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The Green-Kubo relations for dilute granular gases are employed to compute their transport coefficients by
means of the direct simulation Monte Carlo method. This requires not only to follow the dynamics of the
system, but also to identify some modified fluxes appearing in the time-correlation functions. The results are
compared with those obtained from the Boltzmann equation by means of the Chapman-Enskog procedure in
the first Sonine approximation. A good agreement is found for the shear viscosity over a wide range of
inelasticities. Nevertheless, for the two transport coefficients associated with the heat flux, significant discrep-
ancies appear for strong inelasticity. Their origin is discussed, showing that they are partially due to the
presence of velocity correlations in the homogeneous cooling state of a dilute granular fluid.
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I. INTRODUCTION granular gas can also be transformed in a form that is suit-

Hydrodynamics has been extensively used with clear suc2Ple for evaluation by means df-particle simulation tech-
cess to describe the behavior of low-density, rapid granulafidues. The general strategy to be followed has been dis-

flows [1-4]. From a theoretical point of view, the appropriate USSed in detail in Ref12]. Itis based on the property that
context to address fundamental issues is provided by the ke dynamics of a granular system in the time-dependent
omogeneous cooling stat@iCS) can be exactly trans-

netic theory and nonequilibrium statistical mechanics meth; . ; : :
ods. This includes the existence itself of a macroscopic deformed into a different dynamics around a stationary state
3]. Moreover, in order to transform the one-particle prob-

scription analogous to the one provided by the Navier-Stoke . val ic] h )
equations for molecular gases, the form of these equation€M N0 an equ|va.erit\l-rf)art|c|e one, the same assumptions
and the explicit expressions of the transport coefficients ap2S needeq to derive the Bo tzmann equation are ugeq. In
pearing in them. The prototypical idealized model for gParticular, it is assumed that velocity correlations of colliding
granular gas is a system of smooth inelastic hard spheres B@'ticles are negligible in the HCS.

disks, the inelasticity being characterized by a constant coef- Inl this parf)er, we preserr:t simt;ll'atipn reisults ofbtained b3|’
ficient of normal restitution. For this model, hydrodynamic €MPloying the above method. This is relevant for severa

equations have been derived starting from the Boltzmanf€2SOns. The accuracy of truncating the polinomial expan-
equation and using the Chapman-Enskog procedsié. sion, as carried out when deriving analytical expansions for
The accuracy of some of these results has been confirmed i€ transport coefficients by the Chapman-Enskog method, is

the direct Monte Carlo simulatiofDSMC) method, at least 1Ot knowna priori. There is no reason to expect the same
level of errors as in the case of elastic, molecular systems. A

sgcond, and more fundamental, possible source of discrep-

in the derivation is formal, in the sense that it does not de@NcY between the simulation results and the Chapman-

termine the range of validity of the obtained hydrodynamicE”Skog predictions, can be the presence of relevant velocity
description[8]. correlations in the HCS, even in the very dilute limit. Al-

A limitation of the explicit expressions for the transport though it is not easy to disentangle in practice both effects
coefficients as derived in the works mentioned above, is thafom the simulation data, it will be shown that some relevant
it leads to rather complicated differential equations. Then, iinformation can be obtained.

practice, one has to resort to expansions in orthogonal poly- Moreover, the analysis presented here provides informa-
nomials, restricting the evaluation to the lowest orders, withtion about the decay of the correlation functions between the

out any solid justification about the accuracy of such apfluxes and the dynamical variables coupled to them. The lat-
proximation. ter are in fact closely related with the eigenfunctions of the

Recently, the transport coefficients of a granular gas follinearized Boltzmann equation corresponding to the hydro-
lowing from the Boltzmann equation, have been expressed idynamic modes of a dilute granular g§8,10. The fast
the form of low density Green-Kubo relatiofi8,10. They  enough decay of the correlation functions is a necessary con-
involve averages, with the one-particle distribution functiondition for the existence of a hydrodynamic description. Fi-
of the homogeneous cooling state, of the product of twaally, although the form of the Green-Kubo relations for
one-particle dynamical properties computed at differentdense granular fluids is not known, it can be expected, on the
times. The time dependence is defined by means of a linedrasis of what happens in molecular systems, that their struc-
Boltzmann collision operator. As expected, they differ fromture will not differ too much from their dilute limit. Conse-
those for molecular systems in many relevant ways, due tquently, the present analysis may enlighten the study of
the energy dissipation in collisions. denser systems.

