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The single-particle Brownian motion in simple monatomic liquids has been described with the help of the
equation of motion in terms of velocity autocorrelation functioncstd, where the particle is assumed to diffuse
in a mean-time-dependent field. The equation of motion which is a second order differential equation incstd
has been solved in terms ofnth order Bessel functions of the first and second kind. The solution is, in fact, the
generalization of the solution given by Glass and Rice(GR) [Phys. Rev.176, 239 (1968)] for low density
fluids. The generalized solution is an improvisation over the one by GR and the results demonstrate that, for
high density liquids such as liquid metals where the GR solution fails to give a reasonable account ofcstd, the
generalized solution could be very useful to calculatecstd. The present approach has been applied to the liquid
alkali metals and binary alloys. The results are found to be in close agreement with the molecular dynamics
results.
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I. INTRODUCTION

The time-correlation functions are very useful in the the-
oretical and experimental study of dynamical and transport
properties of liquids. For example, the self-diffusion pro-
cesses in Lennard-Jones fluid[1], liquid lead[2], and liquid
alkali metals[3,4], and the atomic dynamics in liquid metals
[5–7] have been described in terms of the time-dependent
correlation functions. The velocity autocorrelation function
(VACF) is the simplest time-correlation function for the de-
scription of the dynamical correlation in the molecular mo-
tion in liquids. The exact determination of VACF is a com-
plex dynamical problem involving the motion of many
particles. In order to avoid this difficulty, many attempts
have been made to approximate the time decay of VACF
with the help of simple functional forms[1,8–10]. Alterna-
tively, the memory function approach[11] has widely been
adopted to approximate VACF where the so-called memory
function is the kernel[say Kstd] of an integrodifferential
equation describing the time development of the autocorre-
lation function[12,13]. Apart from this, various theories and
models have been developed to give the description of VACF
in simple liquids[1,14,15].

One way of theoretical derivation of VACF is the solution
of the classical Langevin equation for the Brownian motion
of small particles in a liquid. In a liquid, any given molecule
is in continuous interaction with all its nearest neighbors. A
molecule may be imagined to have an encounter with the
nearest neighbor molecule during which strong repulsive
forces act and then the molecule moves randomly in the rap-
idly fluctuating force field generated by the neighboring mol-
ecules. Therefore the motion of a molecule in a liquid is
analogous to the motion of a massive Brownian particle. In
such a description of the liquid, a friction constantsbd is
related to the autocorrelation function of the force exerted by
the surrounding on the molecule. As noted by Glass and
Rice, Uhlenbeck and Ornstein[16] have described the
Brownian motion of a harmonically bound particle and this

simple model was further used by Rahman, Singwi, and
Sjolander [14] to describe the atomic motion in liquids.
However, in their work, care was not taken to make the
VACF obey the boundary conditions at zero time.

The simple model used by Uhlenbeck and Ornstein[16]
assumes that its first-order memory function(or retarded fric-
tion coefficient) has an exponential decay with single relax-
ation time, i.e.,Kstd=k exps−btd. Though this model ac-
counts for the short-time features of the VACF, it tends to
overestimate the deepness of the backscattering region(re-
sulting due to the “cage” effect) as well as the subsequent
oscillations at longer times, which subsequently leads to un-
reliable predictions for the diffusion coefficient and other
transport properties as well. In practice, the static harmonic
well (SHW) condition does not exist because of the fluctua-
tions in the surrounding medium and the harmonic well is
subject to quasirandom alterations as a function of time. In
such a case, assuming the Brownian particle diffusing in a
mean-time-dependent field, Glass and Rice[9] (referred to as
GR now onwards) have modified the classical Langevin
equation by adding another systematic force term represent-
ing the time-dependent force field. Subsequently, GR have
derived an equation of motion in terms of VACF as

d2c

dt2
+ sa + bd

dc

dt
+ sv2e−at + abdc = 0, s1d

wherea is the molecular relaxation time. It corresponds to
the time st0d for which an atom remains within the same
local environment before diffusing away[17]. In other
words, it is the time for the relaxation of the cage formed by
surrounding neighbor atoms. Therefore molecular relaxation
time a is taken to be equal tot0

