04 o8

00 o1 02 03 04

t(10%)

FIG. 3. Behavior of the overlafiop), relative velocity(middle),

05 00

01

02 03

t(10%)

04

05 00 01

02 0.3
t(10%)

04 05

and force(bottom) over time for the fractional interaction law.

PHYSICAL REVIEW E 70, 051315(2004)

solutions fora<<0 are not taken into account. The aim of
this example is to show the power of fractional calculus,
where more solutions are obtained in comparison to classical
differential and integral operators having integer order. How-
ever, we need to choose which solutions obtained by frac-
tional calculus are suitable physically.

In Fig. 3 we constructed several mappings for the relative
velocity-overlap (left), force-overlap(middle) and force-
relative velocity(right) where @« changes from negative to
positive values. Analyzing these mappings we found a set of
criteria necessary to predict different states of particle colli-
sions included in the definitions in the previous section. It
should be noted that small positive valuesaopredict par-
ticle rebounds when particle deformations are practically
negligible. Whena tends to unity we also observe particle
rebounds but particle deformations are visible and more en-
ergy is dissipated. As indicated in the left chart in Fig. 3,
when « is above unity the repulsive force is not generated
and this indicates instability in particle collisions. This insta-
bility takes the form of particle fragmentation or permanent
clusterization of particles after the collision. Therefore the
conversion degree is a ratio of the impact energy over the
specific energy needed for the destruction of particle sur-
faces. This assumption should be validated experimentally,
and this is the aim of our future investigations. It should be

elasticity. In this case the overlap reaches zero at the sanmitoted that when the physical properties of colliding granular

time as the repulsive force reaches zerav#1, on the other

materials and the impact energy are fixed we still observe

hand7 the impact energy is transfered through the Viscougiﬁerent values of energy diSSipation after the collision. This

term.

Extending our considerations far>1 we observeright

can be easily seen when we compare the particle collisions
for particles with smooth surfaces and for rough ones. The

column on Fig. 3 that the repulsive force is not generated fractional interaction law can simulate this because the con-

and tends to zero fa®'—c, and therefore the overlap in- Version degree can change(See Fig. 4. . _
creases to high and unrealistic values. Moreover, the relative In order to compare the fractional interaction law with
velocity does not change direction and particles undergo thether interaction laws, changes over time of the overlap, the
next time steps of the calculations. According to definition 7 relative velocity and the repulsive force for two-particle col-
presented in the previous section, the fragmentation of pafision were presented. We assumed the parameters of collid-
ticles or permanent cohesion of particles is a direct result of"g particles to  be r;=r;=3x10°m, me;=7.06858

the plastic flow of their contacting surfaces. The contactingx 107 kg, Z=0.5 m/s. Moreover, we assumed the collision
surfaces are destroyed because deformations of contactitigne between two colliding bodies thé'=10*s and the
particles become sufficiently large so as to exceed the elastiestitution coefficient,=0.5. These assumptions are neces-
limit of the materials, and we noticed particle clusterisationssary to calculate the set of coefficients required by different

This process is observed experimentally{ 30,32 and may

be modeled by the fractional interaction 14@0).
Next we considered the behavior of the overlap, relativeexpressions applied to calculate the coefficients for linear

velocity and repulsive force fae <0 (left column on Fig. 3.

interaction laws, depending on the type of interaction law
chosen. In Table Il we list all the coefficients. Some of the

[13] and hystereti¢15] laws can be found ifil9]. The for-

Larger negative values of the conversion degiegecrease mulas of the coefficients used in the linear interaction law

the collisional time. The relative velocity changes directionassumed that at the end time of a collision the overlap is
but at the end time reaches larger absolute values in compatero. In Table Il the “linearl” represents the above case. We
son to the initial relative velocity. As this is unrealistic all the assumed that the repulsive force reaches zero at the end time

0.5

FIG. 4. Mapping the relative

°
el

velocity-overlap (left), force-
overlap (middle), and force-

relative velocity (right) for the
fractional interaction law.

