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Cluster kinetics of density relaxation in granular materials
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Of the many complex processes of granular materials, vibrational settling and compaction are common
phenomena that have attracted much attention. In this work, we investigate vibrational, or tapping, compaction,
and propose that the underlying kinetics involves clusters fragmenting and aggregating, and individual grains
attaching and dissociating at cluster surfaces. The periodic vibrations cause cluster breakage and interchange
between individual free grains and the clusters. The population balance equations for the concurrent kinetics
are solved by a moment method, yielding easily solved differential equations. The compaction ratio defined in
terms of the mass moments agrees well with experimental[Haight et al, Phys. Rev. E51, 3957(1995);

Nowaket al, ibid. 57, 1972(1998] and other models. A change in tapping acceleration can produce reversible
or irreversible transitions between densities, depending on the number of clusters that have evolved.
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INTRODUCTION the tendency for free grains to aggregate into clusters, which
are sometimes chainlike. Since interactions among particles
Settling and compaction of powders and grains occur in 8n a granular medium are inherently inelastic, energy is lost
myriad of natural and industrial processes. When lightlyin each collision, allowing particles to aggregate. When the
packed granular materials are tapped, vibrated, or shaken ingrains are in a gravitational field, they will tend to fall into
gravity field, the packing density can increase by relaxatioraggregates or ordered domains. The process is similar to a
mechanisms that are not well understood. In a seminal studliquid-solid phase transition with free grains analogous to a
Knight et al. [1] reported that monodisperse spherical glasdiquid phase and clusters to the crystalline phase. The pro-
particles shaken in a vertical cylindrical tube evolved from aposed distribution kinetics method has been used to describe
low initial density to a final density that depended on thea range of crystallization processes, including crystal growth
tapping intensity. As proposed earlier by Barker and Mehtd6(2)], coupled with nucleatiof6(b)] and Ostwald ripening
[3], the complex time dependence of the density relaxatiod6(c)]. The dynamics of polymorphic crystalline forms has
required two time constants, suggesting that two types o@lso yielded to this approaqﬁ(d)_]. The clusters considered
packing are involved. The slo@ogarithmig transition be- here are close-packed crystalline forms that perhaps grow
tween packing states was explained by individual particld'€ar the container wall2]. Free single grains are those not
movements similar to automobile parkifid]. We hypoth- associated with a_cluster during the wprauo_nal agitation of
esize that two types of packing are involved: free grainsthe granular medium. When the tapping vibrations in the

amorphously packed at low density and coherent clusters oq‘xpenments cause more consolidation, the number of free

. o -~ grains decreases as the compact clusters grow. The amount
Iarg_er Qe_nsny. The_ transition _between them can be explalnegf compaction will depend on the strength of the agitation
by individual grains attaching and detaching from the

. rocess; stronger accelerations typically allow more grains to
densely packed clusters. The experiments of NoetaM. [2] P g ypically g

; . i seek the closer-packed configuration. Extremely vigorous
showed that reversible or irreversible changes between defigy ontinyous vibration, however, would cause greater clus-

sity states occurred for different changes in tapping intensity, breakup and detachment of free grains, a process similar

This dependence on the process history is an additional irg, 5o jiguefaction during earthquakes. One might anticipate,
triguing and challenging issue that, according to our pro+

) i 9 herefore, that compaction versus tapping intensity will show
posal, is related to the cluster evolution. A realistic theory ofa maximum[2]
granular compaction should describe both kinds of experi- Vibrational compaction is one of many processes impor-

mental observations. . . o L .
I L tant to handling particulate solidg]; flow, mixing, arching,
We explore the possibility that cluster kinetics based on, b ression compaction, shearing, and fluidization are other

population balancédistribution kinetics modeling can de- : CoAt
X . . - processes that may be influenced by cluster kinetics. Our
scribe the observations. Goldhirsch and Zar&ftiand Jae- approach to the kinetics and dynamics of clusters is similar

geret al. [4], through two-dimensional simulations, reported j, ohiosophy to chemical kinetics. There, rate coefficients

enter the models via constitutive relations, just as rate coef-
ficients proposed for Egsl) and(2) below appear in the rate

