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Thermal ratchet effects in ferrofluids
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Rotational Brownian motion of colloidal magnetic particles in ferrofluids under the influence of an oscillat-
ing external magnetic field is investigated. It is shown that for a suitable time dependence of the magnetic field,
a noise-induced rotation of the ferromagnetic particles due to rectification of thermal fluctuations takes place.
Via viscous coupling, the associated angular momentum is transferred from the magnetic nanoparticles to the
carrier liquid and can then be measured as macroscopic torque on the fluid sample. A thorough theoretical
analysis of the effect in terms of symmetry considerations, analytical approximations, and numerical solutions
is given which is in accordance with recent experimental findings.
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[. INTRODUCTION ian motion of ferrofluid particles and their relaxation dynam-
. ) ) ) ) . ics in an external magnetic field. We will show that a suitably
Rotat|0na| Brownian motion of CO”O|da| partIC|eS IS a designed time_dependent externa| magnetic ﬁﬂiﬂhout a
classical subject in statistical physi¢s]. Contrary to its net rotating componentay rectify the fluctuations of the
translational cousin, i.e., “usual” Brownian motion, it does particle orientation and set upnmise-inducedotation of the
not result in changes of the particle location and is hence nderromagnetic grains. We will hence investigate how angular
as easily demonstrated in experiments. If, however, the susnomentum can be transferred from ascillating magnetic
pended particles carry an electric or magnetic moment, theifield to a ferrofluidat rest The effect was predicted theoreti-
orientation couples to external fields and the electric or mageally and demonstrated experimentally in a previous short
netic relaxation properties of the suspension are direct corcommunication{10]. In the present paper, we provide many
sequences of the rotational diffusion of the constituting parimore details on the theoretical description and we add sev-
ticles. In particular, in the well developed theory of eral new results. ) )
ferrofluids, the importance of rotational Brownian motion for ~ The extraction of directed motion from random fluctua-

ing hydrodynamic and magnetic properties was recognize§hanics with a long and interesting histq#yi—14. Although
aI?eaéI/y a Igng time agf®]. g prop g excluded by the second law of thermodynamics for equilib-

Ferrofluids are suspensions of nanosize ferromagnetigum systems, re_c'gification of fluctuations possible in_ Sys-
tems driven sufficiently far away from thermal equilibrium

grains in carrier liquids such as water or oil. They combine . .
. . : . . [15,16. The problem has gained renewed attention under the
the hydrodynamic properties of Newtonian fluids with thetrademarks of “thermal ratchets” and “Brownian motors” due

magnetic behavpr Of. superparamagr[% Dye to the vis- to its possible relevance for biological transppk?,18 and
cosity of the carrier liquid, there is a coupling between thethe prospects of nanotechnolof9—21
rotation of the magnetic grains and the local vorticity of the Ferrofluids are ideal systems .to investigate such

hydrodynamic flow. This coupling can, e.g., be used to Spiry, .y ation-driven transport phenomena and also to demon-

up ferromagnetic drops floating in a nonmagnetic fluid of thestrate them experimental[L0]: As already discussed above
same density with the help ofratating magnetic field4,5]. :

c | onal ferrofluid p the rotational dynamics of the ferromagnetic grains is
omplementary, a rotational ferrofiuid flow exposed to Astrongly influenced by thermal fluctuations. Appropriate

stat_ic magnetic field exhibits an enhan_ced shegr visc{ﬁity . time-dependent potentials can be easily designed with the
Various related effects such as “negative” rotational viscosit

5 ical 8 d lous| 3he|p of external magnetic fields. Finally, directed rotational
[7], magneto-vortical resonand@], an anomalously en- transport in ferrofluids should manifest itself as systematic
hanced ac response due to coherent particle rotgiomave

. ) rotation of the ferromagnetic nanoparticles. This in turn can
been investigated. They rely on the exchange of angular MQ5e easily detected from the resultingacroscopidorque on

mentum between rotating particles and an oscillating MaY%he carrier liquid. Various somewhat related but still quite

netic field. In these cases, the imposed nonfiere vorticity  itterent phenomena in rotational dynamical systems are
of the ferrofluid is crucial for breaking the symmetry be- treated in[22—2§

tween clockwise and counterclockwise particle rotation.
In the present paper, we investigate a much more indirec&O
and subtle aspect of the interplay between rotational Brown

Throughout the paper, we will use two basic approxima-
ns which simplify the analysis considerably and which are
rather common for ferrofluid$2,3]. The first is to neglect

Neel relaxation of the magnetization, i.e., the rotation of the
magnetization vector with respect to the ferromagnetic par-
*Email address: engel@theorie.physik.uni-oldenburg.de ticle. This is justified for particle sizes that are not too small
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and amounts to assuming that the magnetic moments araagnetic moment. In the following, we briefly sketch the
firmly attached to the geometry of the particles. Any reori-derivation of the stochastic equation of motion #m our
entation of the magnetic moment hence requires a rotation qfarticular settingsimilar derivations may be found, e.g., in
the particle as a whole. The second approximation is to nef28,29). We start with

glect dipole-dipole interactions between the particles. Al-

though these interactions may be important in concentrated de=Q xe, (4)

ferrofluids, they are negligible in sufficiently diluted ones. whereQ(t) denotes the instantaneous angular velocity of the

The ratchet mechanism of central interest in the present irbarticle. Changes of) are due to torques on the particle.
vestigation can operate without any particle-particle i”teraCDenoting byV the angular part of the three-dimensional Na-
tion. We will hence assume that our ferrofluids are suffi-p o operator, the magnetic torque

ciently diluted and use aingle-particlemodel. For a more

quantitative assessment of the role of the dipole-dipole inter- Nmag=—€X VU=puexH (5)
actions, see, e.g[27] and references therein.

The paper is organized as follows. In Sec. I, we introduc
the general framework for describing the rotational Brown- U(et) = — pe - H(t) (6)
ian motion of a single suspended ferromagnetic particle in an
external magnetic field. In Sec. llI, the central Fokker-Planckof a magnetic dipole in an external fie[@0]. Further, the
equation describing our system is analyzed. Besides an indscosity » of the carrier liquid gives rise to a viscous torque
vestigation of the weak noise limit, we describe the numeri{31]
cal solution of the Fokker-Planck equation and compare the
results with two different approximate treatments yielding Nyise= = 67VE2. ()

analytical expressions for the transferred angular momentumndditionally, the interaction between the rotating particle and

Section IV contains some conclusions. The Appendix gives @ne surrounding liquid also causes thermal fluctuations which
detailed account of the symmetries characteristic of our sysgenerate a stochastic torg[29],

tem and discusses how these symmetries influence the pos- ’
sibility for a ratchet mechanism to operate. Nstoch= V127VKgTE(1). (8

Jerives from the potential energy

Here, &(t) is a vector of independend-correlated Gaussian
Il. GENERAL FRAMEWORK noise sources of zero mean, the noise intensity is related to
the temperatur@ and the dissipatiofi7) of the carrier liquid
We consider the rotational motion of a spherical particlepy the fluctuation-dissipation relation, arigs stands for
of volumeV and magnetic moment immersed in a liquid  Bojtzmann’s constant. Denoting the moment of inertia of the

dependent, spatially homogeneous magnetic fleldThe

field is composed of a constant pat} parallel to thex axis 15,2 + 67V = ue X H + V129VKksTE(1). 9
and an oscillatory parti,(t) with period 27/ along they

direction Equations(4) and(9) form a closed set of equations for the

description of the rotational motion of the particle. Using
H=(H,H,(1),0), Hyt+2mw)=H/1). (1) experimentally relevant parameter valydensity of the par-
ticle p=4x 10° kg/m?, particle radiusR=10 nm, viscosity
10%-102 Pas, time scal€)/dQ =10"s), we find that
first term on the left-hand side of E®) is five to seven
Sbrders of magnitude smaller than the second one. We may
hence safely neglect inertial effe¢® and find forQ in the

