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Velocity autocorrelation function for simple liquids and its application to liquid metals and alloys
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The single-particle Brownian motion in simple monatomic liquids has been described with the help of the
equation of motion in terms of velocity autocorrelation functig), where the particle is assumed to diffuse
in a mean-time-dependent field. The equation of motion which is a second order differential equation in
has been solved in terms oth order Bessel functions of the first and second kind. The solution is, in fact, the
generalization of the solution given by Glass and RiG®R) [Phys. Rev.176 239 (1968)] for low density
fluids. The generalized solution is an improvisation over the one by GR and the results demonstrate that, for
high density liquids such as liquid metals where the GR solution fails to give a reasonable accginttbe
generalized solution could be very useful to calculéte. The present approach has been applied to the liquid
alkali metals and binary alloys. The results are found to be in close agreement with the molecular dynamics
results.

DOI: 10.1103/PhysRevE.70.051201 PACS nunmd)er61.20.Lc, 66.10-x, 66.30.Fq, 61.25.Mv

I. INTRODUCTION simple model was further used by Rahman, Singwi, and
Sjolander [14] to describe the atomic motion in liquids.
The time-correlation functions are very useful in the the-However, in their work, care was not taken to make the
oretical and experimental study of dynamical and transport¥/ACF obey the boundary conditions at zero time.
properties of liquids. For example, the self-diffusion pro- The simple model used by Uhlenbeck and Ornsféi
cesses in Lennard-Jones flyit], liquid lead[2], and liquid  assumes that its first-order memory functionretarded fric-
alkali metalg[3,4], and the atomic dynamics in liquid metals tion coefficieny has an exponential decay with single relax-
[5-7] have been described in terms of the time-dependerdtion time, i.e.,K(t)=k exp(—=8t). Though this model ac-
correlation functions. The velocity autocorrelation function counts for the short-time features of the VACF, it tends to
(VACF) is the simplest time-correlation function for the de- overestimate the deepness of the backscattering regsen
scription of the dynamical correlation in the molecular mo-sulting due to the “cage” effectas well as the subsequent
tion in liquids. The exact determination of VACF is a com- oscillations at longer times, which subsequently leads to un-
plex dynamical problem involving the motion of many reliable predictions for the diffusion coefficient and other
particles. In order to avoid this difficulty, many attempts transport properties as well. In practice, the static harmonic
have been made to approximate the time decay of VACkvell (SHW) condition does not exist because of the fluctua-
with the help of simple functional formgl,8—-1Q. Alterna-  tions in the surrounding medium and the harmonic well is
tively, the memory function approadil] has widely been subject to quasirandom alterations as a function of time. In
adopted to approximate VACF where the so-called memonguch a case, assuming the Brownian particle diffusing in a
function is the kernel[say K(t)] of an integrodifferential mean-time-dependent field, Glass and Rigjgreferred to as
equation describing the time development of the autocorre6GR now onwards have modified the classical Langevin
lation function[12,13. Apart from this, various theories and equation by adding another systematic force term represent-
models have been developed to give the description of VACkng the time-dependent force field. Subsequently, GR have

in simple liquids[1,14,193. derived an equation of motion in terms of VACF as
One way of theoretical derivation of VACF is the solution )

of the classical Langevin equation for the Brownian motion X' dys > —at _

of small particles in a liquid. In a liquid, any given molecule dt? tlatp) dt o€+ ap)y=0, @

is in continuous interaction with all its nearest neighbors. A

molecule may be imagined to have an encounter with thevhere « is the molecular relaxation time. It corresponds to
nearest neighbor molecule during which strong repulsivehe time (7p) for which an atom remains within the same
forces act and then the molecule moves randomly in the ragecal environment before diffusing awafl7]. In other

idly fluctuating force field generated by the neighboring mol-words, it is the time for the relaxation of the cage formed by
ecules. Therefore the motion of a molecule in a liquid issurrounding neighbor atoms. Therefore molecular relaxation
analogous to the motion of a massive Brownian particle. Intime « is taken to be equal te{)l.

