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Role of many-body correlations in dynamics of liquids
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A time correlation function is written exactly in terms of infinite series with each term containing contribu-
tions separately due to two, three, and higher body static correlations. For a time correlation function of force
acting on a tagged particle, it is found that contributions due to two and three body static correlation functions
are sufficient to understand dynamics of dense gases whereas at the triple point and in the glassy phase it is
necessary to include contributions due to a four body correlation function.
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I. INTRODUCTION by other workerg9] too have predicted good results as far as

Dynamics of simple liquids exhibit most of the important the transport coefficients are concerned. Microscopically, a
features of complex systems which makes them excellentCF can be calculated directly using the cluster expansion
candidates to test theories for understanding the basic ph&chnique[10] but so far it has been possible to calculate
nomena responsible for many of their properties. There ext11-13 the binary contribution only. Recently, we have
ists an enormous amount of research work in which dynamcombined[14] the binary contribution determined in a mi-
ics of the simple fluids like Ar/Kr have been investigated croscopic way with the multiparticle contribution for the
covering a wide range of densities and temperatures. One #prce autocorrelation function. This method has provided a
the aims of such studies has been to extend the availab@ood description of the velocity autocorrelation function and
theories for dilute gases in predicting properties of denséelf-diffusion coefficient. In spite of the success of various
gases and liquids. During the last few decades, efforts hav@odels and theories, it is still not known how to combine the
been made to extend these theories to supercooled liquid@ntributions due to two particles, three particles, four par-
and glasses. One of the theoretical methods to study self- dicles, and so on. It is also important to investigate whether
collective phenomena in these systems is the evaluation of dhese different contributions are responsible for the require-
appropriate time correlation functigiCF). A TCF has been ment of two, three or, a multirelaxation function to explain
commonly calculated using memory function formalismthe dynamics of liquids. Therefore, in the present work, we
[1,2] either in the phase-space or in the space-time frameexpress a time correlation function as a time series in terms
work. There exists a mode-coupling theory for calculatingof the contribution from all possible cluster of particles. Vari-
memory function which has been successful in understand?us terms of the series represent, separately, contributions
ing the dynamics of both liquid staf@] and glassy phase due to two particles, three particles, four particles, and so on.
[4]. On the other hand, exact properties, i.e., sum rules of th¥/e have used a microscopic expression for the two particle
time correlation function, can be calculated to understand theontribution obtained using the cluster expansion of a Liou-
microdynamics of dense gases. Such stufbgswhich have Ville operator. Three and four particle contributions have
been using memory function with a single relaxation time,been estimated by using superposition approximation. It is
revealed that only first few sum rules are sufficient to obtairshown that at intermediate densities, at least two relaxations
a reasonable value of the transport coefficients in simple sygre needed corresponding to two and three particle correla-
tems. These studies have also emphasized the role played #§ns. On the other hand, at the thermodynamic state close to
triplet and quadruplet correlation functions. However, to un-the triple point, at least three relaxation times are needed; a
derstand the dynamics of the system at different length anthird one is attributed to the four particle correlations.
time scales, two relaxation time models have met with more The layout of the paper is as follows. In Sec. Il we present
succesg6]. Recently, a memory function with three relax- theory. Results obatined are discussed in Sec. lll. The paper
ation times has been usgf] to explain the line shape of the is summed up in Sec. IV.
dynamical structure factor of liquid metals. Though these

two or three relaxation times have been assigned some physi- Il. THEORY
cal meaning, it is not yet possible to extract these contribu-
tions from the first principle. A time correlation functionC(t) of any dynamical vari-

An alternative approach for calculating a TCF is throughable A(t) defined as
developing models for it without making use of the memory
function. One successful approach is due to Zwaf&jgvho C(t) = (A" (1)A(0)), (1)
proposed to separate the stable packed configuration of the
system from the vibrational one. Such an approach exploitedan be expressed as a Taylor series expansion,
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N t2n tribution, the second term only the three body contribution,
C=2(-1 M2n : (2)  the third term only the four body contribution, and so on.
n=0 Replacing each individual summation in E&) by a time
In the above equatioM,, is the second order sum rule and dependent function, we obtain
is defined as 2 "
@ Ct)=Cc?() - M(23)5C(3)(t) +M ﬁf‘)ZC(“)(t) -y
Man =\ —7AM LA ) : :
dt dt =0

The time dependence of any dynamical variaB(e is de-
termined through the Liouville equation

