PHYSICAL REVIEW E 70, 051106(2004

Fractional rotational Brownian motion in a uniform dc external field
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The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of
dipolar particles subjected to a dc bias field are evaluated in the context of a fractional noninertial rotational
diffusion model. Exact and approximate solutions for the dielectric dispersion and absorption spectra are
obtained. It is shown that a knowledge of the effective relaxation timesidomal rotational diffusion is
sufficient to predict accurately ttnomaloudlielectric relaxation behavior of the system for all time scales of
interest. Simple equations for the characteristic frequencies of the dielectric loss spectra are obtained in terms
of the physical model parametgdimensionless field and fractional exponeiihe model explains the anoma-
lous (Cole-Cole likg relaxation of complex dipolar systems, where the anomalous exponent differs from unity
(corresponding to the normal dielectric relaxajione., the relaxation process is characterized by a broad
distribution of relaxation times.
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[. INTRODUCTION been generalized to include the effect of time-dependent
jump probabilities and a fractional kinetic equation for trans-
The Brownian motion in a field of force is of fundamental lational and rotational diffusion has been derived when the
importance in problems involving relaxation and resonanceaverage waiting time divergdd,7].
phenomena in stochastic systefids2]. An example is the An important task in dielectric relaxation of complex sys-
theory of dielectric relaxation of noninteracting polar mol- tems is to extend the Debye theory of relaxation of polar
ecules due to Debyg3]. That theory is based on the Smolu- molecules to fractional dynamics, so that empirical decay
chowski equation for the noninertial rotational diffusion of functions, e.g., the stretched exponential of Williams and
the molecules in an external electric field. The Debye theoryVatts[8], may be justified. Such a generalization of the De-
has a variety of applications in the interpretation of dielectricbye theory was given in Refg5,7,9. There, the Debye
relaxation measurements of molecular liquids and solutiongheory of dielectric relaxation of an assembly of polar mol-
However, it cannot explain the experimental data on dielececules is reformulated using a fractional noninertial Fokker-
tric relaxation of complex systems such as amorphous polyPlanck equation for the purpose of extending that theory to
mers, glass-forming liquids, etc. Here the relaxation behavioexplain anomalous dielectric relaxation. It was shown that
may deviate considerably from the exponentaébye pat- this model can reproduce nonexponential Cole-Cole-type
tern and is characterized by a broad distribution of relaxatioranomalous dielectric relaxation behavior and that it reduces
times[4]. The relaxation process in such disordered system® the classical Debye model of rotational diffusion when the
is characterized by the temporally nonlocal behavior arisinganomalous exponent is unity.
from the energetic disorder which produces obstacles or traps The application of a strong direct currefdc) electric
which delay the motion of the particle and introduce memoryfield Ey to a polar liquid comprised of dipolar molecules
effects into the motionj5]. The memory effects can be de- results in a transition from free thermal rotation of the mol-
scribed by a fractional diffusion equation in the derivation ofecules to partial orientation with hindered rotation. This
which is incorporated a waiting time probability density change in the character of the molecular motion under the
function[4]. That function governs the random time intervalsinfluence of the field has a marked effect on the dielectric
between single microscopic jumpger reorientations in the properties of the fluid insofar as dispersion and absorption of
case of rotational motignof the particles. The underlying electromagnetic waves will be observed at the characteristic
microscopic model is a continuous time random walkfrequencies of rotation of the molecule in the fidig. A
(CTRW) [6]. The situation is thus unlike that in a conven- similar effect arises in magnetic relaxation of ferrofluids sub-
tional random walk which is characterized by a microscopigected to a strong dc magnetic figtth. The similarity of the
time scale which is small compared to the observation timeproblems of dielectric relaxation of a polar fluid and mag-
The microscopic time in the context of the conventional ran-netic relaxation of a ferrofluid is not surprising because, from
dom walk is the time the random walker takes to make aa physical point of view, the rotational Brownian motion of
single microscopic jump. In the CTRW, on the other hand, nanagnetic particlesmagnetic dipolesin a constant magnetic
such microscopic time scale exists because of the power-lafield Hg is similar to that of polar moleculgglectric dipoleg
dependence of the waiting time probability distribution func-in a constant electric field&,. Orientational relaxation of
tion leading to the divergence of the characteristic time scal®rownian particles in the context of the normal rotational
[4]. A common feature of all such systems is that they exhibitdiffusion in the presence of a dc field has been treated in
anomalous relaxation behavior. Recently, the CTRW hasletails in Refs[2,9-18.
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In the present paper, it is demonstrated how the linear V(9, @,t) = — uEq cos® — uE,(t) cose sin 9, (4)
response of an assembly of noninteracting polar Brownian ) . Y )
particles to a small external fielif, applied parallel and respectively. The operatD; = (4/t),D;” in Eq. (1) is
perpendicular to the bias field, may be calculated in the given in terms of the convolutioiithe Riemann-Liouville
context of the fractional noninertial rotational diffusif@j in ~ fractional integral definition[4]
the same manner as normal rotational diffudid®]. In order 1 [PWS,ot)dt
to carry out the calculation, it is assumed that the rotational oD W(9, ¢,t) = i i
Brownian motion of a particle may be described by the frac- (o) )y (=)
tional noninertial Fokker-PlanckSmoluchowski equation,
in which the inertial effects are neglectgd. Both exact and
approximate solutions of this equation are presented.

