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Using the molecular dynamics method, we examine a discrete deterministic model for the motion of spheri-
cal particles in three-dimensional space. The model takes into account multiparticle collisions in arbitrary
forms. Using fractional calculus we proposed an expression for the repulsive force, which is the so-called
fractional interaction law. We then illustrate and discuss how to control(correlate) the energy dissipation and
the collisional time for an individual particle within multiparticle collisions. We included in the multiparticle
collisions the friction mechanism needed for the transition from coupled torsion-sliding friction through rolling
friction to static friction. Analyzing simple simulations we found that binary collisions dominate in the strong
repulsive state. However, weak repulsion is observed to be much stronger within multiparticle collisions. The
presented numerical results can be used to realistically model the impact dynamics of an individual particle in
a group of colliding particles.
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I. INTRODUCTION

The nature of particle flows offers the physics and engi-
neering communities an opportunity to analyse the interest-
ing behaviour of granular materials. From a phenomenologi-
cal point of view such a flow, being halfway between a solid
and a liquid state, is not well understood because the basic
physics is extremely complex. In a local state, the simplest
form of the granular dynamics is as follows: during particle
motions the particles move individually and exchange their
momenta and energies through particle collisions. Therefore
the collision process plays a dominant role in the develop-
ment of theoretical studies and also in the performance of
simulations. For an understanding of the collision process we
need to consider a simple situation, focusing on what hap-
pens when two particles collide. In other words, we need to
be able to distinguish the following basic phenomena: static
contact[1], cohesion[2,3], attrition [4], erosion[5], and frag-
mentation[6]. These phenomena may occur simultaneously
or respectively when an individual particle impacts with an-
other. After impact, separation[7] or clusterization[8] of the
two particles occurs. In addition, the particles may gain or
loss mass.

Here we will focus on the dynamics of the collision pro-
cess, which may be decomposed into impact and contact
processes. However, as the contact process is formed, we can
also notice rebound[7] or static contact[1], or permanent
contact, called cohesion[2]. These processes exist simulta-
neously when we analyze the dynamics of colliding particles.
With regard to the granular dynamics involving many par-
ticles in motion, we can observe multiparticle collisions[9],
especially when particle concentration is very dense, because
collisional times between several binary particle contacts are
higher in comparison to their separation times. Multiparticle

collisions occur when an individual particle collides with
neighboring particles, so that those contacts have direct a
influence on each other. Only an infinitesimally short colli-
sional time is required for binary collisions[7].

In all the considered cases the collision process between
the two particles is characterized through the collisional
time, which is dependent on the impact energy, and the
physical properties of the contacting surfaces. Moreover, dis-
sipation of energy occurs between the colliding particles af-
ter impact. Therefore the simulations of such dynamics are
limited by assumptions concerning the collision process. One
of the major aspects which needs to be taken into account in
the simulations is how to control(correlate) the collisional
time and the energy dissipation associated with an individual
particle during the dynamics of multiparticle collisions.

Generally two different ways of modeling the dynamics
of a granular material exist. The continuum approach[10] is
based on binary collisions of smooth spherical particles. Un-
fortunately, the introduction of real quantities such as the
distribution of particle dimensions, particle shapes, their sur-
face wetness and roughness, etc., greatly limits the applica-
tion of continuum models. Balzeret al. [11] inform us that
kinetic theory is useful for modeling gas-solid flow applica-
tions in industry: where the geometry involved is complex
(many different inlets or/and outlets). However, kinetic
theory cannot reflect the real dynamics involved in multipar-
ticle collisions because the collisional time is defined only
for binary collisions.

The discrete deterministic approach more realistically re-
flects the collision process. Note that multiparticle collisions
in the discrete approach are decomposed into several binary
collisions. One may distinguish two general methods in this
approach. The molecular dynamics method[12] takes into
account an expression for the repulsive force acting between
a pair of contacting particles. In this method particles virtu-
ally overlap when a contact occurs. The overlap reflects the
quantitative deformations of particle surfaces because the*Electronic address: jale@imi.pcz.pl
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modeling of realistic deformations would be much too com-
plicated. The interaction laws[13–15] in the molecular dy-
namics method define basic models of the repulsive force for
two colliding particles. They are valid for particle collisions
which are independent of one another. The next method,
called the event driven method[16], assumes instantaneous
changes in the direction and value of particle velocities, ac-
cording to conservation equations, each time a binary contact
occurs. As shown in[17] the basic difference between the
event driven and molecular dynamics methods is the colli-
sional time between a pair of particles. In the event driven
method this time is ideally zero. Note that this situation is
quite different for the molecular dynamics method, where the
contact time is greater than zero and is dependent on param-
eters describing the structure of two contacting surfaces, and
is, of course, dependent on the impact energy. The repulsive
force models in the molecular dynamics method underesti-
mate the energy dissipation in multiparticle collisions[18,19]
(This is the so-called “detachment effect”), while in the event
driven method an inelastic collapse[20] occurs.

In this paper we will focus on the molecular dynamics
method because this gives us a chance to correlate the colli-
sional time and the energy dissipation during multiparticle
collisions. We shall introduce a different mathematical de-
scription of this method taking into account the division of
the collision process into an impact phase, a contact phase
and another phase occurring after the contact phase. We as-
sume that the impact phase and the phase formed after the
contact phase are infinitesimally short in time. Consequently,
we will analyze the well-known interaction laws of the re-
pulsive force in the contact phase in order to examine several
difficulties within the collisions. On the base of preliminary
results[21] we shall introduce another form of the repulsive
force defined under fractional calculus[22,23]. We will also
demonstrate the basic properties of this force and focus on
what happens with the collisional time and the energy dissi-
pation in multiparticle collisions. This analysis is necessary
in computational simulations of the cluster dynamics because
one may notice nonpermanent contact and/or cohesion phe-
nomena between several pairs of colliding particles within
the cluster.

II. THE DISCRETE MODEL OF MOTION
FOR AN INDIVIDUAL PARTICLE

Let us turn our attention to a set of spherical particles
moving under extortion. The spherical shape of the particle
makes only the mathematical description easier and does not
make the model in any way poorer. The reader may find in
[24] more information concerning the molecular dynamics
technique adapted to particle shapes in arbitrary form. The
particles are numbered by the discrete indexi =1, . . . ,np,
where np is the total number of considered particles. We
describe an individual particle through its radiusr i (or diam-
eterdi), massmi, inertia momentJi, positionxi of the mass
center, linear speedẋi and angular velocityvi. With regard
to the collision of two individual particles we also introduce
the function jsid [jsidÞ i by assumption] of a particle i in
order to find the particle index of a particle in a set of par-

ticlesnp. Several papers[25–27] present different algorithms
that detect particle collisions, being dependent on their
shapes, and consequently that to find the functionjsid. To
simplify our notation we will usej instead of jsid. For a
binary collision we neglect phenomena which cause a
change in the mass of an individual particle. Thus, in our
discrete model, we do not take into account fragmentation,
attrition and erosion which eventually take place during the
collision process. These phenomena will be the subject of
future investigations.

However, after the contact, which is the second phase of
the collision process, rebound, nonpermanent contact(static
contact) or cohesion can arise simultaneously. In this paper,
we will try to model the above phenomena by introducing a
different mathematical description and a different form of the
repulsive force into the molecular dynamics method.

