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Rotational Brownian motion of colloidal magnetic particles in ferrofluids under the influence of an oscillat-
ing external magnetic field is investigated. It is shown that for a suitable time dependence of the magnetic field,
a noise-induced rotation of the ferromagnetic particles due to rectification of thermal fluctuations takes place.
Via viscous coupling, the associated angular momentum is transferred from the magnetic nanoparticles to the
carrier liquid and can then be measured as macroscopic torque on the fluid sample. A thorough theoretical
analysis of the effect in terms of symmetry considerations, analytical approximations, and numerical solutions
is given which is in accordance with recent experimental findings.
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I. INTRODUCTION

Rotational Brownian motion of colloidal particles is a
classical subject in statistical physics[1]. Contrary to its
translational cousin, i.e., “usual” Brownian motion, it does
not result in changes of the particle location and is hence not
as easily demonstrated in experiments. If, however, the sus-
pended particles carry an electric or magnetic moment, their
orientation couples to external fields and the electric or mag-
netic relaxation properties of the suspension are direct con-
sequences of the rotational diffusion of the constituting par-
ticles. In particular, in the well developed theory of
ferrofluids, the importance of rotational Brownian motion for
the theoretical description of the often complex and surpris-
ing hydrodynamic and magnetic properties was recognized
already a long time ago[2].

Ferrofluids are suspensions of nanosize ferromagnetic
grains in carrier liquids such as water or oil. They combine
the hydrodynamic properties of Newtonian fluids with the
magnetic behavior of superparamagnets[3]. Due to the vis-
cosity of the carrier liquid, there is a coupling between the
rotation of the magnetic grains and the local vorticity of the
hydrodynamic flow. This coupling can, e.g., be used to spin
up ferromagnetic drops floating in a nonmagnetic fluid of the
same density with the help of arotating magnetic field[4,5].
Complementary, a rotational ferrofluid flow exposed to a
static magnetic field exhibits an enhanced shear viscosity[6].
Various related effects such as “negative” rotational viscosity
[7], magneto-vortical resonance[8], and anomalously en-
hanced ac response due to coherent particle rotation[9] have
been investigated. They rely on the exchange of angular mo-
mentum between rotating particles and an oscillating mag-
netic field. In these cases, the imposed nonzeroflow vorticity
of the ferrofluid is crucial for breaking the symmetry be-
tween clockwise and counterclockwise particle rotation.

In the present paper, we investigate a much more indirect
and subtle aspect of the interplay between rotational Brown-

ian motion of ferrofluid particles and their relaxation dynam-
ics in an external magnetic field. We will show that a suitably
designed time-dependent external magnetic fieldwithout a
net rotating componentmay rectify the fluctuations of the
particle orientation and set up anoise-inducedrotation of the
ferromagnetic grains. We will hence investigate how angular
momentum can be transferred from anoscillating magnetic
field to a ferrofluidat rest. The effect was predicted theoreti-
cally and demonstrated experimentally in a previous short
communication[10]. In the present paper, we provide many
more details on the theoretical description and we add sev-
eral new results.

The extraction of directed motion from random fluctua-
tions is an old and controversial problem in statistical me-
chanics with a long and interesting history[11–14]. Although
excluded by the second law of thermodynamics for equilib-
rium systems, rectification of fluctuationsis possible in sys-
tems driven sufficiently far away from thermal equilibrium
[15,16]. The problem has gained renewed attention under the
trademarks of “thermal ratchets” and “Brownian motors” due
to its possible relevance for biological transport[17,18] and
the prospects of nanotechnology[19–21].

Ferrofluids are ideal systems to investigate such
fluctuation-driven transport phenomena and also to demon-
strate them experimentally[10]: As already discussed above,
the rotational dynamics of the ferromagnetic grains is
strongly influenced by thermal fluctuations. Appropriate
time-dependent potentials can be easily designed with the
help of external magnetic fields. Finally, directed rotational
transport in ferrofluids should manifest itself as systematic
rotation of the ferromagnetic nanoparticles. This in turn can
be easily detected from the resultingmacroscopictorque on
the carrier liquid. Various somewhat related but still quite
different phenomena in rotational dynamical systems are
treated in[22–26].

Throughout the paper, we will use two basic approxima-
tions which simplify the analysis considerably and which are
rather common for ferrofluids[2,3]. The first is to neglect
Neel relaxation of the magnetization, i.e., the rotation of the
magnetization vector with respect to the ferromagnetic par-
ticle. This is justified for particle sizes that are not too small*Email address: engel@theorie.physik.uni-oldenburg.de
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and amounts to assuming that the magnetic moments are
firmly attached to the geometry of the particles. Any reori-
entation of the magnetic moment hence requires a rotation of
the particle as a whole. The second approximation is to ne-
glect dipole-dipole interactions between the particles. Al-
though these interactions may be important in concentrated
ferrofluids, they are negligible in sufficiently diluted ones.
The ratchet mechanism of central interest in the present in-
vestigation can operate without any particle-particle interac-
tion. We will hence assume that our ferrofluids are suffi-
ciently diluted and use asingle-particlemodel. For a more
quantitative assessment of the role of the dipole-dipole inter-
actions, see, e.g.,[27] and references therein.

The paper is organized as follows. In Sec. II, we introduce
the general framework for describing the rotational Brown-
ian motion of a single suspended ferromagnetic particle in an
external magnetic field. In Sec. III, the central Fokker-Planck
equation describing our system is analyzed. Besides an in-
vestigation of the weak noise limit, we describe the numeri-
cal solution of the Fokker-Planck equation and compare the
results with two different approximate treatments yielding
analytical expressions for the transferred angular momentum.
Section IV contains some conclusions. The Appendix gives a
detailed account of the symmetries characteristic of our sys-
tem and discusses how these symmetries influence the pos-
sibility for a ratchet mechanism to operate.

II. GENERAL FRAMEWORK

We consider the rotational motion of a spherical particle
of volumeV and magnetic momentm immersed in a liquid
with dynamic viscosityh and subject to a horizontal, time-
dependent, spatially homogeneous magnetic fieldH. The
field is composed of a constant partHx parallel to thex axis
and an oscillatory partHystd with period 2p /v along they
direction,

H = „Hx,Hystd,0…, Hyst + 2p/vd = Hystd. s1d

Different choices for the time dependence ofHy are of inter-
est. In the present paper, we will mainly discuss two cases
which are each representative for a whole class. Our first
standard choice is

Hystd = Hy
s1dcossvtd + Hy

s2dsins2vt + dd, s2d

where the amplitudesHy
s1,2d and the phased are control pa-

rameters. The main features of this time dependence are a
zero average over one period and the presence of a higher
harmonic of the basic frequency. As a second example, we
will also discuss the form

Hystd = Hy
s0d + Hy

s1dcossvtd, s3d

for which the average over one period is different from zero.
It arises naturally if the constant field component is not per-
pendicular to the time-dependent one. In any case, the mag-
netic field is of a pure oscillatory character, i.e., itdoes not
contain a net rotating component.

