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We present both experimental and numerical investigations of compaction in granular materials composed of
rods. As a function of the particles size and with respect to the container diameter, we have observed large
variations of the asymptotic packing volume fraction. The relevant parameter is the ratio between the rod
length , and the tube diameterD. Even the compaction dynamics remains unchanged for various particle
lengths, and a transition between 3d and 2d ordering for grain orientations is observed for, /D=1. A toy model
for the compaction of needles on a lattice is also proposed. This toy model gives a complementary view of our
experimental results and leads to behaviors similar to experimental ones.
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I. INTRODUCTION

Granular matter has been the subject of numerous studies
since the last decade[1–4]. Indeed, most of the industrial
products are processed, transported, and stocked in a granu-
lar state. The packing density of those granular materials
becomes therefore a relevant parameter for a broad range of
applications. The best way to reduce the costs for the ma-
nipulation of such granular materials is to increase the pack-
ing densityr. This can be achieved by tapping or vibrating
the vessel containing the grains.

Various experimental studies[5,6] have underlined the
fact that the dynamics of compaction is a complex problem.
The compaction dynamics is indeed characterized by a slow
dynamics[6]. Different laws have been proposed for the vol-
ume fraction evolution of a granular material as a function of
the numbern of taps. Among others, one has proposed the
inverse logarithmic law

rsnd = r` −
Dr

1 + B lns1 + n/td
, s1d

where the parametersr` and Dr are, respectively, the
asymptotic volume fraction and the maximum variation of
the volume fraction. The dimensionless parameterB depends
on the acceleration during each tap andt is the relaxation
time of the reorganization process. This inverse logarithmic
law of n was obtained in numerical models for compaction
like the Tetris model and could also be derived from theoret-
ical arguments[7,8].

The great majority of earlier experiments have considered
the compaction dynamics of spherical grains[9,10]. Only a
few papers discuss the problem of anisotropic particles
[11,12]. It has been reported that the compaction dynamics
exhibits different regimes associated with respectively, grain
translations and grain rotations.

It has been also reported[12,13] that the random packing
density of spherocylinders or rods decreases when the aspect
ratio , /d of these objects increases.

In this paper, we present an experimental study of com-
paction dynamics for cylindrical particles in vertical tubes
(Fig. 1). We investigate the volume fraction as a function of
the ratio between the grain length and the tube diameter,

, /D. We will see that according to the ratio, /D, restrictions
on grain orientations appear. These restrictions have a large
influence on the asymptotic volume fraction.

Finally, a toy model for compaction only based on geo-
metrical considerations is also proposed for the case of an-
isotropic grains. The behaviors of the compaction dynamics
are reproduced.

II. EXPERIMENTAL STUDY

A. Experimental setup

Our experimental setup for the study of compaction is
different from the usual ones. Indeed, an oscillating system is
generally used to produce the compaction process. In our
experiment, an electromagnetic hammer, which is controlled
by a computer via an interface, is placed below a vertical
tube for tapping. Thus, we act on the system with a series of
intense and short taps. The intensity, the number, and the
frequency of the taps can be controlled. The present study is
mainly focused on the effect of grain and container geometry
rather than tap intensity. The number of taps is therefore the
relevant parameter for tapping. A charge-coupled-device
(CCD) camera records the tube during the whole experiment.
Therefore, we can measure the evolution of the heighth of
the granular/air interface by image analysis. A ruler is placed
along the tube in order to calibrate the measurements. The

FIG. 1. Sketch of our experimental setup. The granular material
is placed in a vertical glass tube. Taps are generated by an electro-
magnetic hammer controlled by a computer. A camera records the
granular/air interface after each tap.
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picture analysis for the volume fraction measurements is
made by an algorithm especially developed for this task. On
the pictures, grains appear as dark and the rest of the system
appears as bright. An average of the pixel values is per-
formed on the vertical of the picture. We obtain an abrupt
variation of the average at the position of the granular/air
interface. The maximum of the first derivative gives the po-
sition of the interface. The volume fractionr is estimated
through the value ofh, the density of grains,rg, and the
weight of the entire column,p. One should note that in our
experiment, we are mainly interested in the volume fraction
averaged over the entire granular column. A sketch of our
setup is given in Fig. 1.

