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Stochastic equation for a jumping process with long-time correlations
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A jumping process, defined in terms of the jump size and waiting time distributions, is presented. The
jumping rate depends on the process value. The process, which is Markovian and stationary, relaxes to an
equilibrium and is characterized by a power-law autocorrelation function. Therefore, it can serve as a model of
1/f noise as well as of the stochastic force in the generalized Langevin equation. This equation is solved for
noise correlations~1/t; the resulting velocity distribution has sharply falling tails. The system preserves
memory about the initial condition for a very long time.
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I. INTRODUCTION In this paper we consider a simple power-law correlated

A jumping process can be defined in terms of two probJUMpPINg process which is ex_empt from that dlffl_culty. It can
ability distributions which determine the jump size and thebe regarded as a generalization of the KP in which one of the
waiting time between consecutive jumps. One usually asduantities defining the process—the probability density dis-
sumes that the two distributions are independent of eackibution after a jump—has been substituted by the jump size
other. Such a process is often regarded as a generalized foprobability distribution. A one-dimensional version of the
of the random walk and used to describe diffusive transportgeneralized kangaroo process has been presented in Ref.
That approach, known as the continuous-time random walkl17]. The objective of this paper is not only to analyze the
theory[1], is able to account for various forms of diffusion, master equation for the process but above all to obtain the
both normal and anomalous, by a suitable choice of the probstochastic variable itself by solving a stochastic equation.
ability distributions defining the proce$g8]. Power-law de- Therefore the presented procedure can be utilized as a noise
pendences are especially interestfi3g4]. A stochastic tra-  model for numerical simulations of the stochastic trajectories
jectory characterized by jump sizes so distributed exhibits @ the framework of the Langevin formalism. We define the
pattern typical for Lévy flights and features systems that reprocess and discuss the corresponding equations in Sec. II.
veal enhanced diffusiofb]. On the other hand, long tails of The expression for the autocorrelation function is derived in
the waiting time distributiorlong rest$ evoke the opposite  gec |||, whereas Sec. IV is devoted to the application of the
effect: they are responsible for subdiffusifi6]. Processes qcess as a model of some specific form of the correlated
that possess such tails are often treated in terms of the fra{j;ica in the generalized Langevin equation. The main results

tional diffusion equatiorf7—-10Q. ; ;
For uniform distribution of jumps in time, i.e., if the wait- are summarized in Sec. V.

ing time probability density has an exponential form, the

jumping process relaxes to some stationary equilibrium. The 1. DEEINITION OF THE PROCESS

kangaroo process$KP) [11] provides a simple and well-

known example. Instead of a jump size distribution, this pro- We assume that the stochastic process is stepwise, i.e., a
cess assumes a probability distribution of the process valugrocess valuex is constant within the time intervals
after the jump and, in addition, a jumping rate which de-(t;,t;,1):x(t)=x; for te (,t,4). Jumping timest; are ran-
pends on the process value. An advantage of the KP from thgomly distributed and jumping rate(x) depends on the pro-
point of view of possible applications stems from the factcess value. The size of the jump, defined as the difference
that it can be easily constructed for arbitrary correlationspetyeen the values of after and before the jump, is deter-

The need for models_ of C(_)rrelated noises is_obviou_s. Fomined from a given probability distributio®(éx). Then the
example, long correlations, in both space and time, arise as@,nhastic trajectory(t) obeys the equation
result of the fast mode removal procedyf®—-14. Long

tails of the correlation function emerge also in the relaxation Xjs1 = Xj + OX (1)
process of a system coupled to a fractal heat bath via a ran- o . .

dom matrix interaction/15]. In those cases the stochastic where the waiting timer=t;.,~t; is governed by the Poisso-
dynamics obeys the generalized, non-Markovian, Langevifiian distribution

equation and the Monte Carlo simulation of solutions re- Po(7) = p(X)e9T, 2)
quires a specific model of the noise. Unfortunately, the KP is

not suitable to model noises with power-law correlations: thevhich determines the probability density that a jump occurs
distribution of the stochastic variable during the trajectoryin the interval(7,7+d7). The initial condition for Eq(1),
evolution is biased because the waiting time distributionX(to)) =X, follows from the given probability distribution
changes its shape when it is inserted into the generalizeBo(x). Equation(1) is stochastic because it determines the
Langevin equatiofil6]. As a result, the relaxation to thermal time evolution of the stochastic variabtein contrast to the
equilibrium cannot be achieved. master equation which can give us only probability distribu-

1539-3755/2004/18)/0511026)/$22.50 70051102-1 ©2004 The American Physical Society



T. SROKOWSKI AND A. KAMINSKA PHYSICAL REVIEW E 70, 051102(2004)

tions. The trajectork(t) can be constructed step by step by 27
sampling consecutive values ofand 8x from the distribu- Ep(d’,t) =-uPp(e)+ | Qlp— ¢ )u(¢)p(¢',1)dg".
tions Pp and Q, respectively. 0

The process is Markovian and stationary. The transition (8)
probability p,,dx that the process value is betwerrand x o ) )
+dx at an infinitesimal time\t, providing it was equal ta’  1he equilibrium solution of Eqe8), P(¢), has to satisfy the
att=0, is given by condition v(¢)P(¢)=const. ThereforeP(¢) becomes quite

simple:

P (X, At],x",0) =[1 = »(x")At] (X’ = X) + v(X")AtQ(X —X').