Although much more complicated than the expressions Green-Kubo relations for arbitrary densities have been de-
for molecular fluids, the Green-Kubo relations for a diluterived in Ref.[14], by considering the linear response func-
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tion to spacial perturbations of the HCS given by linear com-function expansions, and also linear response theory, finding
binations of the local densities of mass, momentum, ane@quivalent results. Moreover, it was show® 10 that the
energy. The low density limit of the expressions derived intransport coefficients can be written in the form of Green-
this way differ from those being used in this work, which areKubo relations. A particularly useful representation for
consistent with the formal Chapman-Enskog regbkfore  N-particle simulations is obtained by exploiting an exact
introducing any polinomial expansipnThe origin of this  mapping of the HCS of a granular fluid onto a steady state
discrepancy is discussed in R¢®] and is related with the [13] and assuming that, if there are tfene-tim¢g velocity
form of the eigenfunctions of the linearized inelastic Boltz- correlations present in the HCS, their effect can be neglected
mann collision operatofl0]. when computing the two-time correlation functions. The de-
The plan of the paper is as follows. In the next section, theails of this steady representation for a dilute gas have been
Green-Kubo relations for dilute granular gases are shortlyliscussed in Ref12], where the particular case of the self-
reviewed, as well as the steady representation of the HCBSiffusion coefficient was addressed. The analysis of the
and its implementation ilN-particle simulations. In Sec. lll, transport coefficients considered here proceeds in exactly the
the DSMC method to be used in the simulations is describedsame way and, therefore, we directly quote the final
Besides, the results for the velocity distribution functionexpressions:
needed for the identification of the modified fluxes appearing

in the Green-Kubo relations are reported. _nmuo(T) [~ gt

The evaluation of the transport coefficients is addressed in D DosN Jo AV P/ (VTos)s€ ™, (3)
Sec. IV. All the involved time correlation functions are found
to decay in an exponential way. Moreover, a fairly good Nkevo(T) [* . ~
agreement over a wide range of values of the inelasticity is K(T) = —2-22 J At (v, )P, (VU ))s€”,  (4)
found between the simulation results for the shear viscosity N 0

and the theoretical predictions obtained from the Boltzmann
equation in the first Sonine approximation. Nevertheless, the mvg(T) R N
presence of relevant velocity correlations manifests itself — #(T) === J A (V)P (VIUg )5 €70 = 1)
very clearly for small values of the restitution coefficient. 0
For the transport coefficients associated to the heat flux, al- mo3(T) [
though the agreement is fairly good at low and moderate TooN
inelasticities, systematic deviations occur for strong dissipa- Ost™ -0
tion. The accuracy of some analytical approximations for then the above expressions, is an arbitrary positive constant,
modified fluxes present in the correlation functions is dis-N is the number of particles in the systekg, is the Boltz-
cussed as well. Also included is a comparison of the simulamann constanbOE(ZkBT/m)l/z is the thermal velocity, and
tion resul_ts for t_he transport coefficient coupling heat_flux~ = (2kE;:I:st/m)l’2, where ':'l-SI will be identified below.
and density gradient with some recent measurements direct oreover, we have used the definitions

based on the hydrodynamic description of a vibrated granu-

A3, (v, Doy (5)

lar gas[11]. Finally, Sec. V contains a short summary of the Ayy(V) =00y, (6)
results and some additional comments.
2
~ v d+2
2,(v) = (.T — 5 )er (7)
Il. GREEN-KUBO EXPRESSIONS FOR THE TRANSPORT Uo st
COEFFICIENTS
dln c
The expressions for the pressure tengj(r ,t), and heat Dy, (C)=— CXM, (8)
flux, q(r,t), to Navier-Stokes order for a dilute granular gas 9y
of dimensiond are given by{5,6] 5| )
n c
a2 ¢3x(0)=‘c—x[d+C'X—Hcs{} 9)
- SN (e e ’ 2 ac
! ' The functionypcgc) is defined from the one-particle distri-
q=-xkVT-uVn, ) bution of the HCSfyc4V,t), through
where p is the pressure] the temperaturey the velocity fodV.t) = Tt 0). c= v 10
flow, andn the number of particles density. Moreover,is Hed Vi) = Mg [T(0 Jxued©), vo[T()]’ (10

the shear viscosity the (therma) heat conductivity, angc
another transport coefficient that vanishes in the elastic IimiEl
and will be referred to as the diffusive heat conductivity.
Explicit expressions for the above transport coefficients have ~

been derived from the Boltzmann equation for smooth in- <a(V,t)b(V)>st:fdf Jdest(V)a(Vat)b(V) (11)
elastic hard spherggl=3) and disks(d=2) of massm and

diametero, by using the Chapman-Enskog procedure, eigenwith

nd it is an isotropic function of the vectar The angular
rackets in Eqs(3)«5) denote averages defined by
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~ —d v them. The functionpg(I') in Egs. (15 and (16) is the
fstV) = Mg sxhicd = |- (12) N-particle distribution function corresponding to this steady