Different choices for the time dependenceHyfare of inter- —
est. In the present paper, we will mainly discuss two case%e
which are each representative for a whole class. Our fir
standard choice is

Hy(t) = HPcogwt) + HPsin(2wt + 5), (2)  overdamped limit
where the amplitudebli,l’z) and the pha_sé are control pa- Q=L exH+ v’%g(t), (10)
rameters. The main features of this time dependence are a 67V

zero average over one period and the presence of a highe
harmonic of the basic frequency. As a second example, w
will also discuss the form

r . : . :
here we have introducdd=kgT/67V. Using this result in
g. (4) yields a closed equation for the time evolutionepf

Hy(®) = H + H{ cogwt), &) se= GLV(e X H) X e+ V2DE(t) X e. (11)
n

for which the average over one period is different from zero.

It arises naturally if the constant field component is not perdt is convenient to introduce dimensionless units. To this end,

pendicular to the time-dependent one. In any case, the magve measure time in units of the inverse of the external driv-

netic field is of a pure oscillatory character, i.e.dides not ing frequencyt—t/w, use GVw/ u as the unit for the mag-

contain a net rotating component netic field strengthH — (6 7Vw/ 1) H, and rescale the noise
The orientation of the particle at tinteés described by the intensity according td+— wD. The evolution equation for

unit vectore(t) = u(t)/ u, whereu denotes the modulus of the the orientatiore then reads
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se=(exH)Xe+ v’%g(t) X e. (12
Introducing the Brownian relaxation tini82]
3nV
=—— 13
B keT (13

we note that the rescaled, dimensionless noise intefsity

occurring in Eq(12) just gives the ratio between the relevant

deterministic and stochastic time scales in the system,

_keT 1
N 67Vw - 270w

(14)
To proceed, we parametrize the orientateaf the mag-
netic particle by two angleg and ¢ according to
e=(sin #cosg,sin sin p,coso). (15)

From Eq.(12) we then find the following Langevin equa-
tions for the time evolution of these anglg3]:

40=— 3,0 + D cot 6+ \2DE,1), (16)
1 V2D

oho=————d,U+—E&(t). 17

=" sik 6% sin 05“’( ) (17

In the dimensionless units adopted, the noise interi3itg
given by Eq.(14) and the potentia(6) takes the form
U(6,¢,t) = —sinf[H, cose + Hy(t)sin ¢]. (18)

The thermal fluctuationg,(t) and £,(t) are given by two

PHYSICAL REVIEW EO, 051107(2004

21
(N,) = Zi f d(sin 8(t)[— Hy sin ¢(t) + Hy(t)cose(t)]).
m™Jo

(21)

Exploiting Egs.(18) and(17), one readily finds the equiva-
lent expressions

o 2m
Wj= 5| aauon.e0.0)

2
-1 f dt(ap(t)sir? 4(t)). (22
2’7T 0

For reasons of ergodicity, the ensemble average ifZq.is

equivalent to a time average of a single realization over an
infinite time interval. Then the extra time average over one
period of the external driving drops out and we are left with

— 1 (4
(Ny= lim —— [ dtge(t)sir? 6(t)
(tt)—oel — 1 t

(23)

and similarly for the equivalent expressions in E@) and
(22).

In the absence of thermal fluctuations, the particle orien-
tation is governed by the overdamped deterministic relax-
ation dynamics given by Eqq16) and (17) with D=0.
Hence, at any given moment, the orientatie() tends to
align with the instantaneous magnetic fieldt) which lies in
thex-y plane. One can then shd®5] that 4(t) converges to
/2 for t—o and thate(t) approaches geriodiclong time
behavior. This implies via Eq23) that

independent,s-correlated Gaussian noise sources of zero

mean. Note that in Eq17) we are dealing with multiplica-

tive white noise, but since the multiplicative function is in-

dependent of(t), no ambiguity(lto-versus-Stratonovich in-
terpretation[34]) arises.

It is instructive also to consider the simplified situation o
a one-dimensional dynamics in which the vectois as-
sumed to be constrained to the horizontal plane. Accord-
ingly, Eq.(16) is replaced byy= 7/2 and Eq(17) simplifies
to

o0 =Fg,1) + V2DE(D), (19
where
F(e,t) =—H,sing + H(t)cose. (20)

() — o(t)
lim ———
(tf_ti)*)x tf - t|

(N,) = =0, (24)

i.e., in the absence of thermal fluctuations no particle rotation

fWi|| occur and no average torque can arise. An explicit ex-

ample is displayed in Fig. 1.

This scenario changes fundamentally in the presence of
fluctuations, i.e., ifD # 0. As shown qualitatively in Fig. 1,
for small noise intensities, the time dependencep@j and
o(t) will still closely follow the deterministic trajectories,
except that now also rare, fluctuation-induc¢eghsitionsbe-
tween different deterministic solutions may occur. As dis-
cussed in detail in Sec. Il A, the constant component of the
field in thex direction and the second harmonic in the time
dependence of the oscillating field component give rise to

The observable of foremost interest in the present invesslightly different rates of forwardincreasinge by 27) and
tigation is the time- and ensemble-averaged tor@i)eex-  backward transitiongdecreasingp by 27). Hence on aver-
erted by the magnetic field upon the magnetic particle in theage a net rotation of the particle will occur, implying with
long time limit, i.e., after initial transients have died out. Eq.(24) that(N,) # 0. This is a manifestation of the so-called

Since the magnetic fiel(ll) is constrained to the-y plane,

ratchet effecf{15] in which an unbiased potential and undi-

only thez component of this magnetic torque can be differ-rected Brownian fluctuations cooperate to produce directed

ent from zero. Suppressing the subscript “mag” in Ej).
from now on, we denote the averagedomponent of the

transport. The detailed operation of the ratchet mechanism
for the rotational motion of a colloidal particle is the main

magnetic torque byN,), where( ) stands for the ensemble focus of the present paper.
average over the different realizations of the noise terms in  Without explicitly solving the underlying equations of
Egs.(16) and(17) and the overbar represents the time aver-motion as given above, some interesting results on the oc-

age over one period of the magnetic field. Using Ejsand
(5), we get

currence and direction of noise-induced rotation can already
be inferred from an investigation of the space-time symme-
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118 symmetry which is lost if the full two-dimensional dynamics
(16) and (17) is considered. This symmetry implies that if

1 one can find a\t such thatH,(-t)=Hy(t+At), then(N,=0.
Consequently, thé values where the torque changes sign are
105 fixed by this additional symmetry while they are independent
of any other parameter of the system. Hence no current re-
versal upon changes in these parameters is possible. This is
the main difference between the full two-dimensional dy-
namics (16) and (17) and its simplified one-dimensional
counterpari19); see alsqd36-39.