−1.
The solution of Eq.(1) is the key subject of the present

paper. The exact solution of this equation can be obtained if
we knowa andb a priori. Due to the difficulty ina priori
calculation ofa, a simplified solution of Eq.(1) is provided
by GR assuming the molecular relaxation time to be equal to

PHYSICAL REVIEW E 70, 051201(2004)

1539-3755/2004/70(5)/051201(9)/$22.50 ©2004 The American Physical Society70 051201-1



the friction constant, i.e.,a=b. While this assumption holds
good for insulating fluid like Ar at 85 K, it is not true for
high density liquids like liquid metals, e.g., for liquid Li,b is
found to be three times as large asa. The principal differ-
ence between the insulating fluid(argon) and liquid metals is
the presence of free electrons in liquid metals which is also
responsible for the essential difference in their physical prop-
erties. Consequently, the GR formulation for the VACF has
been found to be inadequate for the liquid metals. It is then
imperative to look for a solution of Eq.(1) subject to the
conditionaÞb. Although it is difficult to calculatea andb
exactly, one can estimate values from the work of Berneet
al. [12]. Further, GR have employed a small-step diffusion
assumption where the diffusion in a dense fluid is thought to
proceed by a series of displacements each being small com-
pared to the interatomic spacing. Here, we give a generalized
solution of the second-order differential equation[Eq. (1)]
when aÞb and also doing away with the small-step diffu-
sion assumption. We call it a generalized solution in the
sense that the original GR formulation fora=b turns out to
be a special case of our solution. The generalized solution is
applied to the liquid alkali metals like Li, Na, and their bi-
nary alloys, viz., Li-Na, Li-Mg, and the results are compared
with the molecular dynamics results. It has been found to
give an excellent and physically more meaningful account of
the VACF in these systems.

II. MATHEMATICAL FORMULATION

We adopt the basic mathematical formulation given by
GR as such, along with all underlying assumptions except
two, for the description of the VACF in the present work.
Our prime interest lies in the extension of the GR formula-
tion for high density liquids, e.g., liquid metals. The normal-
ized VACF is defined as

cstd =
kvs0d ·vstdl

kn2l
, s2d

wherevs0d andvstd are the velocities of a specified particle
at time t=0 an t= t, respectively.k¯l represents a time av-
erage over the history of the particle, i.e., all the values oft.
The VACF is subjected to the following boundary condi-
tions:

lim
t→0

cstd = 1, s3ad

lim
t→0

dc

dt
= 0, s3bd

lim
t→0

d2c

dt2
= − v0

2 = −
k¹2Vl

3m
, s3cd

D =
kBT

m
E

0

`

dt cstd. s3dd

k¹2Vl appearing in Eq.(3c) is the thermal average of the
potential energy given by

k¹2Vl = 4prE
0

`

drr2gsrdS ]2V

]r2 +
2

r

]V

]r
D , s4d

where gsrd is the pair distribution function andr is the
atomic number density.s]V/]rd and s]2V/]r2d are the first
and second order derivatives of the effective interatomic pair
potential Vsrd. The effective interatomic pair potentials in
liquid metals can be derived using the pseudopotentials in
second order perturbation theory. A brief description of the
method used for the calculation of the interatomic pair po-
tentials in the present work is given in the Appendix. Now,
substituting

u = S2v

a
De−s1/2dat s5d

in Eq. (1) the solution is found to be

cstd = e−s1/2dsa+bdtnsud, s6d

wherensud is a solution of Bessel’s equation,

u2n9 + un8 + nfu2 − sa − bd2/a2g = 0. s7d

From the simple model of the particle dynamics considered
by GR,a priori calculation ofa is not possible. Therefore to
simplify the solution, GR have assumeda=b. The subse-
quent solution obtained is

cstd = e−btfc1J0sud + c2Y0sudg, s8d

whereJ0 and Y0 are zero-order Bessel function of the first
and second kinds, respectively.c1 andc2 are the constants of
integration;

