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We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the
framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators
governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full
contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency
so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one
to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of
ordinary harmonic oscillators with damping. The features of this analysis are discussed.
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I. INTRODUCTION tions indicates a subordinated stochastic process. Their direc-
) i ) . . _tional process is related to a stochastic process with a stable
The harmonic oscillator, given by a linear differential gistribution. The parameter characterizing the stable distribu-
equation of secor_1d order W|th constant coefficients, is a COlon coincides with the index of the temporal fractional
nerstone of classical mechanicee, for example1,2)). To- jntegral/derivative in the corresponding kinetic equation.
day this elementaryand fundamentglconcept has the wid-  This' means that such an equation describes the evolution of
est physical, chemical, and engineering applications ang pnysical system whose time degree of freedom becomes
needs no introduction. Its success mainly rests on its ””ive"s'tochastic[lo]. The purpose of this paper is to expand the
sality, and its simplicity gives boundless intrinsic Capab"itiesinterpretation to the fractional oscillator.
for sweeping generalization. Suffice it to recall the passage Tpe paper is organized as follows. In Sec. Il we analyze
from the language of functions in phase space to operators igy ensemble of harmonic oscillators with a stochastic time
Hilbert space so that the oscillgtqry model came strongly intQock. The new clockrandom procegssubstitutes for the
quantum theory3,4]. Therefore it is no wonder that the frac- geterministic time clock of the ordinary harmonic oscillator.
tional calculus has also made an important contribution infhe nondecreasing random process arises from a self-similar

this way. . a-stable random process of temporal steps. Using properties
At first the approach had a formal character by changing the stochastic time clock, we obtain the equation for the

the second derivative in the harmonic oscillator equation to &4ctional oscillator. In the spirit of this approach the frac-
derivative of an arbitrary order. After finding the solutions of +j5nal oscillator can be considered as an ensemble average of
such equations their relaxation-oscillation behavior was esgggillators. Section Ill is devoted to a comparison of the
tablished[5,6]. The next step was a consideration of the tOta|dispersion properties of two media. One of them consists of
energy and the phase plane representation for the fractionghmped noninteracting harmonic oscillators, whereas the
oscillator [7]. To save the dimension of energy, it is neces-giner s the fractional oscillator. It turns out that their disper-
sary to generalize to the notation of momentum, althoughsjon characteristics have a lot of common features. We dis-
then the parametem loses also the ordinary dimension of ¢ss them in detail. Our conclusions are briefly summarized
mass(8]. In this case the momentum is expressed in terms of, gec. |V, The Appendix contains calculations for the re-

a Caputo-type fractional derivatijé]. The fractional oscil- — gponse of the driven fractional oscillator. They are useful for
lator is like a harmonic oscillator subject to a damping. Thei,e dispersion analysis in Sec. II.

source of the intrinsic damping is very intriguing. It is not

evident from fractional calculus, from the generalization of

the derivative. The question requires additional study ex- Il. NORMAL MODES
ceeding the bounds of fractional calculus itself.

Since it is a matter of the fractional integral/derivative  We start our consideration with the classical case of the
with respect to time, the answer to the aforementioned probharmonic oscillator. Based on the Hamilton functidt
lem should be sought by way of their concrete interpretation=(p?+ w?g?)/2, wherep and q are the momentum and the
Recently, a probability interpretation of the temporal frac-coordinate, respectively, andthe proper frequency, the mo-
tional integral/derivative was suggested@}. There exists @ tjon equations take the form
direct connection between stable distributions in probability
theory and the fractional calculus. The occurrence of the
temporal fractional derivativéor integra) in kinetic equa- dglat=oHlap=p, dplit=-dHlaq=-w’. (1)

Multiplying the first equation of1) by +iw and adding it to
*Electronic address: alexstan@ira.kharkov.ua the second equation, we arrive at

1539-3755/2004/78)/0511036)/$22.50 70051103-1 ©2004 The American Physical Society



A. A. STANISLAVSKY

dcldt=—iwc, dc*/dt=iwc*, (2)

where the complex-conjugate valuesand c* satisfy the
relations

C=(wq+ip)/\;’Z, c* = (wq—ip)/\%.