) O

-
o
N

I\

Ill. ANALYSIS OF THE FOKKER-PLANCK EQUATION

A quantitative analysis of the overdamped Brownian ro-
tation of a single ferrofluid particle in a time-dependent ex-
ternal field can be built on the numerical simulation of the
Langevin equation$16) and (17). Such simulations unam-

FIG. 1. Space-time plot of the potential(9=m/2,¢,t) from  biguously show the occurrence of noise-induced rotation of
Eq. (18) for the time dependenc@) with H,=0.3, HP=H?=1,  the particle in an oscillating fiel(B3]. For a detailed study of
and 8=0. Dark and bright regions correspond to small and largethe influence of the various parameters of the problem on the
values ofU, respectively. In the long-time limit, the deterministic transferred torquéN,), it is, however, more convenient to
dynamics(16) and(17) with D=0 approache#(t)=x/2 and a pe-  start with the equivalent Fokker-Planck equati®PE) for
riodical ¢(t), oscillating back and forth as represented by either ofthe probability densityP=P(8, ¢,t) for the orientation(15)
the full black lines. In the presence of a small amount of noiseof the particle[29,40Q,
occasional transitions across the unstable deterministic orbits shown
as full white lines become possible which are schematically indi-
cated by the dashed lines. The spatial asymmetry and temporal an-
harmonicity of the potential conspire to yield slightly different rates 1 b b
for noise-induced increments and decrementg,aespectively. As v :

a result, a noise-driven rotation of the particles arises. For a detailed * Sir? Ga‘P(Pa‘PU) " sin aag(sm 004P) Sir? Gaip'
discussion, see Sec. Il A.

2 1 H
P=V(PVU)+DVP= maﬁ(sm OP4,U)

(25)

tries of our system. A first observation is that at any 9iVeNyere v denotes the angular part of the three-dimensional

instance of timd, the potentia(18) is “symmetric” in¢, i.e., N -

. abla operator. The equivalence of E¢ES), (17), and(2
there exists ag(t) such thatl(6,—¢,0)=U(8,e+Ap(D),). g P shown in[B%] For a time—péri(ogi)c pot(enst)ial
Contrary to several other ratchet devices, our system is ther%’(l9 ('p t) the solution P@ o.t) of Eq. (25 will also be

fore not characterized by a spatially asymmetric potential.” "’ "’ S X ; .
However. from the analygis ofpthe A)\/ppezdix one fipnds tha[{)erlodlc after initial transients have died out. From this so-

the system exhibits a dynamical symmetry breaking tha gtion, we can determine the average orientation of the par-
gives rise to a preferential direction of rotation in the genericicle,
case. As detailed in the Appendix, one can show that the 27 w
induced torque must be an even function of the constant field (e(t)) = f dgpf dé sin 6(sin 6 cos g, sin 8 sin ¢, cos6)
component in the direction and hencél,=0 implies(N,) 0 0
=0 [cf. Eqg.(A19)]. Moreover, if one can find At such that X P(6,0,1) (26)
H,(t)=-H,(t+At), again no average torque can afisk Eq. e
(A20)]. These observations motivated our choi®sand(3)  with the help of which the average torque from E@l) and
for simple time dependences of the oscillating fiellgwhich ~ (22) can be calculated according to E@) in yet another
result in a noise-induced rotation of the ferromagnetic grainsway, namely,

A related important point concerns the possibilitycoir- L (2
rent inversiong15]. From the symmetries of the system with —
time dependencé?), we show in the Appendix that for a (N;) = ZTL di{e(®) X HO,. (27
special valued, of the phase anglé, the torqugN, has to
change sign upon variation of another parameter such as the In the present section, we discuss the numerical and ap-
driving frequencyw, the noise intensityD, or the particle proximate analytical solution of the Fokker-Planck equation
volume V. In the latter case, we hence face the intriguing(25) and the corresponding result6) and (27) for the av-
possibility that in a polydisperse ferrofluid under the sameeraged torquéN,). To first substantiate the intuitive under-
experimental conditions, the larger and smaller particles willstanding of the ratchet effect in our system advocated with
rotate inoppositedirections. Fig. 1, we start by considering the weak noise lifit- 0.

A further basic result of the Appendix is the conclusion To keep the analysis simple, we will restrict ourselves in this
that the constrained dynamigd9) and (20) has an extra part to the simplified one-dimensional model defined by Egs.
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(19) and (20). In the second subsection, we detail the nu-orbit separating the two stable ong#4]. The subsequent
merical methods used to solve the FPE for the general caseelaxation to the final stable orbit is then purely deterministic
Finally, we present some analytical results from the perturand does not contribute to the transition probability
bative solution of the FPE. p(es,ti| @i, 1) in the weak-noise limit.
We have hence to solve a variational problem for which
the initial and final points of the trajectory are not fixed.
A. Instantons in d=1 Instead they are required to lie on two known functign&)

Our starting point is the simplified one-dimensional @nd oudt), respectively. If we perform the optimization with
model dynamicg19) and(20) with a s-correlated, unbiased respect to these locations, we find
Gaussian noise sourgg(t). The deterministic dynamics de-
scribed by Eq.(19) with D=0 has a family of stable and *1) = * *1) = *
unstable gerigd(ic )Orbit$>s(t)i277n and QDus(t)Y_FZ’ITﬂ, respec- de (H) =F(e (t).t) and de (t) =F(e (t).t).
tively, wheren is an arbitrary integegcf. Fig. 1) [35]. Hence (30)
deterministically the particle simply follows the direction of Hence the optimal transition trajectogy(t) must beparallel
the magnetic field with a certain time lag due to viscoustg the stable and unstable orbit at the contact points. This in
damping and no particle rotation can occur. turn impliest;=—o andt;=c. The optimal transition trajec-
For any nonzero noise intensify>0, there will be few  tory " (t) hence starts out at=— at the stable orbit, moves
stochastic transitions between the deterministic trajectoriegyr a very long time near to it, and then changes in a rather
and their detailed form in the limD — 0 can be determined. short time interval to the immediate neighborhood of the
Comparing the associated rates for forwérreasinge by ynstable orbithence the name “instanton'which it finally
2m) and backwarddecreasinge by 2m) phase slips, we may reaches at;=x [44].
directly obtain the direction and magnitude of the noise- From the minimization of the actio| ¢(-)] with respect
driven transport by means of E@4). to the functionse(t), we get the usual Euler-Lagrange equa-

The analysis of this section builds on the path integrakjon, for the minimizing instantor’ (t), which for the action
representation for the transition probability of a Markowangiven by Eq.(29) takes the form

stochastic procesp41-43. The main complication is the
time dependencef the potentialU(d, ¢,t). In notation and
general strategy, we follow the recent detailed analysis of ﬁtz(p*(t):&tF((p*(t),t)+F((p*(t),t)o"‘PF((p*(t),t). (31
noise-driven escape over oscillating barrig4d]. We will . .
only determine thepdominating expognentiaﬁegm in the tran- Chposmg for the time dependence 19§(t) the (_axample
sition probabilities. A more detailed analysis including alsoSpecncled by Eq(2), we have solved Eq31) numerlcally as
the prefactor can be done along the lines of Ré#). a boundar_y value pro.bl_e.m fora system O.f ordinary differen-
The transition probabilityp(ey,t|¢;,t) of the Markov tial equations. The initial and final points were chosen

) . . slightly off the stable and unstable orbit, respectively. If the
process described by ECL9) can be written in the form difference between the initial and final timg-t;, is larger

e(t)=ef Fo(-)] than several periods of the external driving, the solution
pler b ¢, t) = Do(-)exp = 5 /) (28)  hardly depends on the precise value of these deviations from

¢(t)=e the deterministic orbits. Having obtained (t), the corre-

where the action functiond ¢(+)] is given by sponding value of the actioB can be calculated from Eq.
(29).

