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A time correlation function is written exactly in terms of infinite series with each term containing contribu-
tions separately due to two, three, and higher body static correlations. For a time correlation function of force
acting on a tagged particle, it is found that contributions due to two and three body static correlation functions
are sufficient to understand dynamics of dense gases whereas at the triple point and in the glassy phase it is
necessary to include contributions due to a four body correlation function.
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I. INTRODUCTION

Dynamics of simple liquids exhibit most of the important
features of complex systems which makes them excellent
candidates to test theories for understanding the basic phe-
nomena responsible for many of their properties. There ex-
ists an enormous amount of research work in which dynam-
ics of the simple fluids like Ar/Kr have been investigated
covering a wide range of densities and temperatures. One of
the aims of such studies has been to extend the available
theories for dilute gases in predicting properties of dense
gases and liquids. During the last few decades, efforts have
been made to extend these theories to supercooled liquids
and glasses. One of the theoretical methods to study self- or
collective phenomena in these systems is the evaluation of an
appropriate time correlation function(TCF). A TCF has been
commonly calculated using memory function formalism
[1,2] either in the phase-space or in the space-time frame-
work. There exists a mode-coupling theory for calculating
memory function which has been successful in understand-
ing the dynamics of both liquid state[3] and glassy phase
[4]. On the other hand, exact properties, i.e., sum rules of the
time correlation function, can be calculated to understand the
microdynamics of dense gases. Such studies[5], which have
been using memory function with a single relaxation time,
revealed that only first few sum rules are sufficient to obtain
a reasonable value of the transport coefficients in simple sys-
tems. These studies have also emphasized the role played by
triplet and quadruplet correlation functions. However, to un-
derstand the dynamics of the system at different length and
time scales, two relaxation time models have met with more
success[6]. Recently, a memory function with three relax-
ation times has been used[7] to explain the line shape of the
dynamical structure factor of liquid metals. Though these
two or three relaxation times have been assigned some physi-
cal meaning, it is not yet possible to extract these contribu-
tions from the first principle.

An alternative approach for calculating a TCF is through
developing models for it without making use of the memory
function. One successful approach is due to Zwanzig[8] who
proposed to separate the stable packed configuration of the
system from the vibrational one. Such an approach exploited

by other workers[9] too have predicted good results as far as
the transport coefficients are concerned. Microscopically, a
TCF can be calculated directly using the cluster expansion
technique[10] but so far it has been possible to calculate
[11–13] the binary contribution only. Recently, we have
combined[14] the binary contribution determined in a mi-
croscopic way with the multiparticle contribution for the
force autocorrelation function. This method has provided a
good description of the velocity autocorrelation function and
self-diffusion coefficient. In spite of the success of various
models and theories, it is still not known how to combine the
contributions due to two particles, three particles, four par-
ticles, and so on. It is also important to investigate whether
these different contributions are responsible for the require-
ment of two, three or, a multirelaxation function to explain
the dynamics of liquids. Therefore, in the present work, we
express a time correlation function as a time series in terms
of the contribution from all possible cluster of particles. Vari-
ous terms of the series represent, separately, contributions
due to two particles, three particles, four particles, and so on.
We have used a microscopic expression for the two particle
contribution obtained using the cluster expansion of a Liou-
ville operator. Three and four particle contributions have
been estimated by using superposition approximation. It is
shown that at intermediate densities, at least two relaxations
are needed corresponding to two and three particle correla-
tions. On the other hand, at the thermodynamic state close to
the triple point, at least three relaxation times are needed; a
third one is attributed to the four particle correlations.

The layout of the paper is as follows. In Sec. II we present
theory. Results obatined are discussed in Sec. III. The paper
is summed up in Sec. IV.

II. THEORY

A time correlation functionCstd of any dynamical vari-
ableAstd defined as

Cstd = kA*stdAs0dl, s1d

can be expressed as a Taylor series expansion,
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Cstd = o
n=0

s− 1dnM2n
t2n

2n!
. s2d

In the above equation,M2n is the second order sum rule and
is defined as

M2n =K dn

dtn
Astd

dn

dtn
AstdL

t=0
. s3d

The time dependence of any dynamical variableBstd is de-
termined through the Liouville equation

] Bstd
] t

= iLBstd, s4d

whereL is the Liouville operator defined by

L = L0 + o
j,k

L1s jkd=− io
j

p j

m
·

]

] r j
− io

j,k

F jk ·F ]

] p j
−

]

] pk
G ,

s5d

with F jk=−]usr jkd /]r j, the force, andr jk= ur j −r ku. usr ijd is the
pair potential.