The solutions of Eqs(2) can be written as

. 1 .
c(t) =c(0)e'“t = ?[a}q(O) +ip(0)Je !,

Vew

c* (1) =c* (0)g“! = \%[wq(m “ipO)et. (3

The valuex andc* are also called the normal modes of the
oscillator[1]. They have a very pictorial presentation in the
form of a vector rotating just as the hand revolves around th

clock-face center with the frequenaey.

A physical system of harmonic oscillators coupled to an
environment will interact with the environmental degrees of
freedom. This leads to a damping of oscillatory motion. If
the interaction manifests itself in random fashion, one pos
sible way to account for perturbations induced by the envi- w2
ronment may be the following. Let us randomize the time
clock of the valuec(7) so that any characteristic time is
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Pa(t) =i[C(t) = c,() N w/2 = p(0)A) + wq(0)B(Y),
where

At) = f pS(t, NcoswTdr= Epa, 1(— w29,
0

B(t) = f pS(t, DSin w7 d7= Wt Epy, ge1(— 0212,
0

and

U=V
EM, V(Z) = i uu—du
27 ) (U*-2)
is the two-parameter Mittag-Leffler functigd3]. Here it is
easy to recognize the classical solutions &orl/2 (expo-
ential function and a=1 (sine and cosine The functions
(t) and B(t) exhibit clearly the relaxation features for
0<w<1/2, whereas for 1/2 a<<1 the functions represent
a damped oscillatory motion. The latter case just corresponds
to the fractional oscillator. In particular the valéét) satis-
fies the equation

A(t) = A(0) -

t
_ N\ 2a-1 2 ’
I'2a) fo (t=t)=*A(t")dt

absent. Assume that the time variable is a sum of randoruith A(0)=1, wherel'(x) denotes the gamma function. The
temporal intervalsT; on the non-negative semiaxis. If they appropriate equation can be written alsoBgt). It should be
are independent identically distributed variables belonging tQecalled here that the power kernel of the fractional integral

the strict domain of attraction of am-stable distribution

of order a, 0<a<1, “interpolates” the memory function

(0<a<1), their sum has asymptoticallyhe number of the  petween the Dirad function (the absence of memorand
intervals tends to infinitythe stable distribution with the the step functior‘(comp|ete ideal memonyhis means that

index a. Following the arguments 0f10,11, a new time

such memory manifests itself within all the time interval

clock is defined as the continuous limit of the discrete count{(0,t), but not at each point of timecomplete but not ideal

ing proces\N;=maxn e N:=L; T;<t}, whereN is the set of

memory. Under the ideal complete memory the system “re-

natural numbers. The time clock becomes the hitting timemembers” all its states, and this excites the harmonic oscil-

processS(t). Its basic properties are represented if,17.
The probability density of the proces$t) is written in the
form

1 o
pS(t,7) = —J e yel du, (4)
27T| Br

lations in such a system. The absence of memory causes only
relaxation. The order of the fractional integral represents a
quantitative measure of memory effe¢ist]. In accordance
with the theory of memory effects the fractional oscillator
contains simultaneously the oscillatory motion and the relax-
ation.

From the series representation Bf ,(z) we derive the

where Br denotes the Bromwich path. This probability dendeading asymptotic behavior of the valuag&) andB(t) for
sity has a clear physical sense. It describes the probability to—0: lim, ,oA(t)=1, lim,_,B(t)=0. According to[13], the

be at the internal time- at the real timet. In this case we
determine new normal modes

C,(h) = f pS(t, c(n)dr,
0

c,(t)= f ’ p(t, Ic* (ndr.
0

Direct calculations give

0,00 =16, + ¢, 01120 = a0 + 280,

two-parameter Mittag-Leffler function approaches zera as
— o in the sector of anglefarg-2z)|<(1-u/2)m, and in-
creases indefinitely ag— o outside of this sector. In our
case we can use the following expansion valid on the real
negative axis:

N-1 n

__ z -N
E,..(2) = EF(V_W)m(IzI ),

Z— — o,

Thus, for 0<a<1/2 and 1/X o<1 the valuesA(t) and

B(t) decrease algebraically in time. As distinct from the case
of a damped harmonic oscillator, the model describes another
damping mechanism, without any external frictional force.
The damping of a fractional oscillator is due to internal