A. Mapping local coordinates onto global ones
and defining the overlap

Starting from the description shown in Fig. 1, let us intro-
duce several definitions before formulating the motion equa-
tions. First, we assign local coordinates assj ,h ,zd and glo-
bal ones assx,y,zd. When we consider a contact, which
eventually takes place between two particles, then the normal
unit vector ez j that connects the particles’ centers of mass
reads

ez j =
x j − xi

ix j − xii
= fez j

x ,ez j
y ,ez j

z g, s1d

wherei·i represents a norm calculated from the relative co-
ordinatex j −xi. Tangential unit vectors which operate on a

FIG. 1. Scheme illustrates particle collisions with useful
notations.
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tangent plane(rotated byp /2 to the normal) become

eh j = fez j
y ,− ez j

x ,0g
ix j − xii

ix j − xiix,y
, s2d

ej j = eh j 3 ez j , s3d

wherei ·ix,y represents the norm which is calculated only in
the tangent plane. When a particle hits a wall we redefine
unit vectors(1)–(3) putting xb j instead ofx j, wherexb j is a
point whose coordinates issue from the line that crosses the
particle’s center of mass and is perpendicular to the wall. The
general form of the base vectors is presented as follows:

ej = 3ej j

eh j

ez j
4 . s4d

Figure 1 presents the “virtual overlap”iz ji of two par-
ticles experiencing a contact. With regard to[28] we define
the overlap as

iz ji = r j + r i − ix j − xii, s5d

which is associated with the particles having spherical forms.
Note that only positive values of formula(5) indicate a con-
tact while negative ones confirm that the considered particles
are in separation, i.e., they move individually. As presented
in previous section and in Fig. 1, the overlap reflects the
penetration depth of the particles in the direction which con-
nects the particles’ centers of mass, in the direction fromi to
j . We also introduce the penetration width of the particles,
defined as the direction perpendicular to the previous one.
Thus we have

ih ji = ij ji = 2Îr i
2 − Sr i +

1

2
iz ji

2r j − iz ji
iz ji − sr i + r jd

D2

s6d

valid for iz jiù0. Let cj be a vector which defines a pointCj
of the application of the repulsive force, and which is taken
as the mass center of the overlapping region(5) as shown in
Fig. 1. Taking into consideration the fact that the particles
have only spherical forms and collide when their overlap(5)
is positive we obtain

cj = xi + Sr i −
iz jisr j − iz jid
r i + r j − iz ji

Dez j . s7d

Thus, at the beginning of a collision we have

cj =
r ix j + r jxi

r j + r i
, s8d

and one can find a timetj
b where the overlap(5) is zero.

Above the notation allows us to analyze multiparticle colli-
sions where an individual particlei collides with neighboring
particles j . Therefore many overlaps(5) indexed j on the
particle i may occur. This allows us to formulate the motion
equations in the right form.

Next we introduce the relative velocity of a particlei and
a particlej at pointCj as

ũ j = ũ j
lin − ũ j

rot = ẋi − ẋ j + vi 3 s̃j − v j 3 sM j , s9d

whereũ j
lin andũ j

rot are linear and rotational relative velocities
and s̃i, sM j are branch vectors connecting the mass centers of
particlesi and j with the pointCj of application of the repul-
sive force. Note that the above values are defined for the
global system of coordinatessx,y,zd. To change this to the
local system of coordinates we need to use the scalar product
of the base vectors(4) and the vector of the relative velocity.
Calculating the branch vectors we obtain the following de-
pendencies in the local systemsj ,h ,zd as

s̃j8 = f0,0,iz̃ jig, sM j8 = f0,0,−izM jig, s10d

where

iz̃ ji = icj − xii = r i − iz ji
1
2iz ji − r j

iz j i − sr i + r jd
, s11d

izM ji = icj − x ji = r j − iz ji
1
2iz ji − r i

iz ji − sr i + r jd
. s12d

In the global system of coordinates the branch vectors be-
come

s̃j = e · s̃j8
T, sM j = e ·sM j8

T. s13d

Using Eqs.(4) and (9) we translate the linear and rotational
relative velocities in the global system of coordinates to the
local one:

ũ j8
lin = e · ũ j

lin, ũ j8
rot = e · ũ j

rot, s14d

where ũz j
lin, ũz j

rot are the relative velocities operating in the
normal direction to the contacting surfaces as shown in Fig.
1 and

ũt j8
lin = fũj j

lin, ũh j
ling, ũt j8

rot = fũj j
rot, ũh j

rotg s15d

denote vectors of the relative velocities acting in the tangen-
tial direction(rotated byp /2 to the normal). Additionally we
use the same translation as presented by expression(14) for
calculationsvi8=e·vi, v j8=e·v j in order to obtain the angu-
lar velocities for particlesi and j in the local system of co-
ordinatessj ,h ,zd.

If a collision between a particle and a wall takes place, the
overlap(5) is defined as

iz j
bi = r i − ixb j − xii, s16d

and we also have

ih j
bi = 2Îiz j

bis2r i − iz j
bid s17d

which is valid for iz j
biù0. In this case the point of applica-

tion cj
b is defined by the following formula:

cj
b = xi + Sr i −

5

8
iz j

biDej
b, s18d

where
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ej
b =

xb j − xi

ixb j − xii
s19d

becomes a normal unit vector which is perpendicular to the
wall. When a particle-wall collision begins we obtaincj

b

=xi +r iez j
b . Moreover, one can find the timetj

bb when the
overlap (16) is zero. Expressions(9)–(14), defined for a
particle-particle collision, may be redefined for a particle-
wall collision whenẋ j andv j are zeros, and the unit vectors
are also redefined as explained in previously. For example a
component of the branch vector(11) is redefined for a
particle-wall collision and takes the following form:

iz̃ j
bi = r i −

5

8
iz j

bi. s20d

We neglect here any additional expressions necessary to de-
scribe the particle-wall collision. This can be done this very
easily in the same way as explained previously.

Summarizing our considerations, we have introduced the
above mathematical description as it is necessary for the for-
mulation of the motion equations and is also necessary for
some forms of the repulsive force in both particle-particle
and particle-wall collisions.

B. Motion equations

The molecular dynamics method requires a discrete deter-
ministic approach in order to model the motion of an indi-
vidual particle. As the particle may collide or lose contact
with other particles, we need to add or reject some forms of
the repulsive force and/or the attractive force in order to
simulate the particle dynamics more realistically. In this pa-
per, we will neglect the attractive force and concentrate only
on the repulsive force. Against this background, let us de-
scribe the motion of an individual particle by the following
two sets of equations

miẍi = o
l

Fl ,

Jiv̇i = o
l

M l , s21d

suitable for particle motion without any collision, and

miẍi = o
j ,jÞi

Pj
coll + o

j ,jÞi

Pj
b coll + o

l

Fl ,

Jiv̇i = o
j ,jÞi

M̃ j
coll + o

j ,jÞi

M̃ j
b coll + o

l

M l , s22d

which takes into account multiparticle collisions. The above
sets of equations exist simultaneously over time and are de-
pendent on the detection of a contact and the administration
of the repulsive force-overlap path during the contact. In
both Eqs.(21) and(22) Fl denotes a long range force which
extorts the motion of a particle,M l is a long range torque,
Pj

coll is a collisional force composed of the repulsive and
friction forces and acts between a pair of colliding particles,
Pj

b coll is the collisional force operating on a particle-wall

collision, M̃ j
coll and M̃ j

b coll are collisional torques operating
on particle-particle and particle-wall collision.