Uo,st -~ . .
. . ° . ) _state. Moreover,Tg, introduced implicitly above through
Finally, the time dependence of the dynamical variables I%, ., is the temperature parameter of the steady state, i.e.,

given by dNI(BTI'StIZ:(E(F))N,St, with E being the total kinetic energy

a(v,t) = e"sia(v). (13)  of the system. The value &t is related with the cooling rate

N of the HCS, t), by [12,1
Here A is some linear operator involving both a Boltzmann fhes(0), by [ 3

collision term and also a streaming contribution proportional = [ 2w 2 — Lhedt)

to wg [12]. Its explicit form will not be needed here. Ta=| =] ¢= -|-1/25(t)' (21)
The relevant point for the analysis to be carried out in this He

paper is that, if velocity correlations in the HCS are assumedince all the time dependence &f-4t) occurs through the

to be negligible in the low density limit, in this limit expres- temperature and it is proportional ﬁ(és it follows thatz

sion (11) is equivalent to the time-correlation function does not depend on time.
Cagst(t) = (A(B)N st~ (AN st Bn st (14 The dynamics defined by Eqgl8)20) can be easily
implemented in particle simulations. Then, molecular dy-
where namics(MD) simulations could be used to evaluate the trans-
port coefficients as given by Eg&)—«5). Of course, in this
<A>Nyst=depst(F)A(F), (B}N,SFfdl"pst(F)B(F), case one should keep in mind that E¢kl) and (14) are

expected to be equivalent only in the low density limit. An-
(15) other possibility is to employ the DSMC meth{tb], which
is specially designed to simulate tNeparticle dynamics of a
system in the low density limit. An important advantage of
(ABINst= f dlpg(DAT,H)B(I), (16)  the DSMC method in the present context, as compared with

MD simulations, is that it allows to particularize the dynam-
with T" denoting a point in the phase space of the systemics of the system for the case of homogeneous situations,
I'={Rr;,Vv,;i=1,... N}, and therefore eliminating the spontaneous development of the
spacial inhomogeneities following from the long wavelength
hydrodynamic instability exhibited by the HJ%7].

As already mentioned in the Introduction, the structure of
Egs. (3)«(5) differs from the standard forms for the Green-
Moreover, A(I',t)=A[I'(t)] is generated fromA(l') by a  Kubo expressions for moleculgelastio systems in several
modified particle dynamics consisting of an acceleratingvays. First, the averages are taken over the velocity distri-

N N
AT) =2 aVy), B(I) =X b(V)). (17
i=1 i=1

streaming between collisions, bution corresponding to the steady state reached by the sys-
P tem under the modified dynamics. This distribution is differ-
aRi(t):Vi(t)' (18 ent from the Maxwellian for alla<1. Second, the time

correlation functions appearing in the expressions are not
constructed from the momentum and energy fluxgg,and

ﬁvi(t) = woVi(t), (19 2 a!qne. Each of_ them iS paired. with another'function, a

at “modified flux,” which is related with the derivative of the

velocity distribution of the HCS. Third, the time evolution of

the dynamical variables is not defined in terms of the particle

Newton equations of motion, but includes a friction term.
. l+ta . R Finally, the time integrals contain, in addition to the time

Vi Vi=Vi= T("'Vii)”’ correlation functions, exponential in time factors, due to the

collisional cooling of the HCS.

while the effect of a collision between particleand]j is to
instantaneously alter their velocities according to

, 1+a . R
VimViEvir e Ve, (20 IIl. THE SIMULATION METHOD
whereV;;=V;-V; anda is the unit vector pointing from the In order to evaluate the transport coefficients from Egs.
center of particlg to that of particle at contact. The param- (3)—(5), we have used the DSMC method to simulate the
eter « is the coefficient of normal restitution characterizing N-particle dynamics of a dilute granular gg5,1§. Since
the inelasticity of collisions. It is defined in the interval we are interested in computing averages and time correla-
0<a=<1 and is considered here as a constant, independetions of position-independent properties in a homogeneous
of the relative velocities. Under this dynamics, the system istate, the positions of the particles play no role in the simu-
expected to reach a steady state after a short transient peritations, and it is enough to consider just one cell in configu-
[12,13,15. In the steady state, the energy dissipated in col+ation space. In other words, every pair of particles in the
lisions is balanced by the effect of the acceleration betweerystem can collide with a probability depending only on their
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relative velocity. Consequently, neither the size of the system
nor boundary conditions must be specified.