*Email address: bjmccoy@Isu.edu equations. Such parameters obviously depend on underlying
TCorresponding author. Email address: molecular or microscopic processes, but much can be learned
giridhar@chemeng.iisc.ernet.in by considering how they vary with experimental conditions.
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For example, our approach has been applied to granular midscribed the experimental data accurately. Salwerel. [10]
ing by tumbling operation$6(e)], whereby loose particles interpreted the experimental data with a hydrodynamical de-
slide down the inclined surface and/or particle clusters fragscription based on an assumed glasslike viscosity relation.
ment and fall down the incline. The method allowed straight-Gavrilov's [11] recent paper, based on a one-dimensional
forward derivation of experimentally observed asymptoticcluster model, has similarities with the current work. Follow-
power law or exponential behavior of segregation metrics foing cluster fragmentation concepts applied to traffic flow,
various rate coefficient expressions. In another instance, ajgsavrilov used a Monte Carlo approach to compute how in-
plication of cluster kinetics to phase transition dynamics cor-dividual grains dissociated from and reassociated with clus-
rectly predicted the asymptotic scaled coarsening of the clugers evolving to hexagonally packed clusters. However, clus-
ter size distributior{6(f)]. ter fragmentation(breakagg and aggregation, described by
The initial condition for density relaxation experiments Eq.(2) below, were not considered. Recent work seems gen-
[1] was prepared by blowing dry nitrogen gas up through theerally to agree on the tendency for grains to organize into
granular medium. Before the vibration began, the packinglusters or ordered domaif$2-17.
fraction was 0.581] or 0.59[2]. An experiment consisted of The present objective is to explore a different approach to
well-separated accelerations, or taps, of the vertical cylindridensity relaxation in granular media. The approach is based
cal tube holding the granular material. Given that the systenon evidence for clustering among grains and recognition that
relaxes following each tap, grain transfer to or from clusterssuch clusters are distributed in size. We hypothesize that dur-
occurs only during the acceleration. The tapping intensitying the relaxation, beginning with a loosely packed medium,
was measured by the ratio of the peak acceleration of a tap the discrete taps cause individual grains to dissociate from or
the gravitational acceleratiod’=a/g. According to the attach to the surfaces of clusters. The clusters may also frag-
present model, the initial condition for computations is thement and aggregate, exposing new surfaces for loosening
state of the granular medium caused by the tapping, i.esingle grains. The end state of an acceleration pgootap
during the agitated state. Thus, in the initial low-density con-s the initial state at the beginning of the next tap. Disregard-
dition, many grains are detached and free to aggregate iimg the time when the system is quiescent between taps en-
different clusters. ables one to consider time a continuous variable. Quantifying
Starting at an initial packing fractiorp(t=0)=0.59, the evolution of the cluster distributions, both reversible and
Nowaket al. [2] investigated the reversibility of the granular irreversible time dependence, is a central goal. The kinetics
compaction process by observing steady state values of deof the cluster processes are represented by population bal-
sity after 10 000 taps when the tapping intendityvas in-  ance equations that explicitly govern the cluster size distri-
creased in steps of approximately 0.5 between steady statdsution. Moment methods facilitate the derivation of simple
As a result the packing fractiop increasedrreversiblyto  differential equations for the statistical properties of the clus-
