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Waves in a reaction-transport system with memory, long-range interactions, and transmutations
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We develop a theory of wave propagation into an unstable state for a system of integral equations with
memory, long-range interactions, and transmutations. In particular we use continuous-time random walk theory
to describe the transport and transmutation processes. We use a hyperbolic scaling and Hamilton-Jacobi
formalism to derive formulas for the speed of propagation of the traveling wave generated by the system in the
long-time large-distance limit. Our theory is valid for arbitrary waiting-time, jump-length and, transmutation
probability density functions and the propagation speed can generally be found numerically. However, we
illustrate our theory by considering an example where analytic results are possible—that is, for a system of
Markovian reaction-transport equations. We derive formulas to determine the propagation speed in both the
so-called weakly coupled and strongly coupled cases.
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I. INTRODUCTION counterpart, but in general there is no analytical closed-form

Although in recent years there has been considerablg®lution. The advantage in considering such systems is that it
progress in the modeling of complex biological, chemical,Will allow us to take into accoun@) realistic multicompo-
and physical systems in terms of interacting particle modelsient casesii) long-range interactions in space and in time,
there are still many problems with the scaling limits of large@nd (iii) transmutations. Long-range interactions are a sig-
systemg[1], in particular the scaling problem for the long- nificant feature in many areas of physics, chemistry, and bi-
time large-distance description of wave propagation into amlogy, but may often be ignored through the difficulties of
unstable state of reaction-transport systg®3]. This prob-  how to deal with them. General theory for the derivation of
lem has attracted considerable interest due to the large nurreaction-transport equations with distributed delay has been
ber of physical, chemical, and biological problems that carrecently developed by Vlad and Rogkl]. They introduced
be treated in terms of wave propagation into an unstablghe nonlinear age-dependent equations such that the transport
state. A generic model, which describes these phenomena, i described by the continuous-time random walk, while the
the Fisher-Kolmogorov-Petrovskii-Piskuna¥KPP) equa-  interactions between species are described by nonlinear
tion [4]. It was originally introduced to investigate the spreadtransformation rates. It should be noted that the nonlocal
of advantageous genes. Since then, it has been widely uséolution equations for multiple age variables were intro-
to describe combustion waves, population growth and dispeduced in population dynamics {12].
sion, the spread of epidemics, propagation of a vortex front The primary objectives of this paper ¢ to develop a
in an unstable fluid flow and magnetic fronts in disk dyna-theory of wave propagation into an unstable state for the
mos, etc.[2-9]. Recently, there has been a tremendousomplex system of integral equations gfid to analyze sto-
amount of activity in extending the FKPP equation by intro-chastic transport involving non-Markovian random processes
ducing more realistic macroscopic descriptions of the transwith long-range interactions and transmutations. We analyze
port processe§7—10. It has been recognized that the defi- the dynamics of fronts for these equations using a geometri-
ciency of the FKPP equation is that it implicitly involves a cal optics approach involving hyperbolic scaling and
long-time large-distance parabolic scaling, while as far agiamilton-Jacobi techniques.
propagating fronts are concerned, the appropriate scaling is
more likely to be hyperbolid3]. The key_ point about un- IIl. MESOSCOPIC EQUATIONS
stable states is that they are very sensitive to small distur-
bances. While on average transport processes may behaveThe purpose of this section is to givenaesoscopiae-
diffusively, unstable media are more affected by the wealscription of the complex reaction-transport system in terms
tails of transport processes which can behave quite differof a system of integral equations incorporating memory ef-
ently. fects, long-range interactions in space, and transmutations.

The extensions mentioned, however, have only been confhe transport process is described by the continuous-time
cerned with a single integro-differential equation. One needsandom walk(CTRW) model[10,11,13, while the reaction
to develop the theory of wave propagation into an unstablés assumed to be of KPP tyg6].
state for a system of integro-differential equations, since this Suppose that we have two different types of particles, 1
would allow a more realistic modeling of various phenomenaand 2, say. We introduce the concentrations of particles 1 and
in physics, chemistry, biology, etc. Most of the problems of2 at timet and positionx: ny(t,x) andny(t,x), respectively.
real interest are described by systems of reaction-transpo¥ie assume that for particighe waiting time between jumps
equations, rather than that of a single equation. Such systensrandom and the length of the jump is also random. Let us
of equations often have a far richer structure than their singlelenote byy;(t) the probability density functiotPDF) for the
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waiting time andg;(z) the PDF for the length of the jumps. ticle of type 1 at timet—s and positionx—z waits a times