The orientation of the particle at timet is described by the
unit vectorestd=mstd /m, wherem denotes the modulus of the

magnetic moment. In the following, we briefly sketch the
derivation of the stochastic equation of motion fore in our
particular setting(similar derivations may be found, e.g., in
[28,29]). We start with

]te= V 3 e, s4d

whereVstd denotes the instantaneous angular velocity of the
particle. Changes ofV are due to torques on the particle.
Denoting by= the angular part of the three-dimensional Na-
bla operator, the magnetic torque

Nmag= − e3 = U = me3 H s5d

derives from the potential energy

Use,td = − me ·Hstd s6d

of a magnetic dipole in an external field[30]. Further, the
viscosityh of the carrier liquid gives rise to a viscous torque
[31]

Nvisc = − 6hVV. s7d

Additionally, the interaction between the rotating particle and
the surrounding liquid also causes thermal fluctuations which
generate a stochastic torque[29],

Nstoch= Î12hVkBTjstd. s8d

Here,jstd is a vector of independent,d-correlated Gaussian
noise sources of zero mean, the noise intensity is related to
the temperatureT and the dissipation(7) of the carrier liquid
by the fluctuation-dissipation relation, andkB stands for
Boltzmann’s constant. Denoting the moment of inertia of the
particle byI, the equation of motion forV acquires the form

I]tV + 6hVV = me3 H + Î12hVkBTjstd. s9d

Equations(4) and (9) form a closed set of equations for the
description of the rotational motion of the particle. Using
experimentally relevant parameter values(density of the par-
ticle r.43103 kg/m3, particle radiusR.10 nm, viscosity
h.10−1–10−3 Pas, time scaleV /]tV.10−4s), we find that
the first term on the left-hand side of Eq.(9) is five to seven
orders of magnitude smaller than the second one. We may
hence safely neglect inertial effects[2] and find forV in the
overdamped limit

V =
m

6hV
e3 H + Î2Djstd, s10d

where we have introducedD=kBT/6hV. Using this result in
Eq. (4) yields a closed equation for the time evolution ofe,

]te=
m

6hV
se3 Hd 3 e+ Î2Djstd 3 e. s11d

It is convenient to introduce dimensionless units. To this end,
we measure time in units of the inverse of the external driv-
ing frequency,t° t /v, use 6hVv /m as the unit for the mag-
netic field strength,H ° s6hVv /md H, and rescale the noise
intensity according toD°vD. The evolution equation for
the orientatione then reads
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]te= se3 Hd 3 e+ Î2Djstd 3 e. s12d

Introducing the Brownian relaxation time[32]

tB =
3hV

kBT
, s13d

we note that the rescaled, dimensionless noise intensityD
occurring in Eq.(12) just gives the ratio between the relevant
deterministic and stochastic time scales in the system,

D =
kBT

6hVv
=

1

2tBv
. s14d

To proceed, we parametrize the orientatione of the mag-
netic particle by two anglesu andw according to

e= ssinu cosw,sinu sinw,cosud. s15d

From Eq. (12) we then find the following Langevin equa-
tions for the time evolution of these angles[33]:

]tu = − ]uU + D cotu + Î2Djustd, s16d

]tw = −
1

sin2 u
]wU +

Î2D

sinu
jwstd. s17d

In the dimensionless units adopted, the noise intensityD is
given by Eq.(14) and the potential(6) takes the form

Usu,w,td = − sinufHx cosw + Hystdsinwg. s18d

The thermal fluctuationsjustd and jwstd are given by two
independent,d-correlated Gaussian noise sources of zero
mean. Note that in Eq.(17) we are dealing with multiplica-
tive white noise, but since the multiplicative function is in-
dependent ofwstd, no ambiguity(Ito-versus-Stratonovich in-
terpretation[34]) arises.

It is instructive also to consider the simplified situation of
a one-dimensional dynamics in which the vectore is as-
sumed to be constrained to the horizontalx-y plane. Accord-
ingly, Eq.(16) is replaced byu;p /2 and Eq.(17) simplifies
to

]tw = Fsw,td + Î2Djwstd, s19d

where

Fsw,td = − Hx sinw + Hystdcosw. s20d

The observable of foremost interest in the present inves-
tigation is the time- and ensemble-averaged torque(5) ex-
erted by the magnetic field upon the magnetic particle in the
long time limit, i.e., after initial transients have died out.
Since the magnetic field(1) is constrained to thex-y plane,
only thez component of this magnetic torque can be differ-
ent from zero. Suppressing the subscript “mag” in Eq.(5)
from now on, we denote the averagedz component of the
magnetic torque bykNzl, wherek l stands for the ensemble
average over the different realizations of the noise terms in
Eqs.(16) and (17) and the overbar represents the time aver-
age over one period of the magnetic field. Using Eqs.(1) and
(5), we get

kNzl =
1

2p
E

0

2p

dtksinustdf− Hx sinwstd + Hystdcoswstdgl.

s21d

Exploiting Eqs.(18) and (17), one readily finds the equiva-
lent expressions

kNzl =
1

2p
E

0

2p

dtk]wU„ustd,wstd,t…l

=
1

2p
E

0

2p

dtk]twstdsin2 ustdl. s22d

For reasons of ergodicity, the ensemble average in Eq.(21) is
equivalent to a time average of a single realization over an
infinite time interval. Then the extra time average over one
period of the external driving drops out and we are left with

kNzl = lim
stf−tid→`

1

tf − ti
E

ti

tf

dt]twstdsin2 ustd s23d

and similarly for the equivalent expressions in Eqs.(21) and
(22).

In the absence of thermal fluctuations, the particle orien-
tation is governed by the overdamped deterministic relax-
ation dynamics given by Eqs.(16) and (17) with D=0.
Hence, at any given moment, the orientationestd tends to
align with the instantaneous magnetic fieldHstd which lies in
thex-y plane. One can then show[35] thatustd converges to
p /2 for t→` and thatwstd approaches aperiodic long time
behavior. This implies via Eq.(23) that

kNzl = lim
stf−tid→`

wstfd − wstid
tf − ti

= 0, s24d

i.e., in the absence of thermal fluctuations no particle rotation
will occur and no average torque can arise. An explicit ex-
ample is displayed in Fig. 1.

This scenario changes fundamentally in the presence of
fluctuations, i.e., ifDÞ0. As shown qualitatively in Fig. 1,
for small noise intensities, the time dependence ofwstd and
ustd will still closely follow the deterministic trajectories,
except that now also rare, fluctuation-inducedtransitionsbe-
tween different deterministic solutions may occur. As dis-
cussed in detail in Sec. III A, the constant component of the
field in thex direction and the second harmonic in the time
dependence of the oscillating field component give rise to
slightly different rates of forward(increasingw by 2p) and
backward transitions(decreasingw by 2p). Hence on aver-
age a net rotation of the particle will occur, implying with
Eq. (24) thatkNzlÞ0. This is a manifestation of the so-called
ratchet effect[15] in which an unbiased potential and undi-
rected Brownian fluctuations cooperate to produce directed
transport. The detailed operation of the ratchet mechanism
for the rotational motion of a colloidal particle is the main
focus of the present paper.

Without explicitly solving the underlying equations of
motion as given above, some interesting results on the oc-
currence and direction of noise-induced rotation can already
be inferred from an investigation of the space-time symme-
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tries of our system. A first observation is that at any given
instance of timet, the potential(18) is “symmetric” inw, i.e.,
there exists aDwstd such thatUsu ,−w ,td=U(u ,w+Dwstd ,t).
Contrary to several other ratchet devices, our system is there-
fore not characterized by a spatially asymmetric potential.
However, from the analysis of the Appendix one finds that
the system exhibits a dynamical symmetry breaking that
gives rise to a preferential direction of rotation in the generic
case. As detailed in the Appendix, one can show that the
induced torque must be an even function of the constant field
component in thex direction and henceHx=0 implies kNzl
=0 [cf. Eq. (A19)]. Moreover, if one can find aDt such that
Hystd=−Hyst+Dtd, again no average torque can arise[cf. Eq.
(A20)]. These observations motivated our choices(2) and(3)
for simple time dependences of the oscillating fieldHy which
result in a noise-induced rotation of the ferromagnetic grains.