0.635 at the critical valué€'™* =3.3. A further increase of  ter size distribution.
led to slightly reduced densit{p=~0.63, whereas decreas- An advantage of the distribution kineti¢gate) approach
ing I' caused to asymptotically approach 0.658 Esveared reported here is that the moment properties of the size dis-
zero. These transitions wereversible in contrast to the ini-  tribution can be evaluated efficiently by solution of differen-
tial transition from small” up toI'*. In terms of the cluster tial equations. Averaged particle interactions are represented
hypothesis, this history effect, manifested as reversibleby rate coefficients, much like intermolecular interactions are
irreversible behavior, suggests that clusters grown irreversaveraged to represent crystal growth or chemical reaction
ibly to a critical size can then be reversibly grown or re-rates. This approach is commonly applied in polymerization
duced. kinetics to obtain molecular weight distributions and their
Several theoretical and phenomenological models havenoments, thus quantitatively describing the significant fea-
been advanced to interpret the granular relaxation experitures of polymer reaction dynamifs(g)]. Computations and
ments[1], but there has been less comment on the reversibilthe assumptions upon which they are based are relatively
ity results[2]. Hong et al. [8] considered relaxation under straightforward. This approach is a systematic and versatile
tapping a problem of diffusing voids. They numerically method for investigating kinetics and dynamics of systems
solved a one-dimensional diffusion equation for voids mov-distributed in size, such as evolving clustgg$. For an ini-
ing upward through the granular medium. When the voidtial condition with a small mass of clusters, a given accelera-
diffusion was related to the traffic problem, it was found thattion I" will cause irreversible transition to a final steady state.
voids arrived periodically at the top of the packed bed.We attribute this irreversibility to the growth of clusters,
Barker and Mehtd3] suggested that independent particleswhich, when formed, allow reversible changes for packing
and clusters interact through diffusion in vibrated powdersdensityp whenT' is either increased or decreased. The pro-
Applying Monte Carlo computations to a collection of fric- cess is analogous to a phase transition Bifaying the role
tionless hard spheres, they found final packing fractions deef supersaturation and representing energy input.
pended on the intensity of vibration. While a one-exponential The paper is organized as follows. Beginning with a pre-
fit was fair, the results were better represented by a twosentation of the appropriate cluster distribution kinetics, we
exponential fit. An empirical equation with two parametersrepresent the governing population balance equations for the
was used by Knighet al. [1] to fit their experimental data. cluster size distribution and monomeégrain) numbers. A
Linz [9] showed how a phenomenological approach to detransformation to scaled dimensionless variables provides a
scribe the sequential taps provided a difference equatiominimal set of parameters to determine. The scaled moment
whose approximate solution with two fitting parameters de-equations for number of free grains and clusters and for clus-
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ter mass are solved exactly. The solutions are examined for Consider identical grains of mass, that can be either
their dependence on fragmentation parameters and on initiflee or aggregated into clusters. The population balance
conditions. Finally, the results for packing fraction are com-equations that govern the distributions of the cluste(s,t),
pared with experimental data for both reversible and irreversand of the grainsm(x,t)=m©(t) 8(x-x,,), are based on mass
ible observations. conservatior[6(a)] for the processes represented by Eas.
and(2):
CLUSTER KINETICS