1t In Fig. 2, th lting instanton trajectorig -

N=1 _ 2 g. 2, the resulting instanton trajectories(t) corre
Se()] 4f, dildie() = eV, 0] (29 sponding to backward and forward transitions are displayed.

‘ They show the qualitative behavior discussed above. Note
with F(¢,t) defined in Eq(20). The intuitive understanding that due to the presence of the constant field compoHgnt
behind this representation is tralt possible trajectorieg(t)  and the second harmonic in the time dependence of the field
starting at initial timet; in ¢; and arriving at final time; in componentH,, the form of the most probable stochastic
s contribute to the transition probabilify(¢r,t¢| ¢;,t), each  crossings is rather different for forward and backward tran-
with a weight related to the value of the acti@revaluated sitions. Accordingly, one would expect the corresponding
along this trajectory. In the weak noise limid—0, a rates to be different from each other as well. In fact, the
Laplace argument tells us that only those transitign@)  corresponding values of the action &8&0.214 72 for the
contribute significantly tg(es,t;| ¢;,t;) for which the action forward instanton increasing by 27 and S=0.309 69 for
is minimal. All others have probabilities which are exponen-the backward instanton decreasiady 2. Hence, at least
tially small for D— 0. In the weak noise limit, we are hence in the weak noise limit, forward transitions are more likely
able to determine the precise form of tfgominating sto-  (their action is smallgrthan backward transitions, and for
chastic transitions by solving a variational problem. the parameter set specified in the caption of Fig. 2 we find a
Under rather general conditions which are satisfied in ounoise-driven rotation in the direction of increasigg For
particular setting, one can show that the transition rate beeitherH,=0 or H? =0, the transition rates are equal to each
tween two stable orbits of the dynamics is determined by th@ther and no noise-induced rotation can arise, cf. By59)
probability to reach from the starting stable orbit the unstableand (A20).
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10 : r T T T T B. Numerical solution of the FPE

For the numerical solution of the FPE describing the com-
plete two-dimensional dynamics for general values of the
parameters, it is convenient to expand the probability distri-
bution P(6, ¢,t) in spherical harmonic¥["(¢, ¢) (see, e.g.,
[40,45),

o
PO, =2 > AnOY(0.¢), (32)
1=0 m=-1
with so far unknown time-dependent complex expansion co-
efficientsA (t). SinceP(6, ¢,1) is real, we have

A = (= DA (D), (33

with the star denoting complex conjugation. Moreover, from
the normalization of(4, ¢,t), we find

1
1 Agot) = \Tr (34

Plugging the ansatg32) into the FPE(25), exploiting Eq.
] (18), and using well-known properties of the spherical har-
monics, we find foll =1 the following set of ordinary dif-
ferential equationgfor similar cases, see, e.(26,49):

H, —iH,(t)
. A m(t) == X—ZL[hl(I = 1m-1DA_; ma(b)

H, +iH,/(t
4 1 DA ]+

| X[hy(I=1,-m= DA _; nia(t)
| +hy(l+1,-m= DA mea(t)]

—DI(I+ DA D), (35)
where we have introduced the auxiliary factors

FIG. 2. Numerically determined instanton trajectoriésill
lines) describing the dominating weak-noise stochastic transitions (I+m+1(+m+2)

between stablg¢dashed lingsand unstablgdashed-dotted lings hy(l.m=(+2) @+1nE@+3 (36)
deterministic periodic orbits of the one-dimensional rotational dy-

namics of a ferrofluid particle described by E@E9), (20), and(2). I—m(-m-1)

The parameter values akg=0.3, H(yl):Hi,Z):l, andé=0. For the h(m=>1-D\/—————. (37
forward instanton, increasing by 2 (b), the value of the action is 2+n@2-1

S=0.214 72; for the backward instanton, decreasiriay 27 (a), it . )
is S=0.309 69. Hence, a noise-induced average net rotation in thg/loreover, we find for the ensemble averages of the compo

“forward direction” results in the weak-noise limit, implying fients ofe(t) from Eq. (15),

(N,)>0 according to Eq(24). 87

(&) =({sinbt)cose(V) = - \| "R A1), (38)
Note that in Fig. 2 only the noise-induced transition from

the stable to the unstable orbit is shown. The complete tran-

sitions giving rise top— ¢+27 comprise also the subse- (8(1)) = (sin A(t)sin ¢(t)) = + ’S—WIm[Al 01, (39

guent relaxations from the unstable orbit to the next stable 3 ‘

one. Consequently, the stochastic transitions show substan-

tially more structure than the rather poor caricatures used to A

represent them in Fig. 1. (e/t)) =(cosa(t)) = 4/ ?Al,o(t),
The mismatch between forward and backward transition

clearly demonstrates the operation of the ratchet effect in ouvhere Re and Inz denote the real and imaginary part of the

system. With the relevant transition probabilities being ofcomplex numbee, respectively. For the component of the

order exp—-0O(1)/D], the effect is, however, very weak and ensemble-averaged but still time-dependent magnetic torque

in particular rapidly disappears with — 0. (N, this implies via Eq(5)

(40)
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We have used two somewhat different procedures to ex- oo
plicitly calculate this torque. The first is more general, the
second is slightly more efficient for the special case of the
time dependencg).

In the first method, we solve the syst€Bb) of ordinary
differential equations for the expansion coefficiesg,(t)
with 1 <I,,,« by a standard routine. We have used values of
Imax Up to 25 but found typically 51,,,,=10 to be suffi-
cient. Starting with some initial condition, we integrate the 0911
equation until the periodic time dependence of the solution is
reached, which was usually the case after at most two peri- 0015} . . . .
ods of the external field. We then integrate further for one 0 2 . 32 o
period of the external driving, use the result fAry(t) in Eq. @ 5
(41), and calculate the remaining time average numerically.
Some care is needed here since this time-averaged torqu 157
(N, is typically two to three orders of magnitude smaller .-
than the typical time-dependent valuesNift). In the time 4
average, we are hence subtracting numbers of equal siz
from each other giving rise to well-known problems of nu-
merical accuracy. The advantage of this method is that it 5
works for any numerically sensible time dependence of the 5
magnetic fieldH,(t) in Eq. (1). Z

The second method builds on the fact that the long-time ¢
solution of the FPE will be periodic in time with the period
27 of the external driving. It is hence useful to expand the
time-dependent expansion coefficieAts,(t) in Eq.(32) into -05¢
Fourier modes with respect to time,

0.005f

AN
=z 0
v

-0.0051

-3

w s 1 15 2
~ ist (b) relative size
Al,m(t) = 2 Al,m,sel . (42) _
= FIG. 3. (a): Averaged torque&N,) for the time modulation2)
with H,=0.3, H(l):H@:l, andD=0.2 as a function of the phase