We need to define some of the criteria necessary for han-
dling the above sets of equations over the time of the calcu-
lations. It was shown in the previous subsection that at the
beginning of a collision the overlap given by expression(5)
or (16) is zero. Thus we have the impact phase. However,
some of the criteria for determining when the collision ends
are unclear. Correctly predicting the separation time of two
colliding particles is crucial in the calculation. Most papers
assume the particles separate at the time when the overlap
returns to zero. As proved in[29], the repulsive force
changes direction at the time when the overlap returns to
zero. This is contrary to experimental evidence, also shown
and compared with some models in[29], when the force
does not change direction. An attractive force operating in
opposite direction to the repulsive force has different origins
and is not taken into account here.

At this crucial point of our considerations, we need to
introduce some definitions in order to predict correctly the
beginning time of a particle collision and the time when the
collision ends. Let us consider the time of calculationst
P k0,Tl whereT represents the total time in which the cal-
culations are performed. We also define the time stepDtcoll in
which we trace the system dynamics. It should be noted that
Dtcoll! tcoll, wheretcoll is a minimal value of the collisional
time of two contacting particles. This assumption makes it
possible to solve motion equations(22) in which collisional
forces (torques) are included. In the next section we will
present numerical criteria concerning the estimation of the
collisional time. Following on from previous explanations
we start with some conditions:

Definition 1. If, within a time intervalkt ,t+Dtcolll the be-
ginning of a collision between a pair of particles is detected,
then the overlap(5) should fulfill the following conditions

iz jstdi ø 0 and iz jst + Dtcolldi ù 0

and therefore iz jstj
bdi = 0, s23d

and then timetj
bP kt ,t+Dtcolll is the time when the collision

starts.
Definition 2. If the end of a collision is formed within a

time intervalkt ,t+Dtcolll, then the overlap(5) and the normal
component of the repulsive forceRz j should fulfill the fol-
lowing conditions

iz jstdi ù 0 and iz jst + Dtcolldi ø 0

and Rz jstd . 0 and Rz jst + Dtcolld . 0 s24d

and therefore iz jstj
edi = 0

or

iz jstdi . 0 and iz jst + Dtcolldi . 0

and Rz jstd ù 0 and Rz jst + Dtcolld ø 0 s25d
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and therefore Rz jstj
ed = 0,

and then timetj
eP kt ,t+Dtcolll is the time when the collision

ends.
In formulas(24) and (25) Rz j represents a normal com-

ponent of the repulsive force. We will introduce a definition
of this force in the next subsection.

Definition 3. If, within a time interval kt ,t+Dtcolll, the
overlap and the normal component of the repulsive forceRz j
behave as follows:

iz jstdi . 0 and iz jst + Dtcolldi . 0

and Rz jst + Dtcolld → 0+, s26d

then timetj
e=Dtcoll+ t is the time when the collision ends.

Definition 4. Within the binary collision fortP ktj
b,tj

el the
linear and rotational components(14) of the relative velocity
predict the following states:

variations in time of the overlap(5) for ũz j
linstdÞ0 [for

ũz j
linstd.0 we have a compressed state but forũz j

linstd,0
we obtain a decompressed state],
torsion forvzistd−vz jstdÞ0,
sliding for ũt j8

linstdÞ ũt j8
rotstd or rolling for ũt j8

linstd
= ũt j8

rotstdÞ0.
Definition 5. When condition(24) is fulfilled then the

component of the relative velocity in the normal direction
ũz jstj

ed=−ũz jstj
bd predicts the elastic rebound of particles.

Definition 6. When condition(25) is fulfilled then the val-
ues of the relative velocities(14) predict the particle behav-
iors after the collision as follows:

rebound with particle deformations forũz jstj
ed,−ũz jstj

bd,
dynamic contact forũz jstj

ed=0, in which eventually torsion
fvzistj

ed−vz jstj
edÞ0g with sliding fũt j8

linstj
edÞ ũt j8

rotstj
edg or

with rolling fũt j8
linstj

ed= ũt j8
rotstj

edÞ0g exists,
static contact for ũ j8

linstj
ed= ũ j8

rotstj
ed=0 and vistj

ed
=v jstj

ed=0.
Definition 7. When condition(26) is fulfilled then the nor-

mal componentũz j
linstj

ed of the relative velocity(14) predicts
adhesion-induced plastic deformations of particles or break-
age of particles depending on the hardness of the contacting
surfaces.

On the basis of previous assumptions and definitions 1
and 2, we introduce the collisional time between a pair of
contacting particles astj

coll= tj
e− tj

b. This time is determined by
conditions (24) and (25) simultaneously. In other words,
when the overlap changes sign faster than the repulsive force
changes direction or vice versa then the collision is finished.
If particles are still in contact, then the total contact time is
significantly greater than the collisional time. If particles are
separated, then the total contact time equals the collisional
time. As presented in the first section, the collisional process
is composed of the impact phase, the contact phase and the
last phase formed after the contact phase. When the formu-
lation of the first and the last phases is infinitesimally short in
time then the collisional time is predicted by the contact
phase. The contact phase is predicted by the repulsive force-
overlap path. The adhesion or cohesion states extend the con-
tact phase over time to infinity. In our approach adhesion and

cohesion are eventually formed after the impact and they
represent completely different phenomena which result from
the collision process. Generally, when we model impact dy-
namics we need to consider the balance between the repul-
sive force, which is a direct reaction to the impact, and the
attractive forces which are a result of, i.e., cohesion of par-
ticles. Therefore, our collisional timetj

coll also becomes the
time of relaxation in which the collision process is stopped
and novel states are formed. Most papers neglect this fact
and identify the total contact time, which may increase to
infinity, as the collisional one.

Extending our considerations we notice that definition 5 is
suitable for the elastic collisions of particles because there
are no deformations in the contacting particles—the overlap
tends to zero faster than the repulsive force changes direc-
tion. In definition 6 we observe the opposite situation—the
repulsive force changes direction faster than the overlap
tends to zero. In our approach the collision process is fully
controlled by the repulsive force except for the situation pre-
sented by formula(26) in definition 3. On the basis of defi-
nition 7, which results from definition 3, we are able to ex-
plain that the local stresses associated with the deformations
of contacting particles become sufficiently large so as to ex-
ceed the elastic limit of the materials and as a result plastic
flow occurs[30] and the behavior of particle adhesion differs
from that predicted by the elastic deformation theory[31].
Adhesion-induced plastic deformations of contacting materi-
als are shown in some experiments[32]. Therefore we have
two possible states resulting from the impact: particle clus-
terizations when the colliding materials are soft, and frag-
mentation of particles when the colliding materials are hard.

Summarizing this subsection—we formulated two general
forms of the motion equations and discussed precisely how
to handle them.