051103-2



FRACTIONAL OSCILLATOR PHYSICAL REVIEW E70, 051103(2004

causeg15]. How to explain the attenuated oscillations? Thisforce. The dynamic response of the driven fractional oscilla-
important feature of fractional oscillators has already beeror was investigated if8]:
noted from time to time in various publicatiofts,7,8. How- ;
gi\éira the source of such intrinsic damping remained unde- x(t):f Ft)(t—t)1E, (- wft-t)9dt. (6)
. 0

We suggest the following interpretation. The fractional

oscillator should be considered as an ensemble average ofiS allows us to define the response for any desired forcing

harmonic oscillators. When all harmonic oscillators are idenfunction F(t). The “free” and “forced” oscillations of a frac-

tical, and we set them going in the same phase, their fulfional oscillator 'dep.end on the i_ndex However, in the first
contribution will be equal to the product of the number of caseé the damping is characterized only by the “natural fre-
oscillators and the response of one oscillator. This occasiofU€NCY” o, Whereas the damping in the case of “forced”
appears iflx="1. However, if the oscillators differ a little from ©0Scillations depends also on the driving frequencyach of -
each other in frequency, even if they start in phase, after giese cases has a characteristic algebraic tail itself, associated
while the oscillators are allocated uniformly around the clockWith damping[15]. . ,

face. Each response will have an antiphase response of an- Let F(t) be pe-nodlc,F(t):.Foel“". Then the solution of
other oscillator so that the total response of all harmonicEd- (5) is determined by taking the inverse Laplace trans-
oscillators in such a system is compensated. Although eacdi®'™m

oscillator is conservativéts total energy is savedthe sys- 1

tem of such oscillators, resulting in the fractional oscillator xt)=—|[ € > o
(1/2<a<1), shows a dissipative nature. In this connection 2m) Jg (S + w?)(s" + wp)

it should be pointed out that a similar situation may be ob-rpg gromuwich integral7) can be evaluated in terms of the
sgrved also n-a medllum of harmonic oscillators, having acheory of complex variables. Some particular examples of
given probability density in frequenagor example, the Lor- ¢4 cing functions were considered [8]. However, the set
entz distribution[16]). Both these cases are closely con-y s out to be scanty enough for our aim. The necessary

nected with eac_h other and ha_ve a common gro_und, thoug%omputations with=(t) =A sin(wt + ¢) are fulfilled in the Ap-
generally speaking, they describe different physical syStem%endix The phase is constant

As has been shown ifi7,18, Lagrangian and Hamiltonian If one waits for a long enough time, the normal mode of

mechanics formulated with fractional derivatives in time canig system is damped. Therefore, consider only the forced
be used for the description of nonconservative forces such 85 200 After the substitution o}_(t):x ot for x(t) in
friction. The interpretation of the fractional oscillator [ih9] Eq. (5) w e. obtain 0

should also be mentioned. In this case the Liouville equation
is formulated from a fractional analog of the normalization ot oy el it A

condition for the distribution function that can be considered o€ =~ F(a)f (t=t')*xe dt

in a fractional phase space. The latter has a fractional dimen- 0

sion as well as the fractional measure. The volume element 1t Nl it e

of the fractional phase space is realized by fractional exterior + mj (t=t) " Foel dt’. (8
derivatives. The usual nondissipative systems become dissi- 0

pative in the fractional phase space. However, the approadh is convenient to change the variahlgt—t")=¢ in the in-
is different from ours. It operates with fractional powers of tegrand. Next we can divide out ej§pt) from each side of
coordinates and momenta. Such fractional systems are nogy, (8) and directt to infinity. The procedure permits us to

Fo(s+jw)ds

()

linear. extract the contribution of steady-state oscillations. Using the
table integral[20]
I1l. DISPERSION * ; ;
f e 7 dz=T(a)e ™2,
Now we examine the behavior of the fractional oscillator 0

under the influence of an external force. From above thig ;
o : . g. (8) gives
case corresponds to oscillations in the ensemble of noniden-
tical harmonic oscillators noninteracting with each other. In : Fo 9
the framework of this model the fractional oscillator with the o= [w8 + 0® exp(jmal2)]’ ©)
initial conditions x(0)=0 and x(0)=0 is described by the . _ _
equation This result is completely confirmed by a more comprehen-

sive analysis given in the Appendix.
g ft el i s As is well known, the ensemble behavior of identical non-
(t=t")**x(t")dt ; . : - ; ; - ;
T(a)), interacting harmonic oscillators is a basic topic for consider-
ation in the classical theory of dispersion. It is necessary to
take into account the nonidentity of oscillators, for example,
®) for the dispersion analysis of propagating electromagnetic
waves into a heated gas, where the spread in molecule ve-
where 1<a<2 should be retained, ané is the external locity values leads to a Doppler shift of the oscillators’ nor-

