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Isostaticity and mechanical response of two-dimensional granular piles
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We numerically study the static structure and the mechanical response of two-dimensional granular piles.
The piles consist of polydisperse disks with and without friction. Special attention is paid to the rigid grain
limit by examining the systems with various disk elasticities. It is shown that the static pile structure of
frictionless disks becomes isostatic in the rigid limit, while the isostaticity of the frictional pile depends on the
pile forming procedure, but in the case where the infinite friction is effective, the structure becomes very close
to isostatic in the rigid limit. The mechanical response of the piles is studied by infinitesimally displacing one
of the disks at the bottom. It is shown that the total amount of displacement in the pile caused by the
perturbation diverges in the case of the frictionless pile as it becomes isostatic, while the response remains
finite for the frictional pile. In the frictionless isostatic pile, the displacement response in each sample behaves
in a rather complicated way, but its average shows wavelike propagation.
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[. INTRODUCTION unstable because there are no sets of force that satisfy the

balance equations. On the other hand, in the undercon-

A pile of granular material is often modeled as an assemstrained case, where the number of conditions is smaller than
bly of rigid particles. This simple picture, however, causesthe number of forces, the forces cannot be determined

some conceptual difficulties when one considers the forcéiniquely from the macroscopic structure information of the
distribution, or stress, in the pile. pile; the macroscopic friction force depends on the piling

deformable elements, the stress inside is determined by tHEctionless rigid particles forms an isostatic struct{ig .
stress balance equations with the constitutive relation be- 1N€ isostaticity of a pile structure has been tested numeri-

tween the stress and strain. No deformation is allowed, how2lly and experimentally for both the frictionless and fric-
ever, in rigid elements, in which case the forces acting Orponal cases by counting the coordination numbers. Makse

. I. [2] have performed numerical simulations for three-
each element should be d.etgrmmed on_ly frpm the structur imensional sphere systems without gravity and made com-
of the contact network. This is not possible in general.

. ) . act aggregates of balls by compressing the systems by push-
There is a special class of stable pile structures calle g the surrounding walls. By examining the coordination

isostatic, or marginally rigid: A pile structure is iSoStatic n ;mpers in the zero-pressure limit, they concluded both the
when the forces acting between the elements are uniquelictionless and frictional sphere systems become isostatic in
determined only from externally applied forces and the pilehe rigid limit. On the other hand, Silbeet al. [3] have also
structure without any information on the deformation of theperformed numerical simulations on the three-dimensional
elements. For such a pile, the total number of balance equaphere system, but the way they made piles is different from
tions for the forces and torques acting each particle should bgat of Makseet al. They released the particles in the system
equal to the number of independent components of forcesat once under gravity and waited until all the particles
This condition leads to the requirement that the averagetopped. Their conclusion is that the frictionless pile be-
number of particles in contact with each particle in a pile, orcomes isostatic in the rigid limit, but the structure of the
the average coordination number should take a specific frictional pile depends on the piling procedure and never
value. In the case of frictionless spherical grains, this bebecomes isostatic. Ball and Blumenfeld,5] have done
comesz=2d for d dimensions because the contact forcessimple tabletop experiments on the pile of two-dimensional
always point to the center of particle, and thus the torqueoncircular grains made of cardboard. Piles are formed by
balance equations are satisfied. Therefore, the number of iollecting the grains scattered initially on a horizontal sur-
dependent force componerz$l/2 should be equal to the face by sliding an open rectangular frame. They found that
number of force balance equatiorél\, with N being the the higher the starting density of grains is, the more coopera-
total number of particles. In the case of the frictional pile oftive reconfiguration is taken place before they are stuck with
both spherical and nonspherical grains, we hzwd+1 be-  each other and the lower the ending pile density. They have
cause the number of independent force components is nogoncluded that the isostatic structure of frictional grains is
zdN/2, and this should be equal to the sum of the number ohchieved in the limiting case where the starting and ending
force balance equationdN, and that of torque balance equa- densities coincide.
tions, d(d—1)N/2. The isostatic structure, if it is realized in a real pile,
In a real pile of hard grains the isostaticity is not alwaysshould be reflected in the mechanical properties of the rigid
satisfied; in the overconstrained case, where the number gfranular pile. The mechanical properties of frictionless
conditions is larger than the number of forces, the pile issostatic structure have been studied in some detail, and it
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has been shown thgi) the force chain may be regarded as yx(t) = F(t) (2
propagating unidirectionally6], (ii) there is a correspon- ) o

dence between the force-force response and thfor some cases to examine the effect of friction because the
displacement-displacement resporigg and (iii) the piles System that follows Eq(2) is stuck as soon as the force
are very sensitive to an external perturbatidn8]. These balance is achieved and is more affected by the friction.
features may correspond to some properties of a smooth hard The two particles andj atx;(t) andx;(t) with radiir; and

granular pile. rj, respectively, are in contact when the overtgpgiven by
Regarding the mechanical response of the isostatic pile, B
using a simple lattice model of isostatic structure, Moukarzel Gj=ritr- IXi = Xj| 3