u = 2ge−s1/2dbt, s9d

whereg=v /b.
From the physical point of view, the insulating fluid Ar

and the liquid metals are essentially different. The presence
of conduction electrons distinguishes the liquid metals from
the liquefied inert gases. The pair potential for a liquefied
inert gas is well described by the Lennard-Jones potential
which is composed of a harsh, short-range repulsion and a
smoothly varying long-range attraction. On the other hand,
the effective ion-ion interaction for liquid alkali metals
shows a much softer repulsive core than that of rare gases
and a deep attractive well followed by a long-range oscilla-
tory tail, caused by the presence of conduction electrons. The
softness or hardness of the repulsive core has been demon-
strated to be strongly related to the oscillatory or nonoscilla-
tory long-time tail of the VACF[18,19]. The VACF for liquid
alkali metals exhibits a pronounced oscillatory behavior[18],
in marked contrast to that of liquid argon[20,21]. The per-
sistent oscillations in VACF of liquid alkali metals are due to
the existence of the longitudinal modes of propagating col-
lective excitations(well-defined oscillatory modes for the
density fluctuations or acoustic-like modes) whereas such
short wavelength longitudinal modes are completely over-
damped in liquid argon, resulting into a smoothly varying
nonoscillatory tail of VACF[22]. This is also corroborated
by the findings that the interatomic collisions through hard
cores do not favor the coherence of the atomic motions that

K. N. LAD AND A. PRATAP PHYSICAL REVIEW E 70, 051201(2004)

051201-2



is required for the propagation of the longitudinal modes
associated with density fluctuations[23].

The above discussion implies that it is the soft core that
makes the damping of very short wavelength longitudinal
waves quite weak in liquid metals, and it is the hard
Lennard-Jones-type core that makes the same damping very
strong in liquid argon. Weak damping of the longitudinal
waves in liquid metals indicates a large residence time for an
atom in its nearest neighbor cage. In other words, an atom
remains within the same local environment for a longer time
before diffusing away. Therefore, “the time before diffusion”
(denoted byt0) will be much longer for the liquid alkali
metals. Further, in dense fluids, energy is mainly transferred
by particle collision, in contrast to the low density situation
where the motion of the particles themselves transfers the
energy[17]. Consequently, at liquid alkali metal densities,
the molecular relaxation timesad, which is equal tot0

−1, will
be smaller than the friction coefficientsbd defined by
kT/MD, i.e., b.a. It is an indication that the motion of the
atoms in monatomic liquid metals is very different from a
simple diffusion.

In light of this, we propose the solution of Eq.(1) when
aÞb, with a particular reference to the liquid alkali metals.
The agreement of our results with the molecular dynamics
simulation proves our preposition to be well founded. It ne-
cessitatesa priori knowledge ofa and b. The approximate
representation of memory function by Berneet al. [12]
makes it possible to evaluatea in terms ofk¹2Vl [Eq. (4)],
massM, and friction coefficientb using the following equa-
tion:

ab =
k¹2Vl
3M

. s10d

b can be evaluated using the Einstein expression for the
diffusion coefficientD,

D =
kBT

Mb
. s11d

The values ofa and b are important in the solution of the
Bessel equation[Eq. (7)]. In the case ofa=b, Eq. (7) be-
comes a zeroth order Bessel equation. Though the numerical
evaluation ofa andb is approximate in nature, the brighter
prospects of description of the VACF in liquid metals have
led us to generalize the solution of Eq.(7) for any arbitrary
ordern, defined as

n =
b

a
− 1. s12d

The adequacy of this generalization can be testeda poste-
riori . Substituting Eq.(12) in Eqs.(5)–(7), we obtain

u = 2sn + 1dge−bt/2sn+1d, s13d

cstd = e−fbsn+2d/2sn+1dgtnsud, s14d

u2n9 + un8 + nfu2 − n2g = 0. s15d

Equation(15) is a nth order Bessel’s equation. The general
solution for the VACF can now be written as

cstd = e−fbsn+2d/2sn+1dgtfc1Jnsud + c2Ynsudg, s16d

whereJnsud andYnsud are the integral ordersnd Bessel func-
tion of the first and second kind, respectively.