A related important point concerns the possibility ofcur-
rent inversions[15]. From the symmetries of the system with
time dependence(2), we show in the Appendix that for a
special valued0 of the phase angled, the torquekNzl has to
change sign upon variation of another parameter such as the
driving frequencyv, the noise intensityD, or the particle
volume V. In the latter case, we hence face the intriguing
possibility that in a polydisperse ferrofluid under the same
experimental conditions, the larger and smaller particles will
rotate inoppositedirections.

A further basic result of the Appendix is the conclusion
that the constrained dynamics(19) and (20) has an extra

symmetry which is lost if the full two-dimensional dynamics
(16) and (17) is considered. This symmetry implies that if
one can find aDt such thatHys−td=Hyst+Dtd, thenkNzl=0.
Consequently, thed values where the torque changes sign are
fixed by this additional symmetry while they are independent
of any other parameter of the system. Hence no current re-
versal upon changes in these parameters is possible. This is
the main difference between the full two-dimensional dy-
namics (16) and (17) and its simplified one-dimensional
counterpart(19); see also[36–39].

III. ANALYSIS OF THE FOKKER-PLANCK EQUATION

A quantitative analysis of the overdamped Brownian ro-
tation of a single ferrofluid particle in a time-dependent ex-
ternal field can be built on the numerical simulation of the
Langevin equations(16) and (17). Such simulations unam-
biguously show the occurrence of noise-induced rotation of
the particle in an oscillating field[33]. For a detailed study of
the influence of the various parameters of the problem on the
transferred torquekNzl, it is, however, more convenient to
start with the equivalent Fokker-Planck equation(FPE) for
the probability densityP=Psu ,w ,td for the orientation(15)
of the particle[29,40],

]tP = = sP = Ud + D=2P =
1

sinu
]ussinuP]uUd

+
1

sin2 u
]wsP]wUd +

D

sinu
]ussinu]uPd +

D

sin2 u
]w

2P.

s25d

Here, = denotes the angular part of the three-dimensional
Nabla operator. The equivalence of Eqs.(16), (17), and(25)
is, e.g., shown in [33]. For a time-periodic potential
Usu ,w ,td, the solutionPsu ,w ,td of Eq. (25) will also be
periodic after initial transients have died out. From this so-
lution, we can determine the average orientation of the par-
ticle,

kestdl =E
0

2p

dwE
0

p

du sinussinu cosw,sinu sinw,cosud

3 Psu,w,td s26d

with the help of which the average torque from Eqs.(21) and
(22) can be calculated according to Eq.(5) in yet another
way, namely,

kNzl =
1

2p
E

0

2p

dtfkestdl 3 Hstdgz. s27d

In the present section, we discuss the numerical and ap-
proximate analytical solution of the Fokker-Planck equation
(25) and the corresponding results(26) and (27) for the av-
eraged torquekNzl. To first substantiate the intuitive under-
standing of the ratchet effect in our system advocated with
Fig. 1, we start by considering the weak noise limitD→0.
To keep the analysis simple, we will restrict ourselves in this
part to the simplified one-dimensional model defined by Eqs.

FIG. 1. Space-time plot of the potentialUsu=p /2 ,w ,td from
Eq. (18) for the time dependence(2) with Hx=0.3, Hy

s1d=Hy
s2d=1,

and d=0. Dark and bright regions correspond to small and large
values ofU, respectively. In the long-time limit, the deterministic
dynamics(16) and (17) with D=0 approachesustd=p /2 and a pe-
riodical wstd, oscillating back and forth as represented by either of
the full black lines. In the presence of a small amount of noise,
occasional transitions across the unstable deterministic orbits shown
as full white lines become possible which are schematically indi-
cated by the dashed lines. The spatial asymmetry and temporal an-
harmonicity of the potential conspire to yield slightly different rates
for noise-induced increments and decrements ofw, respectively. As
a result, a noise-driven rotation of the particles arises. For a detailed
discussion, see Sec. III A.

A. ENGEL AND P. REIMANN PHYSICAL REVIEW E70, 051107(2004)

051107-4



(19) and (20). In the second subsection, we detail the nu-
merical methods used to solve the FPE for the general case.
Finally, we present some analytical results from the pertur-
bative solution of the FPE.

A. Instantons in d=1

Our starting point is the simplified one-dimensional
model dynamics(19) and (20) with a d-correlated, unbiased
Gaussian noise sourcejwstd. The deterministic dynamics de-
scribed by Eq.(19) with D=0 has a family of stable and
unstable periodic orbitswsstd±2pn andwusstd±2pn, respec-
tively, wheren is an arbitrary integer(cf. Fig. 1) [35]. Hence
deterministically the particle simply follows the direction of
the magnetic field with a certain time lag due to viscous
damping and no particle rotation can occur.

For any nonzero noise intensityD.0, there will be few
stochastic transitions between the deterministic trajectories
and their detailed form in the limitD→0 can be determined.
Comparing the associated rates for forward(increasingw by
2p) and backward(decreasingw by 2p) phase slips, we may
directly obtain the direction and magnitude of the noise-
driven transport by means of Eq.(24).

The analysis of this section builds on the path integral
representation for the transition probability of a Markovian
stochastic process[41–43]. The main complication is the
time dependenceof the potentialUsu ,w ,td. In notation and
general strategy, we follow the recent detailed analysis of
noise-driven escape over oscillating barriers[44]. We will
only determine the dominating exponential term in the tran-
sition probabilities. A more detailed analysis including also
the prefactor can be done along the lines of Ref.[44].

The transition probabilitypsw f ,tf uwi ,tid of the Markov
process described by Eq.(19) can be written in the form

psw f,tfuwi,tid =E
wstid=wi

wstfd=wf

Dws·dexpS−
Sfws·dg

D
D , s28d

where the action functionalSfws·dg is given by

Sfws·dg=
1

4
E

ti

tf

dtf]twstd − F(wstd,t)g2 s29d

with Fsw ,td defined in Eq.(20). The intuitive understanding
behind this representation is thatall possible trajectorieswstd
starting at initial timeti in wi and arriving at final timetf in
w f contribute to the transition probabilitypsw f ,tf uwi ,tid, each
with a weight related to the value of the actionS evaluated
along this trajectory. In the weak noise limitD→0, a
Laplace argument tells us that only those transitionsw*std
contribute significantly topsw f ,tf uwi ,tid for which the action
is minimal. All others have probabilities which are exponen-
tially small for D→0. In the weak noise limit, we are hence
able to determine the precise form of the(dominating) sto-
chastic transitions by solving a variational problem.

Under rather general conditions which are satisfied in our
particular setting, one can show that the transition rate be-
tween two stable orbits of the dynamics is determined by the
probability to reach from the starting stable orbit the unstable

orbit separating the two stable ones[44]. The subsequent
relaxation to the final stable orbit is then purely deterministic
and does not contribute to the transition probability
psw f ,tf uwi ,tid in the weak-noise limit.

We have hence to solve a variational problem for which
the initial and final points of the trajectory are not fixed.
Instead they are required to lie on two known functionswsstd
andwusstd, respectively. If we perform the optimization with
respect to these locations, we find

]tw
*stid = F„w*stid,ti… and ]tw

*stfd = F„w*stfd,tf….

s30d

Hence the optimal transition trajectoryw*std must beparallel
to the stable and unstable orbit at the contact points. This in
turn impliesti =−` and tf =`. The optimal transition trajec-
tory w*std hence starts out atti =−` at the stable orbit, moves
for a very long time near to it, and then changes in a rather
short time interval to the immediate neighborhood of the
unstable orbit(hence the name “instanton”), which it finally
reaches attf =` [44].