(1] has shown that the total response to an extgrnal perturbas positive. Then the particlg exerts forcer
tion diverges as the system approaches isostaticity due to the

“pantograph effect” and statistical fluctuation is very large Fij= F{} + F}j, (4)

[8]. As for the effects of friction, Moukarzedt al. [9] have N ; .

performed experiments on the two-dimensional rigid diskvhereF; andF;; are the normal and tangential components
system and demonstrated that the displacement respongbthe force:
function has the single-peak Gaussian shape with diffusive EN =k &A= vo! (5)
broadening. They also performed computer simulations on ij = ST T YL

the two-dimensional frictionless disk system and showed that . . .

the displacement response function has a double-peaked Fij = — kAs;tij — vwj;. (6)
shape with wavelike propagation, suggesting that frictio
plays an important role in the mechanical response.

ij on particlei,

nHere,ﬁij andfij are the normal and tangential unit vectors,
The purposes of the present work are to clarify if p”erespecpvely;Asj is the tangen}lal_ displacement of the_ con-
structure becomes isostatic in the rigid grain limit and totact pomts aft.er the cqntatzﬂ (Vij) is the normattangennaj
examine the mechanical response of the isostatic pile. WEelative velocityk, (k) is the normaltangential elastic con-
present detailed results of our numerical simulatifgi@ on  stant, andy, (y) is the normal(tangential damping con-
the two-dimensional frictionless and frictional disks. We par-stant. Note that we assume no threshold for the disks to slip
ticularly focus on the following questiongi) whether the during the contact in Eq6), which corresponds to the case
pile structure become isostatic in the rigid limii,) how it ~ with an infinite-friction coefficient. In the case of the fric-
depends on pile forming procedul@j) what role the grain tionless disk, we simply seFfi‘]- =0. o
friction plays, (iv) how the mechanical response of pile In the actual simulations, we ugﬁqzz\ﬁﬂ\ﬁo] for the
changes as it becomes close to isostatic, @ndhow the  frictionless case anki=0.%, and y,=v,=2Vk.[Vm] for the

average response is different from individual ones. After inictional case. In the simulations with the viscous equation
troducing the model and piling procedures in Sec. I, wei

present the results for the static pile structure for frictionles 2), we takey=5{movg/ o] with 7,=%=0 in Egs.(5) and

and frictional disks in Sec. Ill. The mechanical responses ar 5.
investigated in Sec. IV. The summary of our results is given IIl. STATIC STRUCTURE OF PILES
in Sec. V.

First, we study the isostaticity of granular pile formed
Il. MODEL through several procedures.

We perform molecular dynamics simulations on a system Rigorous verification of isostaticity is not simple, but as
that consists of two-dimensional disks with linear elasticityhas been discussed already, if a structure is isostatic, the
and damping, which is usually called the DEMiscrete el- average coordination numbershould take a specific value
ement methoylin the engineering community. The system is depending upon a type of grains in the pite=2d for a pile
polydisperse with a uniform distribution in the disk diameter of frictionless spherical grains armkd+1 for a pile of fric-
over the range between @@ and o, with oo being the tional grains. We will usez as a scale that measures how
maximum diameter. The masses of the disks are assumed ¢tbse a pile structure is to the isostaticity.
be proportional to their areas: the mass of the disk with the We perform molecular dynamics simulations to construct
diameteroy is denoted bym,. The bottom of the system is piles of frictionless and frictional disks using several proce-
made rough by attaching the disks with the interwgland  dures. We try two types of initial configurations: the triangu-
we employ the periodic boundary condition in the horizontallar lattice with the lattice constant, and the random con-
direction. figuration; the triangular lattice is not a regular lattice