For Astd=dBstd /dt, the Fourier-Laplace transform ofCstd
can be written as

C̃svd =KLBs0dU 1

L − v
ULBs0dL . s6d

The binary contribution toCstd can be obtained using the
well established cluster expansion technique[10]. The clus-
ter expansion formula is

1

L − v
< L 1

L0 − v
+ o

j,k
F 1

L0 + L1s jkd − v
−

1

L0 − v
G + . . . .

s7d

The first term involves the free propagation and the second
term contains a sum over a pair of particles. Microscopic
expressions for the binary contribution to time correlation
functions of force on a tagged particle, transverse stress, and
longitudinal stress have already[11–13] been obtained. The
binary contributionCs2dstd contains complete information
about the two particle contribution to all the sum rules and
can be expanded as

Cs2dstd = o
n=0

s− 1dnM2n
s2d t2n

2n!
, s8d

where M2n
smd represents them body contribution to second

sum rule. Using the knowledge[5] that each sum rule of
second order contains the contribution of the static correla-
tion functions up tos2+ndth order, we obtain from Eqs.(2)
and (8)

Cstd = Cs2dstd + o
n=1

s− 1dn t2n

2n!
M2n+2

s3d + o
n=2

s− 1dnM2n+2
s4d t2n

2n!

+ o
n=3

s− 1dn t2n

2n!
M2n+2

s5d + . . . . s9d

The first term represents the time dependent two body con-

tribution, the second term only the three body contribution,
the third term only the four body contribution, and so on.
Replacing each individual summation in Eq.(9) by a time
dependent function, we obtain

Cstd = Cs2dstd − M2
s3d t2

2!
Cs3dstd + M4

s4d t4

4!
Cs4dstd − . . . ,

s10d

whereCsndstd represents then body time dependent contribu-
tion. The above equation expands a TCF in terms of time
dependent contributions due to all possible clusters of par-
ticles.

The formalism presented here is applicable to time corre-
lation functions like that for the force on a tagged particle,
transverse, and longitudinal current correlation functions.
However, in the present work, we considerAstd as force on a
tagged particle, i.e.,msd/dtdv1xstd; v1x is the velocity of the
tagged particle at timet. Using Mori’s projection operator
procedure, the relation between the velocity autocorrelation

function c̃svd and the first order memory functionK̃svd in
Fourier-Laplace space can be written as

c̃svd = −
cs0d

v + K̃svd
. s11d

The memory function is related[14] to the force autocorre-

lation functionC̃svd as

K̃svd =
vC̃svd

v − C̃svd
. s12d

Writing

C̃svd = C8svd + iC9svd, s13d

whereC8svd andC9svd are the real and imaginary parts of

C̃svd, we obtain expressions for the real and imaginary parts

of K̃svd, respectively, given by

K8svd =
v2C8svd − vfC82svd + C92svdg

fv − C8svdg2 + C92svd
, s14d

and

K9svd =
v2C9svd

fv − C8svdg2 + C92svd
. s15d

The Green-Kubo expression for the self-diffusion coefficient
is given as

D =
kBT

mK9s0d
, s16d

wherekB, T, andm are the Boltzmann constant, temperature,
and atomic mass of the particle, respectively. In order to
calculateK9s0d from Eq.(15) , we make use of the following
relations
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lim
v→0

C8svd = − lim
v→0

E
0

`

Cstdsinsvtddt = 0, s17d

and

C9svd =E
0

`

Cstdcosswtddt =E
0

`

Cstdfcosswtd − 1gdt.

s18d

For writing the above equation, we have used the following
exact relation[1]:

E
0

`

Cstddt = 0. s19d

Using Eqs.(17) and (18) in Eq. (15) , we obtain

lim
v→0

K9svd = lim
v→0

v2

C9svd
=

1

E
0

`

Cstdlimv→0Scossvtd − 1

v2 Ddt

=
− 2

E
0

`

dtCstdt2
. s20d

Equations(20) and (16) provide us a relation for the diffu-
sion coefficient given[14] as