From the minimization of the actionSfws·dg with respect
to the functionswstd, we get the usual Euler-Lagrange equa-
tion for the minimizing instantonw*std, which for the action
given by Eq.(29) takes the form

]t
2w*std = ]tF„w

*std,t… + F„w*std,t…]wF„w*std,t…. s31d

Choosing for the time dependence ofHystd the example
specified by Eq.(2), we have solved Eq.(31) numerically as
a boundary value problem for a system of ordinary differen-
tial equations. The initial and final points were chosen
slightly off the stable and unstable orbit, respectively. If the
difference between the initial and final time,tf − ti, is larger
than several periods of the external driving, the solution
hardly depends on the precise value of these deviations from
the deterministic orbits. Having obtainedw*std, the corre-
sponding value of the actionS can be calculated from Eq.
(29).

In Fig. 2, the resulting instanton trajectoriesw*std corre-
sponding to backward and forward transitions are displayed.
They show the qualitative behavior discussed above. Note
that due to the presence of the constant field componentHx
and the second harmonic in the time dependence of the field
componentHy, the form of the most probable stochastic
crossings is rather different for forward and backward tran-
sitions. Accordingly, one would expect the corresponding
rates to be different from each other as well. In fact, the
corresponding values of the action areS=0.214 72 for the
forward instanton increasingw by 2p and S=0.309 69 for
the backward instanton decreasingw by 2p. Hence, at least
in the weak noise limit, forward transitions are more likely
(their action is smaller) than backward transitions, and for
the parameter set specified in the caption of Fig. 2 we find a
noise-driven rotation in the direction of increasingw. For
eitherHx=0 or Hy

s2d=0, the transition rates are equal to each
other and no noise-induced rotation can arise, cf. Eqs.(A19)
and (A20).
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Note that in Fig. 2 only the noise-induced transition from
the stable to the unstable orbit is shown. The complete tran-
sitions giving rise tow°w±2p comprise also the subse-
quent relaxations from the unstable orbit to the next stable
one. Consequently, the stochastic transitions show substan-
tially more structure than the rather poor caricatures used to
represent them in Fig. 1.

The mismatch between forward and backward transition
clearly demonstrates the operation of the ratchet effect in our
system. With the relevant transition probabilities being of
order expf−Os1d /Dg, the effect is, however, very weak and
in particular rapidly disappears withD→0.

B. Numerical solution of the FPE

For the numerical solution of the FPE describing the com-
plete two-dimensional dynamics for general values of the
parameters, it is convenient to expand the probability distri-
bution Psu ,w ,td in spherical harmonicsYl

msu ,wd (see, e.g.,
[40,45]),

Psu,w,td = o
l=0

`

o
m=−l

l

Al,mstdYl
msu,wd, s32d

with so far unknown time-dependent complex expansion co-
efficientsAl,mstd. SincePsu ,w ,td is real, we have

Al,−mstd = s− 1dmAl,m
* std, s33d

with the star denoting complex conjugation. Moreover, from
the normalization ofPsu ,w ,td, we find

A0,0std =
1

Î4p
. s34d

Plugging the ansatz(32) into the FPE(25), exploiting Eq.
(18), and using well-known properties of the spherical har-
monics, we find forl ù1 the following set of ordinary dif-
ferential equations(for similar cases, see, e.g.,[26,45]):

]tAl,mstd = −
Hx − iHystd

2
fh1sl − 1,m− 1dAl−1,m−1std

+ h2sl + 1,m+ 1dAl+1,m−1stdg +
Hx + iHystd

2

3fh1sl − 1,−m− 1dAl−1,m+1std

+ h2sl + 1,−m− 1dAl+1,m+1stdg

− Dlsl + 1dAl,mstd, s35d

where we have introduced the auxiliary factors

h1sl,md = sl + 2dÎsl + m+ 1dsl + m+ 2d
s2l + 1ds2l + 3d

, s36d

h2sl,md = sl − 1dÎsl − mdsl − m− 1d
s2l + 1ds2l − 1d

. s37d

Moreover, we find for the ensemble averages of the compo-
nents ofestd from Eq. (15),

kexstdl = ksinustdcoswstdl = −Î8p

3
RefA1,1stdg, s38d

keystdl = ksinustdsinwstdl =Î8p

3
ImfA1,1stdg, s39d

kezstdl = kcosustdl =Î4p

3
A1,0std, s40d

where Rez and Imz denote the real and imaginary part of the
complex numberz, respectively. For thez component of the
ensemble-averaged but still time-dependent magnetic torque
kNzl, this implies via Eq.(5)

FIG. 2. Numerically determined instanton trajectories(full
lines) describing the dominating weak-noise stochastic transitions
between stable(dashed lines) and unstable(dashed-dotted lines)
deterministic periodic orbits of the one-dimensional rotational dy-
namics of a ferrofluid particle described by Eqs.(19), (20), and(2).
The parameter values areHx=0.3, Hy

s1d=Hy
s2d=1, andd=0. For the

forward instanton, increasingw by 2p (b), the value of the action is
S=0.214 72; for the backward instanton, decreasingw by 2p (a), it
is S=0.309 69. Hence, a noise-induced average net rotation in the
“forward direction” results in the weak-noise limit, implying
kNzl.0 according to Eq.(24).
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kNzl = −Î8p

3
fHystdReA1,1std + HxImA1,1stdg. s41d

We have used two somewhat different procedures to ex-
plicitly calculate this torque. The first is more general, the
second is slightly more efficient for the special case of the
time dependence(2).

In the first method, we solve the system(35) of ordinary
differential equations for the expansion coefficientsAl,mstd
with l ø lmax by a standard routine. We have used values of
lmax up to 25 but found typically 5ø lmaxø10 to be suffi-
cient. Starting with some initial condition, we integrate the
equation until the periodic time dependence of the solution is
reached, which was usually the case after at most two peri-
ods of the external field. We then integrate further for one
period of the external driving, use the result forA1,1std in Eq.
(41), and calculate the remaining time average numerically.
Some care is needed here since this time-averaged torque
kNzl is typically two to three orders of magnitude smaller
than the typical time-dependent values ofNstd. In the time
average, we are hence subtracting numbers of equal size
from each other giving rise to well-known problems of nu-
merical accuracy. The advantage of this method is that it
works for any numerically sensible time dependence of the
magnetic fieldHystd in Eq. (1).

The second method builds on the fact that the long-time
solution of the FPE will be periodic in time with the period
2p of the external driving. It is hence useful to expand the
time-dependent expansion coefficientsAl,mstd in Eq. (32) into
Fourier modes with respect to time,

Al,mstd = o
s=−`

`

Ãl,m,se
ist. s42d

Instead of a system of ODE’s for the coefficientsAl,mstd, we
find now from the FPE(25) a system ofalgebraicequations

for the coefficients Ãl,m,s. Moreover, the time-averaged
torquekNzl can be readily expressed as a function of some of
these coefficients by means of Eq.(41). The advantages of
this method are that effectively we are directly dealing with
the stationary solution of the FPE, i.e., no initial conditions
are necessary and no equilibration process must be simu-
lated, and that the time average of the torque need not be
performed numerically. The disadvantage is that we have to
specify Hystd in order to find the algebraic system for the

Ãl,m,s and that for generalHystd this system will be rather
dense with respect to the indexs.