0

(In Xy’

PHYSICAL REVIEW E0, 051301(2004

In the simulations to be reported here, we have considered
a system ofN=10* hard disks(d=2). The results will be
expressed in the following units. The unit of mass is the mass 4l N
m of a particle and the unit of length &= (no® %)%, which 3~
is proportional to the mean free path. The unit of time is S
£[2ksT(0)/m]™Y2, whereT(0) is the initial scaled tempera- N
ture. Moreover, we sdig=1, implying that in our units it is . \‘ ¢ \\\
T(0)=1/2. RN NENY

Starting from a Maxwellian velocity distribution, the sys- AN
tem is allowed to evolve with the dynamics defined by Egs. Ne R
(18)—(20) until it reaches a steady state. Then, all the statis- \
tical averages of interest are accumulated. Moreover, the re- , : s
sults to be presented have been averaged over a number of
different trajectories of the system, typically 6000, in order
to increase the statistical accuracy. Along the simulations, the FIG. 1. Plot of(In X)’ =dIn y,cd/ dc as a function ofc for «
behavior of the total momentum of the system must be con=0.9. The circles are the numerical derivative of the simulation
trolled, since it is unstable due to the presence of the frictionesults, the solid line the fitted function, while the dashed and dot-
term in the scaled dynamics, and round-off numerical errorglashed lines are the Gaussian and first Sonine approximations for
propagate exponentially in time. This difficulty is eliminated this quantity, respectively. Quantities are measured in the dimen-
by computing the total momentum at regular time intervalssionless units defined in the main text.

f.mld subtracting it evenly from the momentum of each par- Then, what has been done is the following. For each value
Icle. of the coefficient of restitutionr, a preliminary series of

A practical important point is the choice of the parametergjm|ations has been carried out, with the paramegeset to
wo. In principle, its value is arbitrary and determines the

wo={"Y/22. These simulations were used to determine
value of the temperature of the steady stdig, as estab- 4¢) and also the actual value & from the measured
lished by Eq(21), and also the rate at which this steady stateXHcs~ & _
is approached12,15. On the other hand, inspection of Egs. value of T through Eq.(21). Afterwards, in the second se-
(3)~(5) shows that the numerical evaluation of the correla-fies of simulations, the value ab, is fixed by the same
tion functions appearing in the expressions of the transpomxpression as before, but now using fathe result obtained

coefficients is simplified b s=1. In the units we are using, in the previous simulations. This guarantees that1/2
this is equivalent tolg=1/2 or wy=¢/2y2. The problem is andv, =1 within the numerical errors. Once the steady state
that the expression (fis only partially known. In the so- IS reached, the ti_me correlation functions are mgasureq.
called first Sonine approximation, it is given py9,20 Now we describe the results from the first series of simu-
lations. The expressions of the transport coefficients, Egs.
?z?” _ 270 D2(1 — o?) (kB>1’Z[1 +3a (a)} (3)~(5), contain velocity derivatives ofycqc) that, due to
- d 162 ' the isotropic property of this function, can be easily related
I 2 td to dIn xycdc)/dc. To measure this quantity in the simula-
tions, the range af has been partitioned into nonoverlapping
(22 bins of valueAc=8x 1072, and the frequency distribution
with has been built from the simulation data, measured once the
system is in the steady state. This providgss and after-
(23) wards its logarithm is computed also numerically. In Figs. 1
and 2,d1In ypcd dc is plotted as a function of for «=0.9
and «=0.6, respectively. The circles are the results from
computing the numerical derivative directly from the raw
simulation data, while the solid line has been obtained by
carrying out an interpolation of the numerical data for
In xycg©) to a smaller bin valug¢Ac=5X% 10°%) before com-
puting its derivative. For comparison, we have also included
in the figures the derivative for the Gaussian distribution
(dashed ling as well as for the first Sonine approximation,
i.e., from Eq.(24) (dot-dashed ling
where As expected, the Sonine approximation describes quite
4 well the behavior of the distribution function faa<2.5
S9(c?) = c_ d+ 202+ d(d+ 2)_ (25) (thermal regiol, while the discrepancy grows very fast for
2 2 8 larger values of the velocity. In Fig. 2, it is observed that

16(1 - a)(1 - 247
9+ 24d + (8d — 41)a + 30a® — 302"

ay(a) =

In fact, the analytical expression of the distribution function
of the HCS, xcs that is needed to construct the “modified
fluxes” appearing in the expressions of the transport coeffi
cients, is only known in the same approximation, in which it
reads