o X
If C(x) represents a cluster of magsand M(x,, is a ac(x,t)/(?t:—kgc(x,t)fo m(x',hdx’ +k9fo

particle (monomey of massx,, we have for concurrent
monomer dissociation and attachment

Xc(x=x",tym(x’,t)dx’ — kqc(x,t) + kdf c(x’,t)
Kg X
C(X)=C(X—Xy) + M (%) (1) o
kg XS = (X' = X)) X' = 2k,C(X, 1) f c(x’ Hydx’
with rate coefficientsky and ky for cluster growth(attach- 0
menY and dissociatioridetachment respectively. The clus- X
+ kaJ

ters may also fragment with breakage rate coefficigrand
aggregate with rate coefficiekt,

c(x’,)c(x =X, t)dx" — kpc(x,t)
0

C(x)g C(x') + C(x=x'). 2) + kbf c(x', QX x")dx’" . (5
k.

X
a

Here we consider that the rate coefficients may depend omhe particle balance is

the strength of the acceleration, but we ignore any depen- o

dence on packed bed depth or cluster size. Although it is &m(x,t)/&t:—kgm(x,t)f c(x’,t)dx’

obvious how to extend the types of clusters beyond simple 0

forms considered here, we will show that the model of Egs. o

(1) and(2) is adequate to explain the observations. + de c(X',1) (X — Xpdx'. (6)
The cluster size distributions are defined so thatt)dx X

is the number of clusters having mass in the interfvak

) j The Dirac delta distributions of fragmentation products,
+dx). Population balances lend themselves to calculations b I P

¥(x— (X’ =x)) and S(x—x,), represent the monomer removal

moments, defined as integrals over cluster mass kernels in Eqs.(5) and (6) [6(g)]. The breakage kernel
o Q(x,x’) is the expression of Deimer and Olsft8], which
c™(t) = J c(x, )x"dx. (3)  allows N fragments with each breakage, and contributes to
0

the zeroth moment equations as the prodigteN—-1). The

The zeroth moment©(t) is the time-dependent number choice of rate coefficient expressions is motivated by cluster
of clusters, and the first momenf!)(t) is the mass of clus- Kinetics representations used previougylg. Here we as-
ters. The average cluster mass is the raﬁa(t)/C(O)(t) sume all rate constants are Independent.dfhe initial con-

=c®4t). Although we use only these lower moments for thedition is a mixture of clusters and free grains,

present treatment of granular materials, measures of cluster c(x,t=0) =c¥8(x - c2¥9),

polydispersity, such as variance, based on the second mo-

ment can also be defing@(a),6(b)]. The size distribution of mO(t=0) = mBO)_ 7)

the monodispersed grainsrigx, t) =m©(t) 5(x—x,,), in terms

of the number of graingn©. For the loosely packed initial state, the mass of clusters is

If the volume per mass of the clustersiig the volume of ~ quite small, but not necessarily zero; thag." = c, ”c,2"

clusters isvacV). Likewise, the vessel volume occupied by <xmmo(°).
free particles is x,m?, whereu, is the volume per mass of The moment equations from E(B) are[6,18]
the loosely packed particles. The total volume displaced by

0/dt= - 1) - k.c@7c0
free particles and particles in clusters is the total mass of dc Jdt=[ky(N = 1) = koc™]c™, )
particles,x,m®+c, divided by the particle mass density Do 010
dn,. The experiment measures the packimglume) fraction de/dt=x[—kq+ kgm e, 9)
defined as the ratio of the displaced volume to the total oc- 0 00
cupied volume, dml9/dt = [ky— kym@]c@. (10
() = [Xmm(O) + c(l)]/dm[voxmm<°) + UAC(l)]' (4) These moment equations can be deduced from Egysnd

(2) directly, but Eqs(5) and(6) are necessary if higher mo-
It follows that the void fraction among the particles is 1 ments are to be formulated. By Eq9) and (10), the mass
-p(t), which decreases as the granular material is combalance isl[c™ +x,m®]/dt=0, or when integrated with the
pacted. initial condition and a final condition,
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e + X = c§P (1) + x,mO(t) =P +x,;m (1) CO =& (e - 1)(alB) + (BICO)] . (19

where the subscripg denotes a final steady state. Substituting this into Eq(16) allows an analytical solution
The model evidently meets the conditigh9] that the for S(6),

differential equations yield a final end point that retains a _ Ve ~(0)/ 30 e

dependence on earlier stateshistory effect As seen in the S(6) =1+(S- DBYICY (€%~ Da+ I, (20)

experimental datgl], the differential equatione8)10) in-  Thjs along with the mass balance is all that is needed to

dicate that a steady state is approached asymptotically as thgerpret the compaction data. In terms of the scaled variable,
time derivatives vanish. By Eqe9) and(10), the free grains  {he packing ratio Eq(4) is

reach the number
p(60) = dy S+ CoD[veS(0) +vaCP(O)].  (21)

Elimination of C¥(6)=S,+C,” -~ S(6) by Eq.(18) and sub-
stitution of Eq.(20) into Eq.(21) yields the packing ratio as
a function of dimensionless timg¢ and the parameteus, 3,
S o2, andC, .