wherel'(z) is the gamma function. Here, we consider sub-
v\/g.iffusion phenomena only0<o<1;0=1 corresponds to
d

shall demonstrate that the characteristic times of the norm fe normal (f]llffus_mm T_hﬁs thle fr?ct:jonal derivative 'T a tipe
diffusion process, namely, the integral and effective relax.2T memory function with a slowly decaying power law ker-
ation times, obtained in Ref§2,12,17, allow one to evaly- "€l in the time. Such behavior arises from random torques
ate the dielectric response for anomalous diffusion. MoreWith an anomalous waiting time distribution, that is, from a

over, these characteristic times yield a simple analyticc';ﬂ‘r"’wt"’lI time random walk witlr as the intertrapping timp].

equation for the complex dielectric susceptibility tensor de-! "€ Physical meaning of the parameters the order of the

scribing the anomalous relaxation of the system. The eXaé‘{actional derivative in the fractional differential equation de-
solution of the problem reduces to the solution of the infinitescr'b'fng th? CO’?“”““”f"' “m:E ofa randon; walkl V\."th a chgotlc
hierarchies of differential-recurrence equations for the correis‘atlk0 waiting timegoften nOV\;}n as "ﬁ ractafl It'm?,. ran 0”}
sponding relaxation functions. The longitudinal and trans\V& ) [18]H Htfnweveir, amore p yflcr? y USG;J de. Inition o

verse components of the susceptibility tensor may be calcyZ 1S @ the fractal dimension of the set of waiting times

lated exactly from the Laplace transform of these relaxatiof’Nich is the scaling of the waiting time segments in the
functions using linear response theory. random walk with magnification. Thus measures the sta-

tistical self-similarity(or how the whole looks similar to its
Il. FRACTIONAL ROTATION DIFFUSION party of the waiting time segmen{48,19.
IN AN UNIFORM DC EXTERNAL FIELD The formal solutions of Eq(1l) are obtained from the

Sturm-Liouville representatiof8,4,1
Let us suppose that the uniform dc fidk} is directed P 84,19

along theZ axis of the laboratory coordinate system and a
small probing fieldE; having been applied to the assembly W(S,¢,t) = >, (D, @) F(t). 5
of dipoles in the distant pagt=-«) so that equilibrium con- p=0

ditio_n_s are _fquiIIed at timet=0, is _switc_hed off e_llt=0. N Here, according to Eq1), the decay modeE,(t) obey the
addition, it is supposed that the fielg, is weak(i.e., uE; equation
<KT, which is the linear response conditiqu;is the perma-

nent dipole moment of a moleculk,is the Boltzmann con-

stant, andT is the temperatupe Here, the underlying frac-

tional rotational diffusion equation for the evolution of the
probability density functio®/(9, ¢, t) of dipole moment ori- where the eigenvalues, , are expressed in terms of the
entations in configuration spa¢é® and ¢ are the polar and €igenvalues\) of the Fokker-Planck operatdrgp for the
azimuthal angles, respectivelis [2,7] normal diffusion, viz.,