(10

whereC™(t) represents tha body time dependent contribu-
tion. The above equation expands a TCF in terms of time

c?B(t) dependent contributions due to all possible clusters of par-
=ILB(), (4) ticles.
) o ] The formalism presented here is applicable to time corre-
where . is the Liouville operator defined by lation functions like that for the force on a tagged particle,
F) transverse, and longitudinal current correlation functions.
L=Lo+ 2 La(jk)=- IE — X Fy| However, in the present work, we considst) as force on a
j<k ‘9 j i<k d pj J Pk

tagged particle, i.em(d/dt)v4,(t); v1y is the velocity of the
(5) tagged particle at timé. Using Mori’s projection operator

With Fye=—au(r 0/ or;, the force, andyc=|r,—r . u(r;) is the procedure, the relation between the velocity autocorrelation

pair potential. function () and the first order memory functioki(w) in
For A(t)=dB(t)/dt, the Fourier-Laplace transform @f(t) Fourier-Laplace space can be written as
can be written as _ HO)
_ 1 W)= - ———. (1D)
C(w)={ £B(0) o £B(0) ). (6) w+ K(w)
]

The memory function is relatefd 4] to the force autocorre-

The binary contribution taC(t) can be obtained using the = T~
lation functionC(w) as

well established cluster expansion technigi@]. The clus-
ter expansion formula is

~ wC(w)
Lty 1 I K(w) = =2 (12)
L-0 TLomo Sl LotLiK-e Lomw] T w=Clo)
(7) Writing
The first term involves the free propagation and the second Clw) = C'(w) +iC"(w), 13

term contains a sum over a pair of particles. Microscopic

expressions for the binary contribution to time correlationwhereC’(w) and C"(w) are the real and imaginary parts of
functions of force on a tagged particle, transverse stress, ar@(w) we obtain expressions for the real and imaginary parts
longitudinal stress have alreadiy1-13 been obtained. The of IC( ), respectively, given b

binary contributionC?(t) contains complete information @ P ¥ 9 y

about the two particle contribution to all the sum rules and 2C" (@) - o[ C'%(w) + C"4()]
can be expanded as K'(w) = [0-C(0)f+C2%a) (14)
CO)=3 (- )M ®  and
n=0 2n!’
2~
where M(zr:) represents then body contribution to second K"(w) = f" C gw) ETIRY (15)
sum rule. Using the knowledggs] that each sum rule of [0-C'(0)] +C"(w)

second order contains the contribution of the static correl
tion functions up ta2+n)th order, we obtain from Eq$2)
and(8)

% he Green-Kubo expression for the self-diffusion coefficient
is given as

2n kT
Ch=C?(n+ n21< 1)"—M2n+2 +3 e Mo O ) —
N wherekg, T, andm are the Boltzmann constant, temperature,
+2( D _M2n+2 (9 and atomic mass of the particle, respectively. In order to
calculateXC”(0) from Eq.(15) , we make use of the following
The first term represents the time dependent two body correlations

051202-2



ROLE OF MANY-BODY CORRELATIONS IN DYNAMICS... PHYSICAL REVIEW E 70, 051202(2004)

1.0 r r r r r r r 1.0 — —————T
I ’ ] 3 *
08} n=0.84 \ n=0.6
Y . 08 | i . 4
T=0.73 L T=4.53
06 | 4 5(
=) 06 t i
Q L ] 1
= s 4
S 2 Q o4} |‘ |
.I"‘ T~ ~ O "..
L i _
o, 0.2 9
.n
I ¥
02 00 Yo o
. W e e
Yot .gw®®
LN Pl )
. N Y ’/'. [ ]
0.4 o2l Q“_.». ® ]
0.6 N 1 " 1 : 1 : 1 L 1 L 1 L 1 M 1 L 1
0.0 0.1 0.2 0.3 0.4 0.00 0.05 010 _ 015 0.20 0.25
t t

FIG. 1. Variation of the force autocorrelation function  FIG. 2. Variation of the force autocorrelation function
C(t")/C(0) with reduced timet'[=t(e/ma?)¥2]; at T'=0.73 and C(t")/C(0) with reduced timet'[=t(e/mc?)'?]; at T'=4.53 and
n"=0.84. The dotted line represer@?(t')/C(0), the dashed line N =0.6. The dotted line represen@?(t")/C(0), the dashed line
represents the sum of two and three body contributions. The fulféPresents the sum of two and three body contributions. The solid
line represents the sum of two, three, and four body contributionsSircles are MD result$17].