, dg/dt (mis)

05

0.030

0.015

0.015 0.030 i 5 0.0
llgi (10° m) (il (10° m) dz/dt (m/s)
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TABLE Il. Coefficients for colliding particle surfaces being de-

pendent on the interaction law used.
0.018-

Law Coefficients E
- I

linearl k,=7316 kg/$, c,=0.0979 kg/s = 00064 . %mz

i = = - -l

Ilngarz _ k,=5225 kg/éf,_cn 0.0981 kg/s N 4 _4_:;:‘6::;'
nonlinear k=1392000 kg/$/m, ©=33.885 kg/sm 0.000 _—e—fractional (a=0.319678) . ,
hysteretic k;=3924 kg/$, k,=15697 kg/$ _ °;°° 0.02 004, (1045)0-06 0.08 0.10
fractional k=5225 kg/§, ¢=0.297 kg/s,«=0.3197

of a collision. Thus we have a set of coefficients called “lin-
ear2” also used for the linear interaction law. For the nonlin-
ear[14] and fractional laws we performed a numerical test to
find the values of the coefficients which allow us to keep the
assumed collision time and the restitution coefficient in a
two-particle contact. It should be noted that we obtained

many sets of coefficients for the fractional interaction law. 013;"" 002 et (10%) 0.08 0.08 0-10
Therefore, for this law, we establish the spring coefficient, ’ s

which has the same value as for the linear interaction law.

Figure 5 shows the behavior of the overl@pp charj, the =

relative velocity(middle chart and the repulsive forcéot- =

tom charj over time where different interaction laws are

taken into account. Analyzing this figure we can confirmed . _
that the interaction law fulfilled our assumptions concerning 0.00 '
the collisional time and the restitution coefficient. It should : : : : \
be noted that the repulsive force changes direction in the 0.00 0.02 0 08 0.08 0.10

04 0.
-3
linear interaction lawlinearl) for the set of coefficients cal- t(107s)

c_ulated _under the_ formulas fo_und i9]. This shows ad_efi- FIG. 5. Comparison of the overlagtop), relative velocity
ciency In numepcal calculations and should b"_:‘ _reJeCte_d(middIe), and force(bottom) over time for different interaction
Some changes in the values of the above coefficients givgs.

satisfactory results in the linear interaction lalinear?.

However, the repulsive force in the linear interaction law has,sve an additional parameter called the conversion degree
a value at the beginning time which is independent on the S&fich causes some changes in the collisional time and the
of coefficients used. This is also unrealistic behaviour undefegiitution coefficient. However. this requires some experi-

the linear interaction law. , mental data involving the impact dynamics of smooth and
Using different interaction laws we observed different  gn particles. These data will provide measures that allow

overlaps at the end time of a collision. The greatest overlap i§ome links to be made between the experiment and the co-
for the hysteretic law and decreases for the fractional insficients of the fractional law.

through the nonlinear to the linear one. Note that we can find |, order to verify the validity of the interaction laws for
another set of coefficients for the fractional law that fulfill multiparticle collisions, the energies dissipated at each con-
our assumptions and allows us to obtain another value of thg,.t were compared. Here we introduce a measure of energy
overlap at the end time of collision. dissipation during multiparticle collisions which is the ratio
When we have determined all the parameters necessary g ihe kinetic energy evaluated in time over the initial kinetic
describe the dynamics of particle impacts we then obtaiunergy \We define the total ratio of energy lost through mul-

some values of the collisional time and the restitution coefyyaricle collisions as where the superscript 0 refers to the
ficient for this case. However, if we still keep the aboveinitial kinetic energy examined at time=0 s andnc is the
parameters but increase or decrease the surface roughness gk number of colliding particles.

the colliding particles then we obtain values of the collisional  \we ysed a set of particlesp vertically stacked over a
time and the restitution coefficient which differ in compari- |5ttom plate as shown if18,19:
son to the previous values. As we did not change the physical '

properties of this granular material, we have to maintain the i 2
steady value of the spring coefficient in all the interaction 21 MiX;
laws. Changing only the damping coefficient in the linear e= 1_n'c_—_ (62
and nonlinear laws and the unloading sldgén the hyster- :
. . . > m(x%)2
etic law does not guarantee that we will obtain accurate val- vl

ues of the collisional time and the restitution coefficient re-
flecting the above cases. This is a disadvantage of the wellWe assumed the following conditiong=0.0015 m, my
known interaction laws. In the fractional interaction law we =1.41x 10°° kg, X=-0.5 m/s, fori=1,... np. Gravity is
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FIG. 6. Energy dissipation during multiparticle collisions for
different interaction laws.