C. Collisional forces, collisional torques and the fractional
interaction law

We introduce a mathematical description of the collisional
forces and torques occurring in motion equations(22). We
apply only a repulsive force in the normal direction to the
contacting surfaces, completely neglecting any attractive
forces. One can find some forms of attractive forces and their
physical meanings in[3]. We introduce a system of friction
forces and torques in a tangential plane. According to the
friction mechanism, the tangential friction force is one of
four types: torsion with sliding friction, sliding friction, roll-
ing friction or static friction. Torsion friction occurs when
colliding particles differ by their angular velocities in the
normal directionvzi andvz j. Torsion with sliding friction is
for colliding particles which have different angular velocities
in the normal direction and different linear velocities in the
tangential plane. Sliding friction happens when slipping oc-
curs in colliding particles. When the relative linear velocity
of the particles in the tangent direction reduces to zero, slid-
ing friction is replaced by rolling friction. If the external
forces are sufficiently small, rolling friction reduces the ve-
locity until particle motion stops and static friction occurs.
Considering the impact dynamics, we implemented the fol-
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lowing mechanism in general form: torsion with sliding fric-
tion can change to rolling friction, and rolling friction tends
to static friction. More details concerning the modeling of
torsion, sliding and rolling friction can be found in[33,34].
Here we show a description of the collisional force in global
coordinatessx,y,zd as

Pj
coll = 5Pj

sta for iũt j8
lini = iũt j8

roti = 0,

Pj
rol for iũt j8

lin − ũt j8
roti = 0,

Pj
sli for iũt j8

lin − ũt j8
roti . 0,

6 s27d

wherePj
sta is the force acting in a static friction state,Pj

rol is
the force occurring in a rolling state andPj

sli is the force
coupling the torsion-sliding state. The emphasis in this paper
is on the impact dynamics of static friction which is only
implemented in a simple form. A more detailed model of the
static friction state requires analysis of the tangential dis-
placement and possibly the inclusion of time dependent ef-
fects. According to Fig. 1 we need to define the collisional
force in the local system of coordinatessj ,h ,zd. Using a
matrix of the base vectors(4) we introduce transition from
the local system to the global ones as

Pj
sli = ej

T ·Pj8
sli, Pj

rol = ej
T ·Pj8

rol , s28d

wherePj8
sli, Pj8

rol are forces defined in the local system of
coordinates as

Pj8
sli = 3 Tj j

sli

Th j
sli

− Rz j
4, Pj8

rol = 3 Tj j
rol

Th j
rol

− Rz j
4 . s29d

In expression(29) Tj j
sli, Th j

sli, Tj j
rol, Th j

rol represent components of
the friction force in a planesj ,hd for torsion-sliding and
rolling states,Rz j is a sum of the normal components of
attractive and repulsive forces operating during a collision.
As assumed in this paper, we neglect attractive forces and
concentrate only on forms of the repulsive force. Some
forms of the attractive forces can be found in[2,3] but the
most well-known forms of the repulsive force are in[13–15].

On the basis of preliminary results[21] we now introduce
a model of the repulsive force in general form called the
fractional interaction law. Thus we have

Rz j =Hmaxf0,cj
a jkj

1−a j
t j
bDt j

e
a jsiz jidg for iz ji ù 0,

0 for iz ji , 0,
J s30d

where cj, kj are damping and spring coefficients with the
same meaning as in the linear interaction law[13], iz ji rep-
resents the overlap defined by formula(5), tj

b, tj
e are start and

stop times of a collision(not a total contact) predicted by
several definitions in the previous subsection,a j is the con-
version degree of impact energy into viscoelasticity of the
material andt j

bDt j
e

a jsiz jid represents the general form of the

differential and integral operator of fractional order as ex-
plained in [21]. According to fractional calculus[22,23,35]
we introduce the definition of this operator in the following
form:

t j
bDt j

e
a j
„iz jstdi… = 5o

l=0

n−1
st − tj

bdl−a j

Gsl − a j + 1d
iz j

sldstj
bdi + t j

b
CDt je

a j
„iz jstdi… for a j ù 0,

t j
bI tj

e
−a j

„iz jstdi… for a j , 0,6 s31d

where t denotes actual time of calculationstP ktj
b,tj

el, the
sum represents the initial conditions,t j

b
CDtj

e
a j(iz jstdi) is the

Caputo fractional derivative

t j
b

CDtj
e

a j
„iz jstdi…

=5 1

Gsnj − a jd
E

t j
b

tj
e

dnj

dtnj
iz jstdi

stj
e − tda j−nj+1dt

for nj − 1 , a j , nj ,

dnj

dst − tj
ednj

iz jstdi for a j = nj ,
6

s32d

where nj =fa jg+1 and [·] denotes an integer part of a real

number, andt j
bI tj

e
b j(iz jstdi) is the Riemann-Liouville fractional

integral

t j
bI tj

e
b j
„iz jstdi…

=5
1

Gsb jd
E

t j
b

tj
e

iz jstdistj
e − tdb j−1dt for b j P R+,

1

sb j − 1d!Et j
b

tj
e

iz jstdistj
e − tdb j−1dt for b j P N 6

s33d

andb j =−a j. Equation(30) represents the form of the repul-
sive force acting in the normal direction to the contacting
surfaces.
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Now we introduce additional definitions of forces operat-
ing in the tangent plane. Here we define the normal force as
N j8=f0,0,Rz jg. According to[33] we define the friction force
which is coupled between torsion-sliding friction as

T j8
sli = − msiũt j8 linidFsl jdNz j3sgnsũj j

lim − ũj j
rotd

sgnsũh j
lim − ũh j

rotd
0

4 , s34d

where the friction coefficient is

msiũt j8
linid = md + sms − mdde−aiũt j8

lini, s35d

where a is a numerical constant,ms and md are static and
dynamic coefficients of friction. Moreover in formula(34)
the functionFsl jd is defined according to[33] as

Fsl jd =5
4

3

sl j
2 + 1dEsl jd + sl j

2 − 1dKsl jd

pl j

for l ø 1,

4

3

sl j
2 + 1dES 1

l j
D − sl j

2 − 1dKS 1

l j
D

p

for l . 1,6
s36d

whereKsl jd andEsl jd are the complete elliptic integral func-
tions of the first and the second kind,l j is the dimensionless
quantity defined as

l j =
iũt j8

lin − ũt j8
roti

1

2
ih jiuvzi − vz ju

. s37d

The limiting values of the functionFsl jd are Fs0d=0 for
torsion without sliding and liml j→`Fsl jd=1 for sliding with-
out torsion.

According to[34] we define the rolling friction force as

T j8
rol =

1

Ji
ss̃j8 3 N j 3 s̃j8 +

1

J j
ss5 j8 3 N j 3 s5 j8 − A j

1

mi
+

1

mj
+

siz̃ jid2

Ji
+

sizM jid2

J j

, s38d

where

ss̃j8 =
1

2
fih jisgnsũh j

rotd,ih jisgnsũj j
rotd,0g, s39d

ss5 j8=−ss5 j8 and

A j =
1

mi
o
lsid

ej ·Flsid −
1

mj
o
ls jd

ej ·Fls jd +
1

Ji
o
lsid

sej ·M lsidd 3 s̃j8

−
1

J j
o
ls jd

sej ·M ls jdd 3 s5 j8 + vi 3
ds̃j8

d t
− v j 3

dsM j8

d t
. s40d

The above expressions are necessary for the definitions of
some collisional torques. Therefore we have the collisional
torque operating from particlei to particle j as

M̃ j
coll = 50 for iũt j8

lini = iũt j8
roti = 0,

M̃ j
rol for iũt j8

lin − ũt j8
roti = 0,

M̃ j
sli for iũt j8

lin − ũt j8
roti . 0,

6 s41d

whereM̃ j
sli is the coupled torsion-sliding torque,M̃ j

rol repre-
sents the coupled torsion-rolling torque. It should be noted
that transition from the local system of coordinates to the
global ones reads