The solid circles are MD resulfd7]. The dashed-dotted line is the
contribution due to, quadruplet correlation.

D=- kel f C(t)t%dt. (21)
. 2mJ,
I|m0C’(w):— “moj C(t)sin(wt)dt=0, (170 This relation has been verified to provide the same results
@ @0 [14] as that obtained using the Green-Kubo formula for self-
and diffusion. An alternative derivation of Eq21) is presented
in the Appendix. To calculate self-diffusion from this expres-
- " sion we need to know the time evolution of the force auto-
C'(w) = f C(t)cogwt)dt = f C(t)[cogwt) - 1]dt. correlation functionC(t). The contribution due to the pair
0 0 correlation is giver{11] by

(18)

ag(r
c)=—"— f f drdpe[%}%a(r(t)), (22)

For writing the above equation, we have used the following m2y2 \ X
exact relation1]:

where g(r) and G(p)=(1/ 277p3)3’2e‘(pz’2"3) with  po
w =(mksT)Y2 are, respectively, the static pair correlation func-
J C(t)dt=0. (19)  tion and the Maxwellian momentum distribution. The posi-
tion vectorr (t) and the momentum vectqt) of a particle
moving in a central potential field(r) obey the Newton’s
equation of motion given by

0

Using Eqs.(17) and(18) in Eq. (15) , we obtain

w2 1 1dp, md’x au(r)
lim K" (w) = lim = oo R = ——, (23
0 o0 w? wherex, p,, andr are the initial values of these quantities at
time t=0.
-2
. (20)
f dtC(Ht? IIl. RESULTS AND DISCUSSION
0

The six dimensional integral in E¢22) has been evalu-
Equations(20) and (16) provide us a relation for the diffu- ated using the Monte Carlo meth§th] and the Verlet algo-

sion coefficient giverj14] as rithm [16] for the evaluation ofr(t) for the Lennard-Jones
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fluid. The microscopic contribution due to the two body cor- 10 — T T T 1

relation is shown in Figs. 1 and 2 as dotted lines at R

T (=kgT/€)=0.73,n"(=nc*)=0.84, and afl'=4.53 andn’ n=0.30
=0.6, respectivelywhere o and € are two parameters of 08 T-156

Lennard-Jones potentjalt can be seen from the figures that
the pair contribution is in agreement with molecular dynam-

ics (MD) simulation data[17] (solid circleg only up tot" s °°r ]
~0.03. Therefore it becomes essential to include contribu-E\)’

tions due to the higher order static correlation function. The =

three body contributiol©®(t) is estimated so as to include © 041 ]
exactly the triplet contribution to the sum rules of the force

autocorrelation function up to fourth order. We assume oo L ]

C(t)=sectfat) with a=(M$'76M¥)V/2 We prefer sectat)
over the simple exponential function due to its symmetric
property which is one of the requirements of the expansion 00

(10). For the calculation oMY andM?, we have used the Pt

Kirkwood superposition approximation for the static triplet [

correlation function. The values oM(Z3> [in units of 02 — .1
(e/mo?)?] anda [in units of (e/mad?)*?] are 49 137.94 and 0.0 0.2 04 06 0.8 10
16.22 atT"=0.73 andn’=0.84 and 75 697.6 and 27.04 at L

T =4.53 andn =0.6. The value ofa at T =4.53 andn FIG. 3. \Variation of the force autocorrelation function

=0.6 is obtained by adjusting the vaIuer) by about 20%  ¢(t")/c(0) with reduced timet’[=t(e/ma?)2]: at T'=1.56 and

whic.h is .within the error limit dge to the supgrposition ap-n*=0.3. The dashed line represe@®@(t')/C(0) and the full line
proximation[5]. The results obtained by combining two and represents the sum of two and many-body contributions.

three body contributions are shown as dashed curves in Figs.
1 and 2. It can be seen from the Fig. 2 thaffat4.53 and
n"=0.6, the dashed curve is in very good agreement wit
molecular dynamics resul{d7]. This implies that contribu-
tions due to four and higher body correlation functions to