For the special time dependence(2), the situation is some-
what more gratifying sinceHystd involves only two Fourier
components. Hence there are only couplings between coeffi-

cients Ãl,m,s differing in their s value by at most 2 and the
result for kNzl is a linear combination of just five different

coefficientsÃl,m,s. This makes the numerical analysis rather
fast. Both methods must of course yield the same results
when applied to the sameHystd. We have frequently used
both to verify our numerical findings.

Using the numerical methods described above, we have
verified all the predictions derived in the Appendix on the
basis of symmetry arguments. In particular, we findkNzl=0
if Hx=0 in accordance with Eq.(A19) and kNzl=0 for
Hystd=cosstd, i.e., for Eq. (2) with Hy

s2d=0, or Hystd
=Hy

s1d cosstd+Hy
s2d coss3td in accordance with Eq.(A20).

In Fig. 3, we give some examples for current inversions in
our system. Panel(a) shows the averaged torquekNzl as a
function of the phase angled for a time-dependent magnetic
field Hystd of the form(2). The results are consistent with Eq.
(A22). Moreover, the values ofd at which the torque changes
sign are clearly different fromp /2 and 3p /2 indicated by

FIG. 3. (a): Averaged torquekNzl for the time modulation(2)
with Hx=0.3, Hy

s1d=Hy
s2d=1, andD=0.2 as a function of the phase

angled as obtained from the numerical solution of the FPE(full
line). Symbols are results from simulations of the Langevin equa-
tions (16) and (17) as reported in[33] with statistical errors being
smaller than the symbol size. The squares on the horizontal axis are
the points sp /2 ,0d and s3p /2 ,0d at which the current reversal
would occur in the reduced model(19). (b): Dependence ofkNzl on
the relative particle size for the same values of the parameters andd
fixed to d0.1.73, the first point of current inversion in the(a)
panel. The full line corresponds to a proportional change of the
magnetic and hydrodynamic radii(top sketch), the dashed line is for
a change of the hydrodynamic radius only(bottom sketch).
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the squares on the horizontal axis. Hence the numerical so-
lution verifies the statement of the Appendix that the current
reversal in the full two-dimensional model(16) and(17) oc-
curs at values ofd which are not fixed by any symmetry but
rather depend in a complicated manner on all the other pa-
rameters of the problem.

This is further corroborated by Fig. 3(b), depicting the
torque kNzl as a function of the relative particle size ford
=d0. There are two different ways to scale the particle size
that make sense in a ferrofluid. In the first, both the ferro-
magnetic core of the particle as well as the polymer coating
are scaled with the same factor. This gives rise to a propor-
tional change of the magnetic momentm and the particle
volume V. In the dimensionless units adopted, this implies
unchanged fieldsHx and Hystd and a noise intensityD res-
caled according to Eq.(14). In the other case, only the poly-
mer coating is scaled and therefore only the hydrodynamic
radius of the particle changes. Hence the magnetic moment
remains the same, whereas the volumeV changes. Corre-
spondingly, the dimensionless fieldsHx and Hystd and the
noise intensityD change by the same factor. In view of Eq.
(25), this can be absorbed in a rescaled time which in turn is
equivalent to a changed frequencyv of the external field. As
anticipated in the Appendix, we find current inversions in
both cases.

C. Effective field approximation

It is very helpful to have some analytical expression for
the average torquekNzl since the dependences on the various
parameters of the system can then be identified much more
directly. In the present and subsequent subsections, we dis-
cuss two approximate methods to calculate the time-
averaged torque in our system.

The first one employs the so-called effective field method
to approximately solve the FPE. It has been a standard tool
in the theory of ferrofluids for many years[40]. Two main
ingredients are necessary. First, let us recall that the station-
ary (equilibrium) solution of the FPE(25) for a time-
independenthomogeneous magnetic fieldH is of the form
[32]

Ps0dsed =
H

4pD sinhsH/Dd
expSe ·H

D
D , s43d

whereH denotes the modulus of the magnetic field,H= uH u.
Averages with this distribution are easily calculated. In par-
ticular, we find the well-known result

kels0d = LsH/DdH/H s44d

with the Langevin function

Lsxd = cothsxd − 1/x. s45d

Second, for general, time-dependent fieldsHstd, the FPE(25)
can be used to derive theexactequation

]tkel + 2Dkel = − ke3 se3 Hdl s46d

for the time evolution of the averagekel. Note that this equa-
tion for the first moment ofPse,td has the usual flaw of

being not closed but involving higher moments of the prob-
ability distribution.

The central idea of the effective field approximation is
now to assume that the solutionP(e,t ;Hstd) of the FPE for a
general time-dependent magnetic fieldHstd can be written as
equilibrium distribution for somea priori unknowneffective
field Hestd, i.e., P(e,t ;Hstd)=Ps0d(e;Hestd). The average on
the right-hand side of Eq.(46) can then be performed and
this equation gives rise to an evolution equation for the ef-
fective fieldHe of the form [40]

]tSLsHe/Dd
He

HeD = − 2D
LsHe/Dd

He
sHe − Hd

−
He − 3DLsHe/Dd

He
3 fHe 3 sHe 3 Hdg.

s47d

GivenHstd, this is a closed equation for the time evolution of
Hestd. Having obtainedHestd, we get the desired approxi-
mate result forkel from Eq. (44),

kele = LsHe/DdHe/He. s48d

The solution of the partial differential equation(25) is hence
replaced by the solution of the set of three coupled ordinary
differential equations(47). There are other, equivalent forms
of Eq. (47), see, e.g.,[46]. Exploiting Eq. (47), it is also
possible to derive the following equivalent closed equation
for kel [10]:

]tkele = − S1 −
Dkele

He
DsHe − Hd

+ S1 − 3D
kele

He
DS kele

kele
· sHe − HdD kele

kele
, s49d

wherekele denotes the modulus ofkele and the effective field
He is to be expressed as a function ofkele by the inverse of
Eq. (48). Note the difference betweenkele= ukeleu and kueu le

;1.
In general, Eq.(47) can only be solved numerically. In

Fig. 4, we give a comparison between results obtained in this
way for the time dependence(2) and the corresponding out-
come of the numerical solution of the FPE. It is clearly seen
that the effective field approximation yields rather accurate
results for the time-dependent orientation of the particle and,
equivalently, for the time-dependent magnetization of the
ferrofluid. On the other hand, the results for the time-
averaged torquekNzl differ from the numerically exact val-
ues by a factor between 2 and 3. The reason for this discrep-
ancy lies in the fact thatkNzl is typically two to three orders
of magnitude smaller than typical values of the time-
dependent torquekNzl. In calculating the time average of the
torque, we hence subtract quantities of comparable order and
so amplify the inaccuracies of the effective field approxima-
tion from a few percent to a few hundred percent.

In order to obtain an analytical expression forkNzl within
the framework of the effective field approximation, it is use-
ful to consider the case of small values ofH /D in which the
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Langevin functionLsxd or equivalently its inverse may be
approximated by the first terms of the respective power se-
ries expansion. Using the lowest-order approximationLsxd
.x/3, we haveHe.3Dkele and from Eq.(49) it then fol-
lows that

]tkele + 2Dkele = 2H/3. s50d

For larget, we therefore find

kexle → 2Hx

3D
s51d

keyle → 2Hy
s1d

3

2D cost + sin t

4D2 + 1

+
Hy

s2d

3

D sins2t + dd − coss2t + dd
D2 + 1

. s52d

Hencekexle tends asymptotically to a constant whereaskeyle

contains only oscillating parts. From Eq.(5) we may thus
infer that the torquekNzl harmonically oscillates and there-
fore its time average vanishes,kNzl=0.