Differentiating Eq.(16) and applying the boundary con-
ditions (3a) and (3b), we obtain the expressions forc1 [24]
andc2,

c1 = −
Ynf2sn + 1dgg − gYn+1f2sn + 1dgg

Jnf2sn + 1dggYn+1f2sn + 1dgg − Jn+1f2sn + 1dggYnf2sn + 1dgg
, s17d

c2 =
Jnf2sn + 1dgg − gJn+1f2sn + 1dgg

Jnf2sn + 1dggYn+1f2sn + 1dgg − Jn+1f2sn + 1dggYnf2sn + 1dgg
. s18d

The following general order recursion relations for the
Bessel functions are used for simplification[25,26]:

Jn8sud = nJnsud − uJn+1sud, s19d

Jn9sud =
Jn+1sud

u
− Jnsud +

usu − 1dJnsud
u2 . s20d

Taking the second order derivative of Eq.(16) at t=0, and
substituting the values ofc1 andc2, we obtain

v2F1 +
1

sn + 1dg2G =
k¹2Vl
3M

. s21d

On applying the condition in Eq.(3d) we need the following
integration formulas[25]:

E
0

1

dx xnJn−1saxd = Jnsad/a, s22d
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E
0

1

dx xnYn−1saxd =
Ynsad

a
+

2nGsnd
an+1p

. s23d

Substituting Eq.(16) in Eq. (3d) and utilizing the integral
forms in Eqs.(22) and (23), we get

b

v2F1 +
c2Gsn + 1d

sn + 1dn+1gnp
G =

mD

kBT
. s24d

In the SHW model where only the friction coefficient termb
is considered, Eq.(1) reduces to

d2c

dt2
+ b0

dc

dt
+ v0

2e−atc = 0. s25d

The termsb andv are replaced byb0 andv0, respectively.
The solution of Eq.(25) subject to the boundary conditions
in Eq. (3) turns out to be

cstd = e−s1/2db0t
fcosjt + sb0/2jdsinjtg, s26d

where

j2 = v0
2 −

b0
2

4
, s27d

v0
2 =

k¹2Vl
3m

, s28d

b0 =
mD

kBT
v0

2. s29d

Using the definitions ofv0 and b0 given by Eqs.(27) and
(28), respectively, in Eq.(22) we obtain

v = În + 1v0gf1 + sn + 1dgg−1/2, s30d

b = În + 1v0f1 + sn + 1dgg−1/2, s31d

where g is determined by solving the following equation
which is obtained by substituting Eqs.(30) and (31) in Eq.
(25):

S1 +
c2Gsn + 1d

sn + 1dn+1gnp
D = În + 1

b0

v0
g2f1 + sn + 1dg2g−1/2.

s32d

Equations(12)–(18), (21), (24), and(30)–(32) give the gen-
eralized set of equations in the GR formulation for the
VACF. It should be noted that forn=0, the whole set of
equations reduces to the GR results. GR solves Eq.(32) in
small-step diffusion approximation wherev0=b0=mD/kBT.
The diffusion coefficient is an important parameter and
should be known from experiments. However, we continue
to use the value evaluated using Eqs.(28) and(29). Thus our
generalized formulation differs from the one proposed by GR
in two ways:(i) it assumes that the two parametersa andb
are not equal. Hence it is expected to give more realistic
results for the high density liquids like liquid metals, and(ii )
it does not take into account the small-step diffusion approxi-
mation.

The generalized solution has been tested for obtaining
VACF’s in liquid Li, Na, and Li0.61Na0.39,Li0.70Mg0.30 alloys.

III. RESULTS

A. Velocity autocorrelation function for liquid Li at 470 K

The experimental value of the diffusion coefficientD of
liquid Li at 470 K is 6.3310−5 cm2 sec−1 [27]. Then, Eq.
(12) gives b to be equal to 8.9431013 sec−1. The effective
pair potential and its first and second order derivatives liquid
lithium are calculated following the method described in the
Appendix . The thermal average of the potential energy,
k¹2Vl can be evaluated in terms of the first and second order
derivatives of the pair potential and the pair distribution
function [28] [Eq. (4)]. It turns out to be 8.49
3105 erg cm−2 for liquid Li at 470 K. a has been calculated
using Eq.(11) and is equal to 2.7431013 sec−1. The order of
Bessel’s equation(8) is found to be 2, i.e.,n=2. The value of
n is, in fact, rounded off to get an integral order.