M̃ j
sli = ej

T · sM̃ j8
sli + M̃ j8

tord,

M̃ j
rol = ej

T · sM̃ j8
rol + M̃ j8

tord. s42d

We define the torsion torque asM̃ j8
tor=f0,0,M̃z j

torgT and ac-
cording to[33] we obtain

M̃z j
tor = −

1

2
Tsl jdih jimsiũt j8

linidNz j sgnsvzi − vz jd, s43d

where the functionTsl jd reads

Tsl jd =5
4

9

s4 − 2l j
2dEsl jd + sl j

2 − 1dKsl jd
p

for l j ø 1,

4

9

s4 − 2l j
2dES 1

l j
D + S2l j

2 − 5 +
3

l j
2DKS 1

l j
D

pl j

for l j . 1 6 . s44d
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The limiting values of the functionTsl jd are Ts0d= 2
3 for

torsion without sliding and liml j→`Tsl jd=0 for sliding with-
out torsion. Moreover, we introduce the sliding torque as

M̃ j8
sli = s̃j8 3 T j8

sli. s45d

Using an idea included in[34] we determine the rolling
torque as

M̃ j8
rol = s̃j8 3 T j8

rol − ss̃j8 3 N j8, s46d

where −ss̃j83N j8 is the torque created on the penetration

width (6). As noted in[34], the torque −ss˜ j83N j8 exists be-
cause the contact between two particles is not a single point
but, due to deformation of both bodies, is a finite area.

Summarizing this subsection: we determined a full de-
scription of the forces and torques occurring in a collision.
We neglect here a mathematical description of the collisional

force Pj
b coll and torqueM̃ j

b coll acting between the particle-
wall because one can easily produce these formulas taking
into accountẋ j =0, v j =0, etc., in the above expressions.
More details concerning particle-wall interaction can be
found in [36].

III. SOLUTION PROCEDURE

Throughout this section we will show how to handle the
system of ordinary differential equations(21) and (22) in
order to simulate the dynamics of multiparticle collisions.
The above system is mathematically complex, and therefore
requires a numerical approach. However, estimation of col-
lision duration is needed for numerical stability. Therefore
the analytic solution for a simplified two-particle collision
requires the calculation of important quantities, i.e., colli-
sional time.

A. Analytic solution for a binary collision

In this subsection we present an analytical solution for the
simplified case of a two-particle collision in one dimension.
In this case, we use the fractional interaction law of the re-
pulsive force(30). Additionally, we neglect all forces even-
tually acting on a particle and we assume a central collision.
We alos omit angular motion and all friction phenomena oc-
curring between contacting particles. Against this back-
ground, let us describe the motion of two colliding particles
as

m1ẍ1 = − Rszd,

m2ẍ2 = Rszd, s47d

wherez=r1+r2−sx2−x1d and Rszd represents the fractional
interaction law(30). It should be noted that the above system
of equations is valid fortù tb, wheretb is the time when the
collision starts. According to definition 1 we obtainzstbd=0.
Assuming the conversion degree is positivesaù0d we de-
rive a simplified form of the repulsive force(30) as

Rszd = cak1−a
tbDte

aszd. s48d

Introducing novel variables

w =
m1x1 + m2x2

m1 + m2
, v = x1 − x2, s49d

we transform system(47) to the following form:

ẅ = 0,

v̈ = − cak1−aS 1

m1
+

1

m2
DftbDte

asvd + sr1 + r2dtbDte
as1dg.

s50d

It should be noted that the fractional derivativetbDte
as1d cal-

culated from the unit function is not zero.
The above system of differential equations can be solved

analytically. Using the Laplace transformation and introduc-

ing initial conditions vstbd=r1+r2, żstbd= ẋ1stbd− ẋ2stbd we
obtain a solution to the system(50) as

wstd =
m1ẋ1stbd + m2ẋ2stbd

m1 + m2
st − tbd +

m1x1stbd + m2x2stbd
m1 + m2

,

zstd = vstd + r1 + r2 = fẋ1stbd − ẋ2stbdgst − tbd

3E2−a,2„− Ast − tbd2−a
…, s51d

where

A = cak1−aS 1

m1
+

1

m2
D s52d

and E2−a,2 is the Mittag-Leffler function. According to[22]
this function is defined as

Ed,nstd = o
l=0

`
tl

Gsdl + nd
. s53d

In formula (51) wstd represents the motion of the particles’
centers of mass andzstd denotes the overlap(5). Differenti-
atingzstd over time we find a normal component of the rela-
tive velocity of colliding particles as follows

żstd = fẋ1stbd − ẋ2stbdgfE2−a,2„− Ast − tbd2−a
…

− As2 − adst − tbd2−aE2−a,2
s1d

„− Ast − tbd2−a
…g, s54d

whereEd,n
s1dstd is the first derivative of the Mittag-Leffler func-

tion, which can be calculated as

Ed,n
s1dstd =

d

dt
fEd,mstdg = o

l=1

`
lt l−1

Gsdl + nd
. s55d

To calculate the algebraic form of the repulsive force we
need to putzstd, which is included in expression(51), into
formula (48). According to fractional calculus[22,23,35] we
apply Leibniz rule and we obtain the repulsive force as
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R„zstd… = cak1−afẋ1stbd

− ẋ2stbdgo
l=0

` H Gsa + 1d
Gsa − l + 1dGsl + 1dGsl − a + 2d

3st − tbdl−a+1E2−a,2
sld

„− Ast − tbd2−a
…J , s56d

where E2−a,2
sld (−Ast− tbd2−a) represents the derivative of the

Mittag-Leffler function of orderl. The limiting value of the
function R(zstd) is limt→teR(zstd)=0. This limit determines
the collisional time of two contacting particles astcoll= te

− tb. An explicit solution of formula(56) in order to findtcoll

is impossible. Therefore we use some approximation to esti-
mate the collisional time by the following expression

tcoll ù Ss1.64d1−aGs4 − ad
A

D1/s2−ad

, s57d

where A is predicted by formula(52). Expression(57) is
suitable for rough estimation of the time incrementDtcoll

used in numerical calculations.
Extending our considerations concerning the behavior of

formula (57) we found that fora=0 this formula reduces to
tcollùÎ9.84/A. This expression agrees well with the colli-
sional time calculated by the linear interaction law[13],
where the damping coefficient is assumed to be zero.

B. Numerical solution

An accurate solution to this problem was obtained by in-
tegrating the system of ordinary differential equations(21)
for particles moving individually using Numerical Recipe
routines[37]. Tracing the motion of individual particles over
time we need to detect particle collisions in order to take into
account collisional forces and torques in the system of dif-
ferential equations. Using results presented in[25–27] we
have chosen the linked cell method to detect a collision.