Instead of a system of ODE's for the coefficiedis,(t), we angle § as obtained from the numerical solution of the F@l

find now from the FPE25) a system ofilgebraicequations Ii_ne). Symbols are results from_ simula_tions qf t_he Langevin equa-
. ~ . tions (16) and (17) as reported iff33] with statistical errors being

for the coefficientsA s Moreover, the time-averaged gmajier than the symbol size. The squares on the horizontal axis are

torque(N,) can be readily expressed as a function of some of}¢ points (/2,0) and (37/2,0) at which the current reversal

these coefficients by means of Bg.1). The advantages of would occur in the reduced mod@9). (b): Dependence ofN,) on
this method are that effectively we are directly dealing withthe relative particle size for the same values of the parameters and
the stationary solution of the FPE, i.e., no initial conditionsfixed to §,=1.73, the first point of current inversion in th@)

are necessary and no equilibration process must be simpanel. The full line corresponds to a proportional change of the
lated, and that the time average of the torque need not bmagnetic and hydrodynamic radiop sketch, the dashed line is for
performed numerically. The disadvantage is that we have te change of the hydrodynamic radius oqbpttom sketch

Epecify Hy(1) in order to find the algebraic system for the Using the numerical methods described above, we have
A ms and that for generaH,(t) this system will be rather yerified all the predictions derived in the Appendix on the
dense with respect to the index o basis of symmetry arguments. In particular, we fihg)=0

For the speC|_aI_t|me _depende_r(@, the situation is some- jf H,=0 in accordance with Eq(A19) and (N)=0 for
what more gratifying sincéldy(t) involves only two Fourier H,(=cogt), ie., for Eq. (2) with H;2)=0. or Hy(t)

components. Hence there are only couplings between COEffi:-H(l) cos(t)+H<2) cos3t) in accordance with EqA20)
y y ’

cientsA s differing in their s value by at most 2 and the | Fig, 3, we give some examples for current inversions in
result for(N,) is a linear combination of just five different oy system. Pane) shows the averaged torqyhl,) as a
coefficientsA .. This makes the numerical analysis ratherfunction of the phase angk&for a time-dependent magnetic
fast. Both methods must of course yield the same resultfield Hy(t) of the form(2). The results are consistent with Eq.
when applied to the samid,(t). We have frequently used (A22). Moreover, the values af at which the torque changes
both to verify our numerical findings. sign are clearly different fromr/2 and 37/2 indicated by
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the squares on the horizontal axis. Hence the numerical sdeing not closed but involving higher moments of the prob-
lution verifies the statement of the Appendix that the currentbility distribution.
reversal in the full two-dimensional modgl6) and(17) oc- The central idea of the effective field approximation is
curs at values ob which are not fixed by any symmetry but now to assume that the soluti®{e,t;H(t)) of the FPE for a
rather depend in a complicated manner on all the other pageneral time-dependent magnetic fiel¢t) can be written as
rameters of the problem. equilibrium distribution for some priori unknowneffective
This_is further corroborated by Fig.(i3, depicting the field H(t), i.e., P(e,t;H(t))=P?(e;H4(t)). The average on
torque(N, as a function of the relative particle size fér the right-hand side of Eq46) can then be performed and
=8y. There are two different ways to scale the particle sizethis equation gives rise to an evolution equation for the ef-
that make sense in a ferrofluid. In the first, both the ferrofective fieldH, of the form[40]
magnetic core of the particle as well as the polymer coating
are scaled with the same factor. This gives rise to a propor- ( L(He/D)H ) ) L(He/D)(H —H)
tional change of the magnetic momentand the particle € H €
volume V. In the dimensionless units adopted, this implies
unchanged field#l, andH,(t) and a noise intensit res- 3
caled according to Eq14). In the other case, only the poly- He
mer coating is scaled and therefore only the hydrodynamic 47
radius of the particle changes. Hence the magnetic moment. . . . )
remains the same, whereas the volumehanges. Corre- leenH(t),_ this is a_closed equation for the tlme evolutlon_of
spondingly, the dimensionless field, and H(t) and the He(t). Having obtainedH,(t), we get the desired approxi-
noise intensityD change by the same factor. In view of Eq. Mate result foKe) from Eq. (44),
(25), this can be absorbed in a rescaled time which in turn is -
equivalent to a changed frequeneyof the external field. As (€= L(HID)HJ/H,. (48)
anticipated in the Appendix, we find current inversions inThe solution of the partial differential equati¢25) is hence
both cases. replaced by the solution of the set of three coupled ordinary
differential equation$47). There are other, equivalent forms
of Eq. (47), see, e.g.[46]. Exploiting Eq.(47), it is also

] ] ) possible to derive the following equivalent closed equation
It is very helpful to have some analytical expression forfor (e) [10]:

the average torqué\,) since the dependences on the various

e e

- M[Hex (He X H)].

C. Effective field approximation

parameters of the system can then be identified much more _ D(e)e

directly. In the present and subsequent subsections, we dis- I€)e= = (1 _H_e)(He_ H)

cuss two approximate methods to calculate the time-

averaged torque in our system. + (1 _3D<i>e><®s (Ho- H))<e—>e (49)
The first one employs the so-called effective field method He / \(€)¢ € (&)’

to approximately solve the FPE. It has been a standard tool L
in tth)eptheory ofyferrofluids for many yeafg0]. Two main where(e). denotes the modulus ¢¢)., and the effective field

ingredients are necessary. First, let us recall that the statiofile IS 10 be expressed as a function(ef. by the inverse of

ary (equilibrium) solution of the FPE(25) for a time- Ed- (48). Note the difference betwee®@)e=|(e)el and(|e|)e

independenhomogeneous magnetic field is of the form =1

[32] In general, Eq(47) can only be solved numerically. In
Fig. 4, we give a comparison between results obtained in this

43) way for the time dependendg@) and the corresponding out-
come of the numerical solution of the FPE. It is clearly seen

that the effective field approximation yields rather accurate
whereH denotes the modulus of the magnetic fietth |H]. PP Y

. o ) results for the time-dependent orientation of the particle and,
Averages with this distribution are easily calculated. In Parequivalently, for the time-dependent magnetization of the
ticular, we find the well-known result

ferrofluid. On the other hand, the results for the time-

H e-H
PO(e) = e p( )
®= 42D sinhip) &P\ D

(&)@ = L(H/D)H/H (44)  averaged torquéN,) differ from the numerically exact val-
_ ) _ ues by a factor between 2 and 3. The reason for this discrep-
with the Langevin function ancy lies in the fact thatN,) is typically two to three orders
L(x) = cothx) — 1/x. (45)  of magnitude smaller than typical values of the time-

dependent torquéN,). In calculating the time average of the
Second, for general, time-dependent fiettls), the FPE25)  orque, we hence subtract quantities of comparable order and
can be used to derive thexactequation so amplify the inaccuracies of the effective field approxima-
_ tion from a few percent to a few hundred percent.
9(€) +2D(e) = ~(ex (e X H)) (46) In order to obEt)ain an analytical expressign @ within
for the time evolution of the average). Note that this equa- the framework of the effective field approximation, it is use-
tion for the first moment ofP(e,t) has the usual flaw of ful to consider the case of small valuestdfD in which the
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oul 9;9%% ' ' ' ' ] ) 2H" 2D cost + sint
R e T3 ap?a1
# Qb %)
/ ? H;” D sin(2t + ) — co42t + §,
02l o ® 1 + L ( 2) S ). (52
P 3 D?+1

Y
O
<]

Hence(e,). tends asymptotically to a constant wheregg.