Piles are formed by letting the system run under gravitypecause the disks located at the lattice points are polydis-
with the acceleratiorg from initial configurations until all  perse. The random configurations are prepared by randomly

the disks stop moving. arranging disks with an area fraction of approximately 0.6.
The disk at the positiorx(t) with massm follows the Simulations to form piles start from these configurations
Newtonian equation with zero patrticle velocity and finish when the kinetic energy
mR(t) = E(1), 1) of each disk becomes negligibly small—namely, smaller than

10 mygoo]. The number of disksy, is 400 and the system
where the forcd=(t) consists of the gravitational and contact size is 2@, in the horizontal direction; thus, the number of
forces from the neighboring disks in contact. We also use thé&yers in depth is 20 on average. We also try both Efjs.
“viscous equation” and(2) for the time development.
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the normal force in the piles produced by the viscous equdtion

(b) Frictional Pile and that by Newtonian equatigfl) from the random initial con-
44 g figurations with the disk elasticitk,=10°[myg/o]. The average
a2F | ‘r 5355‘ M coordination numbers arz=3.06 for the pile by the viscous equa-
4Fy w0} i 1] tion and z=3.11 for that by the Newtonian equation. Each plot
§ y q p
. 38, : o b * ﬁé_- represents average over about ten realizations.
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34 "X 4 with the frictionless casei) the discrepancy among different
32| T i £y preparation procedures is larger in the frictional case(and
3 L— = L the limiting values of the coordination number are substan-
10° 10t 10k [ifg/ao] tially different from 3—i.e., the value for the isostatic struc-
n

ture of the frictional grain in two dimensior§able ).

FIG. 1. The coordination numberfor various elastic constants 1 N€re seems to be, however, the tendency that the limiting
k, for a frictionless pile(a) and frictional pile(b). The marks rep-  value of the coordination numbey, becomes closer to 3 in
resent the pile preparation procedure: the Newtonian equation with€ case where the friction may produce a more random pile
the triangular lattice initial configuratiopt), the Newtonian equa-  configuration—namely, from the Newtonian equation with
tion with the random initial configuratiof), the viscous equation triangular lattice initial configurations to the viscous equation
with the triangular lattice initial configuratio¢t), and the viscous ~With random initial configuration.

equation with the random initial configuratignl). Each mark rep- These results should be compared with those by Silidert
resents the average of 6-12 realizations. The insets shawvsk,  al. [3]. They also constructed granular piles using the DEM
in the log-log scale witz, listed in Table I. and concluded that the piles of frictionless spheres become

isostatic in the rigid limit but that of frictional spheres does
Figure Xa) shows thek, dependence of the coordination Not become isostatic.
numberz for the frictionless disks. It can be seen that the The major difference between the present work and that
results do not depend on the preparation procedures Ve@f Silbertet al. lies in the fOIIOWing pOintS: Silberét al. [3]
much andz converges to a number very close to 4 in theStUdiEd the three-dimensional SyStemS of monOdiSperse
largek,, limit for both initial configurations and time devel- spheres with a finite friction constant that follows the New-
Opments_ Thekn dependence is well represented by thetonian equation while we investigate the two-dimensional
power law system of polydisperse disks with infinite-friction constant
that follows the Newtonian or viscous equation. Both agree
z-z, k", (7)  in the point that the pile structure in the frictional systems
does not become isostatic in the same way as it does in the
as shown in the inset of Fig(d). The parameterg. anda frictionless system, but our results suggest that isostaticity is
are tabulated in Table I. achieved even for a frictional system in a certain limiting
As for the case of frictional disks, the results are shown insituation where the friction becomes very effective.
Fig. 1(b). There are two things to be noted in comparison  To examine how this discrepancy arises, we plot the dis-
tribution of the ratio{ of the tangential force to the normal
TABLE I. The limiting coordination numbers, and the expo- force at each contact. The comparison between the pile
nentsa for various preparation procedures. formed via the Newtonian equation and the pile via the vis-
cous equation from the random initial configurations is given
Frictionless  Frictional in Fig. 2 for the disk elasticityk,=10P[myg/ oy, in which

Equation case the coordination numbers of the pilesz8.11 for the
of motion Initial configuration  z. o z. a Newtonian equation and=3.06 for the viscous equation.
For both cases we use random initial configurations. One can
Newtonian Triangular lattice 3.97 068 3.15 0.49 see that the pile by the viscous equation contains more con-
Random configuration 3.98 0.65 3.09 0.47 tacts with a very large value of, while the pile by the
Viscous Triangular lattice 397 0.63 3.06 0.60 Newtonian equation has only contacts witemaller than 10

Random configuration 3.97 0.64 3.04 0.46 €ven though the infinite-friction coefficient allows any value
of {. This is because of the inertia effect in the Newtonian
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equation that the grains undergo further slip even after force
balance is achieved, eliminating contacts with a large force
ratio.