To determineg, the two sides of Eq.(32) have been plot-
ted as a function ofg (Fig. 1). Noting that there is one root,
we find g=1.8858,c1=2.4896,c2=3.6097. Similarly, the
necessary parameters to calculate the velocity autocorrelation
function for other systems under investigation are obtained
and are summarized in Table I.

The velocity autocorrelation for liquid Li at 470 K is
shown in Fig. 2. As we have already mentioned in the earlier
discussion, the SHW model overestimates the characteristic
features of the VACF in liquids, i.e., the “backscattering”
region and the long time oscillations. The GR formulation,
on the contrary, underestimates the depth of the backscatter-
ing region and the long time oscillations are almost absent.
Compared to these results, the present approach gives a good
description of the VACF in closer agreement with the mo-
lecular dynamics results[29].

B. Velocity autocorrelation function for liquid Na at 378 K

Figure 3 shows the VACF for liquid sodium at 378 K. the
parameters used to calculate VACF are given in Table I. The

FIG. 1. Two sides of Eq.(32) plotted as a function ofg for the
case ofb0Þv0.

K. N. LAD AND A. PRATAP PHYSICAL REVIEW E 70, 051201(2004)

051201-4



VACF corresponding to Bessel’s equation of ordern=2 is a
better approximation to the molecular dynamics(MD) results
[30]. It can be seen that the MD result shows a smaller back-
scattering region and oscillations at smaller times. The dif-
ference should be due to the difference in the value of the
diffusion coefficient which is available experimentally for
373 K. It has been already noted that the diffusion coefficient
in an important parameter in the formulation used for the
calculation of VACF. So, an accurate experimental value of
D at 378 K is expected to give better results.

C. Velocity autocorrelation functions in Li 0.61Na0.39 at 590 K

The study of this alloy is of interest because of its strong
phase separation tendency. The VACF for Li-Li in
Li0.61Na0.39 has been obtained using the solution of second

order sn=2d Bessel’s equation[Eq. (8)]. It approximates the
MD results of Canaleset al. [31] very closely as shown in
Fig. 4. The value of the self-diffusion coefficientD for Li-Li
in the given alloy is reported to be 11.8310−5 cm−2 sec−1

and no equivalent experimental data are available. The
small-step diffusion theory[32] and the linear trajectory
theory[33] lead to unreasonable values for the diffusion co-
efficient. So, in the case of nonavailability of an experimen-
tal value ofD at a given temperature, we had to resort to a
sort of fitting procedure to obtain the reliable value ofD. By
deciding the ordern=2 in advance, we can determine the
ratio sb /ad using Eq.(13) and subsequently we can make
use of Eqs.(11) and(12) to determineD. This procedure has
been adopted to calculateD in binary alloys at a given tem-
perature. It raises some doubts about uncertainty in the de-
termination ofn. However, if we look at the results presented

TABLE I. Parameters used to calculate velocity autocorrelation function.

Li0.61Na0.39 Li0.70Mg0.30

Li Na Li-Li Na-Na Li-Li Mg-Mg

TsKd 470 378 590 590 875 875

Ms10−23 gd 1.152 3.8163 1.152 3.8163 1.152 4.0346

rs1024 cm−3d 0.0444 0.0242 0.043 0.0229 0.042 0.0383

D s10−5 cm2 sec−1d 6.3 4.2 8.0 8.2 9.4 9.1

k¹2Vl s105 erg cm−2d 0.8486 0.3521 0.8985 0.3871 1.429 0.8378

as1013 sec−1d 2.75 0.946 2.94 1.3 3.71 1.86

bs1013 sec−1d 8.94 3.25 8.83 2.6 11.14 3.72

b0s1014 sec−1d 0.2748 0.0945 0.2943 0.13 0.3714 0.2116

v0s1014 sec−1d 0.4945 0.1754 0.5099 0.1839 0.6431 0.2631

g 1.8858 1.937 1.818 1.508 1.8169 1.4251

c1 2.4890 1.2815 3.6680 −3.2518 3.6822 −3.2172

c2 3.6097 4.2458 2.2775 −0.6612 2.2524 0.4805

FIG. 2. Velocity autocorrelation function for liquid Li at 470 K:
the dashed line represents the SHW model; the square-dotted line
the GR formulation; the solid line the present results[Eq. (16) for
n=sb /ad−1=2]; and the round-dotted line the MD results(Ref.
[29]).