LFp(I)p(ﬁ; (P) == }\gq)p(’&a ()D) f

so that[2—4,19

whereLgp is the Fokker-Planck operator for normal nonin- NY = \YA0 %)
ertial rotational diffusion defined by o

oo

d =0
d—tFp(t) ==\ ,0Dt “Fp(0), (6)

Jd
EW: 777D "LepW, (1)

e 1f 1 i{sinﬁ<ﬂv+v_vﬂ>} The solution of Eq(6) is given by[3,4]
P 27| sing o9 9% KTad Fo(D) = Eg(=AJ 19,
L1 i( ﬂ/) @ whereE,(2) is the Mittag-Leffler function defined as
KTsirPdde\ de/|’ % o
_ : i - E (=2 ———.
7={/2KT is the characteristidDebye relaxation time for the o(2) EO T'(1+on)

normal diffusion,{ is the drag coefficient, and is the ori-
entational potential energy of the particle in the field. For theequation(7) exemplifies how the eigenvalues of the normal
longitudinal and transverse responses, one has distribution process are altered, in this case reduced, by the
_ _ nonlocal character of the anomalous diffusion process. The
V(9,1) = = uBo COSD = uBy (D) cosd ) eigenvalues of that process are related to their Brownian
and counterparts by the prefactet .
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lIl. DIELECTRIC RESPONSE FUNCTIONS

According to linear response theofg], the longitudinal
and transverse components of the complex dielectric susce
tibility ay(w)za’y(w)—ia’;(w)(FH , L) are defined as

( ) P B i ol
% =1 —IwJO ele'C (b, (8)
where
_ {cos9)(t) - (cost)
GO = (cos9)(0) — (cos ), ©
and
_ (cosg sin9)(t)
C.(= (cose sin 9)(0) (10

are the normalized relaxation functions,

2
#“No 2_
= (1+&2-cotffé)

a;(0) =
and
°N
o, (0) = %;(cothg— 1/8)

are the components of the static susceptibility tengor,
=uEy/ (KT) is the dimensionless field parametdl is the
concentration of dipoleg; --)(t) denotes the statistical aver-
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a.(w) _ T
a'(0) (w177

Br w— . Here the integral relaxation time,,; (the area
under the relaxation functignand the effective relaxation
time 7; (which gives precise information on the initial decay
of the relaxation function in the time domaifor normal
diffusion (c=1) are defined a§2]

IR

(14)

Y —
Tint =

(15
and

ES IRV (16)
In general, it is difficult to evaluate),, and 7}; from Eqs.(15)
and(16) [just asa,(w) from Eq.(12)], as a knowledge of all
the eigenvalues.} and corresponding amplitudes is re-
quired. However,7), and 7}; can be evaluated from their
equivalent definition§7]

J

1/C,(0). (18)

We remark that the characteristic time and 7};, Eqs.(17)
and(18), do not exist in anomalous diffusiqr<1). This is
obvious from the properties of the Mittag-Leffler function,

Y —
Tint =

C,(Hdt 17

and

Y
Tef

ages over the assembly of particles in the presence of a smalhich has initially (t<7) a stretched exponentigKohl-

probing ac field, and- - -); means the equilibrium statistical
averages.

The Sturm-Liouville representatiofb) is a formal solu-
tion as a knowledge of all eigenfunctiods,(,¢) and cor-
responding eigenvalueg) is required. However, this repre-
sentation is very useful as it allows one readily to obtain
solution for the correlation function€.(t). According to

Egs.(5~9),

Cylt) = X E,[- \Jr(t/n)’] (11)
(whereXcj=1) so that
S 12
a;(O) P1+(iwn)(TN})

because the Laplace transform of the Mittag-Leffler function

IS

e}

J

In the low (w—0) and high(w— =) frequency limits, the

eSE [- N r(t/7)7]dt= ————.
o= Rpri/)] S+ \y(19177

susceptibility tensor components may readily be evaluated.

We have from Eq(12)

afo)

Y
; _T'_m(in)lT+...
a0)

(13)

for w—0, and

rausch form [3,4] E,(-t°) ~ e "'@+9) and long time inverse
power law behavioE (-t?) ~t™7/T'(1-o).