Xred®) = Xl = Spl1 +a@SAA], (24
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FIG. 2. The same as Fig. 1 but far=0.6. ) . . .
FIG. 3. Time evolution of the temperature, measured in the units

| | for | . defined in the text, in the steady state. Time is measured in terms of
dIn xucg/ dc tends to a constant value for large consis- the number of accumulated collisions per partieleThe solid line

tently with the known exponential decay fics for 1arge  corresponds tar=0.9, the dotted line ta=0.6, and the dashed line
velocities [21,22. This behavior is not observed in Fig. 1 {5 ,=0.3.

because the velocity range for which the exponential decay
shows up increases very fast aspproaches unity. T
As already indicated, from these simulations we also de- = D (26)

termined the actual value gffrom the measured value'&i'gI 70(T)

and the value to be used fay in the second series of simu- \yhere

lations. Let us mention that the relative discrepancy between U2 —a-1)

the value obtained in this way and the prediction of the fist (T) = (d+2)I'(d/2)(mksT)"“o (27
Sonine approximation, E¢22), was always smaller than o 8pld-Dr2

0.2%. In the next section, these values as well as the inter- . . I ) . .
polated results ford In yued/dc, exemplified by the solid Is the elastic shear viscosity in the first Sonine approxima-

lines in the above two figures, will be used to evaluate thdiO- Use of Eq(3) yields

transport coefficients. 8\5’577("‘1)’2 o o
n* = dtJ,(t)e o, (298
(d+2)I'(d/2)€vg &) o
IV. TRANSPORT COEFFICIENTS with
Since in the simulations where the correlation functions 1
. P~ J,?(t) = _<Axy(vit)q)Z,xy(VEO,sa)st- (29)
are measuredy, is set towy={/22, the steady temperature N

is the same as the initial one. Of course, the velocity distri—I
butlgn change; from thg initial Gaussian to its 'steady forming the stationarity of the HCS in the scaled dynamics, i.e
In Fig. 3, the time evolution of the temperature in the Stead){hat T
state is plotted for several values of the coefficient of resti-

tution, namelyx=0.9, 0.6 and 0.3. Time is measured by the @(v,t+tg)b(v,to))s:= (av,)b(v))g, (30
accumulated number of collisions per particle, and the origir% bi _ his all
has been taken once the system is in the steady state. It i3 e?;;:rggﬁo% Oé;; ae(;"cvﬁ t‘;;_;gt;ve;?ﬂ?e Zvesiema”y
seen that, as predicted, the temperature fluctuates around ﬂng . P d95 : 9 | J‘th ry 3{ o
initial value (note the very small vertical scale used in the "'9Ures 4 and- show, in a fogarithmic representation, two

figure). The physical origin of these fluctuations has beerfyPica!l correlation functions, corresponding 46=0.95 and

discussed in Ref[23]. There, it was shown that they are 0.5, qbtain(_ad in thi_s way. Th_e s_yml_aols are the results frpm
intrinsically associated to the inelasticity of collisions and the Simulations, while the solid line is a fit to an exponential

that their amplitude increases asdecreases. function. It is seen in the figures that the decayJgft) is
very well fitted by an exponential at least until it decays two

orders of magnitude from its initial value. In fact, for the
A. The shear viscosity times where relevant deviations from the exponential behav-
ior are observed, the statistical noise is too large as to make
Let us define a reduced dimensionless shear viscagity a precise statement about whether the deviations are some-
by thing more than just noise. In any case, the contribution to

n the simulations, we have measured the funclgit), us-
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FIG. 4. Time evolution of the correlation functiah(t) for @ £|5 6. Dimensionless reduced shear viscosity coefficight,
=0.95. The circles are the results of the simulation, while the solidyg 5 fynction ofe. The solid line is the theoretical prediction de-
line is the best fit to an exponential. Quantities are measured in thﬁved in Ref.[7], while the symbols are from the simulations: the
units defined in the main text. circles are obtained using the trgigom the simulation velocity

distribution for the modified flux, the triangles with the Gaussian
the time integral in Eq(28) corresponding to times where approximation, and the squares correspond to the first Sonine
the numerical data fod,(t) differ significantly from the ex-  approximation.
ponential is negligible. For these reasons, in order to calcu-

late the coefficient of shear viscosity, we have fitlgtt) to  theoretical prediction derived from the Boltzmann equation
an exponential, by using the Chapman-Enskog procedure in the first Sonine
_ ot approximation[7]. Moreover, for comparison purposes, the
J,(1) = 3,(0)e. (31) simulation results that follows from making, in the expres-
Then, Eq.(28), after particularizing ford=2 and the units sion ofJ, given in Eq.(29), each of the two approximations
defined in Sec. lll, leads to discussed in the context of the velocity distribution, are also
— displayed. More precisely, the expression for the modified
. 2\527732(0). (32) flux @y, in the first Sonine approximation has been em-
N, + ployed, i.e.,