The granular material we used is Capellini pasta noodles
(density=1.47 g/cm3), which were cut precisely into identi-
cal cylinders. The diameterd of these cylinders is 1.2 mm
and their length varies between 2 mm and 26 mm. Their as-
pect ratio, /d varies between 1.6 and 21. The cylinders are
placed in a vertical glass tube. The internal diameterD of the
glass tube can vary between 8 mm and 24 mm. Only differ-
ent, andD values will be examined, the rod diameter being
fixed.

For the preparation of the loose packing, grains are
poured in the glass tube with a funnel before each run. We
have also tested a decompaction by inflating air from the
bottom of the tube. This does not change our results obtained
with the rain method.

In order to obtain a saturation of the volume fraction
when tapping, a minimum of 2000 taps were applied before
stopping each experiment.

Before investigating the compaction dynamics, let us
present some additional information about tapping. We have
measured the acceleration experienced by the bottom of the
glass tube after each tap. The analysis of a single tap with an
ultrafast camera gives a typical acceleration of 12g during a
short period of 2 ms. The amplitude of the vertical motion is
approximately 0.25 mm. The relaxation time of the system
after a tap(the time after which there is no movement in the
tube) has been measured to be less than 0.12 s. In all our
experiments, the successive taps are always separated by at
least 0.2 s. This time interval is long enough to avoid any
overlap between relaxation mechanisms provoked by two
successive taps.

B. Compaction dynamics

We have analyzed the compaction for different tube diam-
eters D and for different lengths, of the rods. Figure 2
presents typical curves of compaction for three different
lengths. Each curve is well fitted by the inverse logarithmic
law of Eq. (1). Curves obtained in other glass tubes present
similar behaviors. We do not observe different stages in the
compaction process as in[11]. In fact, an initial relaxation
stage and a vertical ordering stage have been observed for a
vertical acceleration less thanG=7.5. In our experiment, the
dimensionless acceleration is much largersG=12d as under-
lined here before. Furthermore, when the grain length be-
comes large, grains rotations becomes restricted to very
small angles because of the caging effect.

All experimental compaction curves have been fitted with
the inverse logarithmic law—i.e., with Eq.(1). From the fits,
a relevant parameter is the asymptotic volume fractionr`. To
ascertain that tapping for 2000 taps is long enough for deter-
mining the final density from fitting, we have made some
measurements with 10 000 taps. Fitting up to 10 000 taps
gives almost the same value ofr` as the value obtained by
fitting the first 2000 data points.

Figure 3 shows the asymptotic volume fractionr` as a
function of the ratio, /D for different tube diameters. Each
dot is an average over five different measurements. Error
bars are indicated. The asymptotic volume fraction presents
large variations when the ratio, /D is changed. In every
experiment, we observe a minimum ofr` when the cylinder
length is equal to the tube diameter—i.e., when,=D. From
these results, one could wonder whether the compaction dy-
namics changes or not when varying, /D.

While the asymptotic volume fractionr` of the packing
does not vary much withD for both extreme cases, /D@1
and, /D!1, the situation is quite different for the particular
case,=D. The asymptotic volume fractionr` presents a

FIG. 2. Typical curve of compaction: volume fractionr as a
function of the tap numbern. Three different cases are illustrated
for a unique diameter of the tube,D=10 mm:,=4 mm (squares),
,=10 mm (circles), and ,=20 mm (triangles). The curves are fits
using Eq.(1).

FIG. 3. Asymptotic volume fractionr` as a function of the
ratio , /D for three different tube diameters:D=8 mm (squares),
D=10 mm (circles), andD=12 mm (triangles). Each dot is an av-
erage over five measurements. Error bars are indicated.
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minimum for ,=D. Geometrical constraints are thus maxi-
mum for that situation. Moreover, the asymptotic volume
fraction r` decreases when the tube diameterD increases.
Figure 4 is a plot ofr`s,=Dd as a function of, /d for the
particular case,=D. Extremely low values of the packing
fraction r`=0.25 can be found for large tubes(and large
grains).