The relaxation timesy,; and 7J; were obtained in the con-
text of the normal rotational diffusion model in Refs.

a[2,12,1] and are given byin our notation

e U3 fl e [2- cothé + e €12
" (1+&2-cottfé)sinhe ) 1-7
X (1 + cothé&)dz, (19
LTS SN
r L &L(é) -2, (20
for the longitudinal response and
T (20t D@ ( S )
L — - )l 0 ,
g Y ey \USO)|
(21)
L, L&
Tot= 275_ L©’ (22)

for the transverse response, whek¢é)=cothé-1/¢ is

known as the Langevin function and t5¢(0)|0:1 is defined
in the Appendix, Eq(A10). The behavior of the relaxation
times 7, and 7Z; is very similar: they are very close to each
other and decrease with increasifigsee Fig. 1.
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FIG. 1. Integral(7,: solid lineg and effective(7};: filled circles
and asterisksrelaxation times vg for normal rotational diffusion
in a dc bias field. Equation§19)—(22) have been used in the

calculation.

According to Eq.(12), the infinite number of relaxation
modes(corresponding to the eigenvalug®) gives a contri-
bution to the spectra,(w). However, as we shall see, these
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FIG. 2. Frequencyu‘(': as a function of ando.

the complex susceptibility are evaluated exactly in the Ap-
pendix by converting the problem of solving the fractional
diffusion Eq.(1) with V given by Eq.(3) into the calculation

of successive convergents of a differential-recurrence rela-
tion just as normal diffusiorfi2,12).

near degenerate individual modes are indistinguishable in the

frequency spectrum oft,(w) appearing merely as a single
band. Thus noting that

(23)

for all values ofé (see Fig. }, the spectrum ofv,(w) may be
approximated by the Cole-Cole equation

Y = Y
Tint = Tefr

a.(w) _ 1 (24
a;,(O) 1+(iwlw))”
where
wl =7 Y7Ll (25

IV. RESULTS AND DISCUSSION

The results of the calculation of the normalized
[4?No/ (kT)=1] loss spectra](w) ande’| (w) from the exact
continued fraction solutions and the approximate Egd)
are shown in Figs. 4-7; here, the low- and high-frequency
asymptotes, Eqq.13) and (14), are also presented. Appar-
ently as¢ increases, the spectra shift to higher frequencies in
accordance with Eq26); simultaneously, the half width of
the spectra increases with decreasingFurthermore, the
agreement between the exact continued fraction calculations
and the approximate E¢R4) is good[the maximum relative
deviation between the corresponding curves does not exceed

is the characteristic frequency at which the loss spectruna few (3-5 percent. Similar (or even betteragreement ex-

a’;(w) attains its maximum. Noting the low temperature be-

havior of the effective relaxation times, vizzy,~ 7/¢ and
o~ 27/ € at €1 [2,12], one can readily obtain from Egs.
(20), (22), and(25) at £>1

w'é ~ 7147 and oocl ~ 728V,

(26)

The frequencies). andw; as functions of and o are plot-

ted in Figs. 2 and 3. In the time domain, the single-mode

approximation Eq(24) is equivalent to assuming that the
relaxation functiorC,(t) as determined by the exact E41)
(which in general comprises anfinite numberof Mittag-
Leffler functiong may be approximated bwne Mittag-
Leffler function only, viz.

_ 1<£>"
T/ |
Due to the condition, Eq23), the single mode approxi-

mation, Eq.(24), correctly predictsa,(w) both at low (o

—0) and high(w— =) frequencies; moreovet;, (w) may be

C,(t) = Eg{ (27)

ists for all values ofé&. The accuracy of the single mode
approximation is due to the fact that ff=0, the potentials
(3) and (4) are single-well potentials so that the long-lived
mode due to overbarrier relaxati¢as in multiwell potentials
with two or more metastable stajegl9] does not exists.

logjolrw;]

determined in the entire frequency range as one shall pres
ently see. In order to estimate the accuracy of the approxi-
mate Eq(24), the longitudinal and transverse components of
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"

FIG. 4. Dielectric loss spectra
continued fraction solutiofEgs. (8) and (A4): solid lineg for o continued fraction solutiofiEgs. (8) and (A9): solid lineq for o
=0.5 and various values @& and compared with those calculated =0.5 and various values @f and compared with those calculated
from the approximate Eq24) (starg. The low (dotted line$ and  from the approximate Eq24) (star9. The low (dotted lines and
high frequency(dashed linesasymptotes are calculated from Eqgs. high frequency(dashed linesasymptotes are calculated from Egs.
(13), (14), (19), and(20), respectively. (13), (21), (14), and(22), respectively.