The mutation process is described as follows. Let us suphefore jumping a distanceand remains a particle of type 1
pose that while the particles wait between successive jumpéi.e., not transmutating over the intervéd,s)]. The third
particles of type 1 transmutate into particles of type 2 after aerm [4f;(ny,ny)n,(t—s,x) W1 (s)B,(s)ds describes the growth
random time given by the PDPB,(t). Similarly, the opposite rate of particle 1, which occurs provided that no jump takes
transmutation of 2-1 occurs after a random time given by place—i.e., no loss of the particles 1 and thus no transmuta-
the PDFB,(t). tion from 1 to 2. The last ternfign,(t—s,x)W(s) B1(s)ds rep-

The concentration of the particles 1 andrg(t,x) and resents the probability that over the time inter¢@ls) par-
no(t,x), can then be described through the probabilistic-ticles of type 1 seeks to transmutate to particles of type 2,

balance-type equations which can only happen provided no jump takes plgesnce
. the W4(s) term). It should be noted that the systeit) and
ny(t,X) = Ny (0,X) W (1) By(t) +f J ny(t-s,x-2) (2) is derived by using probabilistic methods, but it is not a
0J - stochastic system. It does not take into account the random

¢ fluctuations of the species.

X @1(2)h1(s)B,(s)dzds+ f f1(ng, NNy (t = 5,x)
0 1. INTEGRO-DIFFERENTIAL EQUATIONS

t WITH MEMORY

XWy(s)By(s)ds+ f Ny(t = s,X)Wy(s)B1(s)ds (1)
0 Let us note that the system of equatighsand(2) can be
rewritten in terms of a system of integro-differential equa-

and tions (see Appendix A
t 0
no(t,%) = No(0,X)W,(1)B t+ff n(t—s,Xx-2 an(t,x) " *
AL =n020WA0BA0* | 1] e ) — = f ayt-9) | [ny(s,x-2) —ny(s, )]y (2)dzds
0 —o0
t
X @o(2) tho(S)B sdzds+ff Ny, N)N,(t = S,X !
<P2( )¢2( ) 2( ) o 2( 1 2) 2( ) +f {1(t—s)[n2(s,x)—nl(s,x)]ds+ fl(nlinz)nlv
0
t
XW,(s)By(s)ds+ f Ny (t = $,X)W(s) B(9)ds, (6)
0
ano(t,x) " *
I f a(t-9) f [na(s. X~ 2) = (s, 0)]ex(2)dzds
where we have introduced the new notations 0 -
t
Wi(t) :f Yi(9)ds i=1,2, (3 "‘f Lot =9)[Ny(s,x) = Na(s,x)Jds+ f(Nng, np)Ny,
0
t
the probability that a particle makes no jump over the in- @)
terval (0,t), and where the “memaory” kernelg;(t) and B;(t) are defined in the
- following manner. If we let
Bi(t):ft Alods 1212, @ 0= HOBW, 6 =W,OAM fori=12, (8
the probability that a particledoes not transmutate over the then
interval (0,t). In what follows we assume that the local u~f-(u) 5 UG (U)
growth ratef;(n;,n,) is of KPP type: (u) = ”'—~ &Gi(u) = 1?—~ fori=1,2,
Ui= sup {f(n,n)} =£(0,0). ) W-gw W5
nyny>0 (9

Let us now discuss the meaning of E¢b. and(2). Con-  where the Laplace transform of a functikgt) is denoted by
sider Eq.(1), which describes the balance of particles of type‘r((u):
1 at timet and positionx. The first term on the right-hand
side, n;(0,x)W4(t)B4(t), represents the probability that the ~ * ut
concentration of particles 1 at tinteand positiorx is just the k(u) :f k(he™dt.
initial concentration, which can only happen provided that no 0
jump has occurred and that no transmutation takes place. It is important to note that for arbitrary choices of
Due to the independence of the random waiting times andvaiting-time and transmutation PDFs, it may prove impos-
the transmutation process, this probability is given bysible to determine the inverse Laplace transform of the
W, (1)By(b). The second term  [Gf7.m(t-s,x  memory kernels(9). Our methodology will depend only
-2)¢1(2) 1(s)B;(s)dzdsrepresents the probability that a par- upon the system of master equatiqi$ and (2) involving
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the waiting-time and transmutation PDFs, without resort togn, 2 [* s
any such memory kernels. The integro-differential approach_ A 72 [nz(t SX-2)
is preferable only in the simplest of cases. Let us conS|der

several nontrivial examples involving different assumptions

on the waiting time and transmutation PDFs.