If we use a finite value for the friction coefficient, some of
the contacts in the pile via the viscous equation would slip to
make the pile denser. This would result in a larger average
coordination number, which means the pile structure be-
comes further away from isostatic.

From these observations, we conclude that the infinite
friction coefficient and the viscous equation for the time de-
velopment in the pile forming process from a random initial
configuration makes the friction very effective; as a result,
the pile becomes so decompacted that it becomes nearly iso-
static.

IV. MECHANICAL RESPONSE OF PILES FIG. 3. (Color online The mechanical response caused by the

. - Il displ t of a disk at the bottdaenoted b
Now, we study the mechanical response ofthefncnonles\,/imal Isplacement of a disk at the bottqaenoted by an open

L . . red) circle with a dark gray(red) arrow in the frictionless pile
and frictional piles to the external perturbation and see ho ippe and in the frictional pilelowen with k.= 1F[mg/ o). The

the response changes as the pile becomes closer to isostafig gray(red), light gray (green, and black arrows denote the
The perturbation is given by displacing one of the disks atjspjacement direction of the disks that move by the distasice

tached at the floor bydry in the upward direction very ~ 5 0.56r;<or;<or, and 0.Bry< dr;<0.50r, respectively.
slowly, and we observe the displacement of itiedisk or;

caused in the pile by it.

In order to examine the properties of a given contact net- i
work, the size of the external displacement is taken to be No
small enough that the perturbation does not cause any change

in the ConneCtiVity of the contact network in the plle In the Whereéyi is they Component of the disp'acement for thb
simulation, we take the external displacement &s  disk. This quantity should be finite if the response is confined
=(0,mg/kn)—namely, the order of disk deformation. For within a finite region, but can diverge in the infinite system if
such small external displacement, we have checked that thfie response extends to infinity.

contact network in the pile does not change, a@ndis pro- The results are shown in Fig(a}, where the total re-
portional toér,. Thus the relative displacemeditdefined by sponseD, is plotted as a function df, with which the ex-
amined piles are formed by the Newtonian equation from the

N
= 2 |dy,i|1 9

i=1

>

i=1

Dy

;i _— . .
d=— (8)  random initial configuration.
| oYl The marks©'’s (W's) in Fig. 4(a) denote the total response
does not depend o). Dy of the frictionless(frictional) disks in the frictionless

The initial piles are prepared by the way described in thdfrictional) piles, respectively. o
previous section with the random initial configuration and !N addition to these, we examine the frictional response to
Newtonian equation. The system size isr§@n the horizon- ~ the perturbation in the frictionless pilé&T's); namely, the
tal direction and the number of disk, is 1200: thus, the fesponse is calculated using the frictional interaction be-
average number of layers in the depth is 20. tvyegn disk§, aIthqugh the pile itself is prepared using the
Examples of the pile response to the perturbation ardrictionless interaction. Thus the pile structure has larger co-
shown in Fig. 3. The solid disks in the bottom layer are fixed
except one at the center marked with an arrow, which disk is 8 @ Ol [ e °
displaced upward. The directions and distances of the dis- 60 e e
placements of the disks in the pile are shown by the arrows:

they denote the displacemeni&l|=1, 0.5<|&d;|<1, and ST . ° 11 ° .

0.1=<|5di| <0.5. The disks that move less than &gdare not 20 8 8 B 8{'™® wapgs

marked. One can see the effects of the perturbation extend ol L

over long distance in the upper case—namely, the friction- 100 o 10335 4 45 s

less pile close to isostaticity—while the effects decay within

a short distance in the lower pile of frictional disks. FIG. 4. The total longitudinal displacemeB, caused by the

perturbation in the frictionless pil€®), in the frictional pile(H),
and for the frictional response in the piles formed through friction-
] _ less dynamicg[J; see tex). (a) Dy vs the elastic constark,. (b)

As a measure of response to the perturbation, we definehe same dat, are plotted vs the average coordination number of
the total response of displacement in theirection,Dy, or  the pile, z Each plot represents an average over about 350
the total longitudinal response, as realizations.