C. Discussion

As for common liquid crystals, the rods have two param-
eters for describing a possible long-range order: position and
orientation. Each of them plays a role in the packing fraction.
Since random positions are usually observed even for spheri-
cal grains, the largest source of heterogeneities in our experi-
ment comes from grain orientations. The orientation disorder
is reduced when,.D. One should also note that the vertical
configurations which are favored by the geometrical con-
straints do not correspond to energy minimization. Indeed,
the potential energy for a grain is minimized when this grain
is horizontal.

Figure 5 presents typical pictures of the packing for vari-

ous ratios, /D. The pictures were taken after several taps.
From the observation of the left picture shown in Fig. 5, one
understands that all grain orientations are possible for,,D.
In that case, ideal packing could be realized in various direc-
tions. For,.D, horizontal orientations are forbidden. The
grains are ideally arranged along the tube direction—i.e.,
along the vertical direction. This global ordering of the
grains is well seen in the right picture of Fig. 5. When,
=D, a few grains are placed in the horizontal direction. Large
voids can be seen near horizontal grains. This case is shown
in the central picture of Fig. 5.

The large variation of the packing fraction, which is ob-
served when the needle length, is equivalent to the tube
diameterD, should be attributed to a 3d-2d transition.

Let us discuss some particular cases. For,!D, the situ-
ation tends to a packing of isotropic objects. The 3d ideal
volume fraction of identical spheres isr=p /3Î2<0.74
while the random close packed limit isr<0.64—i.e., a value
close to that measured for the smallest grains. In the case of
long needless,@Dd, all needles have a vertical orientation.
The ideal volume fraction is given by the fraction of disks
arranged along a hexagonal packing in the plane crossing the
glass tube—i.e.,r=pÎ3/6<0.91. Of course, this ideal-
ordered packing is never realized. The random case corre-
sponds to a packing fractionr<0.82 which is the upper limit
of our experimental measurements.

From the above discussion of both extreme cases, one
expects a global increase of the volume fraction from 0.58
(random sphere packing) to 0.82 (random disk packing)
when the ratio, /D increases. How to explain that the vol-
ume fraction presents a minimum for,<D? This minimum
is the consequence of the competition between two phenom-
ena. First, the packing density decreases when the grain
length , increases[13,14]. Second, we observe an arrange-
ment of grains along the tube direction when, /D.1. This
arrangement leads to an increase of the packing density. The
first phenomenon explains the decrease ofr` for , /D situ-
ated between 0.2 and 1. The second phenomenon explains
the increase ofr` for , /D situated between 1 and 2. Further-
more, when,<D, some horizontal grains can block the ver-
tical motion of the other grains and jams are formed.

In Fig. 4 the minimum value ofr` is found to decrease
with ,s=Dd. This decrease is explained by the increase of the
grain lenght, and by the presence of jams when a grain is
horizontal.

III. SIMULATIONS

A. Toy model

In order to reproduce our experimental results, we pro-
pose a toy model on a 2d lattice. Grains are needles having
different orientations. They are placed on a square lattice.
Each grain has eight different possible orientations which are
illustrated in Figs. 6 and 7. Lattice boundaries are closed.
The length, of the needles is a parameter to be investigated.
The widthW of the lattice is the second parameter of the toy
model.

The first step of the model consists in filling the lattice
with anisotropic grains. The first configuration is obtained by

FIG. 4. Asymptotic volume fractionr`s,=Dd as a function of
the aspect ratio of cylinders,, /d, for the particular case,=D. Error
bars are indicated.

FIG. 5. Pictures of the tube after 2000 taps and for a tube diam-
eterD=10 mm. Three different cases are illustrated:(a) ,=4 mm,
(b) ,=10 mm, and(c) ,=20 mm.
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the rain method. Grains are dropped sequentially on the top
of the lattice. Both grain position and grain orientation are
chosen randomly. The grains follow a vertical motion until
they touch another particle or the lattice edge.