FIG. 3. Velocity autocorrelation function for liquid Na at 378 K:
the dashed line represents the SHW model; the square-dotted line
the GR formulation; the solid line the Present results[Eq. (16) for
n=sb /ad−1=2]; and the round-dotted line the MD results(Ref.
[30]).
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so far and a few more in the next section, it can be observed
that the value ofn=2 works better. Nevertheless, in the case
of binary alloysn=2 works for the lighter atoms whereas
n=1 is suitable for the heavier atoms. Further, the procedure
is more justified when we see that the so-obtainedD while
used in our generalized solution gives much better results in
agreement with the MD results(Fig. 4).

For Na-Na the original GR formulation forn=0 anda
=b seems to provide better results compared to the general-
ized solution[Eq. (16)] for n=1 (Fig. 5). However, it should
be noted that for the shorter times it shows very rapid decay
and does not agree with the MD results.

D. Velocity autocorrelation functions in Li 0.70Mg0.30 at 875 K

In Li-Mg the difference in electronegativity between Li
and Mg atoms is larger and it is thought to be a borderline
case for the treatment of simple liquid metallic alloys by
standard methods. It exhibits a weak heterocoordination ten-
dency[34]. The VACF for Li-Li and Mg-Mg in Li0.70Mg0.30
alloy at 875 K are shown in Figs. 6 and 7, respectively. The
necessary parameters are given in Table I. It can be seen that
the generalized solution withn=2 gives results in excellent
agreement with the MD results[31]. The VACF for Mg-Mg
are shown in Fig. 7.

IV. DISCUSSION

The GR formulation for the insulating fluid argon as-
sumes the two relaxation timesa and b to be equal. How-

FIG. 4. Velocity autocorrelation function for liquid Li-Li in
Li0.61Na0.39 at 590 K: the dashed line represents the SHW model;
the square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=sb /ad−1=2]; and the round-dotted line the
MD results(Ref. [31]).

FIG. 5. Velocity autocorrelation function for liquid Na-Na in
Na0.61Na0.39 at 590 K: the dashed line represents the SHW model;
the square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=sb /ad−1=1]; and the round-dotted line the
MD results(Ref. [31]).

FIG. 6. Velocity autocorrelation function for liquid Li-Li in
Li0.70Mg0.30 at 875 K: the dashed line represents the SHW model;
the square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=sb /ad−1=2]; and the round-dotted line the
MD results(Ref. [31]).

FIG. 7. Velocity autocorrelation function for liquid Mg-Mg in
Li0.70Mg0.30 at 875 K: the dashed line represents the SHW model;
the square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=sb /ad−1=1]; and the round-dotted line the
MD results(Ref. [31]).
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ever, from Eq.(10), it can be observed thatab is propor-
tional to k¹2Vl which increases with the increase in the
number density.b also increases with the increase in the
density. Further, since the liquid’s self-diffusion coefficient is
proportional to the time integral of the velocity autocorrela-
tion function [Eq. (3d)]; the long-time oscillations in VACF
produce a substantial decrease in the diffusion coefficient
and it would ultimately increase the value ofb [Eq. (11)].
Therefore at higher densitiesb tends to be greater thana,
i.e., b.a. It suggests that the motion of the atoms is very
different from simple diffusion. In liquids, the microscopic
motion is demonstrated to consist of diffusive motion of tem-
poral extenttD interspersed by vibratory motions of period
tn with tD@tn [35]. The vibratory and diffusive components
are not independent and the low-frequency vibratory modes
merge into diffusive contributions. In the present work, we
find b=3a and it seems reasonably universal among the four
liquid metals studied. This result is in line with the earlier
observations of the universal behavior of VACF and self-
diffusion coefficient in liquid alkali metals[4]. The liquid
alkali metals are often thought to present scalable properties
[36]. The ratiosb /ad gives an indication of the proportion of
the total degrees of freedom of the liquid which are associ-
ated with diffusive rather than vibratory motion[17]. It
should be noted that the self-diffusion in a liquid represents
only a part of the thermal motion of the atoms, and hence
absorbs only a fraction of the total number of degrees of
freedom of the system[37].