A. Markov random walk

- nz(t = 8,X)|@p(2)dzdst fo(ng, )Ny + yo(Ng = Ny).

17

It is clear from Eqgs(16) and (17) that unlike the previous
example, the transport process is now dependent upon the

Let us suppose that the waiting-time and mutation PDFgast history of the concentration of particles. The above

are exponentially distributed:

a(t) = go(t) = Ne™, Bi(t) = ye (10)
Then the appropriate substitutions of E¢R)) into Eqgs.(1)
and (2) or equivalently into Eqs(6) and (7) give (see Ap-
pendix B

ni=1,2.

% = )\foc [Ny(t,x = 2) = ny(t,x) Je1(2)dz+ f1(ng, NNy

+y1(np—ny), (11

% = 7\f [na(t,x = 2) = Ny(t,X) ] @p(2)dz+ (g, NN,
+y5(Ng—Ny). (12

In the diffusion limit, we can expand(t,x—z) by the Taylor
series to get a classical reaction-diffusion system

gn; D;én
Do 2T+ (i -ny, (13
gn, D,én
EZ 22 X —Z + fo(ng, NNy + (N — Ny, (14)

where the diffusion coefficier®, is determined as

D;= lim \o?, o —fzchl(z

A—©
0?0

Here it was assumed thfize;(z)dz=0.

B. Non-Markov random walk

equations can be reduced further to the following system of
coupled hyperbolic reaction-diffusion equatiaisee Appen-
dix D):

(92_n+<1 f n(?f +2 )(?1_ (nﬁ*_ )anz
O o2 17~ 1(?”17' Nt a 7| 1&n2 P41 at
D, &#n,
=5 o2 A nafnumn + prnp-ny), (19
#n, ( of, )anz ( of, )anl
— +|1-f,r—n +2y,7|——1n oy |/
Tﬁtz 27 2(9n27 Y27 7 7 2(91 Y2 7
D, én,
= ?2? +(1+y,0f(n,n)N, + Y270 —ny),  (19)
where
1
T=
2\

is often termed as the relaxation time. The diffusion coeffi-
cientD; is determined by

= %Ji Z¢i(2)dz

IV. WAVE PROPAGATION, HAMILTON-JACOBI
THEORY

Of particular value is the problem of the dependence of
the propagation rate of traveling waves on the statistical
characteristics of the random walk model. This still remains
an unsettled controversial problei3]. While other schemes
require integro-differential equations to be established for
mean-field scalars, we focus our attention on the balance

Let us consider an example involving memory effects, inequations(1) and (2) and the corresponding Hamiltonian
particular via the transport process. Let us again suppose thiinctions. We can expect that under appropriate conditions,
the transmutation PDF are exponential, but the waiting-timehe asymptotic solution of the system of equatighisand
PDF are given by the following member of the Gamma fam-(2) will behave as a traveling wave with some velocity

ily [14]:
n(t) = yo(t) = N2te™, Bi(t) = yie” (15

Then the system of equatiot) and(2) can be rewritten as
(see Appendix ¢

t
ﬁ:)\Zf
ot 0

—ny(t - s5,X) 1 (2)dzds+ f1(ng, NNy + y4(n, -

"i=1,2.

e @S| [ny(t-sx-2)

ny),
(16)

common to both components. The objective is to derive ef-
fective equations governing the large-scale dynamics of
fronts, varying only upon length scales larger than the char-
acteristic thickness of the traveling waves. The idea is that in
the long-time large-distancamacroscopidimit, the detailed
shape of the traveling wave is not important and therefore
the problem of wave propagation is that of the dynamics of a
traveling front[3,5]. The technique to be used in this paper
involves a hyperbolic scaling— x/e, t—t/e, with the res-
caled concentrationan’(t,x)=n;(t/e,x/e), the nonlinear
transformation
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G*(t,x)