A. Total longitudinal response of displacement
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ordination numbers than that of real frictional piles with thethe frictional pile. The piles witt,=10°[myg/ o] are closer
same elastic constaky,. to isostatic than those witk,= 109 myg/ o] for both the fric-
In Fig. 4(b), the same data are plotted against the coorditionless and frictional piles.
nation numberz of the pile. One can see that the total re- Let us examine the frictionless case first. The response in
sponse of the frictionless pile tends to diverge zasp-  the pile withk,=10*[myg/ o}, Which is away from isostatic,
proaches 4, while it remains finite for the frictional pile as decays quickly as it departs from the point of perturbation.
z—3. Itis interesting to see that the frictional responses ofOn the other hand, the situation is quite different for the pile
the frictionless piles are almost on the same curve with thyith k,=10°myg/o,], which is close to isostatic: the re-
frictional responses of the frictional pileS when they are plot'sponse Spreads in a fanlike Shape and does not decay a|ong
ted against, which suggests that the coordination numberthey axis withx=0. If one looks along the line parallel to the
Chal’aCtel’iZES the mechanical I’esponse Of the plle Very Welk axis with Constany’ one sees a p|ateau region where the
response is constant. This plateau region, which seems to
B. Spatial variation of the absolute value of the longitudinal extend to infinity, is responsible for the diverging behavior of
response the total responsB,.
) , . ) On the other hand, in the case of a frictional pile with
To understand the diverging total responses in the fr'ckn:1d5[mog/cro], there is no tendency to develop a plateau

tionless isostatic pile, we plot the averaged behavior of theginn “aithough the response is larger than that for the pile
spatial variation of absolute value of longitudinal responseys | :103[mog log]
n .

d,(r) defined by
C. Averaged displacement-displacement response function

N
ey — NS r Finally, we present the displacement-displacement re-
dy(r) = z |dy,,|5(r r /. (10 sponse functiorA(r) for this external perturbation:
N
where(---) denotes the statistical average. This quantity is AN ={ Ddasr-r) ). (12)
related toD, by i=1
A The average is taken over a few hundreds realizations and
Dy = J f drdy(r). (11)  the spatial dependence is calculated on a grid with mesh size
0.

. . o The displacement-displacement response function has
In_actu_al calculatlong, the spatial variation is calculated on §een shown to be equal to the force-force response function
grid with mesh spacingr, and the average is taken over a fqr 3 frictionless isostatic structuf@], but it should be noted
few hundreds realizations. N that this correspondence does not hold in other cases.
_ The results are shown in Fig. 5, where the contours of T resuits are shown in Figs. 6 and 7 for the frictionless
dy(r)’s are plotted in thex-y plane with a color code. The and frictional piles, respectively, fork,=10% 10%,10°

perturbation is applied di,y)=(0,0). [Mog/ o).

We look at the cases witk,=10°,10%, 10°[myg/ o], for A,(r) is positive forx>0 and negative fox<0 while
both the frictionless and frictional piles; the coordination A,(r) is mostly positive when it is averaged.
numberz=4.86,4.17,3.98, fok,=10%,10%, 1F[myg/ o], re- For both the frictionless and frictional piles, the region

spectively, for the frictionless pile, armk3.75,3.31,3.12 for  where A(r) #0 is larger for the pile whose coordination
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(a) k=10°
7=4.86 |
Y 0.3
02 FIG. 6. (Color online The contour
(b) ki=10* plots of the averaged displacement-
2=4.17 | o1 displacement response functial(x,y)
y in the frictionless piles with k,
0o =10, 104, 10f[myg/ op): Ay in the left
column andA, in the right column. The
et A28 01 plots are averaged over a few hundreds
e I realizations.
Y 0.2
-0.3

numberz is smaller—namely, for the pile that is closer to elasticities. The piles are formed through a several deposition
isostatic—but the tendency is much more profound in theprocedures under gravity.
frictionless piles. As for the structure, we have shown the following: The

It should be noted that the wag(r) extends is very piles of frictionless disks become isostatic when the disks are
very hard and they are not very sensitive to the preparation
procedure, which is consistent with the conjecture that the
S : ile of rigid grains is isostatic. On the other hand, for the
the y direction with the double-peaked structure when O”E’Bnes of fictional disks with infinite friction, the structure
sees it along a line parallel to theaxis with constanty, d : o

o ) epends on the preparation process. If the pile is formed
while d,(r) develops a plateau region. from a triangular lattice with the inertia following the New-