The negative backscattering region and subsequent long-
range oscillations are the essential features of VACF in high
density liquids. The backscattering region is due the reversal
of the velocity of an atom on collision with the wall of the
cage formed by the nearest neighbors. The cage is, of course,
not stationary and is subject to quasirandom fluctuations. It
gives a push to the backscattered atom in its original direc-
tion of motion resulting in the appearance of long-time os-
cillations in the VACF. The oscillations in the VACF persist
up to the time when the cage relaxes due to cooperative
rearrangement of atoms. In liquid metals, the presence of
conduction electrons gives rise to an attractive force. Dean
and Kushick[38] have studied the role of the attractive force
in cage effects in simple liquids and have pointed out that the
principal role of the attractive force is to enhance the cohe-
siveness of the cages. The increased cohesiveness of the cage
increases the timest0d that an atom spends before diffusing
away and sincea=t0

−1, a becomes smaller compared tob in
liquid metals. Due to strong cohesion, when an atom collides
with a neighbor, the momentum transfer is with a significant
part of the nearest neighbor shell and the atom rebounds
from the greater mass[39]. Hence the decay of the VACF in
liquid metals is highly damped as observed from the present
results and the MD results. The qualitative behavior of
VACF in the present work is in agreement with the study
reported by Endo and Endo[40] indicating the coordination
number to be 10 which is indeed the case for liquid metals
[41].

It can be observed from Table I that the values of diffu-
sion coefficientssDd calculated using Eq.(12) for Li-Li, Na-
Na, and Mg-Mg in the case of Li-Na and Li-Mg liquid alloys

display completely different behavior. In the Li0.61Na0.39 al-
loy, DLi-Li is smaller thanDNa-Na; whereas in the case of
Li0.70Mg0.30,DLi-Li is greater thanDMg-Mg. This observation is
also in agreement with earlier studies on these alloys[31,34].
This can be understood by noting that the self-diffusion co-
efficient is proportional to the time integral of the velocity
autocorrelation function[Eq. (3d)]. The backscattering re-
gion and subsequent long-time oscillations play an important
role in the determination ofD. In Li0.61Na0.39, where homo-
coordination is preferred, the cohesiveness of the cage sur-
rounding a Li atom will be greater and the backscattering
region will be deeper in Li-Li as compared to Na-Na(Figs. 4
and 5). The deeper backscattering region in the absence of
significant long-time oscillations produces a substantial rela-
tive reduction in DLi-Li as compared toDNa-Na. Further, the
smaller value ofDLi-Li compared withDNa-Na may be associ-
ated with the deeper minimum of the Li-Li potential[31]. On
the other hand, Li0.70Mg0.30 exhibits weak heterocoordination
tendency. Due to this Mg is preferred in the nearest neighbor
of Li over Li itself. However, the concentration of Mg is less
as compared to Li in this alloy. Under this circumstance, the
backscattering effects in the alloy are strongly reduced for Li
with respect to Mg in Li-Mg system in contrast to the Li-Na
alloy. It may also be noted that the depth of potential in Mg
is more than that of Li.