To get a nontrivial result forkNzl, we have to push the
expansion of the Langevin function further. In other words,
the nonlinearity of the magnetization curve is essential to get
a nonzero average torque. If the next term in the expansion is
included,Lsxd.x/3−x3/45, we already obtain an approxi-
mation forLsxd that is accurate to within one percent for the
experimentally relevant values ofx which are generally less
than 1. Calculating the corrections to Eqs.(51) and (52) in-
duced by these higher-order terms, we finally find after some
algebra the following result for the average torque:

kNzle =
HxsHy

s1dd2Hy
s2d

30

cosd + 2D sind

s1 + D2ds1 + 4D2d2 . s53d

This result is in accordance with our symmetry consider-
ations of the Appendix since it shows that both a nonzero
field component in thex direction and an even higher har-
monic in the time dependence ofHystd are essential for a
nonzero torque to occur; cf. Eqs.(A19) and (A20).

D. Perturbative solution of the FPE

In the last subsection, we saw that the effective field ap-
proximation alone is not sufficient to get an explicit analyti-
cal expression for the time-averaged torquekNzl in our sys-
tem. Additionally, we had to expand the Langevin function in
its argumentH /D, which amounts to a small field or equiva-
lently large noise expansion. Moreover, the approximate re-
sult for the torque was typically at variance with the numeri-
cally exact result by a factor of about 2.

It is therefore tempting to avoid the effective field ap-
proximation altogether and to use a perturbation expansion
in the ratio of magnetic field strength and noise intensity
right in the Fokker-Planck equation(25). This is conve-
niently accomplished by making the formal substitution
H °eH in Eq. (25) and by expanding the solution of the
FPE in a power series ine,

Psu,w,td = Ps0dsu,w,td + ePs1dsu,w,td + e2Ps2dsu,w,td

+ e3Ps3dsu,w,td + ¯ . s54d

At the end of the calculation,e is set equal to 1. It will turn
out that we have to use the expansion up to third order ine to
get a nonzero result for the average torquekNzl. Since the
potentialUsu ,w ,td is of ordere, we find in zeroth order

lim
t→`

Ps0dsu,w,td =
1

4p
, s55d

describing the stationary distribution of pure rotational diffu-
sion. Using the expansion(54) in Eq. (25), we get a system

FIG. 4. Horizontal components of the average orientationkel of
the particle as a function of time for one period of the external
magnetic field. The lines show the results for thex andy component
of kel (full and dashed line, respectively) from the numerical solu-
tion of the Fokker-Planck equation(25) with a time dependence of
the external field as given in Eq.(2). The symbols are the corre-
sponding results from the effective field theory. The parameter val-
ues areHx=0.3, Hy

s1d=Hy
s2d=1, d=0, as well asD=1 (a) and D

=0.2 (b). The corresponding values for the time-averaged torque
kNzl are also displayed.
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of linear inhomogeneous partial differential equations for the
variousPsndsu ,w ,td that can be solved in principle one after
the other.

This procedure is, however, rather cumbersome. It can be
somewhat simplified by using the exact equation(46), the
right-hand side of which is of ordere. Hence to findkel from
this equation to orderen, it is sufficient to calculate the av-
erage on the right-hand side with an expression forPsu ,w ,td
accurate to orderesn−1d. In our case, the lowest-order nonzero
result for kNzl is Ose4d, hence we needkel to ordere3 [cf.
Eqs.(5) and (15)], and therefore the second-order result for
Psu ,w ,td would be sufficient.

It is, however, more convenient to use again the expan-
sion (32) of Psu ,w ,td in terms of spherical harmonics. The
perturbation ansatz(54) then translates into an expansion of
the coefficientsAl,mstd in powers ofe,

Al,mstd = Al,m
s0dstd + eAl,m

s1dstd + e2Al,m
s2dstd + e3Al,m

s3dstd + ¯ .

s56d

The ODE’s(35) couple only coefficientsAl,mstd which differ
in both l and m by 1. Moreover, we know from Eq.(34)
A0,0std=1/Î4p=Os1d and henceAl,mstd=Oseld. As shown by
Eq. (41), the torque is determined byA1,1std alone. We hence
need an expression forA1,1std correct up to ordere3.

To this end, we determine from Eqs.(35) and(34) first the
Osed terms ofAl,mstd. With these we calculate the necessary
A2,mstd to ordere2, which in turn are used to determine the
Ose3d terms inA1,1std. The procedure is sketched in Fig. 5.
Note that it is sufficient to calculate coefficientsAl,mstd with
mù0 because of the symmetry property(33).

In this way, we first get from theOsed equations

s]t + 2DdA1,1
s1dstd = −

1
Î6p

fHx − iHystdg,

s]t + 2DdA1,0
s1dstd = 0.

Since we are interested in the asymptotic solution valid for
large t, we can putA1,0

s1dstd;0. Next we use theOse2d equa-
tions

s]t + 6DdA2,2
s2dstd = −

3
Î5

fHx − iHystdgA1,1
s1dstd,

s]t + 6DdA2,0
s2dstd =Î6

5
hHxRefA1,1

s1dstdg − HystdImfA1,1
s1dstdgj

to determine the relevantA2,mstd to the desired order. Finally,
we obtainA1,1

s3dstd from

s]t + 2DdA1,1
s3dstd = −

1
Î30

fHx − iHystdgA2,0
s2dstd

+
1
Î5

fHx + iHystdgA2,2
s2dstd. s57d

The explicit expressions for the various coefficientsAl,m
sndstd

are rather long, therefore the above system of equations is
conveniently solved with the help of a computer algebra.
Focusing on the specific time-dependent fieldHystd from Eq.
(2), exploiting Eq. (41), and performing the time average
over one period of the external driving, we finally get the
following lowest-order perturbative result for the average
torque:

kNzlp

=
HxsHy

s1dd2Hy
s2d

40

9s1 + 29D2dcosd + 2Ds1 + 99D2dsind

s1 + D2ds1 + 4D2ds1 + 9D2ds1 + 36D2d
.

s58d

The dependences on the parametersHx, Hy
s1d, and Hy

s2d are
identical to those of the effective field result(53), whereas
the dependence on the noise strengthD is more complicated.
One readily verifies that the symmetry properties
(A11)–(A14) are satisfied by Eq.(58). In particular, these
symmetries imply that the torquekNzl must be an odd func-
tion of both the static field and the oscillating field. More-
over, symmetry reasons also imply[15] that in linear order of
the oscillating field, one cannot expect a finitekNzl. Rather, a
coupling of several modes of the oscillating field(harmonic
mixing) is required; see also[36,38,39]. All together, these
arguments explain that the first nontrivial contribution must
be(at least) of fourth order in the magnetic field strength and
that within a linear-response theory, one will always find
kNzl=0 [47]. On the other hand, this of course does not im-
ply that the nonlinear magnetization curve alone would “ex-
plain” the effect. To understand the microscopic origin of the
angular momentum transfer from the external field to the
particle, one really has to go to the description in terms of the
FPE as discussed above; see also[48,49].