C(t) will have a negI|g|bI§ eﬁegt dqe_ to their cancella’qon example, at the triple point, values tfat which pair, triplet,
nature. However, at the triple point, it is noted that the tripletq quadruplet contributions @(t) are half of their maxima
contnbutlorl is effective in correctlng the behawo_r ©ft) are 0.035, 0.053, and 0.144, whereasnit0.6 and T"
only up tot ~0.09 as can be judged from comparison with_4 53 ¢orresponding values Bffor pair and triplet contri-
MD data. Therefor(t;:) at the triple point it appears that it isy,ions are 0.021 and 0.032. At the triple point and at ther-
necessary to ad€'(t), i.e., the contribution due to four ,qvnamic states close to it, the correlation among more
particles. In the present work, we estimate it through a fastefhan four particles may have a negligible contribution due to
decaying functlop than set), i.e., exg—bt?). Thg va]ue of  ihe canceling effect.
b can be determined from the quadruplet contribution to the |n order to understand the wide role played by three and
sum rules and is given a$|\/|é4)/30M£14). The expression for  four body contributions, we have also studied the behavior of
Mf) is available and can be determined using a decouplin@(t) at the critical point of Lennard-Jones fluids. The results
approximation[18]. Since nothing is known abomﬂg"), we  obtained forC'?(t) and that by adding the multiparticle con-
have fitted this an(MEf” so as to obtain the MD value @.  tribution [14] are shown in Fig. 3 as a dashed line and full
It was found that the fitted value o8l is about 15% less line, respectively. Since MD results @(t) at the critical
than the value predicted by using the decoupling approximapoint is not available, the full line is made to satisfy the two
tion for the quadruplet correlation function in the fourth sumexact conditiongy C(t)dt=0 and [, tC(t)dt=—1 by adjust-
rule of C(t). ing the values of parameters in the multiparticle contribution.
The results obtained by including contributions up to fourlt is then found that this predicts the self-diffusion coefficient
particles is shown as a full line in Fig. 1, and are in goodin good agreement with the MD simulation. It can be seen
agreement with MD simulation resultsolid circle§ up to  from Fig. 3 that the two curves are closer to each other than
t'=0.3. It can be seen from the Fig. 1 th@tt) becomes found at the thermodynamic states studied earlier, implying
positive at the triple point at arount{=t(e/mo?)'?]=0.24.  that on further diluting a gas, only the two particle correla-
This positive lobe is responsible for the rapid falldfwhile  tion’s contribution would be sufficient.
approaching the triple point. It is further noted that this posi-
tivg contribgtion is qrising due to the four body static corre- IV. SUMMARY AND CONCLUSION
lation function and is shown separately as a dashed-dotted
line in Fig. 1. Therefore, in a supercooled or glassy state of Summing up, in the present work, it is shown that a TCF
matter, the four particle contribution is expected to play ancan be written as a time series of contributions due to all
important role as it is responsible for the arrest of a taggeqbossible clusters of particles. Each term is associated with at

article in the cage formed by a cluster of particles. It is also

oted that the four body correlation’s contribution starts
building only at larger times, implying that these play a vital
role in cases where long time effects are quite important. For
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least one relaxation time corresponding to contributions due keT

to static correlations of two particles, three particles, four D= ?f P(t)dt, (A1)
particles, and so on. It is shown that for a TCF of force 0

acting on a tagged particle, it is essential to include the conwhere ¢(t) is the normalized velocity autocorrelation func-
tribution due to the quadruplet correlation function at thetion. Integrating Eq(A1) by parts, we get

triple point. However, at low densities and/or high tempera- % o
ture, only two and three particle contributions are sufficient. D= k‘3—T¢(t)t|6° - KLT[ %td - ki-rf Mtdt.
Our work systematically demonstrates that as one goes to- m o dt o dt
wards the triple point from the critical point, the role played (A2)
by multiparticle correlation becomes imperative and hence )
requires more numbers of relaxation times. Again integrating Eq(A2) by parts, we get
2 | o 42 2
oo keTAU) £ kT (Ut €
m dt 2|, mJ, d 2
ACKNOWLEDGMENT
CkeT (7 APt ,
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assistance.

—d?y(t)/dt>=C(t) is a force autocorrelation function; we ob-
tain
APPENDIX kT [
D=- 2‘3—m f t2C(t)dt. (A4)
We present here an alternate method for deriving(E). 0
The Green-Kubo expression for the self-diffusion coefficientin obtaining Eqs(A2) and(A4), it is required thai/(t) van-
[1,2] is given as ishes faster that* for t— .
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