It should be noted that during particle collisions we need
to solve system(22), where the fractional interaction law
(30) occurs. In this case we have a system of ordinary dif-
ferential equations with a mixture of operators: the integer
derivative of maximal order equals two, the fractional inte-
gral of order −a j and the fractional derivative of ordera j.
Using fractional calculus[22,23,35] we present discrete
forms of the fractional operators which are suitable in our
algorithm. Let us consider the duration of a collision over
time tP ktb,tel where tb represents the time when the colli-
sion starts andte is the time when the collision ends. We
introduce the divisionDN of the collisional timetcoll= te− tb

into several time steps. Thus we obtain

Dtcoll =
tcoll

DN
s58d

and tl = tb+ lDtcoll, for l =0, . . . ,DN. If a function fstd is con-
stant within the stepDtcoll then the discrete form of the
Caputo fractional derivative(32) becomes

tb
CDte

a fstd =
1

Gsn − a + 1dFA1ste − tbdn−a

+ o
l=2

DN

sAl − Al−1dste − tl−1dn−aG , s59d

whereaPR+, n=fag+1 and[·] denotes an integer part of a
real number,Al = f sndstld wheref snd is the derivative of integer
order n. Note that in formula(59) fstd denotes the overlap
(5). Taking the above assumptions into account we obtain the
discrete form of the Riemann-Liouville fractional integral
(33) as

tbI te
b fstd =

1

Gsb + 1dFB1ste − tbdb + o
l=2

DN

sBl − Bl−1dste − tl−1dbG ,

s60d

wherebPR+ and Bl = fstld. The discrete forms of the frac-
tional operators make it possibile to integrate system(22)
using any predictor-corrector procedure[37] with correction
of the time stepDtcoll. The correction of the time step pro-
vides measures that allow us to determine the begin time,
when particles enter into a collision, and the end time of
particle collisions. It should be noted that the begin and end
times are determined by several definitions presented in the
previous section. Using fractional calculus[22] we found
that the accuracy of the discrete form of the fractional de-
rivative (59) is equaled toO(sDNd−4).

We perform a numerical test in order to find the appropri-
ate value ofDN. This test concerns the impact of a steel
particle onto a bottom plate. Figure 2 shows the influence of
the division numberDN on the behavior over time of the
overlap(5), the relative velocity(14) and the repulsive force
(30). The analytic solution which we presented in the previ-
ous subsection is included in the figure. In the figurer =3
310−3 m, %=7680 kg/m3, k=4615380 kg/s2, c
=128.1 kg/s,a=0.2 and the initial(impact) particle velocity

is set atżs0d=1 m/s. In this case we obtained a value of the
collisional time astcoll=38.6310−6 s. Using formula(57) we
estimatedt̃coll to be t̃coll=37.8310−6 s. This underestimation
of the collisional timest̃coll, tcolld issues from the linear ap-
proximation of the solution to equationR(zstd)=0, where
R(zstd) is represented by formula(56). Extending our con-
siderations we can observe plausible agreement between the
numerical data obtained for differentDN and the analytic
solution. Nevertheless we should analyze what happens to
the overlap, the relative velocity and the repulsive force at
the time when the collision ends. Table I shows the quantities
which are dependent on the divisionDN for the assumed
value of the collisional time attcoll=38.6310−6 s. Direct

USING THE FRACTIONAL INTERACTION LAW TO … PHYSICAL REVIEW E 70, 051315(2004)

051315-9



comparison of the numerical results with the analytic solu-
tion shows thatDN=5 does not present satisfactory results.
However, we can observe that within the range fromDN
=20 to DN=40 the repulsive force is close to zero and the
other numerical quantities(the overlap and the relative ve-
locity) agree well with the analytic solution. Based on the
above results,DN=30 was chosen order to keep good agree-
ment with the analytic solution.

Next, taking formulas(27) and (41) into account in cal-
culations of particle contacts, we need to find an accurate
time needed to detect the switching between torsion-sliding,
sliding and rolling processes. A simple way to calculate the
switching time is to use a linear approximation method, as
described in the paper[34].

Next we consider a problem occurring in the calculations
of friction forces(34) and(38) and the torsional torque(43).
When the relative velocity at the contact point changes from
negative to positive or vice versa, it indicates that the signum
function sgnsxd changes sign very fast in the above expres-
sions. This is not desirable as it influences the stability and
convergence of the numerical calculations in a significant
way. Therefore we modified the signum function introducing

sgn˜ sxd =5
− 1 for x ø − e2,

1

e2 − e1
x +

e1

e2 − e1
for − e2 ø x ø − e1,

0 for − e1 ø x ø e1,

1

e2 − e1
x −

e1

e2 − e1
for e1 ø x ø e2,

1 for x ù e2,

6
s61d

wherex is the actual value registered during a contact(the
relative velocity), e1, e2 are numerical coefficients. This
function is robust forx→0 and gives a satisfactory result.

IV. RESULTS AND THEIR ANALYSIS

To illustrate the benefits of the fractional interaction law
(30) in the dynamics of arbitrary multiparticle collisions, we
will first demonstrate how this law operates in simple cases
connected with a one dimensional problem. First, we simu-
late a central collision between two particles. Figure 3 shows
the dynamics of a two-particle collision, which is represented
by some variations in the overlapizi (5), the linear relative

velocity ż=uz
lin (14) and the repulsive forceRz (30) over time

for different levels of the conversion degreea. Here we ne-
glect the indexj because only two particles collide. More-
over, all vectors are converted to scalar values when a one
dimensional problem is considered. In Fig. 3meff
=m1m2/ sm1+m2d=7.06858310−6 kg, r1=r2=3310−3 m, k
=5000 kg/s2, c=0.1 kg/s. The initial relative velocity is set

at ż=0.5 m/s and three groups of variations in the conver-
sion degree are taken into account. The first group is for
a,0 (left column), the second is for 0øaø1 (middle col-
umn) and the third representsa.1 (right column). Within
the range 0øaø1 we observe that collisional timetcoll in-
creases whena is increased. It should be noted that the col-
lisional time is registered when the repulsive forceRz

reaches zero, as presented in several definitions in the previ-
ous sections. Therefore, the overlapizi has some values at
the time when a collision ends and deformations of the par-
ticles’ surfaces are noted. Analyzing the behavior of the rela-

tive velocity ż over time we notice that this velocity changes
direction for small values ofa, which means that particle
rebounds dominate. Whena increases we can see that the
relative velocity tends to zero, which means that particles
stick together. In other words, ifa=0, no viscous term in Eq.
(30) may occur and all the impact energy must be due to

TABLE I. Influence of the division numberDN of the collisional timetcoll on the overlap, the relative
velocity, and the repulsive force fort= te.

DN=5 DN=20 DN=40 Analytic

Dtcoll s10−7 sd 77.20 19.30 9.65 →0

izi s10−6 md 3.65856 3.94248 3.94429 3.94422

ż (m/s) −0.67213 −0.66377 −0.66317 −0.63317

Rz sNd −0.84688 −0.01383 −0.00006 0

FIG. 2. Behavior of the overlap(top), relative velocity(middle),
and force(bottom) over time for different lengths of the time step
Dtcoll.
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elasticity. In this case the overlap reaches zero at the same
time as the repulsive force reaches zero. Ifa=1, on the other
hand, the impact energy is transfered through the viscous
term.

Extending our considerations fora.1 we observe(right
column on Fig. 3) that the repulsive force is not generated
and tends to zero fortcoll→`, and therefore the overlap in-
creases to high and unrealistic values. Moreover, the relative
velocity does not change direction and particles undergo the
next time steps of the calculations. According to definition 7,
presented in the previous section, the fragmentation of par-
ticles or permanent cohesion of particles is a direct result of
the plastic flow of their contacting surfaces. The contacting
surfaces are destroyed because deformations of contacting
particles become sufficiently large so as to exceed the elastic
limit of the materials, and we noticed particle clusterisations.
This process is observed experimentally in[30,32] and may
be modeled by the fractional interaction law(30).

Next we considered the behavior of the overlap, relative
velocity and repulsive force fora,0 (left column on Fig. 3).
Larger negative values of the conversion degreea decrease
the collisional time. The relative velocity changes direction
but at the end time reaches larger absolute values in compari-
son to the initial relative velocity. As this is unrealistic all the

solutions fora,0 are not taken into account. The aim of
this example is to show the power of fractional calculus,
where more solutions are obtained in comparison to classical
differential and integral operators having integer order. How-
ever, we need to choose which solutions obtained by frac-
tional calculus are suitable physically.