P(¢) = 1/v(¢). 9

@ (¢) (¢) 9
Since for the jumping raté€7) [571/v($)dgp=1, P(¢) is

In the above expression we have utilized the fact flhahay  properly normalized.

depend only on time differences. The first term on the right- Numerical simulation of stochastic trajectories requires

hand side of Eq(3) is the probability that no jump occurred random numbers distributed likg(5x), according to Eq(6).

in the time interval(0,At). The term»(x")At means the For that purpose we apply the rejection method which allows

probability that one jump occurred. The master equation fous to avoid evaluating complicated integrals. The algorithm

a probability densityp(x,t) can be obtained by calculating is the following. First we sample uniformly distributed ran-

the time derivative fronp(x,t) and taking into account all dom numbersS¢=¢—- ¢’ from the interval(0,2m). Thenq

possible initial valuex’: =Q(d¢) is calculated and this value is compared with an-
other random numberq, uniformly distributed within the

d interval (Qmin, Qmaxy Where Quin and Q. denote the mini-

Ep(x,t) mum and maximum values @, respectively. Ifr 5> q then

o6¢ is accepted, otherwise it is rejected and the sampling

= lim (f P (X, At|x’,0)p(x’, t)dx’ —p(x,t))/At. procedure is repeated.

At—0*
(4) IIl. AUTOCORRELATION FUNCTION
FOR THE JUMPING PROCESS

We get the master equation in the following form: The autocorrelation functiogACF) of the process¢(t)
=(x(0)x(t)), where the average is taken over the stationary

9 __ oyt / / , distribution P(x), can be evaluated from the following ex-

(5

The jumping process described above is still too general ~ C(t) :f f X' (to)X(to + PO, tiX")p(x’, to)dx dx”. (10)
and thus we introduce additional restrictions. kdie a two-
dimensional vectorx=(x;,X,), with the unit length|x|=1.  The conditional probability of passing fromf to x during
Therefore we require the norm to be preserved during thehe timet, P(x,t|x’), can be obtained by taking into account
jumps. With these assumptions, the process can be describgfi possible paths leading froxi to x and summing over the
in terms of a single angle variablg:x;=cos¢) and X,  jumps[19]. The final formula for the Laplace transform of
=sin(¢). For the probability densitf) we take the Gaussian the ACF can be expressed by the following series:

’ Y - 2m
Q&) ~ e X~ XVT20" = Ngos o e, (6) C(s)= f =g
o vP)v(p)+s
whereo is a given width and the normalization constait o , ,
=1/[2mly(1/5?)] contains the modified Bessel function. The + Ql¢-¢')cosdd-¢ )d¢ dg’
other quantity defining the process is the jumping rate o MPt+s we)+s

which we assume in the following form:

L5 (7 codd=do) Qb= by

)= 2SS @ )0 Hdo+s P +s
L-alcodd) Qs 40
X| ] ——""u(¢_)d¢_1 |dgpodeb.
where 0<a<1. We will demonstrate in Sec. Il that the iz i) +s

expression7) corresponds to a process with power-law au- (12)
tocorrelation function for large times. Taking into account

the above assumptions, we obtain the master equéiioin Inverting the Laplace transform we obtain the final expres-
the one-dimensional form sion for the ACF:
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e T T 3 from the definition, by means of single trajectory evolution
1 according to Eq(1), for 0=1 ando=2.5. The equilibrium
probability distributionP(¢) was taken as the initial condi-
tion. The result for the larger value of agrees very well
with the first term in Eq(12) and it can be parametrized by
E the function

1-e®
8t

C(t)= (14

The existence of long tails of the ACF means that the

L R A | L MR |
004 1 10 power spectrum of the process, defined by the Fourier trans-

form F(x) as S(w)=|F(x)|?, is strongly enhanced ab=0.
FIG. 1. Autocorrelation functiorC(t) for the jumping rater ~ The power spectrum can be obtained directly frof by

given by Eq.(7) with «=0.5. Numerical simulations have been using the Wiener-Khinchin theorefi8]: S(w)=F(C(t)). For

performed foro=2.5 (solid line) and o=1 (dotted ling. The first  0.5<a<1 we get the following result:

term in Eqg.(12) is also showr(dashed ling as well as the param-

etrization by Eq(14) (dash-dotted ling S(w) ~ o™ (15
Then our jumping process is characterized by the algebraic