€

R
and the Hamilton-Jacobi formalism. Positive parameters
andA, represent the asymptotic stable equilibrium points of

the concentrations] andnj, respectively. For simplicity we
suppose the initial conditions

ni(O,X) :{

to ensure the minimal propagation spgét The main prob-
lem is to derive an eikonal equation from Eg$) and (2)
generally of the form

:| - 0,

d

whereG(t,x)=lim,_,y G%(t,x) andF is the integral operator.
This equation allows us to find the action functiok, x)
and, thereby, the reaction front positigft) in the long-time
large-distance limit, from the equatidd(t,x(t))=0 [3].

We are now in a position to determine E@?2) for the
function G(t,x). Let us make the substitution of EO0) for
the rescaled concentration fiei(t,x) into Egs.(1) and(2);
then,

A1:Alfﬂs Jw exp[ G*(t,x) - G*(t—es,X - sZ):|
0 -0 t]

tle
fl(Ale—GE/s , Aze—G’s/s)

ni(t,x) = A ex;{—

Ai! X<0,

21
0, x=0, (21)

dG dG
—, =X

at’ ox (22

X @1(2)4n(s)By(s)dzdst Ay J
0

Xe W1(s)By(s)ds

tle & —_ et —
+ Azf exp{ Gt - Gt~ es%) ] W(S) By(s)ds,
0 &

(23)

p{ G®(t,x) — G°(t — es,X) ]
X &

tle o
G®(t,x) - G®(t—es,X— ¢z
A2=A2J J exp{ () (t-e 8)}
0 J-=» €

tle

X @(2) thy(S)By(s)dzdst A, f f(Ae e Ae C1e)

0
o
t/e & — —-&
P A J exp{G(t’X) Gt S’X)}I’z(s)ﬁz(s)ds-
0 E

(24)

G*(t,x) — G°(t — &s,X)

€

]\Ifz(s) B,(s)ds

We derive the equation fdB(t,x) by taking the limite —0
in the above equations. It follows that

PHYSICAL REVIEW E70, 051108(2004)

A1:A1f J /Gt ICIN2 0, (2) i1 (5)By(s)dzds
0 —00

o0

+A1U1J
0

e’Cl"sy, (5)B4(s)ds

+A f e 7"W () By (9)ds, (25
0
A2:Azf f e/CINSH G2, (2)15(5)By(S)dzds
0 —o0
+ AU, f e’ClMYy ,(s)B,(s)ds
0
+A f e’y () By(s)ds. (26)
0

Recall that the growth rate parametéris determined in Eq.
(5).

It turns out that the system of equatiai2®) and(26) can
be rewritten in a very useful form. Let us introduce the fol-
lowing notations—namely, the Hamiltonian functiéhand
the generalized momentum

S
ot

H=  p=—, (27)

X

and the moment generating function
QADi(D):J ¢i(2€’dz.
Then Eqgs(25) and(26) become

g

- Azfoc e W (s)B1(s)ds=0,
0

e 1P (o) + Ul‘l’l(S)]Bl(S)dS]

Az[l - f e M &a(p) () + Uz‘l’z(S)]Bz(S)dS]
0

[’

_AJ
0

The above system of linear algebraic equations®foand A,
has a nontrivial solution when the corresponding determinant
is equal to zero. This gives us the equation @i, x):

e "W ,(s) B,(s)ds= 0.
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{1 - f e p1(p)yn(s) + Uflfl(s)]Bl(S)dS}
0

X l 1 _f e ap)hals) + Uz‘Pz(S)]Bz(S)dS]
0
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lr//l(t) = l//‘z(t) = )\e_)\t! Bl(t) = %e_yit! i= 112! (30)

corresponding to the system of equations

% = )\F [N(t,x=2) = ny(t,X) ]1(2)dz

+f1(ng, NNy + y1(n; — ny),

- Jx e‘HS\Ifl(s)ﬁl(s)dsfm e "W ,(s) B,y(s)ds= 0.
0

0

Solving Eq.(28) for H(p), one can find from Eq(27) that ot _)\f_m[nz(t,x 2~ Nt lez(2)dz
G(t,x)=px—H(p)t which we recognize as the action func-
tional of a free particle. An expression for the propagation
rateu can then be found fron®s(t,ut)=0 [3]:

H H
u==, p— =H(p). 29
o' Pap () (29)

We may equivalently write

u= min{w},
p p

providedd?H/dp?>0. Note that Eq(28) is valid for arbi-
trary waiting-time, jump-length, and transmutation PDF and
generally can only be solved numerically. However, let us
illustrate the use of the above theory through the following
tractable example, where the waiting-time and transmutatio\fter a simple integration and rearrangement we get the fol-
PDF are exponential and where analytic results are possibléWing quadratic equation for the Hamiltoniad

(H={\[@1(p) = 1]+ Uy = yi)(H = {M@o(p) - 1] + U,
EQUATIONS

_ _ _ = v2}) = 1172.=0. (31)
Let us consider the case of reaction-transport equations
with transmutations when the waiting-time and mutationlIn fact, this is a characteristic equation of the eigenvalue

+ fo(Ng, NNy + y5(Ng — Ny).

Let us make the appropriate substitutions of 8§) into Eq.
(28). One can get

{1 ~[\&1(p) +Uy) f e‘(““”l)st]
0
X [ 1-[Nga(p) +U,] f e_(H"“VZ)Sds}
0

_ ,yl,yzf e—(H+)\+y1)stJ e—(H+>\+y2)st: 0.
0 0

V. MARKOVIAN-COUPLED REACTION-TRANSPORT

PDF are exponential, E@10): problem
|
¢ -1H+U,;- A A
( [ei(p) - 1) 1™ N A V1 )( 1):H< 1>. (32)
Y2 NMea(p) — 1+ Uy -y, /\A Az
To ensure the positivity of; and A, we need to choose the largest eigenvdiiip):
_1 _ 1. _ U1+U2_(3’1+3’2)
H(p) = SN@u(p) — 1]+ SN @o(p) ~ 11+ — >
N . N Ui-U, v—v |2
+ \/ {;mm 1= Slep) -1+ =+ 1} N (33)
[
Note that this expression holds for any jump PPEz). For &i(p) = ertPi2.

example, for Gaussian-distributed jumps with varianﬁe
For the discrete jumps distribution

2
e—zzl 20,

(Pi(z) = \r2770'i2 ) (,Di(Z)

_dz-a) dztay)
2 2
we have, for the functior,(p), one can get
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ediP + g &P
2

The speed of propagation, can then be determined from
Egs.(29) and(33).

@i(p) =

PHYSICAL REVIEW E70, 051108(2004
H..(p)

)

can only be found numerically. In the following section we
consider the diffusion limit where some analytic results are

U, =mi
p

Let us consider weakly coupled and strongly coupledpossible.

cases.

A. Weakly coupled case

Let us consider the so-called weakly coupled case whe
the transmutation rates tend to zet@— 0, y,— 0. For sim-
plicity we assume thay,=y,=+v and considery— 0. If we
define

1 1
0|(p):§)\[€0|(p)_1]+éu|, [ :1121 (34)

the Hamiltonian(33) becomes

H,(p) = 61(p) + 6x(p) = y+ [ 61(p) = o(p) T+ 2.
(35

We may consider the case=0; the Hamiltoniar(35) is then

Ho(p) = 61(p) + 62(p) +|61(p) = B(p)|. (36)

There are three solutions for the momentpmvhich gives
the minimum toH/p. They can be found from

doy_ 6y do

dp p" dp p’
It turns out that fory— 0, the propagation speed may be
larger than in the decoupled cage0. This will be discussed
further in the section concerning coupled reaction-diffusio
equations. It is important to note that the unique solution will

depend explicitly uporlJ;, U,, N and the variance of the
jump PDF.

L

= (37)

B. Strongly coupled case

1. Coupled reaction-diffusion equations

Let us consider the system of equatigfsand(7) in the
diffusion limit:
n

an, Dyén
El 31?21 + (N, n)ng + yi(np—ny), (38)
an, D,Pn,
— = —— + (N, NN + y(ng—ny). 39
at 2 e 2(Ng, NNy + y5(Ng = Ny) (39
The Hamiltonian in Eq(33) becomes
:<D1+D2)p_2+ UptUy nty
2 2 2 2
Dl‘Dz)pZ U-U, %m—n 2
+ — | =+ + + .
\/{( 2 2 2 2 Y172
(40)

Then EQq.(40) together with Eq(29) allows us to determine
the propagation speadwhich is identical to the result ob-
tained by Freidlin[15] (see Appendix E

Even in such “simple” reaction-diffusion equations like
the above, the behavior of the traveling waves is often far
richer than their singular counterparts. As an example, let us
analyze the behavior of the propagation speed determined
rom Eg.(40) in relation to the transmutation ratgs andy,.
In what follows we assume without loss of generality that
U;>U,.