such a description of the liquid, a friction constd) is The solution of Eq(1) is the key subject of the present
related to the autocorrelation function of the force exerted byaper. The exact solution of this equation can be obtained if
the surrounding on the molecule. As noted by Glass anave know « and B a priori. Due to the difficulty ina priori
Rice, Uhlenbeck and Ornsteifil6] have described the calculation ofe, a simplified solution of Eq¢l) is provided
Brownian motion of a harmonically bound particle and thisby GR assuming the molecular relaxation time to be equal to
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the friction constant, i.eq=8. While this assumption holds
good for insulating fluid like Ar at 85 K, it is not true for
high density liquids like liquid metals, e.g., for liquid L is
found to be three times as large asThe principal differ-  \here g(r) is the pair distribution function ang is the
ence between the insulating fluidrgon and liquid metals is  atomic number density(dV/dr) and (V/dr?) are the first
the presence of free electrons in liquid metals which is alsqyng second order derivatives of the effective interatomic pair
re;pon3|ble for the essential d|fference_|n their physical ProPpotential V(r). The effective interatomic pair potentials in
erties. Consequently, the GR formulation for the VACF hasjiq iy metals can be derived using the pseudopotentials in
been found to be inadequate for the liquid metals. It is thenecong order perturbation theory. A brief description of the
imperative to look for a solution of Eql) subject to the nethod used for the calculation of the interatomic pair po-

conditiona # B. AItho_ugh it is difficult to calculatex and 8 tantials in the present work is given in the Appendix. Now,
exactly, one can estimate values from the work of Bezhe substituting

al. [12]. Further, GR have employed a small-step diffusion

assumption where the diffusion in a dense fluid is thought to (29 _1/2a
proceed by a series of displacements each being small com- u=\J¢
pared to the interatomic spacing. Here, we give a generalized o

solution of the second-order differential equatigiy. (1)] N Ea. (1) the solution is found to be
when a# B8 and also doing away with the small-step diffu- U(t) = e WABI, () (6)
sion assumption. We call it a generalized solution in the ’

sense that the original GR formulation far= 3 turns out to  Wherev(u) is a solution of Bessel's equation,

be a special case of our solution. The generalized solution is > , 5 2 21

applied to the liquid alkali metals like Li, Na, and their bi- U+ U+ ofu” = (@ = §)Ta’] = 0. ()
nary alloys, viz., Li-Na, Li-Mg, and the results are comparedFrom the simple model of the particle dynamics considered
with the molecular dynamics results. It has been found tdyy GR,a priori calculation ofa is not possible. Therefore to
give an excellent and physically more meaningful account osimplify the solution, GR have assumed=3. The subse-
the VACF in these systems. guent solution obtained is

(1) = € Pcdo(u) + cYo(w)], (8)

where J, and Y, are zero-order Bessel function of the first
We adopt the basic mathematical formulation given byand second kinds, respectivety.andc, are the constants of
GR as such, along with all underlying assumptions excepfntegration;
two, for the description of the VACF in the present work. )
Our prime interest lies in the extension of the GR formula- u=2ye , 9
tion for high density liquids, e.g., liquid metals. The ”Orm"’“'wherey:a)/ﬁ.

A 2N

2 — N 2 4 -
(V V>—47Tpfo drr g(r)( o + s ) (4)

©)

o

II. MATHEMATICAL FORMULATION

ized VACF is defined as

_{v(0) -v(t))
'Jl(t) - <V2> I}

From the physical point of view, the insulating fluid Ar
and the liquid metals are essentially different. The presence
of conduction electrons distinguishes the liquid metals from
the liquefied inert gases. The pair potential for a liquefied

wherewv(0) andu(t) are the velocities of a specified particle inert gas is well described by the Lennard-Jones potential
erage over the history of the particle, i.e., all the values of Smeothly varying long-range attraction. On the other hand,
The VACF is subjected to the following boundary condi- the effective ion-ion interaction for liquid alkali metals

tions:
lim (t) =1,
t—0
di
lim— =0,
t—o dt

_keT [~
D= mfo dt y(t).