In Fig. 6(a), we compare the two approximate expressions
(53) and (58) for the averaged torque with the results ob-
tained from the numerical solution of the FPE. Displayed is
the dependence of the torque on the noise intensityD, which

FIG. 5. Diagrammatic sketch of the perturbative determination
of the expansion coefficientsAl,m in Eq. (32). As shown by the
arrows, onlyAl,m differing in both l andm by 1 are coupled by Eq.
(35). In a first step, we start fromA0,0 as given in Eq.(34) and
obtain theOsed terms ofA1,±1 (dashed arrows). Next A2,0 andA2,±2

are determined to ordere2 (dotted arrows). Finally, these are used to
get theOse3d contributions toA1,1 (full arrows) from which the
torque can be extracted to ordere4 using Eq.(41). All other Al,m are
irrelevant forkNzl at this order ine. Note also that the left half of
the diagram is redundant due to the symmetry property(33).
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is different in the two approximations. In order to keep the
expansion parametere,H /D roughly constant when chang-
ing D, we have scaled the magnetic field strengths withD.
As can be seen, up to values ofe.0.5 the accuracy of Eq.
(58) is rather good, whereas Eq.(53) describes the torque
only qualitatively.

Proportional change of magnetic field strength and noise
intensity is equivalent to a change of the frequencyv of the
external field in Eq.(1). Figure 6 hence also demonstrates
the resonancelike character of the investigated ratchet effect.
kNzl is largest when the deterministic time scale of the exter-
nal driving matches an intrinsic stochastic time scale of the

system related to the Brownian relaxation timetB defined in
Eq. (13).

The two approximate expressions for the torque(53) and
(58) differ in their dependence on the phase angled. When
using Eq.(58) to fit the experimental results reported in[10],
we find for the Brownian relaxation time the valuetB.6.4
310−4 s instead oftB.1.8310−3 s, as obtained on the basis
of Eq. (53) in [10]. The experiments were done with a fer-
rofluid with h.0.1 Pas. Using Eq.(13), the two results for
tB hence translate in fits for the particle diameter ofd
.26 nm andd.36 nm, respectively. These values exceed
the typical diameter of roughly 10 nm by factors between 2
and 3, respectively. The main reason for this discrepancy is
probably the polydispersedness of real ferrofluids, having a
particle size distribution with a long tail(see, e.g.,[3], Chap.
2). Hence, a whole spectrum of relaxation times is necessary
to accurately describe the dynamics of the magnetization.
However, this issue is not at the focus of the present inves-
tigation. We also note that the transferred torque typically
increases with the particle size and hence the described
ratchet effect is likely to be dominated by the larger grains in
the ferrofluid.

A similar approximate calculation of the average torque is
also possible for the time dependence(3). The result of the
effective field approximation is

kNzle =
2

45

HxHy
s0dsHy

s1dd2

Ds4D2 + 1d2 , s59d

whereas we find from the perturbative solution of the FPE

kNzlp =
HxHy

s0dsHy
s1dd2

30

44D2 + 3

Ds4D2 + 1d2s36D2 + 1d
. s60d

The two expressions only differ significantly from each other
if the noise intensityD is very small. In Fig. 6(b), they are
compared with the result from the numerical solution of the
FPE(25). For e.0.5, the accuracy is again seen to be rather
satisfactory.

IV. CONCLUSIONS

In the present paper, we have theoretically investigated
the rotational Brownian motion of colloidal ferromagnetic
particles in an oscillating magnetic field. The central tool was
the Fokker-Planck equation for the probability densityPse,td
of the particle orientatione at time t. Solving this equation
either numerically or approximately by using the effective
field method as well as a perturbative expansion, we have
determined the time-averaged torquekNzl exerted by the
magnetic field on the particles. The main anda priori quite
unexpected qualitative finding is the fact that a purely oscil-
lating magnetic field without a net rotating component can
transfer angular momentum to a ferromagnetic grain. As a
basic mechanism behind this transfer, a ratchet effect was
identified by which the magnetic field rectifies the thermal
fluctuations of the particle orientation that arise due to ran-
dom collisions with the molecules of the carrier liquid. The
detailed operation of this ratchet effect in the present system
was discussed on the basis of a weak-noise analysis of the

FIG. 6. (a): Time-averaged torquekNzl as a function of the noise
intensityD for the time dependence(2) of the magnetic field. The
parameter values areHx=0.5D, Hy

s1d=0.5D, Hy
s2d=0.15D, andd=0.

The scaling of the magnetic field strength withD ensures that the
perturbation parametere stays constant. Shown are the perturbative
results(58) (circles) and (53) (squares) together with the numeri-
cally exact result(full line). (b): Same for the time dependence(3)
of the oscillating field withHy

s0d=Hy
s1d=0.5D. The approximate re-

sults are given by Eqs.(60) and (59), respectively.
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Fokker-Planck equation for a closely related one-
dimensional system in Sec. III A.

Via the viscous coupling to the carrier liquid, the torque
on the particle is transmitted to the liquid. The combined
microscopictorques of the huge number of individual nano-
particles then yield amacroscopicrotation of the ferrofluid
as a whole, as observed experimentally in[10]. In the ab-
sence of thermal noise, no average torque can arise, i.e.,
thermal fluctuations are an indispensable requirement for the
rotation of the individual grains and hence of the ferrofluid
as a whole to occur.

The results from the Fokker-Planck equation are com-
pletely consistent with rather general symmetry consider-
ations detailed in the Appendix. Moreover, they agree very
well with simulations of the corresponding Langevin equa-
tions as given in[33] and quantitatively describe the experi-
mental findings reported in[10].

We remark that our present system puts forward a new
type of thermal ratchet device which does not fit into any
previously known specific class of ratchet systems. Adopting
the classification scheme from[15], our present system has
some similarity with so-called asymmetrically tilting ratchets
as well as with so-called traveling potential ratchets, how-
ever in the generalized sense involving two counterpropagat-
ing traveling potentials. Yet there remain significant differ-
ences with both these classes. In particular, we note that we
are not dealing here with a periodic, asymmetric so-called
“ratchet” potential. Rather, at any fixed instance of time, the
relevant potential is perfectly symmetric about the instanta-
neous direction of the magnetic field and hence no preferen-
tial direction of rotation seems to exit. It is only via the time
evolution that a symmetry breaking arises, which is some-
times called a dynamical symmetry breaking.

In summary, we hope that the present investigation has
demonstrated that ferrofluids are very suitable systems to
study various aspects of thermal ratchet behavior, and that it
may stimulate further theoretical, numerical, and experimen-
tal work in this direction.
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APPENDIX: SYMMETRIES

Symmetry considerations admit conclusions from the
equations of motion without actually solving them. For the
investigation of ratchet systems, studies of symmetry turned

out to be valuable since directed transport generically occurs
if it is not forbidden by symmetries, a statement referred to
as Curie’s principle[15,39,50–59]. Here we specifically ad-
dress the question of which transformations of the magnetic-
field componentsHx andHystd in Eq. (1) leave the averagez
component of the torque invariant,kNzl° kNzl, and which
lead to its inversion,kNzl°−kNzl.

From Eq.(23), one readily concludes that the following
transformations ofw and u imply the indicated transforma-
tion behavior ofkNzl:

wstd ° wstd + Dw and ustd ° ustd

implies kNzl ° kNzl, sA1d

wstd ° − wstd + Dw and ustd ° ustd

implies kNzl ° − kNzl, sA2d

wstd ° wstd and ustd ° − ustd + p

implies kNzl ° kNzl, sA3d

wstd ° wst + Dtd and ustd ° ust + Dtd

implies kNzl ° kNzl, sA4d

wstd ° ws− td and ustd ° us− td

implies kNzl ° − kNzl, sA5d

whereDw andDt are arbitrary. Observing that the values of
both the original and the transformedustd are restricted to the
interval f0,pg and that the entire interval will indeed be
sampled by some realization of the dynamics(16) and (17),
it follows that no transformations of the formustd°ustd
+Du with DuÞ0 or ustd°−ustd+Du with DuÞp are pos-
sible. Finally, in order to concludekNzl°−kNzl in Eq. (A5)
one has to exploit that in Eq.(23) the limit stf − tid→` is not
necessarily tantamount totf →` with ti kept fixed, but can
also be realized by lettingti →−` with tf kept fixed.