2. Weak coupling
For v;—0, y,—0 we have from Eq(37) that there are

Let us suppose again that the transmutations rates are tl%ree possible values gf satisfying, m'@{H/ Pl

samey; = y,= v, then, the Hamiltonia33) takes the form of
Eq. (35). Now consider the limity— ; then,

H.. = 61(p) + 65(p).

For an arbitrary choice of jump PDF, the propagation
speed

\/2u1 \/2u2 \/2(u1

Let us assume thai; >U,. Now we are in a position to find
u=min,{H/p}; it turns out thatu depends on the constants
U4, Uy, D4, andD, as follows:

.
\’2U1D1, |f Dl = D2,
\’2U1D1, |f Dl < D2,2U1D1 = U1D2+ Ule,
u=9 V2U,D,, if D; < D, 2U,D, = U;D,+ U,D;, (41)
U,D,-U,D
122 271 if p, <D,, maX2U,Dy,2U,D,} < U;D,+ U,D;.
L V2(U; - Uy)(D,-Dy)

051108-6
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We note that the above result was first derived by Freidlin VI. CONCLUSION
[15]. If we supposeD;—0, U,—0, then the system of

reaction-diffusion equations reduces to In this paper we have presented a model fayatemof

reaction-transport equations with transmutations incorporat-
an, D;&n, ing long-memory qnd_long-range interactions. In particular,
E=7W+7(nz-nﬂ, we use a_prol_)abllls_tlc appro_ach baseq upon tr_le CTRW
theory, which is valid forarbitrary waiting-time, jump-
length, and transmutation PDFs. We primarily consider
probabilistic-balance-type equations, but also show their
equivalence to a system of generalized master equations in-
volving memory kernels for the transport and transmutation
For 'y=0, |t iS Clear that no traVeIing front W|” be eStab- processes_ By using a hyperbo"c Sca“ng and Hamilton-
lished; however, in the limity— 0, the propagation speed is jacobi formalism we derive formulas which allow us to de-

an
EZ =Uny(1-ny) + v(ng—ny).

given as[15] termine the propagation speed of the traveling front gener-
ated by such systems of equations. In general, each choice of

U= 1 /M_ PDF for the random processes will result in equations which

2 have to be solved numerically and need to be investigated in

order to determine the structure of the solutions. We illustrate
ur model by considering the more tractable interacting sys-
ms of Markovian reaction-transport equations, including
deriving formulas for the special weakly and strongly
coupled cases.

The physical interpretation is that of a “piggyback”-type ef-
fect; one component of the system provides the diffusion an
the other the growth.

3. Strong coupling

Let us suppose again thaf=y,=+ and consider the limit APPENDIX A: DERIVATION
y—°; then, we obtain OF INTEGRO-DIFFERENTIAL EQUATIONS
_ ( D+ Dz)lo_2 LUt (42) For brevity, let us consider only E@l):
=\ 2 )2 2

It clearly follows that the momentunp, which gives the
minimum toH/p is

t ©
nl(t,X) = nl(O,X)‘Ifl(t) Bl(t) + f f nl(t - §X
0J-—»

t

Ui+ U, = 2)¢1(2)(s)By(s)dzds+ Jo f1(ng,no)ny(t

P= D, +D, .
and corresponding propagation speed is =5 X)W 1(s)By(s)ds+ fo Ny(t = 5, X)W1(s)B1(S)ds.
_ \/(Ul +U,)(Dy +Dy) (43) (A1)
B 2 ' We define the Laplace and Fourier transforms as

As in the weakly coupled case, it is possible that the wave - o0 A o0 ,
speed is greater than in the decoupled case. Consider again f(u) =f f(e™dt, @(k) :f (e dx  (A2)
the caseD;— 0, U,— 0; then,u,, becomes 0 -

and the Fourier-Laplace transform as
U = A /ﬂ
o T 2 .