(V2V) appearing in Eq(30) is the thermal average of the

potential energy given by

shows a much softer repulsive core than that of rare gases
and a deep attractive well followed by a long-range oscilla-
tory tail, caused by the presence of conduction electrons. The
softness or hardness of the repulsive core has been demon-
strated to be strongly related to the oscillatory or nonoscilla-
tory long-time tail of the VACH18,19. The VACF for liquid
alkali metals exhibits a pronounced oscillatory behajl@],

in marked contrast to that of liquid argg@0,21]. The per-
sistent oscillations in VACF of liquid alkali metals are due to
the existence of the longitudinal modes of propagating col-
lective excitations(well-defined oscillatory modes for the
density fluctuations or acoustic-like mogleshereas such
short wavelength longitudinal modes are completely over-
damped in liquid argon, resulting into a smoothly varying
nonoscillatory tail of VACF[22]. This is also corroborated

by the findings that the interatomic collisions through hard
cores do not favor the coherence of the atomic motions that
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is required for the propagation of the longitudinal modes kg T
associated with density fluctuatiofia3]. D= M_,B
The above discussion implies that it is the soft core that
VT:\II((S; thLﬁtg avr\?é);rllgir?f I}:qeuri)(/j srf:]%rttalvsv’avaerl]zn?tt hislo?k?étuﬁg;gl'l'he values ofa and B are important in the solution of the
Lennard-Jones-type core that makes the same damping veRFSSel equatiofieg. (7)]. In the case ofx=p, Eq. (7) be-
strong in liquid argon. Weak damping of the longitudinal C©Mes & zeroth order_ Bessel equation. Though the npmencal
waves in liquid metals indicates a large residence time for afgvaluation ofa and 8 is approximate in nature, the brighter
atom in its nearest neighbor cage. In other words, an atorArospects of description of the VACF in liquid metals have
remains within the same local environment for a longer timeled us to generalize the solution of K@) for any arbitrary
before diffusing away. Therefore, “the time before diffusion” ordern, defined as
(denoted byry) will be much longer for the liquid alkali
metals. Further, in dense fluids, energy is mainly transferred B
by particle collision, in contrast to the low density situation w
where the motion of the particles themselves transfers the
energy[17]. Consequently, at liquid alkali metal densities, The adequacy of this generalization can be testqubste-

11

-1. (12

the molecular relaxation timey), which is equal torg®, will ~ Tiori. Substituting Eq(12) in Egs.(5)~«7), we obtain

be smaller than the friction coefficient3) defined by

KT/MD, i.e., 8> a. It is an indication that the motion of the u=2(n+1)ye A2y, (13
atoms in monatomic liquid metals is very different from a

simple diffusion. U(t) = 1B DIt ) (14)

In light of this, we propose the solution of E@L) when
a# B, with a particular reference to the liquid alkali metals.
The agreement of our results with the molecular dynamics u? +ur’ + 1[u>-n?]=0. (15)
simulation proves our preposition to be well founded. It ne-

cessitates priori knowledge ofa and 8. The approximate Equation(15) is a nth order Bessel's equation. The general

representation of memory function by Bere¢ al. [12]  solution for the VACF can now be written as
makes it possible to evaluatein terms of(V2V) [Eq. (4)],

massM, and friction coefficienB using the following equa- (1) = e B0 D e 3 () + ¢, Y, (u)], (16)
tion:
(V2V) whereJ,(u) andY,(u) are the integral ordgin) Bessel func-
ap= M (10) tion of the first and second kind, respectively.