m = ky/kq (12)

which determines the ratio of rate coefficients in E§.and
(10), and is similar to a microscopic reversibility condition.
According to Eq.(8) the number of clusters also approaches
a steady state,

e = ky(N = 1)/k,. (13) RESULTS

The force impacting the particles during vibration may de- The computations are quite easy and straightforward. We
pend on the mass of overlying particles. Then the rate coefconsider the following parameter valug: d,=2.4g/ml),
ficients and hence the final state would depend somewhat qr{t=0)=po=1/dvo, thusve=1/dypo. The total volume of
the depth in the packed bed, as observed experimerjtglly the  initial ~ amorphous  cluster is Vy=hmR?
Here, we will neglect this position dependence, and assume(87 cm(1.88 cm/2?=242 ml. The mass of all particles,

Egs.(1)«(13) hold throughout the granular medium. and thus the constant total mass of free grains and clusters
The number of parameters is minimized if scaled dimen-during any experiment, ismmo(o)zpodiO=337 g. The par-
sionless variables are defined, ticles are glass spheres of radius 1 mm, thxg

=d,(4/3)7R®=0.010 g. We assume the clusters have the

maximum packing fractiofil1] 0.74, for hexagonal packing
B oo B (149 of spheres. It follows that,=1/0.74},,=0.56.

0=tkg, S=m/mg”, a=kilky, B=ky(N=1)/ky. To define the dimensionless quantities and fit the experi-

Relating each rate term as a ratio allows a comparison dfental data, one needs”, which is the solution to Eqs4)
competitive rates of cluster fragmentation or breakgge  and(1l) at the steady state valu(z)g. The initial state consists
and aggregatiofia). It follows from Egs.(12) and(13) that ~ almost entirely of free grainsy, =33 700, $05%=1.94 for -
B/a:CS(O)/ms(O):Cs(O)- The differential equationg8)—(10), I'=4.5. The clusters are (gssumed very s(gr;all in the_mmal,
loosely packed systent,”=0.02 g<x,m, . These tiny
clusters act as seed&eterogeneous nucjeifor cluster

cOo = C(O)/mgo), c = c(l)/(nﬁo)xm),

when divided bykdms(o), yield the dimensionless differential

equations o .
growth. The number of clusters, ', decreases with aggre-
dC%d6=[B-aC?]C?, (15 gation to the final steady state valag”. Mass balances are
ensured by the moment equatiofib) and (16) and their
dcW/de=(S-1)C? = -dgde. (16)  solutions. The relationships for the final, steady state clus-

— (U i ofi ;
In Eq. (14), if Sis different from its steady state val&6 ters, 5=1 andC, "=p/a, are satisfied automatically by the

— ) =1, the driving forceS-1 causes cluster growth or dis- differential equations. .
T o . Figures 1a)—1(c) show the impact of the three parameters
association. If the initial number of free particles were used ©) . LT
as the scaling factor in Eq22), then m(Q)/mO(o) would start & B, andC,™ on the evolution of density with time. Both
t an initial value 1.0 and I 1o a final vaine®/m.© the transition time and the final steady state are affected.
$ha”d'”lj_'f?t_ vaiue E alrl ivo Ve to ?.'ﬁ \r’]‘i”t]r? ”lbt_ ' Decreasingx or increasingB enhances the breakup of clus-
e definitions in Eq(14), however, highlig € refation- a5 and hence raises the curves to earlier times. The initial
ship to supersaturation and crystal growth, and their evolu- o ) wimmif : :
. o A " .~ ~conditionC,"” significantly influences the evolution of den-
tion to equilibrium. The initial conditions for the governing

: ) sity. The final condition must obey the mass balance, and
equations for granular compactiggs. (15) and(16)] are thus the initial number of free grains, together with the rate

S60=0)=%, CP(H=0)=C, andC?(9=0)= Cg’)_ constants, influences the packing fraction.
(17) Linz [9] defined a dimensionless group, the compaction
ratio a(t), that conveniently allows comparison with the
The symmetry of Eq(16) givesd[S+CP]/d#=0, and thus Knight et al. [1] experimental data,
the mass balance,