V. CONCLUDING REMARKS

The aim of this paper is to extend the GR formulation for
the single-particle Brownian motion in simple liquids to high
density liquids like liquid metals. A generalized solution[Eq.
(16)] to the equation of motion[Eq. (1)] in terms of VACF
has been provided removing the two assumptions used by
GR. The application of the generalized solution[Eq. (16)] to
the liquid alkali metals(Li, Na) and binary liquid alloys(Li-
Na, Li-Mg) has been found to give promising results which
consequently suggests that the solution of Eq.(16) for n=2
could be used to obtain VACF in pure liquid alkali metals.
The ratio b /a of the two relaxation times is found to be
reasonably universal for the liquids studied. In context to the
universal properties exhibited by the liquid metals, it would
be interesting to explore the physical property associated
with the ratio. It should be noted that the diffusion coefficient
D is an important parameter in the calculation of VACF.
However, there is a practical difficulty in determination of
the diffusion coefficientD at a temperature of interest and
availability of experimental data is not always possible. In
such a case, our generalized solution provides flexibility,
though at the risk of increasing ambiguity, in the calculation
of VACF. In the future work, we intend to eliminate the
parameterD by employing the small-step diffusion approxi-
mation in our generalized solution. Also, the description of
atomic motion in terms of VACF is not complete in itself. It
can further be understood in terms of the frequency spectrum
of VACF. The mean square displacement, the dynamical
structure factor and quasiphonon dispersion curves can also
be derived in terms of VACF. Thus the full potentiality of the
new generalized solution for VACF remains yet to be ex-
plored and leaves broad room for future work.
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APPENDIX: EFFECTIVE PAIR POTENTIALS IN LIQUID
METALS

The effective pair potential between the ions in the liquid
metal can be written as

Vsrd =
sZed2

r
+

2sZed2

p
E dq

sinsqrd
qr

FNsqd. sA1d

The first term on the right-hand side of Eq.(A1) represents
the Coulombic ion-ion interaction which is repulsive in na-
ture whereas the second term gives an attractive force arising
due to the presence of conduction electrons.FNsqd is the
wave-number-energy characteristic and is given by[42]

FNsqd =
V2q4

16p2z2e4S 1

«sqd
− 1DS 1

1 − GsqdDWb
2sqd, sA2d

whereWbsqd is the form factor and the Fourier transform of
the empty-core potential is defined as[43]

Wsrd = 50; r , rc

−
Ze2

r
; r ù rc6 sA3d

and the Fourier transform is

Wsqd = −
4pZe2

q2V
cossqrcd, sA4d

where the core radiusrc is a parameter at one’s disposal.
The ions in the metal are screened by conduction elec-

trons. The dielectric screening function«sqd plays an impor-
tant role in the pseudopotential theory. The dielectric screen-
ing function proposed by Ichimaru and Utsumi[44] based on
the linear response theory is given by

«sqd = 1 −
s4pe2/q2dxsqd

1 + s4pe2/q2dxsqdGsqd
, sA5d

where Gsqd, known as the local-field exchange correlation
function, arises due to the effects of exchange and correlation

among the conduction electrons. The form ofGsqd signifi-
cantly affects the potential and its choice is important for
pseudopotential calculations. A variety of expressions for
Gsqd are available in the literature[44–48]. The one given
by Sham[46] is

Gsqd =
q2

2sq2 + jkF
2d

sA6d

with

j =
2

1 + s0.153/pkFd
. sA7d

j=1 corresponds to the original Hubbard expression forGsqd
[38]. Hafner and Schumuck[49] have taken

j =
2

1 +
0.153

pkF

. sA8d

kF is the Fermi wave number defined as

kF = s3p2znd1/3. sA9d

xsqd, which appears in Eq.(A5), takes into account the cou-
lomb interaction between the electrons and is expressed as

xsqd = −
mkF

p2h2F1

2
+

4kF
2 − q2

8kFq
lnU2kF + q

2kF − q
UG . sA10d

In the case of binary alloys of liquid metalsAxB1−x can be
considered as a liquid mixture of two types of atomic species
of component metalsA and B in proportionsx and s1−xd,
respectively. Three types of ion-ion interactions viz.A-A, B
-B, andA-B need to be considered in this case. The effective
potential can be a concentration weighed average of the three
partial pair potentialsVAA,VBB, andVAB. It is given by

Vsrd = CA
2VAA + 2CACBVAAVBB + CB

2VBB, sA11d

where

CA =
xVA

xVA + s1 − xdVB
, sA12d

CB =
s1 − xdVB

xVA + s1 − xdVB
. sA13d

VA andVB are the molar volumes.
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