Differentiating Eq.(16) and applying the boundary con-
B can be evaluated using the Einstein expression for thditions (38 and (3b), we obtain the expressions fof [24]
diffusion coefficientD, andc,,

Yo[2(n+ 1) y] = ¥Yna[2(n+ 1) y]

Ci=- , (17)
Y320+ Dy]Yeal20+ 1)y] = Jal2n+ D ylY[2(n+ 1)y]
o= J[2(n+ 1) y] = Ypea[2(n+ 1) ] (18
27 3200+ DylYp.l200+ 1) y] = Jaf2n + 1)y]Y[200+ 1) 9]
[
The following general order recursion relations for the ) 1 (V)
Bessel functions are used for simplificatif2b,26: 1+ (n+ 17 =3m (21
Jn(u) =nJp(U) = udnsa(u), (19
On applying the condition in Eq3d) we need the following
., Jnea(U) u(u-1)J.(u) integration formulag25]:
Jw === g =" (20
1
Taking the second order derivative of Ed.6) at t=0, and f dx XJ,_y(ax) = J,(a)/a, (22)
substituting the values af; andc,, we obtain 0
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1

)

Substituting Eq.(16) in Eg. (3d) and utilizing the integral
forms in EQs.(22) and(23), we get
cl'(n+1) ]

8
[1 YDy

w?

In the SHW model where only the friction coefficient tefn
is considered, Eq.1) reduces to

d?y dy

—_— + —_—

TR
The termsB and w are replaced by, and w,, respectively.
The solution of Eq(25) subject to the boundary conditions
in Eq. (3) turns out to be

an+1,ﬂ_ .

dx X'Y,_,(ax) = (23

_mD

= EI_. (249

+ wie Y =0. (25)

(1) = e 12 cosgt + (By/20)sin ], (26)
where
2

2= g_%, 27)

vay
=2 (28)

D
Bo rkng-wg- (29

Using the definitions otwy and B, given by Eqgs.(27) and
(28), respectively, in Eq(22) we obtain

o=\n+1lwgy 1+ (n+1) o (30)
B=vVn+1lwg[l+(n+1) 7]_1/2, (31)

where vy is determined by solving the following equation
which is obtained by substituting Eq&80) and (31) in Eq.

(25):
(1 + ) = \n+ 120 YI1+(n+ 1)y T2
wo
(32

Equations(12)—<(18), (21), (24), and(30)—«32) give the gen-
eralized set of equations in the GR formulation for the
VACF. It should be noted that fon=0, the whole set of
equations reduces to the GR results. GR solves(&2).in
small-step diffusion approximation whesg=L8,=mD/kgT.
The diffusion coefficient is an important parameter an

cl'(n+1)
(n+ 1)n+1,})1ﬂ_
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FIG. 1. Two sides of Eq(32) plotted as a function of for the
case ofBy# wy.

The generalized solution has been tested for obtaining
VACF's in liquid Li, Na, and L g:N&g 39, Lig7gVIgg 30 @lloys.

Ill. RESULTS

A. Velocity autocorrelation function for liquid Li at 470 K

The experimental value of the diffusion coefficiébtof
liquid Li at 470 K is 6.3x10°° cn? sec? [27]. Then, Eq.
(12) gives B to be equal to 8.94 10'* sec'. The effective
pair potential and its first and second order derivatives liquid
lithium are calculated following the method described in the
Appendix . The thermal average of the potential energy,
(V3V) can be evaluated in terms of the first and second order
derivatives of the pair potential and the pair distribution
function [28] [Eq. (4)]. It turns out to be 8.49
X 10° erg cmi for liquid Li at 470 K. a has been calculated
using Eq.(11) and is equal to 2.74 10" sec®. The order of
Bessel's equatioB) is found to be 2, i.en=2. The value of
nis, in fact, rounded off to get an integral order.

To determiney, the two sides of E(.32) have been plot-
ted as a function ofy (Fig. 1). Noting that there is one root,
we find y=1.8858,c,=2.4896,c,=3.6097. Similarly, the
necessary parameters to calculate the velocity autocorrelation
function for other systems under investigation are obtained
and are summarized in Table I.