O " " a(t) =[p(t) = pl/lpo = pc]- (22)
S+Co =80 +CHO) =1+C (18) The packing fractiomp(t) is defined by Eq(7), and its initial
The solution to the logistic equatiqdb), is (t=0) and equilibrium(t— o) values are written with sub-
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0.6 0.6
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0.64
0.63
0.62 (b)
B =10.001
o 0.61
0.6
0.59
0.58 o
10 100 1000 10000
0 10 100 1000 10000
0.64 °]
0.63 FIG. 2. Comparison op versus time for the modgsolid lineg
0.62 with (a) the experimentally based equations of Knigfttal. [1]
0.61 (dotted lineg and(b) of Linz [9] (dotted line$. The parameters used
a 0. ) . .
in the model are given in Table I.
0.6
0.59 present model with the experimental d§ta for five accel-
: erations(I'=1.4, 1.8, 2.3, 2.7, and 4.5Parameter values are
0.58 recorded in Table I. The computations show thataf

10 100 1000 10000 =0.001 is fixed, the fitted value af varies between 1.0 and
o 3.4. Figure 2a) is a comparison with Eq$22) and(24), and
Fig. 2(b) is a comparison with Eq23) for the two data sets
FIG. 1. Effect of(a) a=1.5, 2.5, and 3.5(b) $=0.001, 0.005, presented by LinZ9]. ForI'=1.4, 1.8, and 2.3, steady state
and 0.01; andc) C0<0>:o,01, 0.05, and 0.1, on the time evolution of values of density are reached within 10 000 taps. For the
the packing fractiorp. The other parameters are the same ak in more intense vibrationd;=2.7 and 4.5p was still climbing
=1.8 in Table I. slightly at 10 000 taps. Good agreement was found for the
comparison of model and data with values @fthat in-

scripts 0 and, respectively. Linz derived a difference equa- ¢'¢ased from 1.1 to 3.4, as shown in Table I. The increasing
tion for the compaction process, which yielded a solutionvalues ofa indicate the greater agitation of the more forceful
that represented the experimental data taps. The extreme condition of severe cluster disruption

. uefaction or fluidizatiopwould cause the grains to end up in
alt) ={1+C{V(t+1+v)-V(1+v)]} (23)  a low-density amorphous state, much like the initial condi-
where time has integer values=0,1,2,...%. The di- tion for the described experiments. The number of clusters,

gamma function¥(x) is the logarithmic derivative of the CO_(O)’ starts out at the assumed value 1500, and decreases
gamma function. Linz gave values for the parame@nd with aggregation to the final steady state va%[@, which is
» at two conditions: 10 000 and 0.056 = 1.8, and 1.3and  Of order of magnitude 10. Fitted values gf” were 1500
0.077 forI'=4. The Knightet al. [1] empirical equation, except atl'=1.4, wherec,” =260 was required for a satis-
expressed in terms af(t) defined by Eq(22), is factory agreement with data. The reason for the anomalous
_ . value for the initial cluster number &t=1.4 is unclear, but
a(t) =[1+BIn(1+t/n]™ (24) may be due to a decreased formation of nu@kister seeds
The two equation$23) and(24) yield results in close agree- at the weaker tapping intensity. As increases, the steady
ment. Verifying the current model is particularly convenientstate number of free grainsn”, decreases, and thu®
by comparison with Eqg23) and(24). increases. Correspondingly, the steady state number of clus-
First we consider the irreversible density relaxation ex—terscs(o) decreases and their magg) increases such that the
periments[1]. Figures 2a) and 2b) show the fit of the average cluster mass increases. The model thus is a realistic
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TABLE |. Parameters for Knighet al. [1] experimental data witt8B=0.001. The initial cluster mas%(l) is constant for all runs at
0.020 g.