In Fig. 3 we constructed several mappings for the relative
velocity-overlap (left), force-overlap (middle) and force-
relative velocity(right) where a changes from negative to
positive values. Analyzing these mappings we found a set of
criteria necessary to predict different states of particle colli-
sions included in the definitions in the previous section. It
should be noted that small positive values ofa predict par-
ticle rebounds when particle deformations are practically
negligible. Whena tends to unity we also observe particle
rebounds but particle deformations are visible and more en-
ergy is dissipated. As indicated in the left chart in Fig. 3,
when a is above unity the repulsive force is not generated
and this indicates instability in particle collisions. This insta-
bility takes the form of particle fragmentation or permanent
clusterization of particles after the collision. Therefore the
conversion degreea is a ratio of the impact energy over the
specific energy needed for the destruction of particle sur-
faces. This assumption should be validated experimentally,
and this is the aim of our future investigations. It should be
noted that when the physical properties of colliding granular
materials and the impact energy are fixed we still observe
different values of energy dissipation after the collision. This
can be easily seen when we compare the particle collisions
for particles with smooth surfaces and for rough ones. The
fractional interaction law can simulate this because the con-
version degreea can change.(See Fig. 4.)

In order to compare the fractional interaction law with
other interaction laws, changes over time of the overlap, the
relative velocity and the repulsive force for two-particle col-
lision were presented. We assumed the parameters of collid-
ing particles to be r1=r2=3310−3 m, meff=7.06858

310−6 kg, ż=0.5 m/s. Moreover, we assumed the collision
time between two colliding bodies thetcoll=10−4 s and the
restitution coefficienter =0.5. These assumptions are neces-
sary to calculate the set of coefficients required by different
interaction laws, depending on the type of interaction law
chosen. In Table II we list all the coefficients. Some of the
expressions applied to calculate the coefficients for linear
[13] and hysteretic[15] laws can be found in[19]. The for-
mulas of the coefficients used in the linear interaction law
assumed that at the end time of a collision the overlap is
zero. In Table II the “linear1” represents the above case. We
assumed that the repulsive force reaches zero at the end time

FIG. 3. Behavior of the overlap(top), relative velocity(middle),
and force(bottom) over time for the fractional interaction law.

FIG. 4. Mapping the relative
velocity-overlap (left), force-
overlap (middle), and force-
relative velocity (right) for the
fractional interaction law.
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of a collision. Thus we have a set of coefficients called “lin-
ear2” also used for the linear interaction law. For the nonlin-
ear[14] and fractional laws we performed a numerical test to
find the values of the coefficients which allow us to keep the
assumed collision time and the restitution coefficient in a
two-particle contact. It should be noted that we obtained
many sets of coefficients for the fractional interaction law.
Therefore, for this law, we establish the spring coefficient,
which has the same value as for the linear interaction law.
Figure 5 shows the behavior of the overlap(top chart), the
relative velocity(middle chart) and the repulsive force(bot-
tom chart) over time where different interaction laws are
taken into account. Analyzing this figure we can confirmed
that the interaction law fulfilled our assumptions concerning
the collisional time and the restitution coefficient. It should
be noted that the repulsive force changes direction in the
linear interaction law(linear1) for the set of coefficients cal-
culated under the formulas found in[19]. This shows a defi-
ciency in numerical calculations and should be rejected.
Some changes in the values of the above coefficients give
satisfactory results in the linear interaction law(linear2).
However, the repulsive force in the linear interaction law has
a value at the beginning time which is independent on the set
of coefficients used. This is also unrealistic behaviour under
the linear interaction law.

Using different interaction laws we observed different
overlaps at the end time of a collision. The greatest overlap is
for the hysteretic law and decreases for the fractional in
through the nonlinear to the linear one. Note that we can find
another set of coefficients for the fractional law that fulfill
our assumptions and allows us to obtain another value of the
overlap at the end time of collision.

When we have determined all the parameters necessary to
describe the dynamics of particle impacts we then obtain
some values of the collisional time and the restitution coef-
ficient for this case. However, if we still keep the above
parameters but increase or decrease the surface roughness of
the colliding particles then we obtain values of the collisional
time and the restitution coefficient which differ in compari-
son to the previous values. As we did not change the physical
properties of this granular material, we have to maintain the
steady value of the spring coefficient in all the interaction
laws. Changing only the damping coefficient in the linear
and nonlinear laws and the unloading slopek2 in the hyster-
etic law does not guarantee that we will obtain accurate val-
ues of the collisional time and the restitution coefficient re-
flecting the above cases. This is a disadvantage of the well-
known interaction laws. In the fractional interaction law we

have an additional parameter called the conversion degreea
which causes some changes in the collisional time and the
restitution coefficient. However, this requires some experi-
mental data involving the impact dynamics of smooth and
rough particles. These data will provide measures that allow
some links to be made between the experiment and the co-
efficients of the fractional law.

In order to verify the validity of the interaction laws for
multiparticle collisions, the energies dissipated at each con-
tact were compared. Here we introduce a measure of energy
dissipation during multiparticle collisions which is the ratio
of the kinetic energy evaluated in time over the initial kinetic
energy. We define the total ratio of energy lost through mul-
tiparticle collisions as where the superscript 0 refers to the
initial kinetic energy examined at timet=0 s and nc is the
total number of colliding particles.

We used a set of particlesnp vertically stacked over a
bottom plate as shown in[18,19]:

« = 1 −

o
i=1

nc

miẋi
2

o
i=1

nc

mi
0sẋi

0d2

. s62d

We assumed the following conditionsr i =0.0015 m, mi
=1.41310−5 kg, ẋi =−0.5 m/s, for i =1, . . . ,np. Gravity is

TABLE II. Coefficients for colliding particle surfaces being de-
pendent on the interaction law used.

Law Coefficients

linear1 kn=7316 kg/s2, cn=0.0979 kg/s

linear2 kn=5225 kg/s2, cn=0.0981 kg/s

nonlinear k̃=1392000 kg/s2Îm, c̃=33.885 kg/sÎm

hysteretic k1=3924 kg/s2, k2=15697 kg/s2

fractional k=5225 kg/s2, c=0.297 kg/s,a=0.3197

FIG. 5. Comparison of the overlap(top), relative velocity
(middle), and force (bottom) over time for different interaction
laws.
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set at zero. Taking into account the results presented by[18]
we calculated the energy dissipation as a function of the
number of considered particlesnp, which becomes the num-
ber of colliding particlesnc when at the begin time of the
collision the distances between spheres equal zerol j

0=0m,
for j =1, . . . ,nc. Note thatj =1 represents a collision between
the first particle and the bottom plate andj =nc is a collision
between the topmost particles. We also assume the colli-
sional time between two colliding bodiestcoll=10−4 s and the
restitution coefficienter =0.945. These assumptions are nec-
essary to calculate some coefficients depending on the type
of interaction law chosen. The coefficients represent a colli-
sion between two particles or between a particle and the
bottom plate, where the plate mass is infinite.