The velocity autocorrelation for liquid Li at 470 K is
shown in Fig. 2. As we have already mentioned in the earlier
discussion, the SHW model overestimates the characteristic
features of the VACF in liquids, i.e., the “backscattering”
region and the long time oscillations. The GR formulation,

gon the contrary, underestimates the depth of the backscatter-

should be known from experiments. However, we continudn9 region and the long time oscillations are almost absent.

to use the value evaluated using E@S3) and(29). Thus our
generalized formulation differs from the one proposed by G
in two ways:(i) it assumes that the two parameterand 38

Compared to these results, the present approach gives a good
escription of the VACF in closer agreement with the mo-
ecular dynamics resulf9].

are not equal. Hence it is expected to give more realistic

results for the high density liquids like liquid metals, aiid

it does not take into account the small-step diffusion approxi-

mation.

B. Velocity autocorrelation function for liquid Na at 378 K

Figure 3 shows the VACF for liquid sodium at 378 K. the
parameters used to calculate VACF are given in Table |. The
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TABLE |. Parameters used to calculate velocity autocorrelation function.

LioeiNag 39 Lio.70M0o.30
Li Na Li-Li Na-Na Li-Li Mg-Mg
T(K) 470 378 590 590 875 875
M(10722 g) 1.152 3.8163 1.152 3.8163 1.152 4.0346
p(10%* cmd) 0.0444 0.0242 0.043 0.0229 0.042 0.0383
D (107 cn? sec?) 6.3 4.2 8.0 8.2 9.4 9.1
(V&) (10° erg cm?) 0.8486 0.3521 0.8985 0.3871 1.429 0.8378
(10" sec?) 2.75 0.946 2.94 1.3 3.71 1.86
B(10% sec?) 8.94 3.25 8.83 2.6 11.14 3.72
Bo(10* sech) 0.2748 0.0945 0.2943 0.13 0.3714 0.2116
wo(10* sech) 0.4945 0.1754 0.5099 0.1839 0.6431 0.2631
% 1.8858 1.937 1.818 1.508 1.8169 1.4251
cy 2.4890 1.2815 3.6680 -3.2518 3.6822 -3.2172
c, 3.6097 4.2458 2.2775 -0.6612 2.2524 0.4805

VACF corresponding to Bessel's equation of order2 is a  order(n=2) Bessel's equatiofiEq. (8)]. It approximates the
better approximation to the molecular dynamigtD) results ~ MD results of Canalesgt al. [31] very closely as shown in
[30]. It can be seen that the MD result shows a smaller backFig. 4. The value of the self-diffusion coefficiebtfor Li-Li
scattering region and oscillations at smaller times. The difin the given alloy is reported to be 11x8107° cm™?sec?
ference should be due to the difference in the value of thend no equivalent experimental data are available. The
diffusion coefficient which is available experimentally for small-step diffusion theorf32] and the linear trajectory
373 K. It has been already noted that the diffusion coefficientheory[33] lead to unreasonable values for the diffusion co-
in an important parameter in the formulation used for theefficient. So, in the case of nonavailability of an experimen-
calculation of VACF. So, an accurate experimental value otal value ofD at a given temperature, we had to resort to a
D at 378 K is expected to give better results. sort of fitting procedure to obtain the reliable valuelnfBy
deciding the orden=2 in advance, we can determine the
ratio (8/a) using Eq.(13) and subsequently we can make
use of Eqs(11) and(12) to determineD. This procedure has
been adopted to calculai in binary alloys at a given tem-
erature. It raises some doubts about uncertainty in the de-
ermination ofn. However, if we look at the results presented

C. Velocity autocorrelation functions in LiggiNag 39 at 590 K

The study of this alloy is of interest because of its strong
phase separation tendency. The VACF for Li-Li in
Lig giNag 39 has been obtained using the solution of secon

1.0 1.0
0.8 0.8 l.
0.6 < 0.6 1 ‘.
o 8 .
044 > 04"
= ] , i{.
o024 - 02
] LIS VMRS . WV VIS
v ’ pY 1 . / h
0.0 ) ~ sett 0.0 — g ases>
J [} - 4 b a .. [
0.2 N Y 02 Vg @
i \ L) . ° ’
p \ 1 AY
-0.4 - Ve 0.4 4 ‘o
0.6 , T . 0.6 . . . . . ' . ' .
0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.8 1.0
t(ps) t(ps)