@
CS
T Ps 10—4ms(0) S) a CO(O) CO(O) 1§CO(1) 1§Cs(0) CS(O) Cs(l) (g)
1.4 0.611 2.60 1.29 1.1 0.01 260 7.80 90.9 23.6 0.296 142
1.8 0.631 2.14 1.57 1.2 0.07 1500 9.30 83.3 17.8 0.575 140
2.3 0.631 2.14 1.57 2.25 0.07 1500 9.30 44.4 9.51 0.575 123
2.7 0.639 1.96 1.71 2.8 0.076 1500 10.0 35.7 7.01 0.716 123
4.5 0.640 1.94 1.73 3.4 0.077 1500 10.3 29.4 571 0.736 76.9
representation of the irreversible experimejits compaction, albeit imperfect given the absence of crystal

Nowak et al. [2] presented data for both irreversible and surface(Gibbs-Thomsopenergy[6(f)]. When the supersatu-
reversible transitions during granular compaction. As dis+ation S is greater than 1.0, crystals will irreversibly grow
cussed earlier, the compaction process is slow, approachirffgpm seedqheterogeneous nucjeiCrystal growth in a su-
the steady state logarithmically with time. In the experimentgersaturated solution or dissolution in an undersaturated so-
[2], after a steady state is reached within 10 000 taps, thkition proceeds irreversibly to equilibrium. For granular
accelerationI” is increased and a new steady state iscompaction, aftef” has reached the critical acceleratibh
achieved. At a critical valué€'* = 3.3, subsequent increases the clusters grow or shrink, respectivelySfis greater than
and decreases df led to reversible transitions between or less than unity. Thus, according to the cluster hypothesis,
steady states. To simulate these experimental data, values fitre history effect and the reversible/irreversible behavior are
a and B were taken from Table | so that the transition would explained by clusters growing irreversibly to a critical size,
occur within 10 000 taps. Given the experimental steadyfrom which size they can then reversibly grow or reduce.
state densityp,, and knowingcs(l) by the mass balandéq
(12)] one calculate © by Eq. (4). The ratio of rate con-

stants,a/ B, givesCs(0 and hence:s(o). The values ofns(o),

c¢.?, andc, becomem!?, ¢,?, andc,™ for the succeeding  Our approach is consistent with the concggt that vi-

computation. 1f§<1 then the density decreases, analo- brational relaxation of a powder is a combination of
gously to crystal dissolution in an undersaturated conditionindependent-particle and collective excitations. According to
Figure 3 shows the simulation of the d4#j for irreversible  the present view, the excitations are dynamic processes of
and reversible transitions. The parameters used in the modsingle particles and of clusters. Free particles interact with
are given in Table Il. For the model, the variatiorﬁ.;fo) and the clusters by association and dissociation rate parameters
Cs(l) with T mirrors the variation of the steady state value ofrepresenting, respectively, cluster growth and dissolutign,
densityp, with T" from the experimentéFig. 3). The analogy andky. The clusters may fragment or coalesce through rate
with the crystal growth phase transiti¢fi(a)-6(d)] from a  parameters for cluster breakup and aggregatigrand k.
supersaturated solution is helpful in understanding granulafFhe kinetics of the cluster size distributianix,t), are ex-
pressed as a population dynamics equation. The model is

CONCLUSION

— ' ' —e— increasing 12 thus statistical, with the rate coefficients accounting for the
| 0—0_ —O— decreasing T details of particle interactions in an overall average manner.
0.65  reversiole = —4— increasing T again [-1:0 In agreement with Barker and MeHt3], the behavior is only
T Babid - T weakly affected by details of particulate shape and surface
0.64 - 2 L0.8 . .
] s g and is to a far greater extent dependent on cluster packing
0.63- ./0/‘5.~ ._06,,,‘1 behavior. Unlike the Monte Carlo simulatidl], however,
a 1 .A&f@—> o= the current approach yields uncomplicated differential equa-
0.62 ; o TeYO. . e tions for the momentgaverage properti¢®f the cluster size
1 -0.4 R . .
0.61- distributions. The extension of the model to describe mea-
1 02 sured density fluctuations in vibrated granular materials was
0.60 - | not attempted here.
0_59' 0.0 The model suggests that granular compaction is similar to
3 4 5 a liquid-solid phase transitiothere with surface energy ef-
r fects neglected Free particles are analogous to a liquid