Figure 6 shows the energy dissipation as being dependent
on the number of collisionsnc for different interaction laws
used in the molecular dynamics method and also in the event
driven method[20,25]. For linear, nonlinear and hysteretic
laws we noted the same dependencies as in[18,19]. This
means that the “detachment” effect occurs. First, we consid-
ered the fractional interaction law for a steady value of the
conversion degreea j =0.0258, for all binary collisions. In
this case we obtained similar results for the hysteretic and
fractional interaction laws. Thus the “detachment” effect also
occurs in the fractional interaction law for the steady value of
a j. As written in [18] the kinetic energy obtained from the
event driven technique is dissipated totally fornc·s1−erd
large. It should be noted that the basic interaction laws are
valid for two-particle collisions which are completely inde-
pendent of other collisions. However, in multiparticle colli-
sions, we need to include mutual dependencies between sev-
eral binary collisions. Taking this fact into account, we can
obtain satisfactory results when the conversion degreea j
changes in relation to the number of colliding particles. This
was explained more precisely in[21]. Therefore we propose
a8sncd,1+exps−ncd in order to keep a qualitative agree-
ment with the event driven method. It should be noted that
we cannot estimate correctlya8sncd by direct comparison
with the event driven technique. We require experimental
data involving multiparticle collisions. This data will provide
measures that allow some links to be made between several
coefficients in the fractional interaction law and the experi-
ment.

The last example simulates the dynamics of five particles
in three dimensional space for two values of the parametera.

The first valuea=0.01 indicates the strong repulsive state,
i.e., particles rebound almost without dissipation of their en-
ergy. The second one fora=0.97 represents the weak repul-
sive state where most of the impact energy is converted into
material viscoelastcity. We can easily observe such states in
the real behavior of granular materials, when we consider the
collisions for contacting particles with smooth surfaces and
for rough ones. For this simulation we assumed the follow-
ing conditions r1=0.02 m, r2=0.01 m, r3=0.007 m, r4
=0.005 m, r5=0.009 m, %1=%4=2000 kg/m3, %2=%3=%5
=1000 kg/m3, x1=f0.0,0.1,0.23g m, x2

=f0.001,0.125,0.205g m, x3=f−0.002,0.090,0.198g m, x4

=f−0.004,0.120,0.186g m, and x5=f−0.001,0.1,0.18g m.
Moreover, we consider a situation where a particle with an
initial linear velocityu1=f0,0,−5g m/s collides at different
moments in time with particles which initially do not move
(u j =f0,0,0g m/s, for j =2, . . . ,4). Particles do not rotate ini-
tially svi =0 1/sd, gravity is set to zero andk=1000 kg/s2,
c=1 kg/s for each pair of colliding particles. We also sim-
plified values of the friction coeffcients putting into Eq.(35)
a=0 andms=0.5 for each pair of colliding particles. Figure 7
shows the trajectories of the mass centers of five particles in
three dimensional space for strong and weak repulsions as a
reaction to the impact dynamics. The particles are numbered
from 1 to 5. This simulation does not reflect the real motion
of particles because we neglect external forces, i.e., the
gravitational force. We can only show how the fractional
interaction law operates in the above conditions as being
dependent on the conversion degreea. In the strong repul-
sive statesa=0.01d we observe linear particle trajectories. As
a is increased and reaches the weak repulsive statesa
=0.97d we noticed different particle trajectories in compari-
son to the previous state. According to the results presented
in Fig. 3 we can say that duration over time of the repulsive
force, which is longer over time for higher values ofa, has a
significant influence on the particle trajectories.

FIG. 6. Energy dissipation during multiparticle collisions for
different interaction laws.

FIG. 7. Behavior of particle trajectories depending on strong
sa=0.01d and weaksa=0.97d repulsions.
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In order to explain more precisely what happens to par-
ticle trajectories in strong and weak repulsive states, the ve-
locities of one individual particle were analyzed. Figure 8
shows the linear and angular velocities of particle 1 over
time in the global system of coordinatessx,y,zd. In this fig-
ure the dashed lines represent particle velocities in the strong
repulsive state, whereas continous lines indicate the weak
repulsive state. We can observe clear jumps in particle ve-
locities over time for the strong repulsive state. This is a
result of the duration of a collision determined by the col-
lisonal time between a pair of contacting particles. In this
state we can notice binary collisions because several colli-
sional times between the different pairs of contacting par-
ticles have shorter values in comparison to their separation
times, where particles move individually. However, in the
weak repulsive state we observe continous changes in par-
ticle velocities without the distinction of any jumps. This
means that several collisional times between the pairs of con-
tacting particles overlap each other. So binary collisions are
not distinguished here.

Moreover, we analyzed, in the local system of coordinates
sj ,h ,zd, the angular velocities over time of particle 1, which
collides with particle 5. In the strong repulsive state we ob-
serve smaller values ofvj andvh (these velocities are angu-
lar velocities predicted in the tangent plane as shown in Fig.
1) in comparison to the weak repulsive state. This means that
torsion-sliding friction dominates in the strong repulsive
state, where binary collisions are noted. In the weak repul-
sive state we observe that the angular velocitiesvj and vh

have higher values than in the strong repulsive state. Thus
we expect the torsion-rolling friction between particles 1 and
5. However, multiparticle collisions are noted in the weak
repulsive state.

In order to prove where binary or multiparticle collisions
occur, some distributions of collisional times over the dura-
tion time of calculations are presented. Figure 9 presents the
sequence of segments of collisional times over the time of

observation for strong and weak repulsive states. Continous
segments represent collisional times for weak repulsion
whereas strong repulsion is denoted by the dashed segments.
Each segment representes one binary collision between a pair
of contacting particles, i.e., 1-3 means the collision between
particle 1 and particle 3. Analyzing this figure we observe
longer collisional times for the weak repulsive state in com-
parison to the collisonal times for the strong repulsive state.
Moreover, the collisional times ovelap in the weak repulsive
state, therefore multiparticle collisions occur.

V. CONCLUDING REMARKS

We used the molecular dynamics method to model the
motion of individual spherical particles in three-dimensional
space. We introduced a novel mathematical description of
this method which takes into account the division of the
collision process into an impact phase, contact phase and
another phase formed after the contact phase. We assumed
that the impact phase and the phase formed after the contact
phase are infinitesimally short in time. We redefined the col-
lisional time so that it is predicted by the repulsive force-

FIG. 8. Linear and angular ve-
locities of particle 1 over time for
strong sa=0.01d and weak sa
=0.97d repulsions.

FIG. 9. Sequence of collisional times depending on strongsa
=0.01d and weaksa=0.97d repulsions.

JACEK S. LESZCZYNSKI PHYSICAL REVIEW E70, 051315(2004)

051315-14



overlap path. On the base of preliminary results[21] we
proposed an expression for the repulsive force formulated
under fractional calculus. The force can control the energy
dissipation and the collisional time for an individual particle
colliding with many other particles. In multiparticle colli-
sions, we included the friction mechanism needed for the
transition from coupled torsion-sliding friction through roll-
ing friction to static friction. Therefore our model includes
multiparticle collisions in arbitrary forms. Using the frac-
tional interaction law one can determine different states of
particle repulsions, i.e., strong and weak repulsive states. In
the strong repulsive state binary collisions dominate, and
torsion-sliding friction is the main friction mechanism. How-

ever, within multiparticle collisions rolling friction is ob-
served to be much stronger.

The presented numerical results can be used to realisti-
cally model the impact dynamics of an individual particle in
a group of colliding particles. In order to tune the model’s
coefficients we require experimental data involving multipar-
ticle collisions. This data provides measures that allow some
links to be made between several coefficients in the frac-
tional interaction law and the experiment.
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