D = −
kBT

2m
E

0

`

Cstdt2dt. s21d

This relation has been verified to provide the same results
[14] as that obtained using the Green-Kubo formula for self-
diffusion. An alternative derivation of Eq.(21) is presented
in the Appendix. To calculate self-diffusion from this expres-
sion we need to know the time evolution of the force auto-
correlation functionCstd. The contribution due to the pair
correlation is given[11] by

Cs2dstd =
n

m2Î2
E E drdpGF p

Î2
G ] gsrd

] x
Fx„rstd…, s22d

where gsrd and Gspd=s1/2pp0
2d3/2e−sp2/2p0

2d with p0

=smkBTd1/2 are, respectively, the static pair correlation func-
tion and the Maxwellian momentum distribution. The posi-
tion vectorr std and the momentum vectorpstd of a particle
moving in a central potential fieldusrd obey the Newton’s
equation of motion given by

1

2

dpx

dt
=

m

2

d2x

dt2
= Fxsrd = −

] usrd
] x

, s23d

wherex, px, andr are the initial values of these quantities at
time t=0.

III. RESULTS AND DISCUSSION

The six dimensional integral in Eq.(22) has been evalu-
ated using the Monte Carlo method[15] and the Verlet algo-
rithm [16] for the evaluation ofrstd for the Lennard-Jones

FIG. 1. Variation of the force autocorrelation function
Cst*d /Cs0d with reduced timet*f=tse /ms2d1/2g; at T* =0.73 and
n* =0.84. The dotted line representsCs2dst*d /Cs0d, the dashed line
represents the sum of two and three body contributions. The full
line represents the sum of two, three, and four body contributions.
The solid circles are MD results[17]. The dashed-dotted line is the
contribution due to, quadruplet correlation.

FIG. 2. Variation of the force autocorrelation function
Cst*d /Cs0d with reduced timet*f=tse /ms2d1/2g; at T* =4.53 and
n* =0.6. The dotted line representsCs2dst*d /Cs0d, the dashed line
represents the sum of two and three body contributions. The solid
circles are MD results[17].
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fluid. The microscopic contribution due to the two body cor-
relation is shown in Figs. 1 and 2 as dotted lines at
T*s=kBT/ed=0.73, n*s=ns3d=0.84, and atT* =4.53 andn*

=0.6, respectively(where s and e are two parameters of
Lennard-Jones potential). It can be seen from the figures that
the pair contribution is in agreement with molecular dynam-
ics (MD) simulation data[17] (solid circles) only up to t*

<0.03. Therefore it becomes essential to include contribu-
tions due to the higher order static correlation function. The
three body contributionCs3dstd is estimated so as to include
exactly the triplet contribution to the sum rules of the force
autocorrelation function up to fourth order. We assume
Cs3dstd=sechsatd with a=sM4

s3d /6M2
s3dd1/2. We prefer sechsatd

over the simple exponential function due to its symmetric
property which is one of the requirements of the expansion
(10). For the calculation ofM4

s3d andM2
s3d, we have used the

Kirkwood superposition approximation for the static triplet
correlation function. The values ofM2

s3d [in units of
se /ms2d2] and a [in units of se /ms2d1/2] are 49 137.94 and
16.22 atT* =0.73 andn* =0.84 and 75 697.6 and 27.04 at
T* =4.53 andn* =0.6. The value ofa at T* =4.53 andn*

=0.6 is obtained by adjusting the value ofM4
s3d by about 20%

which is within the error limit due to the superposition ap-
proximation[5]. The results obtained by combining two and
three body contributions are shown as dashed curves in Figs.
1 and 2. It can be seen from the Fig. 2 that atT* =4.53 and
n* =0.6, the dashed curve is in very good agreement with
molecular dynamics results[17]. This implies that contribu-
tions due to four and higher body correlation functions to
Cstd will have a negligible effect due to their cancellation
nature. However, at the triple point, it is noted that the triplet
contribution is effective in correcting the behavior ofCstd
only up to t* <0.09 as can be judged from comparison with
MD data. Therefore at the triple point it appears that it is
necessary to addCs4dstd, i.e., the contribution due to four
particles. In the present work, we estimate it through a faster
decaying function than sechsatd, i.e., exps−bt2d. The value of
b can be determined from the quadruplet contribution to the
sum rules and is given asÎM6

s4d /30M4
s4d. The expression for

M4
s4d is available and can be determined using a decoupling

approximation[18]. Since nothing is known aboutM6
s4d, we

have fitted this andM4
s4d so as to obtain the MD value ofD.