X(t) =-

+ ij‘t (t _ tl)a—lF(tr)dtr
I'(e)Jo

051103-3



A. A. STANISLAVSKY PHYSICAL REVIEW E 70, 051103(2004)

fF(m/mo, o)

_4 L -
0 02z 04 06 08 1 12 14 16 18 2 FIG. 1. Dispersion dependence
oo of the fractlonal_oscnlator in the
0 form of the functionsfg(w/ wq, @)
10 T T T T T T T T T and g,:(w/wo,a/) with different
values ofa, from 0.1 to 0.9 with a
8r 1 step 0.1.

g (len,, a)

mal frequency with respect to the forced field frequency.dependence of these permittivities an/wy=z. Denote
Right now let a medium of oscillators be one that results in2y/ wy by B, where y defines the damping in each classical
the fractional oscillator. The polarizability of such a medium harmonic oscillator. Then we have the following depen-
interests us. In this case the permittivity is writtenexsl  dences for the fractional oscillator:
+4me’X,/ (Fom), wheree is the electron charge. It should be

1+z*cogmal2)

pointed out that in contrast to a simple harmonic oscillator Reer(w) — fr(z,a) = ;
the parametem does not have the ordinary dimension of 2%+ 22" cogmal2) + 1
mass. However, the generalized momentprof the frac-

tional oscillator is defined via the Caputo-type fractional de- z*sin(mal2)

rivative of ordera/2 [6] so that the expressiqof/(2m) has IM €x(w) — gr(z,2) =

the dimension of energysee details iN8]). The real and
imaginary parts of the permittivity take the form

2%+ 2z codmal2) + 1’

and those for the classical harmonic oscillators with damp-

ing:
A wd + w® cod Tal?2)]
Ree(w) =1+ 50 P , (10) Rees(w) - fo(z,8) = ———Z
wy" +w wyw® cogmal2)] €eplw o(zB (1—22)2"'22,32’
A€ w® sin(mal?)
Im =- .11 _ z8

e(w) m[wg“ + 02+ 2w cogTal2)] (a7 Im ep(w) — do(2,8) = (1-2)2+ 23

For «=2 we arrive at the Sellmeier formu[@1]: If the paramete8 determines the damping value in the har-

_ 2 9 monic oscillator, the index just characterizes the same for
elw)=1+ 47Te2N/[m(w° -9l the fractional oscillator. The extremum valuesfgfz, 8) and
where we includeN to account for the number of harmonic gp(z, 8) decrease with increasing paramegeaind vice versa
oscillators in the medium. In this case the parameteis  for fe(z,«) andge(z, @): the extremum values increase with
really the electron mass. The index=2 corresponds to the increasing index, though it should be noted that this index
classical harmonic oscillator without any damping, and allitself belongs only to the interval 4 a<2. The functions
the oscillators in the ensemble go in the same phase. Theré:..(z) andg...(2) are shown in Fig. 1 and Fig. 2.
fore, the Sellmeier formula contains only the real part of the  From the relationg10) and(11) it follows that there is a
permittivity. frequency range where the absorption is small, and the re-
We can conduct a clear comparison between the dispefraction coefficient increases with frequengyrmal disper-
sion characteristics of the fractional oscillator and those of agjon). Moreover, in the frequency range where the absorption
ensemble of classical harmonic oscillators with dampingis big, anomalous dispersion happens with the refraction co-
Normalize the frequency in their permittivity byw. In fact  efficient decreasing with increasing frequency. In this con-
the constantglike e, m, and so ohin Ree(w) and Ime(w)  nection it should be pointed out that the presence of normal
define only a scale. Thus, one can pick out the functionahnd anomalous dispersion is typical for such an ensemble of
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FIG. 2. Dispersion dependence
in the classical caseensemble of
ordinary harmonic oscillators with
damping with different values of
B, from 0.1 to 1.0 with a step 0.1.
&
g
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ordinary harmonic oscillators and is well known. However, 1 (° . 1 (7