phase and clusters to the crystalline phase. The desirability of
FIG. 3. The steady state values of experimental packing fractio@Xplaining granular flow behavior based on a system of dif-
p [2] (solid lineg and computed reduced cluster mass’ (dashed ~ ferential equations has been discus§éd]. We have at-
lines) at different accelerationE showing reversible and irrevers- tempted to meet this condition by demonstrating that a clus-
ible behavior. The parameters used in the model are given ifier kinetics approach vyields differential equations for the
Table II. moments of the cluster size distribution and free particle con-
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TABLE Il. Parameters for modeling the experimental data of Nowakl. [2].

JEEY @
I b 100%m©@  10%m@ s « ¢  10c,® © Y @ 100c® @ cW®
0.4  0.598 3.37 3.16 107 10 316 10.0 316 0001 316 10.0 21.3  0.068
1.0 0.610 3.16 2.84 111 11 316 11.1 213 0075 2538 9.09 53.0 0.187
14  0.620 2.84 2.59 110 11 258 9.98 530 0205 235 9.09 78.4  0.303
1.8  0.630 2.59 2.34 111 12 235 10.0 784 0335 195 8.33 103 0.440
24 0632 2.34 2.29 102 12 195 8.51 103 0450 191 8.33 108  0.471
32 0636 2.29 2.20 104 12 191 8.70 108 0491 183 8.33 117 0535
36  0.635 2.20 2.22 099 12 183 8.24 117 0529 185 8.33 115  0.518
42 0631 2.22 2.32 096 12 185 7.99 115 0497 193 8.33 106 0.455
49  0.630 2.32 2.34 099 12 193 8.25 106 0451 195 8.33 103 0.440
45  0.631 2.34 2.32 101 12 195 8.42 103 0445 193 8.33 106  0.455
40 0.635 2.32 2.22 1.04 12 193 8.69 106 0475 185 8.33 115  0.518
35  0.639 2.22 2.12 1.04 12 185 8.71 115 0541 177 8.33 125  0.586
3.0 0.644 2.12 2.01 1.06 12 177 8.82 125 0620 167 8.33 136  0.678
25  0.650 2.01 1.87 1.07 12 167 8.95 136 0728 156 8.33 150  0.802
20  0.653 1.87 1.80 1.04 12 156 8.65 150 0.832 150 8.33 157 0.870
15  0.654 1.80 1.78 101 12 150 8.44 157 0881 148 8.33 159  0.894
1.0  0.655 1.78 1.76 101 11 148 8.44 159  0.905 16.0 9.09 161  0.918
0.5  0.655 1.76 1.76 100 11 16.0 9.09 161 0918 16.0 9.09 161  0.918
24 0.650 1.76 1.87 094 12 160 8.54 161 0862 156 8.33 150  0.802
3.4  0.640 1.87 2.10 089 12 156 7.42 150 0714 175 8.33 127 0.604
44 0631 2.10 2.32 091 12 175 7.56 127 0548 193 8.33 106  0.455

centration that finally arrive suitably at a steady state endjrow irreversibly to their steady state size and number.
point and yet have a dependence on past history, i.e., a pri@hanging to a new vibrational intensity allows a reversible
state. Since Maxwell's comment that the past state of d@ransition to a new cluster steady state. By the differential
granular system would influence its dynamiecsported by equations for the cluster size distribution moments, the
Gudehud?20]), the effect of system history or “memory” has evolving state can be established at any time after an initial
been a concern. Our proposal is that the number and size tifme if the rate coefficients are known. Any state afteO
dense clusters, through their evolution to equilibrium, indeeccould be chosen as an initial condition and the subsequent
affects the time dependence during compaction. Startingtates on the way to steady state will be determined uniquely
from a low density with very small seed clusters, the clusterdy the governing equations and parameter values.
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