FIG. 2. Velocity autocorrelation function for liquid Li at 470 K: FIG. 3. Velocity autocorrelation function for liquid Na at 378 K:
the dashed line represents the SHW model; the square-dotted linke dashed line represents the SHW model; the square-dotted line
the GR formulation; the solid line the present res(is. (16) for the GR formulation; the solid line the Present res{iig. (16) for
n=(B/a)-1=2]; and the round-dotted line the MD resuitRef. n=(B/a)-1=2); and the round-dotted line the MD resuftRef.

[29)). [30D).
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FIG. 4. Velocity autocorrelation function for liquid Li-Li in FIG. 6. Velocity autocorrelation function for liquid Li-Li in

Lig.6iNag 30 at 590 K: the dashed line represents the SHW modeltio.7dV0.30 @t 875 K: the dashed line represents the SHW model;
the square-dotted line the GR formulation; the solid line the Preserff® square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=(8/ @) -1=2]; and the round-dotted line the results[Eq. (16) for n=(8/«)-1=2]; and the round-dotted line the
MD results(Ref. [31]). MD results(Ref. [31]).

D. Velocity autocorrelation functions in Lig,dVigg 30 at 875 K

so far and a few more in the next section, it can be observegncljnhjl‘i"\g%g‘e.dir;?rince ijn _te!eitr:gne%?'[:gitgeb:tt\;voe(ejg IITi o

that the value oh=2 works better. Nevertheless, in the case fg N S 1S jarger afn ! 'SI’ i Ugd f ”r rt')”

of binary alloysn=2 works for the lighter atoms whereas case for the treatment of simple liquid metallic alloys by
EPEREA . standard methods. It exhibits a weak heterocoordination ten-

n=1 is suitable for the heavier atoms. Further, the proceduraency[34] The VACF for Li-Li and Mg-Mg in Lip -gVigo 1

is more justified when we see that the so-obtaiBedhile 50" 875 K are shown in Figs. 6 and 7, respectively. The

used in our generalized solution gives much better results ifecessary parameters are given in Table 1. It can be seen that

agreement with the MD result§ig. 4). the generalized solution with=2 gives results in excellent

For Na-Na the original GR formulation fan=0 anda  agreement with the MD resulf81]. The VACF for Mg-Mg
=3 seems to provide better results compared to the generaye shown in Fig. 7.

ized solution[Eq. (16)] for n=1 (Fig. 5. However, it should
be noted that for the shorter times it shows very rapid decay IV. DISCUSSION

and does not agree with the MD resullts. The GR formulation for the insulating fluid argon as-

sumes the two relaxation timesand 8 to be equal. How-

1.0

wt)

0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.4
t(ps) t(ps)

FIG. 5. Velocity autocorrelation function for liquid Na-Na in FIG. 7. Velocity autocorrelation function for liquid Mg-Mg in
Nay iNag 39 at 590 K: the dashed line represents the SHW modelLig;gVigg 30 at 875 K: the dashed line represents the SHW model,
the square-dotted line the GR formulation; the solid line the Preserthe square-dotted line the GR formulation; the solid line the Present
results[Eq. (16) for n=(B/a)—1=1]; and the round-dotted line the results[Eq. (16) for n=(8/«)—1=1]; and the round-dotted line the
MD results(Ref. [31)). MD results(Ref. [31]).
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ever, from Eq.(10), it can be observed thatg is propor-  display completely different behavior. In theglgiNgg 39 al-
tional to (V2V) which increases with the increase in theloy, D,;.; is smaller thanDy,.ns Whereas in the case of
number density,3 also increases with the increase in theLig7gMdo 30, Dyi-i IS greater thalyg.yg. This observation is
density. Further, since the liquid’s self-diffusion coefficient is also in agreement with earlier studies on these all8§s34.
proportional to the time integral of the velocity autocorrela- This can be understood by noting that the self-diffusion co-
tion function[Eq. (3d)]; the long-time oscillations in VACF efficient is proportional to the time integral of the velocity
produce a substantial decrease in the diffusion coefficienautocorrelation functiorfEq. (3d)]. The backscattering re-
and it would ultimately increase the value Bf[Eq. (11)]. gion and subsequent long-time oscillations play an important
Therefore at higher densitig8 tends to be greater tham, ~ role in the determination dD. In Lig g;N&g 35 Where homo-