(w) evaluated from the exact FIG. 6. Dielectric loss spectra’| (w) evaluated from the exact

Thus the infinite number of high-frequency “intrawell” netic field decrease compared with those in the isotropic
modes(these near degenerate modes are indistinguishablmse. The anomalous relaxation behavior naturally appears in
appearing merely as a single high-frequency band in the diferrofluids due to the broad distribution of particle volume
electric loss spectruprmay be approximated effectively by a (for fine particles, the magnetic moment and the Debye re-
single mode. laxation time strongly depend om) [21]. The results ob-
Thus one may conclude that E@4) accurately describes tained may be regarded as a generalization of the solution for
the behavior ofy(w) anda, (w) for all frequencies of inter-  the normal Brownian motion in a dc bias figl#,12] to frac-
est and for all values of the field strend#) and anomalous tional dynamicqgiving rise to anomalous diffusionWe re-
exponent(o) parameters, so that the generalized Debyenark that the single-mode approximation works extremely
model can explain the anomalous relaxation of complex diwell both for normal diffusion(o=1) as well. Furthermore,
polar systems where the anomalous expomwediffers from  the internal field effects have been neglected. Thus the ef-
unity (corresponding to the classical Debye theory of dielecfects of long-range torques due to the connection between
tric relaxation, i.e., the relaxation process is characterized bythe average moments and the Maxwell fields are not taken
a broad distribution of relaxation times. In particular, theinto account. Thus the theory developed here is relevant to
theory may be applied to dilute suspensions of fine magnetisituations where dipole-dipole interactions have been elimi-
particles(ferrofluids by a simple change of notation. Experi- nated by means of suitable extrapolation of data to infinite
ments on the magnetization induced by a weak ac field sudilution. It should also be mentioned that just as in the con-
perimposed on a strong dc magnetic field may be realized imentional Debye relaxatioic=1), the Cole-Cole-like Eq.
practice in a ferrofluid as a large value §tan be achieved (24) may be derived from a number of very different models
with a moderate constant magnetic field due to the largésee, e.g., Ref§7,22,23). However, the advantage of using
value of the magnetic dipole moment(10*-10° Bohr mag-  an approach based on a kinetic equatisach as the frac-
neton3 of single domain particles. As observed by Fanetin tional Fokker-Plank equatigrover all other approaches is
al. [20,21, with increasingé, both the magnetic loss spectra that one may explicitly include an external field and exactly
and the relaxation times for ferrofluids in a strong dc mag-calculate its effect on the relaxation process. We also remark

o] §=50 )
1-6=100
3 3 2-0=075 “ 3
o~ 3-6=050 4 . £
IS ] 3
10 3
2
i 1 3
10° il e Rt P Rt e Rt Dats )
10 10° 10 10 10 10
or
. 5. sal as in Fig. = various values . 7. s s in Fig. = various values
FIG. 5. The same n Fig. 1 f@g=5 and vario alues of FIG. 7. The same as in Fig. 3 f@g=5 and vario lues of
ag. a.
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in the context of dielectric relaxation that the area of appli- _ ?1(iw)

cability of these results is restricted to the low frequency Ci(iw)=

range, as defined by the inequalityr,<1(y=1, L), be- f1(0)

cause the theory does not include the effects of molecular _2riwn” 1” 2n 1

inertia. A consistent treatment of inertial effects must be car- == (- 1), H Sk iw),

ried out using the kinetic equation for the probability density 10 oo ( D

function in phase spade]. (A4)
ACKNOWLEDGMENTS where the continued fractioi(s) is defined by the recur-

rence equation
| thank Professor W. T. Coffey and Professor J. L. Déjar- q

din for useful comments. » . vl el
Sh(i0) = g7~ t~ S (i0)]
APPENDIX: EXACT CONTINUED FRACTION SOLUTION __¢ L20n” € cIN )
FOR LONGITUDINAL AND TRANSVERSE on+1]” Tnn+D 2ne 1
RESPONSES