In Fig. 6, the values of* obtained in this way are plotted aln xP.(c) , d+2
as a function of the coefficient of normal restitutionThey ~ P2x(0) = = Jc ~2A(c)| L-ag| "= 5> )|
are represented by the black circles. The solid line is the Y 33

with ay(a) given by Eq.(23). In the last transformation, we
" have neglected nonlinear ia, contributions, consistently
| with the approximation leading to Eq23) [19,20. The
simulation results for* in this approximation are indicated
S by squares in the figure, while triangles are used for those
3 corresponding to the Gaussian approximafiequivalent to
i 3 formally seta,=0 in Eq. (33)]. The latter agrees with the
i result that is obtained by linear response methods and con-
structing the response function for a spatial perturbation of
the HCS coupling only to the local densities of mass, mo-
° mentum and energyl4].
The first conclusion following from the analysis of Fig. 6
is that the analytical expression derived in R&.fits quite
o well the simulation data with no approximations for the
modified flux over the whole range of values @fconsid-
4 ered. In fact, for 0.65 a=<1, the results obtained in the
t different approximations are close, and theidependence
shows the same trend. Let us remark that &é+0.7 the
FIG. 5. The same as in Fig. 4 but fer=0.5. simulation results based on the different approximations for
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the modified fluxes are almost indistinguishable on the scale 10°
used in the figure. This is not surprising, since the fourth
moment ofyycsis known to coincide with that of the Max- I
wellian approximation for a value af very close to 0.724].
On the other hand, for smaller values of the restitution coef-
ficient, theN-particle Green-Kubo expression for the shear
viscosity is overestimated if the Gaussian approximation is
used for the modified flux, and underestimated when the first 4
Sonine approximation is used for it. Quite interestingly, in
the latter casey* exhibits a maximum forw= 0.4, a behavior
that is qualitatively different from the numerical results with o
the right expression for the modified flux. 10°
There is a point deserving some additional comments. It 3
can be wondered why the analytical results show a better
agreement with the DSMC data for the exact Green-Kubo
expression than the simulation results obtained by using the 0 ¢ ] > 3 4 5 6
first Sonine approximation for the modified flux, since in the t
analytical derivation the expansion in Sonine polynomials is
also used, and only the first order is kept. A possible reason FIG. 7. Decay of the time correlation functidh, measured in
is that, in the Chapman-Enskog procedure, the Sonine expaihe units defined in the main text, far=0.95. The circles are from
sion is carried out not only at the level of the velocity distri- the simulations, while the solid line is the best exponential fit.
bution of the HCS, but also when computing the dynamics of
the fluxes. The results in Fig. 6 suggest that both approxima- Substitution of Eq(38) into Eg.(36), after particularizing
tions together lead to some kind of self-consistency improvfor d=2 and the units we are using, yields
ing the accuracy of the results. Nevertheless, let us point out 12
that things are in fact much more complicated since, for low K* = (7_7) M
values ofe, the simulation results clearly indicate the pres- 2 N~ g

ence of relevant velocity correlations in the HCS, giving a . . .

o o . Here we have assumed thgt> w,, otherwise the time in-
nonvanishing contribution to the Green-Kubo relations. A | d di d the th | ductivi Id
more detailed discussion of this is delayed to the final sectiorﬁegra would diverge and the thermal conductivity would not
of the paper exist. This condition has been fulfilled in all the cases we

paper. have considered.

The results obtained foe* are plotted as a function of the
coefficient of restitution in Fig. 9, where also the theoretical
prediction obtained by the Chapman-Enskog procedure in
The dimensionless reduced heat conductivity is defined age first Sonine approximatiofi7] is shown. Although in

both cases the value of the heat conductivity increases as

(39)

B. The (thermal) heat conductivity

* = «(T) , (34) decreases, there is a relevant quantitative discrepancy, the
#o(T) theoretical prediction growing much faster than the simula-
where tion data fora=0.65. This is probably due to the fact that

d(d + 2)T(d/2)kg(kgT) Y20~ @D
16(d _ 1) ,n_(d—l)/zml/Z

is the elastic limit. Then, from Eq4) it is obtained that

. _ 16(d-1)\27(dD2 F
T d(d+ 220 (di2)¢

Ko(T) = (35)

K

dtJ,(t)e”d, (36)
0

with
1—
‘JK = N<2x(v,t) (I)3,X(V[50,SI)>SI' (37)

As it was the case fad,(t), the simulation results also show
an exponential decay dl,(t). Two typical examples are
given in Figs. 7 and 8 corresponding ée=0.95 anda=0.5,
respectively. Therefore, we have fitted again the simulation
data to an exponential function, t