fi(u,k) = f J n(t,x)e Uk ditdx (A3)
One can see that propagation speeds in the weakly coupled =70

and strongly coupled cases are equal. = ; ; ;
; . _ or ease of notation, we introduce two functioihgt) and
We have already mentioned that in general, for arbitrary )

waiting-time, jump length, and transmutation PDFs, onegl(t)'
needs to proceed numerically; however, as demonstrated in f1(t) = Y (D)B1(1), gy(t) = W1 (1) By(). (A4)
the Markovian weakly coupled reaction-diffusion case, re-

sults are critical upon the relationship between the growthilhe term¥,(t)B4(t) which appears in EqAL) is related to
and diffusion constant&);, U,, D4, and D,. In the more f4(t) andg(t) in the following manner:

complex systems of reaction-transport equations, where one .

may introduce non-Markovian waiting-time PDFs and jump- _

length PDFs with long-range behavior, the introduction of V(DB (1) = l_fo [f2(9) + gu(s)]ds.

extra parameters will mean that one will have to take great

care in order to capture the correct structure of the solutionsThis follows from theW,(0)B;(0)=1 and
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d
d—t{‘I’l(t)Bl(t)} == Yn(O)By(t) = W1(1) By(1).

If we take the Fourier-Laplace transform of E&\1), then

+T13(U,K) &1 (K T4 (U)

Tin(u,k) = ﬁﬂow%‘@(u)

+ By TR g,

(A5)

where El(u,k) is the Fourier-Laplace transform of

f1(nq,ny)N4(t,x). Here we used the convolution property

. - e o[ ot
Ru(U R BT (W) = f f l f f ny(t-$x—-2)
<Jo | JoJ—

chl(z)fl(t)dzds} e uHkxdtdx.

(A6)
Rearranging Eq(A5) as
ﬁl(u,k)u

Tig (U, k) T4(U)
1-F1(u) - Gu(W)

1 —?1(U) =0,(u)
+'|::1(n1(u,k),ﬂ2(uyk))

‘U Tio(U, Ky (U)

=11(0,K) +ug (k)

= (A7)
1 -f1(u) = 9y(u)
and introducing the auxiliary functions
a;(u) = .:fl(—u){ = .,al(—u)i
1-f5(u) = Ga(u) 1-f5(u) = Ga(u)
(A8)

we find, then,
(U, k) = Py (0,K) + Fa (WA (U K[ 1K) — 1] + Fa(u,k)

+J(W[Ta(u, k) = Tg(u,K)]. (A9)

By applying the inverse Laplace-Fourier transform to Eq.

(A9), we get the equation
any(t,x)

t %
P —f al(t—s)f [ny(s,Xx = 2) = ny(s,X) 1 (2)dzds

0

t
+ f Y1t = 9)[Ny(s,x) — Ny (s,x)]ds
0

+ f(ny,ny)ny(t, ).

APPENDIX B: MARKOV RANDOM WALKS

For brevity we consider only the derivation of Ed.1).
There are two ways to proceed:

PHYSICAL REVIEW E70, 051108(2004)

substitutions of Eq(10) into Eq. (1) and differentiate both
sides directly, or alternatively, we can make use of the
integro-differential master equati@f). We follow the latter.
Let us first determine the functioni8):

fa(t) = ¥(s) J °° Ba(s)ds= e Mt
t

g1(t) = B4 () f Y(s)ds= y,e 1,
t

The respective Laplace transforms are

A Y1

Tz ——— Guy = ——.
(W) U+ 01(u) Ut A+,

If we substitute these expressions into
ug (u)

C1-Tw-gw
(B1)

~ U~fi(U) ~
au)=——7——,
1-1(u) - Gi(u)

then the Laplace transforni8) can be found to be

U =N\, G =y

This corresponds to thé functions for the inverse Laplace
transforms:

ay(t) =NS(1), £3(t) = y10(D). (B2)
Substituting Eq(B2) into Eq.(6) gives Eqs(11) and(12).
APPENDIX C:  NON-MARKOV RANDOM WALKS
Similarly to Appendix B, we find

o]

f1(t) = () J Bi(s)ds=\te™ f Y€ "15ds= N2te” Mt
t t

91(t) = B1(b) f (s)ds= y,e ! J Nsesds
t t

=y (1 +At)e M)t

with the respective Laplace transforms
~ N 2
fi(u) = (—) .
u+a+ Y1

Ga(u) = ’)’1{

1 A
+ 5 |-
U+tN+y, (U+N+y)

The memory kernels defined in E@) can be found as

F(u) = NAOEES

U+t2\+ 7y
This corresponds to the inverse Laplace transforms
ay(t) =@ £ (1) = 9 8(). (Cy

either make the appropriat8ubstituting Eq(C1) into Eq. (6) gives Eq.(16).
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WAVES IN A REACTION-TRANSPORT SYSTEM WITH...