Once the lattice is filled, the model consists in applying a
series of taps. The procedure to simulate a single tap is the
following. We randomly choose some grains as many times
as the number of grains in the system. Thus, every grain in
the system has a chance to move. For a selected grain, we
have the choice between two motions: a rotation with an
angle of ±p /4 or an horizontal translation of one pixel. The
selected motion for that grain has also two possible direc-
tions. Each motion and each direction is chosen randomly
with a probability 0.5. The operation is executed only if it
does not lead to some overlap of the grains. The volume
fraction r of the packing is measured after every tap. It

should be also underlined that this toy model does not con-
sider gravity for selecting new orientations of a needle. In-
deed, the effect of gravity becomes negligible whenr be-
comes large(after a few taps).

B. Numerical results

In the simulations, we have observed the evolution of the
volume fractionr as a function of the tap numbern. Figure
8 presents typical compaction curves obtained numerically
for three different situations. An inverse logarithmic dynam-
ics has been found in every case. From the fits using Eq.(1),
we have obtained the evolution of the saturation densityr`

for various ratios, /W and for different lattices. The results
are displayed in Fig. 9. As for experiments the volume frac-
tion presents a minimum when,=W.

Moreover, we have numerically investigated the particular
case,=W. Figure 10 presents the volume fractionr` as a
function ofW in a semilogarithmic plot. The volume fraction
is seen to decrease exponentially with the lattice widthW.
One has

FIG. 6. Eight possible orientations of a needle with,=9 on a
square lattice.

FIG. 7. Typical simulated packings in a 2d system. Three dif-
ferent needless,=13,41,77d are illustrated for the same lattice
sW=41d. Different heterogeneities from disorder to long-range or-
der can be seen. Large voids are obtained when,=W.

FIG. 8. Simulated compaction curves: volume fractionr as a
function of the tap numbern. The curves are fits using the inverse
logarithmic law, Eq.(1). Three different cases are illustrated:,=9
(squares), ,=21 (circles), and ,=41 (triangles). All data are ob-
tained forW=21. The curves are an average over five simulations

FIG. 9. Asymptotic volume fractionr` as a function of the ratio
, /D for different lattices: W=13 pixels (squares) and W
=41 pixels(circles). Each data point is an average over five simu-
lations. Error bars are indicated.
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r` = rR + A expS−
W

L
D , s2d

with rR=0.125±0.009, which is a residual density for a
jammed phase, andL=21.1±2.3 is a characteristic length of
particle. It would be interesting to check experimentally
whether a residual density exists for large tubes and large
grains. Nevertheless, we are not able to obtain this extreme
situation(see Fig. 4).

C. Discussion

Our toy model reproduces qualitatively our experimental
results. Indeed, the compaction curves look similar to the
experimental curve(see Fig. 8). A minimum of the volume
fraction is also observed when the needle length, becomes

equivalent to the widthW of the lattice. The exponential
scaling of the minimum(Fig. 10) is unexpected and needs
further theoretical and experimental studies.

The large variation of the packing fraction, which is ob-
served when the needle length, is equivalent to the widthW
of the lattice, should be attributed to a 2d-1d ordering. Figure
7 presents typical packings on the same lattice. Three differ-
ent lengths, are illustrated:,,W, ,=W, and,.W. In the
former case, the grains have various orientations. Small
voids can be seen. In the second case, a few grains have
horizontal orientations blocking the lattice. This jammed
situation could create large voids. In the third case, a large
majority of the grains have a vertical orientation and pack
ideally along the lattice. A few diagonal grains create voids
in the lattice.

The toy model confirms that the variation of the
asymptotic volume fractionr` according to the particle
length and to the container size is due to geometrical effects.

IV. CONCLUSION

In this paper, we present an experimental study of
compaction in granular materials composed of anisotropic
particles. As a function of the aspect ratio of the particles,
we have observed large variations of the asymptotic pack-
ing volume fraction in vertical tubes. We have observed a
3d-2d ordering when the needle length becomes equal to the
width of the container. A toy model is proposed and repro-
duces numerically what we observed.
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