J, (1) =J,(0)e™, (39 FIG. 8. The same as Fig. 7 but far=0.5.
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) i - FIG. 10. The dimensionless reduced coefficient of diffusive heat
FIG. 9. The dimensionless reduced coefficient of thermal con.qnqyctivity u* as a function ofa. The circles are from the simu-
ductivity, k*, as a function ofa. The symbols are from the simula-

. ! i ) hah ' ~ lations using the Green-Kubo expression, and the solid line is the
tions, while the solid line is the theoretical prediction derived in theoretical prediction derived in Ref7]. The triangles are from an

Ref. [7]. independent study of this transport coefficient in vibrated systems
[11].

the fluxes appearing in the expression for the heat conduc-

tivity involve higher velocity moments, as compared with the w* = (2mY2 (0) o (42)

expression for the shear viscosity. The first Sonine approxi- TN — wo\

mation seems not to be able to accurately describe the be-
havior of these moments. Of course, when interpreting th
above discrepancies, it must be kept in mind that a part o
them can be due to the presence of velocity correlations in“

the HCS’ as already mentio_ned. We_again refer to the ne layed in Fig. 10, where they are represented by the black
section for a further discussion of this. The results coming.;.cles. The solid line is, as in the previous figures, the ana-

from the other approximations discussed in the context of th@ +jca) expression obtained by the Chapman-Enskog proce-
shear viscosity are not illuminating and will not be addresse@,re in the first Sonine approximatigi]. A systematic dis-
here. crepancy is observed far<0.7. The theoretical prediction
grows much faster than the simulation results from the
Green-Kubo expression, a similar behavior to that exhibited
by the(therma) heat conductivity in Fig. 9.

here we have particularized fdi=2 and the units used in

e simulations. Moreover, it has been assumed again that
> wg in all the simulations being described.

The simulation results fop* as a function ofa are dis-

C. The diffusive heat conductivity

The dimensionless reduced coefficiquit associated to The value of the transport coefficieptt has been mea-
u(T) is defined by sured recently by direct application of EQ) at the position
of the temperature minimum presented by a steady vibrated
n granular gas in presence of grav[tyl]. From DSMC mea-
m* = Trg™) u(T), (400 surements of the heat flux and the temperature at the above

minimum, the values of.* were obtained. They are repre-
sented by triangles in Fig. 10. Although it is not completely

so that substitution of Eq5) gives . .
UBSHILE a45) giv clear, one is tempted to say that these “hydrodynamic” mea-

32\5((1 gt = surements of.* show a simi_lar behavior to the Green-Kubo
w* = 5 f dtJ,(t) (e - 1) expression evaluated in this paper. In particular, both grow
dd+2)T(d/2)¢ | Jo slower than the first Enskog approximation whende-
creases belowy=<0.75. Unfortunately, this hydrodynamic
+ f dt(ix(V,t)vx>st]. (41 method to measurg.* cannot be extended to arbitrarily
20osN small values ofa. In the considered steady state, there is a

coupling between inelasticity and gradients, so that for small
The simulation results show that the second term on the rightalues of @ the system develops strong gradients and the
hand side is negligible, as compared with the first term. EveiNavier-Stokes approximation is no longer valid.
more, it is seen to identically vanish within the numerical

precision of the simulation data. Since we have already V. SUMMARY
shown thatl,(t) can be accurately described by E8@), it is In this paper, the Green-Kubo expressions for the trans-
obtained that port coefficients of a dilute granular gas composed of smooth
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FIG. 11. Simulation results for the correlation functidg(o)
defined in Eq(43) (filled circles, and its diagonal parﬂ;(l) (empty
circles, as a function of the restitution coefficient Quantities are
measured in the units defined in the text.

FIG. 12. Simulation resultéilled circles for the N-particle cor-
relation functiond’(0). The empty circles are its diagonal part?.
Quantities are measured in the units defined in the main text.