i.e., B> a. It suggests that the motion of the atoms is verycoordination is preferred, the cohesiveness of the cage sur-
different from simple diffusion. In liquids, the microscopic rounding a Li atom will be greater and the backscattering
motion is demonstrated to consist of diffusive motion of tem-region will be deeper in Li-Li as compared to Na-i&gs. 4
poral extentr, interspersed by vibratory motions of period and 5. The deeper backscattering region in the absence of
7, with 75> 7, [35]. The vibratory and diffusive components significant long-time oscillations produces a substantial rela-
are not independent and the low-frequency vibratory modetive reduction in D;; as compared t®y,.n, Further, the
merge into diffusive contributions. In the present work, wesmaller value oD ;,; compared wittDy,n, may be associ-
find B=3a and it seems reasonably universal among the fouated with the deeper minimum of the Li-Li potent[&ll]. On
liquid metals studied. This result is in line with the earlier the other hand, ki;dMgg 30 €xhibits weak heterocoordination
observations of the universal behavior of VACF and self-tendency. Due to this Mg is preferred in the nearest neighbor
diffusion coefficient in liquid alkali metal§4]. The liquid  of Li over Li itself. However, the concentration of Mg is less
alkali metals are often thought to present scalable propertiegs compared to Li in this alloy. Under this circumstance, the
[36]. The ratio(8/ «) gives an indication of the proportion of backscattering effects in the alloy are strongly reduced for Li
the total degrees of freedom of the liquid which are associwith respect to Mg in Li-Mg system in contrast to the Li-Na
ated with diffusive rather than vibratory motiofi7]. It  alloy. It may also be noted that the depth of potential in Mg
should be noted that the self-diffusion in a liquid representds more than that of Li.

only a part of the thermal motion of the atoms, and hence
absorbs only a fraction of the total number of degrees of
freedom of the systerf87].

The negative backscattering region and subsequent long- The aim of this paper is to extend the GR formulation for
range oscillations are the essential features of VACF in highhe single-particle Brownian motion in simple liquids to high
density liquids. The backscattering region is due the reversalensity liquids like liquid metals. A generalized solutiy.
of the velocity of an atom on collision with the wall of the (16)] to the equation of motiofiEq. (1)] in terms of VACF
cage formed by the nearest neighbors. The cage is, of coursgas been provided removing the two assumptions used by
not stationary and is subject to quasirandom fluctuations. IGR. The application of the generalized solutj@. (16)] to
gives a push to the backscattered atom in its original directhe liquid alkali metalgLi, Na) and binary liquid alloysLi-
tion of motion resulting in the appearance of long-time 0s-Na, Li-Mg) has been found to give promising results which
cillations in the VACF. The oscillations in the VACF persist consequently suggests that the solution of @) for n=2
up to the time when the cage relaxes due to cooperativeould be used to obtain VACF in pure liquid alkali metals.
rearrangement of atoms. In liquid metals, the presence ofhe ratio 8/« of the two relaxation times is found to be
conduction electrons gives rise to an attractive force. Deafeasonably universal for the liquids studied. In context to the
and Kushick[38] have studied the role of the attractive force universal properties exhibited by the liquid metals, it would
in cage effects in simple liquids and have pointed out that thye interesting to explore the physical property associated
principal role of the attractive force is to enhance the cohewith the ratio. It should be noted that the diffusion coefficient
siveness of the cages. The increased cohesiveness of the cayéds an important parameter in the calculation of VACF.
increases the timery) that an atom spends before diffusing However, there is a practical difficulty in determination of
away and sincez:rgl, a becomes smaller comparedgdan the diffusion coefficientD at a temperature of interest and
liguid metals. Due to strong cohesion, when an atom collidegvailability of experimental data is not always possible. In
with a neighbor, the momentum transfer is with a significantsuch a case, our generalized solution provides flexibility,
part of the nearest neighbor shell and the atom rebound$iough at the risk of increasing ambiguity, in the calculation
from the greater mag89]. Hence the decay of the VACF in of VACF. In the future work, we intend to eliminate the
liquid metals is highly damped as observed from the presenstarameteiD by employing the small-step diffusion approxi-
results and the MD results. The qualitative behavior ofmation in our generalized solution. Also, the description of
VACF in the present work is in agreement with the studyatomic motion in terms of VACF is not complete in itself. It
reported by Endo and EnddQ] indicating the coordination can further be understood in terms of the frequency spectrum
number to be 10 which is indeed the case for liquid metalsf VACF. The mean square displacement, the dynamical
[41]. structure factor and quasiphonon dispersion curves can also