here we have established that normal and anomalous disper- ~ X1() == ->— f eX(s)ds— —— f e*X(s)ds.
N . . . . 2m) ), 27 Jg

sion is also typical for the medium described as a fractional

oscillator. To enters=rel™ into the integral taken along the upper bor-
der ands=re™’7 into the integral along the lower border, we
IV, SUMMARY get
We have shown that the fractional oscillator can be con- X (t) = f €M, (r)dr
sidered as a model of the harmonic oscillators’ medium. Its 0

stochastic properties accumulate in the index of the fracyiy

tional integral/derivative with respect to time. The frequency

difference of the oscillatorgconstituents of the fractional

oscillaton from each other is at the bottom of the intrinsic c
damping for such a system. As a consequence, the dispersion -\
properties of the medium, as for the fractional oscillator, are

similar enough to the case when a medium is modeled by an

ensemble of harmonic oscillators with damping. R

Im

0 jo
o .
APPENDIX @ 8™ 1
We here derive properties of the response funct&rfor
the forcing functionA sin(wt+ ¢) directly from its represen-
tation as a Laplace inverse integral

Re

X(t) = i X(s)ds= i A(ssin ¢2+ wacosf)ds
27TJ Br 277] Br (32+ ® )(S + wo)

(A1)

where the phaseb is constant, Br denotes the Bromwich
path, and K «=<2. By bending the Bromwich path into the
equivalent Hankel patliFig. 3), the response functiori(t)
can be decomposed into two contributions. FIG. 3. Contour inside which the functid(s) remains single

The first contribution arises from the two borders of thevalued and analytical all over, with the exception of pol¢s and
cut negative real axidines DE and FG): wo expEjm/ ).
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Ar*(w cos¢ —r sin ¢)sin ra
m(r2 + 0?)(r?* + 2r*w§ cosmra + w3

M, (r) =

PHYSICAL REVIEW E 70, 051103(2004)

D = wo{wj cod wt sin(7/a)] + w? cod wt sin(7/ )
+ 27l al}.

The second contribution is determined by the Cauchy As a resu't, the response functia(‘t) takes the form

theorem on residues. The integrand of E4l) has the fol-
lowing poles:

S= +jw and s=wyEe’™?,

Calculating the residues of the polss +jw, we obtain

)

It remains to define the residues for the two other poles:
e’(ssin ¢ + w cos¢)
(s? + w?)(d/d9)(s* + »f)
~ ewot(cosw/aij sin w/a)[woetjw/a sin ¢ +w COS¢]
jw(a—l)/a[wgethw/a + (02]
They lead to
2A exfd wgt cog 7/ a)](C cosé — D sin ¢)
a 0 {wg+ 0* + 2030 cog27la)]

g Sin(wt + @) + 0 sin(wt — Tal2 + ¢)

a)ga + 0% + 205 w® cog mal2)

e

:|S=woetj mla

a 0¥l

X5(t) =
where

C= w{wS cod wot sin(w/a) — w(1 + o)l a]

+ w? cog wet sin(7la) + m(1 - a)lal},

X(1) = X4 (1) + Xo(t) + X5(1).

Since coém/ a) <0, the termx;(t) describes the relaxation of
the normal mode in this system. Forklx<2 and allr the
denominator of the valudl(r,«) is always positive:(r2*
+2r¢wgcosma+ wéc’) > (r“—wg)zzo, and the term sima is
always negative. Depending @) each of the terms cos¢
andr sin ¢ may be both positive and negative. However, the
value x,(t) becomes vanishingly small with—c. The
steady-state oscillation in this system is defined only by the
term x,(t). The latter can be expressed ¥gt) =A; sin(wt
+¢- ), where

A
T e+ 5® + 20w cod wal2) V2

o= arctar{ } .

To put $=0 in Eq.(Al), we arrive at the results of Sec. 4.3
from [8]. It should also be noted that the oscillatory contri-
bution x5(t)| 4-0 has some resemblance to the “free” oscilla-
tions of a damped harmonic oscillator and the forced oscil-
lations of a driven damped harmonic oscillaf@b].

Ay

o sin(mal2)
w® cogmal2) + wj
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