: . . be taken into consideration. First, it must be realized that the
inelastic hard disks have been evaluated by means of thg,y in which the Sonine approximation is introduced in the

DSMC method. This N-particle algorithm is designed 10 chapman-Enskog scheme affects both, the initial form of the
mimic the dynamics of a low density gas. The structure Ofdynamical variables and its time evolution.

the Green-Kubo formulas is strongly modified by the inelas- ~ the second point to be considered has a deeper physical
ticity of collisions. Of particular relevance for their evalua- origin. The time-correlation functions appearing in the

tion is that the correlation functions involve, in addition t0 reen-Kubo like relations derived from the Boltzmann equa-
the usual microscopic fluxes, other dynamical variables thafion gre single-particle correlation functions in the HCS, i.e.,

are expressed in terms of velocity derivatives of the distribu-[hey describe the time correlations of dynamical properties
tion of the HCS. Theref_ore, their exact analytical_ expressiong¢ just one-particle in that state, as generated by the linear
are not known, and their values have to be obtained from th@,|t;mann operator. In order to transform the above expres-
simulations themselves. sions into others involving thél-particle dynamics needed
.The simulation tecr_mlque used here takes advantage of ,”fSr particle simulations, Eqs(3)~5), the assumption was
existence of a mapping between the homogeneous coolingade thagone-timg velocity correlations are negligible in
state of a dissipative hard-sphere mod_e_l and the s_teady stajge HCS[12]. It is possible to partially investigate whether
reached by the system under a modified dynamics. It hags property actually holds as follows. Consider the initial

been found that, in the steady state representation, the timg,j e of J () defined in Eq.(29). As discussed in Sec. I
correlation functions of the fluxes and their paired dynamica\,vhat is acﬁually computed in the simulations is

variables decay exponentially in time. Moreover, in the case
of the transport coefficients associated with the heat flux, the
relaxation time is small enough as to compensate the explicit
exponentially growing factor coming from the energy dissi-
pation in collisions. This nontrivial result provides further
support to the validity of the hydrodynamic description for
dilute granular gases even in the case of quite strong inelagthere
ticity. Proving that the formal Green-Kubo relations for in-
elastic gases are amenable to computer simulation is one of
the aims of this paper.

The results for the transport coefficients show that all of
them increase as the value of the coefficient of restitution L
decreases, in agreement with the predictions following from JP0)==>> (D) Py (Vi s)Ins:  (45)
the Chapman-Enskog solution of the Boltzmann equation in 7 N =i ' o

the first Sonine approximation. Nevertheless, significan'gl_h i | ') is identically th
quantitative discrepancies occur in the smallegion in the e diagonal componend, ~'(0), is identically the same as

case of the transport coefficients defining the heat flux, i.eJ2(0)- In fact, it can be easily evaluated and, '”1the units used
the thermal and diffusive heat conductivities,and z, re-  in this paper and with our choice fas, it is J;'(0)=1/2.
spectively. The Sonine approximation predicts a much mord he other Componenﬂ;(z)(O), only differs from zero if ve-
rapid increase than the one observed in the simulations. Tcity correlations are present in the system, and it has been
properly evaluate this discrepancy, two main features musassumed to be negligible. We have measured the values of

N N
1
J;,(O) = Nz 2 <Axy(vi)q)z,xy(vjﬁ;o,st»N,st
[

=J:9(0) +3,%(0), (43)

N
1
J;](l)(o) = NE <Axy(vi)q)z,xy(ViEO,59>N,sta (44)
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J;](O) in the DSMC simulations and the results are shown inlow density gases has been proven in many different prob-
Fig. 11 as a function of the coefficient of restitution. There itlems. Moreover, the presence of fluctuations having an in-
is seen that fore=0.6 no discrepancies from the value 1/2 trinsic dissipative character in granular gases, even in the
are observed on the scale of the figure, indicating that thelilute limit, has been verified recently, both theoretically and
contributions toJ;(0) from velocity correlations are negli- by means of molecular dynamics simulatiqas].
gible. Nevertheless, for smaller values efthe measured In summary, the results reported here show the usefulness
values increasingly deviate from 1/2, and tex 0.2 the dis-  of the Green-Kubo relations for dilute granular gases to com-
crepancy, due to the presence of velocity correlations, is gpute their transport coefficients by usifgparticle simula-
the order of 10%. tion techniques, similarly to what happens in molecular, elas-
A similar analysis can be carried out for the function tic systems. Although restricted to the low-density limit, we
J.(0). In this case, the value of the diagonal pa1f<t(,l)(0) believe they provide the necessary guidance and caution for
=J,(0), of the N-particle correlation function is not known, a more general analysis valid for dense fluids, whose theo-
and has to be obtained from the simulations. Again, the re[etica| development must be based on the Liouville equation.
sults reported in Fig. 12 indicate the presence of relevanMoreover, for strong dissipation, the simulation data suggest
velocity correlation effects for small values of the restitutionthat velocity correlations occurring in the HCS should be
coefficient, although their relative values are smaller than irincorporated in a theoretical evaluation of the transport co-

Fig. 11. efficients, even in the very dilute limit.
From the above discussion it can be concluded that the
HCS exhibits relevant velocity correlations for strong inelas- ACKNOWLEDGMENTS

ticity, even in the low density limit. It might be argued that
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