Closer inspection of Eq.(23) reveals that any further sym-
metry transformation that leaveskNzl invariant or changes its
sign can be composed of the “elementary” transformations
(A1)–(A5).

Next we ask ourselves what equations of motion govern
the transformedustd, wstd defined by Eqs.(A1)–(A5). In the
simplest case, Eq.(A1) one readily concludes from Eqs.(16)
and (17) that the transformedustd, wstd satisfy the same
equations of motion(16) and (17) but with a transformed
potentialUsu ,w ,td°Usu ,w−Dw ,td+DU with arbitraryDU.
Turning to the second transformation(A2), one finds simi-
larly that the transformedustd andwstd satisfy the equations
of motion(16) and(17) but now with a transformed potential
Usu ,w ,td°Usu ,−w+D ,td+DU and in addition with a trans-
formed noisejwstd°−jwstd. Since the statistical properties
of the two noises −jwstd and jwstd are equal, i.e., they are
identical stochastic processes, the same follows for the cor-
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responding processes given by Eqs.(16) and (17). In other
words, to each realization of the originalustd, wstd corre-
sponds a realization of the transformedustd, wstd occurring
with the same probability, and vice versa. Since the average
torque in Eq.(23) is independent of the specific realization
ustd, wstd with probability 1(i.e., up to a set of realizations of
measure zero), we can conclude that in this casekNzl°
−kNzl. Similar considerations can be done for the cases given
by Eqs.(A3) and (A4). The last transformation(A5) is spe-
cial insofar as a mapping between the dynamics of the origi-
nal and the transformed variables is possible only if the term
D cotustd in Eq. (16) identically vanishes, i.e., ifustd
;p /2. We therefore find the following implications of trans-
formations in the potentialUsu ,w ,td:

Usu,w,td ° Usu,w − Dw,td + DU

implies kNzl ° kNzl, sA6d

Usu,w,td ° Usu,− w + Dw,td + DU

implies kNzl ° − kNzl, sA7d

Usu,w,td ° Us− u + p,w,td + DU

implies kNzl ° kNzl, sA8d

Usu,w,td ° Usu,w,t + Dtd + DU

implies kNzl ° kNzl, sA9d

Usu,w,td ° − Usu,w,− td + DU

implies kNzl ° − kNzl fprovidedustd ; p/2g,

sA10d

whereDU is an arbitrary constant.
Finally, we have to determine all those transformations of

the magnetic field componentsHx andHystd in Eq. (1) which
correspond via Eq.(18) to transformations of the potential
Usu ,w ,td given in Eqs.(A6)–(A10). Since changes inHx and
Hystd always imply changes in the potentialU that depend on
u and w, we can only induce transformations withDU=0.
The only nontrivial way to realize Eq. (A6) is
(Hx,Hystd)° (−Hx,−Hystd) combined with Dw=s2n+1dp
with an arbitrary integern. Similarly, Eqs.(A7) and (A9)
are equivalent to (Hx,Hystd)° (Hx,−Hystd) and
(Hx,Hystd)° (Hx,Hyst+Dtd). On the other hand, Eq.(A8)
only admits the trivial realization(Hx,Hystd)° (Hx,Hystd).
Finally, Eq. (A10) can be implemented by(Hx,Hystd)
° (−Hx,−Hys−td). In summary, we find that

„Hx,Hystd… ° „− Hx,− Hystd…

implies kNzl ° kNzl, sA11d

„Hx,Hystd… ° „Hx,− Hystd…

implies kNzl ° − kNzl, sA12d

„Hx,Hystd… ° „Hx,Hystd…

implies kNzl ° kNzl, sA13d

„Hx,Hystd… ° „Hx,Hyst + Dtd…

implies kNzl ° kNzl, sA14d

„Hx,Hystd… ° „− Hx,− Hys− td…

implies kNzl ° − kNzl fprovidedustd ; p/2g,

sA15d

where the trivial result(A13) is listed only for the sake of
completeness.

While Eqs.(A11)–(A14) are intuitively more or less ob-
vious, Eq.(A15) [respectively Eq.(A10)] is not. The addi-
tional conditionustd;p /2 shows that the constrained dy-
namics(19) and(20) has an extra symmetry which is lost if
the full two-dimensional dynamics(16) and (17) is consid-
ered.

We note that Eqs.(A11)–(A15) could also have been ob-
tained in a more direct way. Our somewhat more involved
line of reasoning has the advantage that we can exclude that
there are any transformations other than Eqs.(A11)–(A15)
and combinations thereof which would leavekNzl invariant
or change its sign.

In order to see that the above considerations already allow
some nontrivial conclusions about the possibility of angular
momentum transfer from the oscillating magnetic field to the
particle, we combine Eqs.(A11) and (A12), Eqs.(A12) and
(A14), and Eqs.(A11) and (A15) to obtain

„Hx,Hystd… ° „− Hx,Hystd…

implies kNzl ° − kNzl, sA16d

„Hx,Hystd… ° „Hx,− Hyst + Dtd…

implies kNzl ° − kNzl, sA17d

„Hx,Hystd… ° „Hx,Hys− td…

implies kNzl ° − kNzl, fprovidedustd ; p/2g,

sA18d

respectively. From Eq.(A16), we immediately can infer that
the constant field in thex direction is indispensable for a
nonzero average torque,

Hx = 0 ⇒ kNzl = 0. sA19d

Similarly, Eq. (A17) implies that for a time dependence
obeyingHystd=−Hyst+Dtd for someDt, the average torque
has to vanish as well,
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Hystd = − Hyst + Dtd ⇒ kNzl = 0. sA20d

Choosing in particularDt=p, i.e., half the period of the ex-
ternal driving, we realize that an oscillating fieldHystd with a
Fourier expansion containing only odd multiples of the basic
frequency

Hystd = o
n=1,3,5,. . .

Hy
snd cossnt + dnd sA21d

will result in a zero average torquekNzl, irrespective of the
particular choices of the amplitudesHy

snd and phasesdn.
Equations(A19) and(A21) motivate our choices(2) and(3)
as simple time dependences of the oscillating field resulting
in a nonzero average torquekNzl.

For the special time dependence(2) we find from Eq.
(A17)

kNzlsd + pd = − kNzlsdd. sA22d

As a consequence, upon continuously varyingd we can infer
that there must exist ad0[ f0,pd such thatkNzl=0 for d
=d0 or d=d0+p. It is important to note that this case of zero
averaged torque is qualitatively different from the situations
described by Eqs.(A19) and(A20) since it is due to thefine
tuning of a parameterrather than resulting from an underly-
ing symmetry. Consequently, upon variation ofd aroundd0,
the average torquekNzl changes sign, which is a realization
of a so-calledcurrent inversion[15]. Furthermore, by fixing
d=d0, a sign change ofkNzl will generically also occur upon
variation of any other parameter of the system.

We finally note that in the case where the dynamics is
constrained to thex-y axis, the additional symmetry(A18)
implies thatd0=p /2. Consequently, thed values where the
torque changes sign are fixed by the additional symmetry and
do not depend on the other parameters of the problem. Hence
no current reversal upon changes in these parameters is pos-
sible.
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