The complex susceptibility components,(w) can be The initial valuesf,(0) are evaluated just as normal diffusion

evaluated from Eq.12) by calculation eigenvalues) for the [2,12,
normal rotational diffusion[2]. However, a,(w) may be
much more effectively calculated by using the continued fn(0)=&[(P1Pyo— <P1>0<Pn>o]

fraction approaclisee Refs[1,2] for detailg.
~ Let us first evaluate the longitudinal resportkereW is = 51{2 N 1( Privo+ (Pn Do~ (P1>O(Pn>0],
independent ofp). By expanding the distribution function
W(93,t) in a Fourier series, (A5)
W) =S, (n+ 1/2)P(cos)f (1), where
n=0
. . o In+1/2(€)
one has from Eq(l) a differential-recurrence equation just (Pao= W (AB)
as for normal diffusior{2,12, 1z
fn(t) - 0D1 ToFoog(®) + Gufn(®) + G F e (D1(N = 1), &1=uE,/(KT) andl ,(2) is the modified Bessel function of the

first kind [24]. Here we have used the relati¢2n+1)P;P,

(A1) =(n+1)P,1+nP,_1 [24]. In particular, one has
where theP,(2) are the Legendre polynomial4], f,(t)
=(P)(t)—(Pyo are the relaxation functions, so th&j(t) F(0)= £ 21558 N 1 |§,2(g)] :§1[1+£2—cothz§]

=f,(t)/f,(0), anddgy, 0y, qy are defined as 3118 3 159

nin+1) _ én(n+1) . &anin+ 1) The appropriate differential-recurrence equation for the
h==""">%"" = —2(2n +1) = 22n+1)° transverse relaxation functions
Applying the integration theorem of the one-sided Fourier gn(t) :<COS€DP%(COSQ)>(U (A7)

transformation generalized to fractional calcul8k we have

from Eq.(AL) (P(2) is the associate Legendre functid@4]) so that

C,(t)=0g;(t)/g4(0), can be obtained from Eql) with V

wrfy(iw) = £(0) = (l0n)*ToFresliw) + Gof(io) given by Eq.(4) just as for normal diffusiori2,12,

+Gifalio)], (A2)
~ d — o0 nl-orN +
wheref(iw) denotes one-sided Fourier transform, viz., d_tgn(t) =7 %D “Tangn-1(1) + AnGn(t) + 9] (n=1),
~ = (A8)
fllw) :f et (t)dt. (A3)
0 whereq,,q,,q, are defined as
The three-term recurrence H#@\2) can be solved exactly for
the Fourier-Laplace transforrfy(iw) in terms of ordinary 4= - nn+1) __&n+ 1)? q=- én’?
continued fractions to yield " 2 7 ™ 20@2n+1’ "M 2(2n+1)°
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Just as the longitudinal response, EA8) can be solved
exactly for the Fourier-Laplace transfoi@q(iw) in terms of
ordinary continued fractions to yield

~ . _Glio)
C (iw)=——
(i) 9:(0)
27(IwT)‘Thl el
- 591(0 nzl( 1) ( 1)ggn O)H (lw)

(A9)

where the continued fractioﬁL(s) is defined by the follow-
ing recurrence equation:

PHYSICAL REVIEW E 70, 051106(2004)

Loy o O

H0 = = g
_En+1) [
" n(2n+1)

§n Ll :|_1
+ mﬁm(lw) (A10)

and the initial valueg,(0) are given by

n(n+1) nin+1) |n+1/2(§)
—2(2n n 1)[<Pn—l>0 (Praol=é1——— 2% Ipd

EquationgA4) and(A9) are the exact solutions of the prob-

lem. They allow one to calculate the longitudinal and trans-
verse components of the complex susceptibility from Egs.

(810,

qssﬁﬂ(iw)
2(iw7)” N
nin+1)

gn(o) = §1
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