\
or ® ﬁmJ contains only oscillating parts. From E¢p) we may thus
tad A P

infer that the torquéN,) harmonically oscillates and there-
\ J fore its time average vanishe®y,)=0.
02F N, 20.00041 3 8 1 To get a nontrivial result fo{N,), we have to push the
pre=0.00018 ° e expansion of the Langevin function further. In other words,
off q 4 the nonlinearity of the magnetization curve is essential to get
-y

<€ >, <@ >

a nonzero average torque. If the next term in the expansion is
included, L(x) =x/3-x%/45, we already obtain an approxi-
(a) 1 mation forL(x) that is accurate to within one percent for the
experimentally relevant values afwhich are generally less
than 1. Calculating the corrections to E¢S1) and(52) in-

— ‘
05 o” %%o | duced by these higher-order terms, we finally find after some
osf © algebra the following result for the average torque:
U
M o B99222000,4000022225% 1 Hy(H")?H? coss+ 2D sin &
d Q % (Npe = 30 2 22" (53
0.2 \ ] (1+D9)(1+4D%)
A . b
9 0 4 \ | This result is in accordance with our symmetry consider-
GA); 4 b ® ations of the Appendix since it shows that both a nonzero
Vo ool % oo o field component in thex direction and an even higher har-
\b ° %6600 monic in the time dependence éf,(t) are essential for a
045 N, =0.0159 N 5 1 nonzero torque to occur; cf. EgA19) and (A20).
Pe_ Q o
—06} Ney=0-0087 ‘@‘wae’ i D. Perturbative solution of the FPE
. ‘ . . ‘ ‘ In the last subsection, we saw that the effective field ap-
08 1 2 3 4 5 6 proximation alone is not sufficient to get an explicit analyti-
®) t cal expression for the time-averaged tordg) in our sys-

FIG. 4. Horizontal components of the average orientat@rof tem. Additionally, We.had to expand the Langgvin functiqn in
the particle as a function of time for one period of the external'tS argument/D, which amounts to a small field or equiva-

magnetic field. The lines show the resuits for srendy component ~ 1€ntly large noise expansion. Moreover, the approximate re-
of (e) (full and dashed line, respectivelfrom the numerical solu-  Sult for the torque was typically at variance with the numeri-
tion of the Fokker-Planck equatia@25) with a time dependence of Cally exact result by a factor of about 2.
the external field as given in E@2). The symbols are the corre- It is therefore tempting to avoid the effective field ap-
sponding results from the effective field theory. The parameter valproximation altogether and to use a perturbation expansion
ues areH,=0.3, HY=H?=1, §=0, as well asD=1 (@ andD in the ratio of magnetic field strength and noise intensity
=0.2 (b). The corresponding values for the time-averaged torqudight in the Fokker-Planck equatio(25). This is conve-
(N,) are also displayed. niently accomplished by making the formal substitution
H—eH in Eq. (25 and by expanding the solution of the

Langevin functionL(x) or equivalently its inverse may be FPE in & power series ig,
approximated by the first terms of the respective power se-  p(g, ¢, t) = PO(g,¢,t) + eP(, ¢,t) + €P2(, ¢,1)
ries expansion. Using the lowest-order approximatidr)

=x/3, we haveH,=3D(e), and from Eq.(49) it then fol- +EP(0,p )+ - (54)
lows that At the end of the calculatiore is set equal to 1. It will turn
out that we have to use the expansion up to third ordertm
9{€)e + 2D(€)e = 2H/3. (50) get a nonzero result for the average torddk). Since the
potentialU(6, ¢,t) is of ordere, we find in zeroth order
i 1
For larget, we therefore find iMPO(6,.f) = — (55)
t—o 477
(8 — 2Hy (51) describing the stationary distribution of pure rotational diffu-
¢ 3D sion. Using the expansiof®4) in Eq. (25), we get a system
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1 A (3, + 2D)ATY1) = 0.
___________________________________ __ Since we are interested in the asymptotic solution valid for
3 larget, we can putA(llyz)(t)EO. Next we use th®(e?) equa-
: : tions

3 .
(6 + BD)AZYL) = - E[Hx —iH ()AL,

(4, + 6D)ATYY) = \E{HXRe[Aﬁm - Hy(®Im[AY D]}

to determine the relevart; (t) to the desired order. Finally,
FIG. 5. Diagrammatic sketch of the perturbative determinationwe obtainA(f)l(t) from
of the expansion coefficientd, , in Eq. (32). As shown by the
arrows, onI_yALm differing in bothl andm by 1 are coupled by Eg. (9, + ZD)A(l?f)l(t) —_ ,—l—[HX— iHy(t)]A(z%(t)
(35). In a first step, we start fromdy o as given in Eq.(34) and V30
obtain theO(e) terms ofA; ,; (dashed arrows NextA, o andA; ., 1
are determined to ordef (dotted arrows Finally, these are used to L ; (2
get the O(€) contributions toA; ; (full arrows) from which the " \JE[HX-‘- IHy(t)]Az’z(t)' 57
torque can be extracted to ordérusing Eq.(41). Al other A , are
irrelevant for(N,) at this order ine. Note also that the left half of The explicit expressions for the various coefficieA{§(t)
the diagram is redundant due to the symmetry prop@®y. are rather long, therefore the above system of equations is
conveniently solved with the help of a computer algebra.
of linear inhomogeneous partial differential equations for thé”cusing on the specific time-dependent fieldt) from Eq.
variousP™(8, ¢,t) that can be solved in principle one after (2), exploiting Eq.(41), and performing the time average
the other. over one period of the external driving, we finally get the
This procedure is, however, rather cumbersome. It can pfollowing lowest-order perturbative result for the average
somewhat simplified by using the exact equati@6), the  tOrque:
right-hand side of which is of ordes Hence to finde) from m
this equation to ordee", it is sufficient to calculate the av- b

erage on the right-hand side with an expressiorPiat, ¢, 1) _ Hy(Hy")?H (1 + 26D%) cos 5+ 2D (1 + 9D?)sin 5
accurate to orde#™V. In our case, the lowest-order nonzero 40 (1+D?)(1+4D?(1+9D?(1+36Dd°
result for(N,) is O(e*), hence we neede) to order & [cf. (59)
Egs.(5) and(15)], and therefore the second-order result for

P(6, ¢,t) would be sufficient. The dependences on the parametdrs H(l), and H? are

It is, however, more convenient to use again the expanidentical to those of the effective field resn@ﬁ?a), Whereas
sion (32) of P(8,¢,t) in terms of spherical harmonics. The the dependence on the noise strerigtis more complicated.
perturbation ansaté4) then translates into an expansion of One readily verifies that the symmetry properties

the coefficientsh (t) in powers ofe, (A11)~«(A14) are satisfied by Eq(58). In particular, these
o ' . 5 5 symmetries imply that the torquél,) must be an odd func-
ALn(®) = A% + A1) + EAR(1) + EASN D + -+ tion of both the static field and the oscillating field. More-

(56)  over, symmetry reasons also imply5] that in linear order of

' o . . the oscillating field, one cannot expect a firiig). Rather, a

The ODE's(35) couple only coefficient#\ (t) which differ .4 pjing of several modes of the oscillating figltarmonic

in both | and m by 1. Moreover, we know from Eq34)  mixing) is required; see als{86,38,39. All together, these
Ao o(1)=1/\4m=0(1) and hence ,(t)=O(e). As shown by  arguments explain that the first nontrivial contribution must
Eqg. (41), the torque is determined Iy, ,(t) alone. We hence e (at leas} of fourth order in the magnetic field strength and
need an expression fdy, ,(t) correct up to ordee®. that within a linear-response theory, one will always find
To this end, we determine from Eq85) and(34) firstthe  (N,)=0 [47]. On the other hand, this of course does not im-
O(e) terms of A (t). With these we calculate the necessaryply that the nonlinear magnetization curve alone would “ex-
A, (1) to order€?, which in turn are used to determine the plain” the effect. To understand the microscopic origin of the
O(€®) terms inAq 4(t). The procedure is sketched in Fig. 5. angular momentum transfer from the external field to the
Note that it is sufficient to calculate coefficierfs,(t) with  particle, one really has to go to the description in terms of the

m=0 because of the symmetry prope(8g). FPE as discussed above; see §&849.
In this way, we first get from th€(e) equations In Fig. 6(a), we compare the two approximate expressions
1 (53) and (58) for the averaged torque with the results ob-
g+ 2D)AD (1) = = —=—[H, — iH,(D)], tained from the numerical solution of thg FEE. D!splayed is
(@ AL V"qu[ Rl the dependence of the torque on the noise interitwhich
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system related to the Brownian relaxation timgdefined in
Eq. (13).