APPENDIX D: HYPERBOLIC REACTION-TRANSPORT
EQUATIONS

For brevity let us consider only E@16):

t o]
= f N2e (@Fys f [n(t-sx-2)
0 —o0

an,
at

—ny(t = 8,%)Je1(2)dzds+ nyf1(ng,ny) + y4(Ny = ny).
(D1)

If we make the change of variabtet-s,

My _ -@nemt f
A 0

t o
)\ze(z“yl”J [ny(r,x-2)

= ny(r,x) ey (2)dzdr+ f1(ng,ny)ng + y4(n, = ny),
(D2)

then differentiating both sides with respectttone can get

&y —(2 it "y o [
e == (2N + y)e Mt N Tny(r,x—=2)
0 —o0
= ny(r,x)]ey(2)dzdr+\? f [Mm(t,x-2)
12 Y0t tan, at
an, &n1>
+yl —-—1, D3
71( P P (D3)
Then, from Eqs(D3) and(D2),

#n an
?21 =—(2n+ ‘)’1)(51 = fi(ng,nyng = yy(ny - nl))

+\? J ’ [M(t,x = 2) = ny(t,x)Jp1(2)dz

df1\on dfy an an, an
) on ol

n, — -
1/ ot an, dt a ot
(D4)
By rearranging Eq(D4) and dividing both sides by
N
T 27
one can get
#n of an of an
7?21 +11 _fl’T_ nla_n:;T-'- 2'}’17’ El - T nla_njz- + Y1 gz
l (e
=1, [M(t,x—2) = m(t,X)]@1(2)dz+ (1 + y17)
X[f1(ng,nz)ng + ya(nz = ny)J. (D5)

By expandingn,(t,x-2) into a Taylor series and taking the

PHYSICAL REVIEW E 70, 051108(2004)

APPENDIX E: REACTION-DIFFUSION EQUATIONS

In the following we show that the solutiqd0) and(29) is
identical to that derived by Freidlif15]. In particular, for the
system of coupled reaction-diffusion equatigh8) and(14),

on, D;éPny
—=—— +hi(nyn)n; + y, (N —ny),
at 2 e 1(N3,Np)Ng + y1(Ny —Nny)

an, D,y

a2 +1(n, NNy + y(ng = ny),

Freidlin[15] showed that the propagation speeid given by

IN(a*) +B]
u= —/—
V2(a* = A)

where\(a) is the maximal eigenvalue of the matrix

(aDl_ Y1 Y1 )
Y2 aDy =y

and o is the root of the equation

Zd)(;—(;)(a—A) =\ (a) + B,

where A=(U;-U,)/(D;-D,), B=(D,U,—-D,U;)/(D1-D,).
Recall Eq.(40):

D;+D,\p? U;+U +
H(p)=< 12 2)%+ 12 2_71272
+\/[<D1_D2>p_2+U1_U2+72‘71 2+
2 2 2 2 Y172-
(ED

To find the speed of propagatiarwe first determingy from
Eq. (29):

H(p) _H(P)

E2
P 0 (E2)

If we make the substitutione=p?/2+A, where A=(U,
-U,)/(D;—-D,), then Eq.(E2) becomes

HV2(a-A)]da _HV2(a-A)]
da ap p '

(E3)

—

first three terms in the transport integral we arrive at Eq. 18Clearly da/dp=p=+/2(a—A): therefore,
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RPN - = H 2= A P

with propagation speed

(a=A)=Na) +B,

and in terms of the notation used by Freidki\2(a—-A)] _H(p) _[\M@) +B|
:)\((1’)"'8, WhereB:(D1U2_D2Ul)/(Dl_D2): thUS, u= p B \‘”2(& - A) '
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