It was found that the fitted value ofM4
s4d is about 15% less

than the value predicted by using the decoupling approxima-
tion for the quadruplet correlation function in the fourth sum
rule of Cstd.

The results obtained by including contributions up to four
particles is shown as a full line in Fig. 1, and are in good
agreement with MD simulation results(solid circles) up to
t* =0.3. It can be seen from the Fig. 1 thatCstd becomes
positive at the triple point at aroundt*f=tse /ms2d1/2g=0.24.
This positive lobe is responsible for the rapid fall ofD while
approaching the triple point. It is further noted that this posi-
tive contribution is arising due to the four body static corre-
lation function and is shown separately as a dashed-dotted
line in Fig. 1. Therefore, in a supercooled or glassy state of
matter, the four particle contribution is expected to play an
important role as it is responsible for the arrest of a tagged

particle in the cage formed by a cluster of particles. It is also
noted that the four body correlation’s contribution starts
building only at larger times, implying that these play a vital
role in cases where long time effects are quite important. For
example, at the triple point, values oft* at which pair, triplet,
and quadruplet contributions toCstd are half of their maxima
are 0.035, 0.053, and 0.144, whereas atn* =0.6 and T*

=4.53, corresponding values oft* for pair and triplet contri-
butions are 0.021 and 0.032. At the triple point and at ther-
modynamic states close to it, the correlation among more
than four particles may have a negligible contribution due to
the canceling effect.

In order to understand the wide role played by three and
four body contributions, we have also studied the behavior of
Cstd at the critical point of Lennard-Jones fluids. The results
obtained forCs2dstd and that by adding the multiparticle con-
tribution [14] are shown in Fig. 3 as a dashed line and full
line, respectively. Since MD results ofCstd at the critical
point is not available, the full line is made to satisfy the two
exact conditionse0

` Cstddt=0 ande0
` tCstddt=−1 by adjust-

ing the values of parameters in the multiparticle contribution.
It is then found that this predicts the self-diffusion coefficient
in good agreement with the MD simulation. It can be seen
from Fig. 3 that the two curves are closer to each other than
found at the thermodynamic states studied earlier, implying
that on further diluting a gas, only the two particle correla-
tion’s contribution would be sufficient.

IV. SUMMARY AND CONCLUSION

Summing up, in the present work, it is shown that a TCF
can be written as a time series of contributions due to all
possible clusters of particles. Each term is associated with at

FIG. 3. Variation of the force autocorrelation function
Cst*d /Cs0d with reduced timet*f=tse /ms2d1/2g; at T* =1.56 and
n* =0.3. The dashed line representsCs2dst*d /Cs0d and the full line
represents the sum of two and many-body contributions.
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least one relaxation time corresponding to contributions due
to static correlations of two particles, three particles, four
particles, and so on. It is shown that for a TCF of force
acting on a tagged particle, it is essential to include the con-
tribution due to the quadruplet correlation function at the
triple point. However, at low densities and/or high tempera-
ture, only two and three particle contributions are sufficient.
Our work systematically demonstrates that as one goes to-
wards the triple point from the critical point, the role played
by multiparticle correlation becomes imperative and hence
requires more numbers of relaxation times.
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APPENDIX

We present here an alternate method for deriving Eq.(21).
The Green-Kubo expression for the self-diffusion coefficient
[1,2] is given as

D =
kBT

m
E

0

`

cstddt, sA1d

wherecstd is the normalized velocity autocorrelation func-
tion. Integrating Eq.(A1) by parts, we get

D =
kBT

m
cstdtu0

` −
kBT

m
E

0

` dcstd
dt

tdt=−
kBT

m
E

0

` dcstd
dt

tdt.

sA2d

Again integrating Eq.(A2) by parts, we get

D = −
kBT

m

dcstd
dt

U t2

2
U

0

`

+
kBT

m
E

0

` d2cstd
dt2

t2

2
dt

=
kBT

2m
E

0

` d2cstd
dt2

t2dt. sA3d

−d2cstd /dt2=Cstd is a force autocorrelation function; we ob-
tain

D = −
kBT

2m
E

0

`

t2Cstddt. sA4d

In obtaining Eqs.(A2) and(A4), it is required thatcstd van-
ishes faster thant−1 for t→`.
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