The two approximate expressions for the tor@b®) and
(58) differ in their dependence on the phase angl&Vhen
using Eq.(58) to fit the experimental results reported[it0],
we find for the Brownian relaxation time the valug=6.4
X 107 s instead ofrg=1.8X 1072 s, as obtained on the basis
of Eq. (53) in [10]. The experiments were done with a fer-
rofluid with »=0.1 Pas. Using Eq.13), the two results for
75 hence translate in fits for the particle diameter f
=26 nm andd=36 nm, respectively. These values exceed
the typical diameter of roughly 10 nm by factors between 2
and 3, respectively. The main reason for this discrepancy is
probably the polydispersedness of real ferrofluids, having a
particle size distribution with a long taisee, e.g.[3], Chap.
2). Hence, a whole spectrum of relaxation times is necessary
to accurately describe the dynamics of the magnetization.
However, this issue is not at the focus of the present inves-
tigation. We also note that the transferred torque typically
increases with the particle size and hence the described
ratchet effect is likely to be dominated by the larger grains in
the ferrofluid.

A similar approximate calculation of the average torque is
also possible for the time dependen@. The result of the
effective field approximation is

EHXH(O)(H(]-))Z

(Noe= 2 Dap2+ 17

(59

whereas we find from the perturbative solution of the FPE
HHP(HY)? 44D +3
30 D(4D?+1)%(36D%+ 1)

(Np)p= (60)

The two expressions only differ significantly from each other

if the noise intensityD is very small. In Fig. @), they are

compared with the result from the numerical solution of the
FIG. 6. (a): Time-averaged torqu@d_z> as a function of the noise FPE(25)' Fore=0.5, the accuracy is again seen to be rather

intensity D for the time dependenc@) of the magnetic field. The ~Satisfactory.

parameter values ai¢,=0.9D, Hi,l):O.ED, H;Z):O.lai), and 6=0.

The scaling of the magnetic field strength withensures that the IV. CONCLUSIONS
perturbation parameterstays constant. Shown are the perturbative ) ) _
results(58) (circles and (53) (squares together with the numeri- In the present paper, we have theoretically investigated

cally exact resultfull line). (b): Same for the time dependen(3 the rotational Brownian motion of colloidal ferromagnetic
of the oscillating field withH'”=H!?=0.5D. The approximate re- particles in an oscillating magnetic field. The central tool was
sults are given by Eqg60) and(59), respectively. the Fokker-Planck equation for the probability densite, t)
of the particle orientatiore at timet. Solving this equation
either numerically or approximately by using the effective
is different in the two approximations. In order to keep thefield method as well as a perturbative expansion, we have
expansion parameter~ H/D roughly constant when chang- determined the time-averaged torqid,) exerted by the
ing D, we have scaled the magnetic field strengths Wiith  magnetic field on the particles. The main aagbriori quite
As can be seen, up to values ©f0.5 the accuracy of Eq. unexpected qualitative finding is the fact that a purely oscil-
(58) is rather good, whereas E(3) describes the torque lating magnetic field without a net rotating component can
only qualitatively. transfer angular momentum to a ferromagnetic grain. As a
Proportional change of magnetic field strength and nois&asic mechanism behind this transfer, a ratchet effect was
intensity is equivalent to a change of the frequeacyf the  identified by which the magnetic field rectifies the thermal
external field in Eq(1). Figure 6 hence also demonstratesfluctuations of the particle orientation that arise due to ran-
the resonancelike character of the investigated ratchet effeaiom collisions with the molecules of the carrier liquid. The
(N, is largest when the deterministic time scale of the exterdetailed operation of this ratchet effect in the present system
nal driving matches an intrinsic stochastic time scale of thevas discussed on the basis of a weak-noise analysis of the
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Fokker-Planck equation for a closely related one-outto be valuable since directed transport generically occurs
dimensional system in Sec. Il A. if it is not forbidden by symmetries, a statement referred to
Via the viscous coupling to the carrier liquid, the torque as Curie’s principlg15,39,50-59 Here we specifically ad-
on the particle is transmitted to the liquid. The combineddress the question of which transformations of the magnetic-
microscopictorques of the huge number of individual nano- field componentsi, andH,(t) in Eq. (1) leave the average
particles then yield anacroscopicotation of the ferrofluid  component of the torque invariantN,)—(N,), and which

as a whole, as observed experimentally{18]. In the ab- |ead to its inversion{N,)——(N,).

sence of thermal noise, no average torque can arise, i.e., From Eq.(23), one readily concludes that the following

thermal fluctuations are an indispensable requirement for thﬁansformationsﬁ and @ imply the indicated transforma-
rotation of the individual grains and hence of the ferrofluidtjon pehavior of(N,):

as a whole to occur.

The results from the Fokker-Planck equation are com- ()~ () +Ap and at) — o(t)
pletely consistent with rather general symmetry consider- -
ations detailed in the Appendix. Moreover, they agree very implies (N, — (N,), (A1)
well with simulations of the corresponding Langevin equa-
tions as given iff33] and quantitatively describe the experi- o) —>—pt)+Ap and 6(t)— (1)
mental findings reported ifiL0].
We remark that our present system puts forward a new implies (N,) — —(N,), (A2)
type of thermal ratchet device which does not fit into any
previously known specific class of ratchet systems. Adopting o) = o) and 6(t) — - 6(t) +

the classification scheme frofd5], our present system has
some similarity with so-called asymmetrically tilting ratchets

as well as with so-called traveling potential ratchets, how- implies (N;) = (N, (A3)
ever in the generalized sense involving two counterpropagat-

ing traveling potentials. Yet there remain significant differ- ¢(t) = @(t+At) and 6(t) — 6(t+AY)

ences with both these classes. In particular, we note that we o -

are not dealing here with a periodic, asymmetric so-called implies  (Np — (N, (Ad)
“ratchet” potential. Rather, at any fixed instance of time, the

relevant potential is perfectly symmetric about the instanta- e(t) > ¢(=t) and at)— 6(-1)

neous direction of the magnetic field and hence no preferen- o o

tial direction of rotation seems to exit. It is only via the time implies (N, — —(N,, (A5)

E;ﬂ:tghézagz Sn}gpnrinc(;tlri ?;ﬁcle(tlpgb?(relziisr{ which is SOme\'/vhereAcp andAt are arbitrary. Observing that the values of
y Yy y g L both the original and the transformég) are restricted to the
In summary, we hope that the present investigation hals terval [0,7] and that the entire interval will indeed be
demonstrated that ferrofluids are very suitable systems 0! 7