set at zero. Taking into account the results presentefd &y
we calculated the energy dissipation as a function of the
number of considered particlep, which becomes the num-
ber of colliding particlesnc when at the begin time of the
collision the distances between spheres equal ﬁéxdm,
for j=1,... nc. Note thatj=1 represents a collision between
the first particle and the bottom plate ajwinc is a collision FIG. 7. Behavior of particle tre_tjectories depending on strong
between the topmost particles. We also assume the collf«¢=0.01 and weak(a=0.97 repulsions.
sional time between two colliding bodi¢€"=10" s and the _ o _
restitution coefficieng, =0.945. These assumptions are nec-1 he first valuea=0.01 indicates the strong repulsive state,
essary to calculate some coefficients depending on the typeé particles rebound almost without dissipation of their en-
of interaction law chosen. The coefficients represent a colli€9y- The second one fer=0.97 represents the weak repul-
sion between two particles or between a particle and théVe State where most of the impact energy is converted into
bottom plate, where the plate mass is infinite. material V|sco_elastC|ty. We can ea_sny observe such states in
Figure 6 shows the energy dissipation as being dependeme_re_al behavior of g_ranular _matena_lls, when we consider the
on the number of collisionac for different interaction laws ~collisions for contacting particles with smooth surfaces and
used in the molecular dynamics method and also in the evef@r rough ones. For this simulation we assumed the follow-
driven method[20,25. For linear, nonlinear and hysteretic N9 conditions r;=0.02 m, r,=0.01 m, r3=0.007 m, r4
laws we noted the same dependencies agl819. This  =0-005 m, rs=0.009 m, ¢,=0,=2000 kg/ni, 0,=05=0s
means that the “detachment” effect occurs. First, we consid= 1000 kg/nd, x,=[0.0,0.1,0.23m, X2
ered the fractional interaction law for a steady value of the=[0.001,0.125,0.205m, x3=[-0.002,0.090,0.198m, X,
conversion degree;=0.0258, for all binary collisions. In =[~0.004,0.120,0.186m, and xs=[-0.001,0.1,0.18m.
this case we obtained similar results for the hysteretic andloreover, we consider a situation where a particle with an
fractional interaction laws. Thus the “detachment” effect alsdnitial linear velocityu;=[0,0,-5 m/s collides at different
occurs in the fractional interaction law for the steady value ofmoments in time with particles which initially do not move
a;. As written in [18] the kinetic energy obtained from the (u;=[0,0,0] m/s, forj=2,...,4. Particles do not rotate ini-
event driven technique is dissipated totally foc-(1-e,)  tially (e;=0 1/9), gravity is set to zero ank=1000 kg/$,
large. It should be noted that the basic interaction laws are=1 kg/s for each pair of colliding particles. We also sim-
valid for two-particle collisions which are completely inde- plified values of the friction coeffcients putting into E§5)
pendent of other collisions. However, in multiparticle colli- a=0 andus=0.5 for each pair of colliding particles. Figure 7
sions, we need to include mutual dependencies between seshows the trajectories of the mass centers of five particles in
eral binary collisions. Taking this fact into account, we canthree dimensional space for strong and weak repulsions as a
obtain satisfactory results when the conversion degrge reaction to the impact dynamics. The particles are numbered
changes in relation to the number of colliding particles. Thisfrom 1 to 5. This simulation does not reflect the real motion
was explained more precisely jA@1]. Therefore we propose of particles because we neglect external forces, i.e., the
a'(nc)~1+expg—nc) in order to keep a qualitative agree- gravitational force. We can only show how the fractional
ment with the event driven method. It should be noted thainteraction law operates in the above conditions as being
we cannot estimate correctly’(nc) by direct comparison dependent on the conversion degeeeln the strong repul-
with the event driven technique. We require experimentabive statg«=0.01) we observe linear particle trajectories. As
data involving multiparticle collisions. This data will provide « is increased and reaches the weak repulsive state
measures that allow some links to be made between severaD.97 we noticed different particle trajectories in compari-
coefficients in the fractional interaction law and the experi-son to the previous state. According to the results presented
ment. in Fig. 3 we can say that duration over time of the repulsive
The last example simulates the dynamics of five particlesorce, which is longer over time for higher valuesafhas a
in three dimensional space for two values of the parameter significant influence on the particle trajectories.
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In order to explain more precisely what happens to parobservation for strong and weak repulsive states. Continous
ticle trajectories in strong and weak repulsive states, the vesegments represent collisional times for weak repulsion
locities of one individual particle were analyzed. Figure 8whereas strong repulsion is denoted by the dashed segments.
shows the linear and angular velocities of particle 1 overEach segment representes one binary collision between a pair
time in the global system of coordinatésy,z). In this fig-  of contacting particles, i.e., 1-3 means the collision between
ure the dashed lines represent particle velocities in the stromgarticle 1 and particle 3. Analyzing this figure we observe
repulsive state, whereas continous lines indicate the wealknger collisional times for the weak repulsive state in com-
repulsive state. We can observe clear jumps in particle veparison to the collisonal times for the strong repulsive state.
locities over time for the strong repulsive state. This is aMoreover, the collisional times ovelap in the weak repulsive
result of the duration of a collision determined by the col-state, therefore multiparticle collisions occur.
lisonal time between a pair of contacting particles. In this
state we can notice binary collisions because several colli-
sional times between the different pairs of contacting par- V. CONCLUDING REMARKS