It can be observed from Table | that the values of diffu-be derived in terms of VACF. Thus the full potentiality of the
sion coefficient§D) calculated using Eq12) for Li-Li, Na- new generalized solution for VACF remains yet to be ex-
Na, and Mg-Mg in the case of Li-Na and Li-Mg liquid alloys plored and leaves broad room for future work.

V. CONCLUDING REMARKS
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APPENDIX: EFFECTIVE PAIR POTENTIALS IN LIQUID G(g) = — (AB)
METALS 2(g% + &)
The effective pair potential between the ions in the liquidwith
metal can be written as 2
§= (A7)
(Ze? 2(Ze)? sin(gr) 1 +(0.153f7ke)
V() =-="+ dg— —Fn@. (A1) N ] |
r ™ ar £=1 corresponds to the original Hubbard expressiorGia)
The first term on the right-hand side of E@1) represents [38]- Hafner and Schumucld9] have taken
the Coulombic ion-ion interaction which is repulsive in na- 2
ture whereas the second term gives an attractive force arising &= T 0153 (A8)
due to the presence of conduction electrofg(q) is the 1+—
wave-number-energy characteristic and is giverj48} ke
0%t 1 1 W ke is the Fermi wave number defined as
F sl V=1 == , (A2 _

n(@ 167722264(8((11) )(1 —G(q)) W@, (A2) ke = (322", (A9)
whereW,(q) is the form factor and the Fourier transform of x(d), which appears in EqA5), takes into account the cou-
the empty-core potential is defined @3] lomb interaction between the electrons and is expressed as

: mie | 1 4k2—o? | 2ke+
0; r<re x(@)=- ;:2[? Fk Ln kF qH. (A10)
W(r)={ z& (A3) m 8ked 1 2Ke— g
r’ r=le In the case of binary alloys of liquid meta#B,_, can be

considered as a liquid mixture of two types of atomic species
of component metal# and B in proportionsx and (1-x),
AnZE respectively. Three types of ion-ion interactions \AzA, B
W(q) = - —5-—cogqr,), (Ad4)  -B, andA-B need to be considered in this case. The effective
g-Q ) . .
potential can be a concentration weighed average of the three
where the core radius, is a parameter at one’s disposal.  partial pair potential8/sa, Vgg, @andVyg. It is given by
The ions in the metal are screened by conduction elec- _ 2 2
trons. The dielectric screening functiefq) glays an impor- V(r) = CaVaa+ 2CACgVaaVes + CgVes, (Al
tant role in the pseudopotential theory. The dielectric screenahere

and the Fourier transform is

ing function proposed by Ichimaru and Utsupé] based on %)
the linear response theory is given by Cp= — A (A12)
212 XQa+ (1 -x)Qpg
(4melg9)x(9)
e(@=1- : (AS)
T T I i) M@)Gla) (1-X)0s (AL3)

Co=——— —.
where G(q), known as the local-field exchange correlation XQa+ (130
function, arises due to the effects of exchange and correlatio, and Qg are the molar volumes.
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