: ; mpled by some realization of the dynamit6) and(17),
study various aspects of thermal ratchet behavior, and that ﬁ[afollows that no transformations of the form(t)— 6(t)

may stimulate further theoretical, numerical, and experimen- . .

tal zvork in this direction. P +A6 with A9+ 0 or A(t)——6(t)+A6 with A9+ 7 are pos-
sible. Finally, in order to concludéN,)——(N,) in Eq. (A5)
one has to exploit that in E¢23) the limit (t;—t;) — o is not
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mis are gratefully acknowledged. Part of this work was dondA1)—(AS). _ _
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sique Théorique at the Université Louis Pasteur in Strasthe transformed(t), ¢(t) defined by Eqs(A1)~A5). In the
bourg. He acknowledges the kind hospitality as well as fi-simplest case, EqA1) one readily concludes from Eqd.6)
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larly that the transformed(t) and ¢(t) satisfy the equations
of motion(16) and(17) but now with a transformed potential
U, ¢, t)—U(0,—¢+A,t)+AU and in addition with a trans-

Symmetry considerations admit conclusions from theformed noiseé,(t)——¢£,(t). Since the statistical properties
equations of motion without actually solving them. For theof the two noises £,(t) and &,(t) are equal, i.e., they are
investigation of ratchet systems, studies of symmetry turnedentical stochastic processes, the same follows for the cor-
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responding processes given by E@K5) and (17). In other (Hy, Hy(1)) = (Hy, — Hy(1))

words, to each realization of the originalt), ¢(t) corre-

sponds a realization of the transforméd), ¢(t) occurring implies (N,) — —(N,), (A12)
with the same probability, and vice versa. Since the average

torque in Eq.(23) is independent of the specific realization (Hye Hy(1) = (Hy, Hy (1)

6(t), ¢(t) with probability 1(i.e., up to a set of realizations of

measure zenp we can conclude that in this cashl,)— implies  (N) > (N,), (A13)
—(N,. Similar considerations can be done for the cases given

by Egs.(A3) and(A4). The last transformatiofA5) is spe- (Hy Hy(D) = (Hy, Hy(t + Ab)

cial insofar as a mapping between the dynamics of the origi-
nal and the transformed variables is possible only if the term

Dcotd(t) in Eq. (16) identically vanishes, i.e., ifo(t) implies (N — (N, (AL4)
= /2. We therefore find the following implications of trans- TRt
formations in the potentidl(6, ¢,t): (Ho Hy(0) > (= Hy, = Hy(= 1))
U(6,¢,t) > U(6,0 - Ag,t) + AU implies (N,)—~(N,) [provided(t) = /2],
. (A15)
implies (N, — (N, (AB)  \vhere the trivial resultA13) is listed only for the sake of
completeness.
U(6,0,t) — U(0,— ¢+ Ap,t) + AU While Egs.(A11)«(A14) are intuitively more or less ob-
vious, Eq.(A15) [respectively Eq(A10)] is not. The addi-
implies @H_E, (A7) tional condition §(t)= /2 shows that the constrained dy-

namics(19) and(20) has an extra symmetry which is lost if

U(6,0.) — U(= 6+ m,0.t) + AU the full two-dimensional dynamic&l6) and (17) is consid-

ered.
. We note that EqQS/A11)—(A15) could also have been ob-
implies (N, — (N,), (A8) tained in a more direct way. Our somewhat more involved
line of reasoning has the advantage that we can exclude that
U(6,0,t) — U(6,¢,t + At) + AU there are any transformations other than Hdel1)-(A15)

and combinations thereof which would lea{id,) invariant
or change its sign.

implies  (Np — (N, (A9) In order to see that the above considerations already allow
some nontrivial conclusions about the possibility of angular
U(e,e,t) — —U(6,p,—t) + AU momentum transfer from the oscillating magnetic field to the
particle, we combine Eq$A11) and(Al2), Egs.(Al12) and
implies @H _@ [provided 6(t) = /2], (A14), and Egs(Al1l) and(A15) to obtain
(A10) (HeHy(0) = (= Hy Hy (1)
whereAU is an arbitrary constant. implies (N,)— —(N,), (A16)
Finally, we have to determine all those transformations of
the magnetic field componernit, andHy.(t) in Eq.(2) WhiCh. (Hy Hy(0) > (Hy, = Hy(t + AD)
correspond via Eq(18) to transformations of the potential
U(6, ¢,t) given in Egqs(A6)—A10). Since changes iH, and implies (N, > — (N, (A17)

H,(t) always imply changes in the potentlaithat depend on
6 and ¢, we can only induce transformations witflJ=0. _
The only nontrivial way to realize Eg.(A6) is (FaHy(0) = (HHy(- D)
(Hyx, Hy(1)) = (=Hy, —Hy(t)) combined with Ap=(2n+1)m — INEVEEYINEN . _
with an arbitrary integen. Similarly, Egs.(A7) and (A9) implies (N, ——(N,), [providedé(t) = /2],
are equivalent to (Hy,Hy(t)—(Hy,~H,(t) and (A18)
(He, Hy(D)) = (Hy, Hy(t+At). On the other hand, EqA8)  regpectively. From EqAL16), we immediately can infer that
only admits the trivial realizatior{H,, H,(t))—(H,,Hy(1)).  the constant field in the direction is indispensable for a
Flna“y, Eq (A].O) can be Implemented b}(HX,Hy(t)) nonzero average torque,
> (=Hy, ~H(-1)). In summary, we find that —

H,=00 (N)=0. (A19)

(Hy, Hy(0)) — (= Hy, ~ Hy (1) Similarly, Eq. (A17) implies that for a time dependence
- obeyingH,(t)=—-H,(t+At) for someAt, the average torque
implies (N, —(N,), (A1l)  has to vanish as well,
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Hy(t) = —Hy(t+At) O (N =0. (A20) (NY(8+ 1) = = (N)(9). (A22)

As a consequence, upon continuously varydhge can infer
Choosing in particuladt=1r, i.e., half the period of the ex- that there must exist & €[0,7) such that(N,)=0 for &

ternal driving, we realize that an oscillating fig(t) witha =&, or 6=+ . It is important to note that this case of zero
Fourier expansion containing only odd multiples of the basicaveraged torque is qualitatively different from the situations
frequency described by EqgA19) and(A20) since it is due to théine

tuning of a parameterather than resulting from an underly-
ing symmetry. Consequently, upon variation&®éround &,
Hy(t) = > H(y”) cognt+ &) (A21)  the average torquéN,) changes sign, which is a realization
n=1,35,... of a so-calledcurrent inversion[15]. Furthermore, by fixing
6= &, a sign change ofN,) will generically also occur upon

will result in a zero aver toraudl. irr tive of th variation of any other parameter of the system. o
esu a zero average torqudl,), irrespective of the We finally note that in the case where the dynamics is

. . . (n)
particular choices of the amplituded,” and phasess,.  constrained to the-y axis, the additional symmetrgA18)
EquationgA19) and(A21) motivate our choice&) and(3)  jmplies thats,=m/2. Consequently, thé values where the

as simple time dependences of the oscillating field resultingorque changes sign are fixed by the additional symmetry and

in a nonzero average torqyh,). do not depend on the other parameters of the problem. Hence
For the special time dependen¢® we find from Eq. no current reversal upon changes in these parameters is pos-
(A17) sible.
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