ticles have shorter values in comparison to their separation i
times, where particles move individually. However, in the Ve used the molecular dynamics method to model the

weak repulsive state we observe continous changes in parpjotion of individual spherical particles in three-dimensional
ticle velocities without the distinction of any jumps. This SPace. We introduced a novel mathematical description of
means that several collisional times between the pairs of corfiS_ method which takes into account the division of the

tacting particles overlap each other. So binary collisions ar&0!liSion process into an impact phase, contact phase and
not distinguished here. another phase formed after the contact phase. We assumed

Moreover, we analyzed, in the local system of coordinated@t the impact phase and the phase formed after the contact
(¢,7,0), the angular velocities over time of particle 1, which phase are infinitesimally short in time. We redefined the col-

collides with particle 5. In the strong repulsive state we ob-IISIonal time so that it is predicted by the repulsive force-
serve smaller values @f; andw,, (these velocities are angu-

lar velocities predicted in the tangent plane as shown in Fig. e —== =001
1) in comparison to the weak repulsive state. This means that T B 00018 X — =097
torsion-sliding friction dominates in the strong repulsive %
state, where binary collisions are noted. In the weak repul- e 20001108)
sive state we observe that the angular velocitigsand ,, '-.1-._-;(‘; 0.001125)

H . . pmm -t
have higher values than in the strong repulsive state. Thus ,'3';'5:3«@!:00?;?5?
we expect the torsion-rolling friction between particles 1 and '-'-i,-*_.s.‘(';“ w.m’l)
5. However, multiparticle collisions are noted in the weak ._-1_-§.<5'.f1=.°§1?;_“*:30 )

/ S T - 200048 s
repulsive state. Y 2 000020 6)

In order to prove where binary or multiparticle collisions 5 3 T i0°s) z T

occur, some distributions of collisional times over the dura-
tion time of calculations are presented. Figure 9 presents the FIG. 9. Sequence of collisional times depending on stranag
sequence of segments of collisional times over the time 0£0.01) and weak(a=0.97) repulsions.
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overlap path. On the base of preliminary resyl?d] we  ever, within multiparticle collisions rolling friction is ob-
proposed an expression for the repulsive force formulatederved to be much stronger.

under fractional calculus. The force can control the energy The presented numerical results can be used to realisti-
dissipation and the collisional time for an individual particle cally model the impact dynamics of an individual particle in
colliding with many other particles. In multiparticle colli- @ group of colliding particles. In order to tune the model’s

sions, we included the friction mechanism needed for theoefficients we require experimental data involving multipar-
transition from coupled torsion-sliding friction through roll- ficle collisions. This data provides measures that allow some

ing friction to static friction. Therefore our model includes liNks to be made between several coefficients in the frac-

multiparticle collisions in arbitrary forms. Using the frac- tional interaction law and the experiment.

tional interaction law one can determine different states of

particle repulsions, i.e., strong and weak repulsive states. In

the strong repulsive state binary collisions dominate, and This work was supported by the State Committee for Sci-
torsion-sliding friction is the main friction mechanism. How- entific ResearctiKBN) under Grant No. 4 T10B 049 25.
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