This comparison shows that the response to the perturbgonian equation, the pile structure seems to be distinctively
tion is not actually small in the “low-response region” of different from the isostatic one even in the rigid limit, as has
Ay(r) between the two peaks for the frictionless isostatic p”e,been found in previous work on the three-dimensional sys-
but the large response varies from sample to sample and the¥m [3]. We have found, however, that the pile of frictional
are averaged out to makg(r) small. disks becomes very close to the isostatic one in the rigid

The way this double-peaked structuredif(r) develops as  grain limit when we employ the deposition process where
the frictionless pile approaches isostatic can be seen in thafinite friction is effective; namely, the viscous equation is
right column of Fig. 6. The corresponding plots for the fric- used for the time development for the disks with infinite
tional case in the right column of Fig. 7 show smootherfriction constant from random initial configurations.
structure and do not seem to develop the double-peaked The role of friction for the frictional isostaticity is dem-
structure as the pile becomes isostatic. onstrated by examining the distribution of the ratio of the

normal force to the tangential force. In the pile that is close
V. SUMMARY to isostaticity with frictional disks, the distribution @f ex-

We have investigated the structure and mechanical retends to a very large value of the order of 1This suggests

sponse of two-dimensional piles of disks with various diskthat frictional isostaticity is realized only in the cases where

different from that ofay(r), especially in the frictionless pile
close to isostatic. The response functibyir) propagates in

F ' ' F ' - ' 15
@) k=10° Afxy) Axy)
z=375 | s i 1 10
; L y
8 g
% - “w - : - : -0 FIG. 7. (Color onling The contour
b k10t | I b 03 plots of the averaged displacement-
=331 | - { s 10 displacement response function in the
‘ y 02 frictional piles with K,
I Yl 8 =10%,10%, 109[mg/ op]: A, in the left
i e . .
v ‘ W S ) 04 column andA, in the right column. The
o6 N 15 plots are averaged over a few hundreds
e I e 't, it o realizations.
N | " B
o & % 15 5
. E‘m . 1‘7 o %'i»jvf f" vl 0.1
-20 -10 0 10 20 20 -10 0 10 20
X X
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the exceptionally large friction coefficient is effective, and other hand, may correspond to the diffusive stress propaga-
most of the real stable piles with modest friction should betion, but this correspondence is indirect because there is no
hyperstatic with history-dependent forces even in the rigidequivalence between the displacement response and the
limit. stress response in the frictional or nonisostatic pile.

We have also investigated the mechanical response of the |t is interesting to note that, in the isostatic piles, the spa-
pi|eS Of friCti0n|eSS a.nd fl’iCtiona| diSkS W|th Special attention tial distribution of the averaged response of disk disp'ace_
to the isostaticity of the pile structure. We have examined th%entAy is clearly different from that of the absolute value of

disk displacement caused by moving one of the disks at the. . N
bottom of the pile by an infinitesimally small distance. It hasS'Sk d|splacer_nemiy, the former develops the double-peaked
structure while the latter shows the plateau structure.

been shown that, for the frictionless pile with isostatic struc- . in th ion bet the t ks where th
ture, the response does not decay as it departs from the poi mely, In the region between the two peaks where the av-

of perturbation, and the total sum of the disk displacemen?rage displacement is small, the actual displacement re-

diverges as the pile becomes isostatic, while the responsseDonse 'g’ nott gl,_rn_all In eacf:hsetlThple, but JUS(; 3_re Tandom z:nd
decays quickly in the pile with structure far from isostaticity. averaged out. This means that the averaged displacement re-

It is found that the averaged longitudinal resporsebe- sponse in the isosta;ic pile appears to propagate Iik_e awave
comes double peaked in the isostatic frictionless pile. following a hyperbolic equation, but the way 'that Q|splace— .
As for the frictional pile, the response function always ment response propagates in each sample is quite compli-

decays in a finite distance and the longitudinal response ré:-ated and does not look like a waléig. 3). A similar fea-

mains single peaked, which behavior does not change drarsl!re hes been reporteq In a simplified lattice model of
tically as the structure approaches isostaticity. isostatic structur¢8]: an individual response shows random

The double-peaked structure in the displacement—behav'or and its distribution is extremely broad, but the av-

displacement response function for the frictionless isostatié 29€ shows wavelike propagation.

pile may be compared with the hyperbolic stress propagation

in the granular systenf{11,12 due to the equivalence ACKNOWLEDGMENT
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