™2 ()t power spectrum and becomesf hbise fora— 1. The over-
C(t)= 4J ") d¢ population of small frequency values is due to the fact that
0 the process is dominated by long waiting times between con-
w2 ral2 _ o2 secutive jumps. Such long intervals correspond to small val-

+ SNJ J (e°089md)I0" — greoddmdlleT) ues of¢, i.e., to evolution along th&, axis. The quantitys
o 70 =1/v, which means the average of the Poissonian distribu-
g Ut _ g H it tion (2), is well suited to characterize long rests. The statis-
Xcodp—¢')——————dpdp' + ---. tics of s is directly connected with the process value prob-

) = v(¢') ability distribution P(¢) and, in accordance with that, the

(12)  density distribution of in the equilibrium,y(s), can be de-
We are interested in the asymptotic behaviorcet) for ~ fved from the equationy(s)ds =|P(4)d4|. In the limit of

H o lla H
larget. In this limit the first term of Eq(12) can be estimated arge s we obtainy(s)~s™** and this result means that a
easily. Because of the exponential dependence of the intd-0issonian waiting time distribution with v_arlable jumping
grand ont, only the vicinity of =0 contributes to the inte- 'at€ can possess, effectively, power-law tails.

gral: v=1/t. Therefore the first term can be approximated by . 1h€ jumping process with=0.5 resembles a determinis-
the integralfZexp(- %)/ ¢odp~ 114, In the second term tic dynamical system: a Lorentz gas of periodically distrib-

: ; . (2 / ted hard disks. In this lattice a particle is elastically re-
we first calculate the integral over: [72(fZ?d¢)dg’. Ifwe Y .
take the limit of large in the inner integral, the exponential ;Irected tﬁy trf]ihd'SksrtiaTd V;/ari]r?f(iar:?t friie(lj)i/r aTiorqg th?r?l' ITthe
containing¢’ can be dropped. Moreovef ¢) becomes neg- €€ patns of the particie are e ections parallet to
- , , the symmetry axes. The system is characterized by the ve-
ligible, compared ta/(¢’), as well asp in the arguments of i : ; . .
i ine function. Then f '~0 h locity autocorrelation function with tail X/ analogously to

e cosine function. Then for any we have Eqg. (14), and by the power spectru® )~ |In(w)|. How-

ever, the long free path distribution falls faster than its sto-

e Mt g Mt chastic counterpart, as3 [20].

~ o™t ’
~e? (')
v(p) —v(¢')
IV. APPLICATION TO THE GENERALIZED LANGEVIN

and the integral oveg can be easily evaluated. The required EQUATION

time dependence is of the fortn’® which means that the
second term falls with time faster than the first one. The If a Brownian particle is driven by a stochastic force with
same conclusion applies to the higher terms. The secord finite correlation time, the time evolution of the velocity
term has a simple asymptotic dependence also on the kernebeys the generalized Langevin equatj@n,22

width o. Expanding the exponential functions overoldnd .

taking into account that lim,glo(x)=1, we find that the sec- de_(t) - _ aV(r) _ mf K(t- Dv(ndr+F@t)  (16)
ond term decreases like &7 for large o. We finally con- dt ar 0

clude that the ACF can be well approximated by the first ) - )
term of Eq.(12) and its tail is algebraic: whereV(r) is a position-dependent external potentidl) is

a stochastic force, anoh denotes the mass of the particle.
The integro-differential equatiofl6) can be solved numeri-
cally for anyV(r) and any memory kernéd(t) if we apply a

Figure 1 presents ACF fo=0.5; C(t) was calculated concrete model for the noise(t). In the caseV(r)=0 Eq.

C(t) ~ tr"Ye for t — oo, (13
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(16) is manageable by Laplace transforms. We obtain the ' '

following solution:

t
v(t) =R(t)v(0) + m™t J R(t - DF(7)dT, (17)

0

where the Laplace transform of the resolvB(l) is given by
the equation

R(s) = 1[s+K(9)]. (18)

In Eqg. (16) the usual damping term—proportional to the

velocity—that appears in the ordinary Langevin equation has
been substituted by the retarded friction in the form of the

memory kernel. In the cas¥(r)=0, Eq.(16) characterizes

the equilibrium properly, satisfying the second fluctuation-

dissipation theorerf23]. Then the kerneK(t) has to be pro-
portional to the noise ACE(t): K(t)=C(t)/mkgT, whereT is
the temperature that characterizes the heat batlkargthe
Boltzmann constant. The introduction of memory friction

changes the shape of the velocity autocorrelation function

considerably: it is no longer restricted to exponentials.

We wish to demonstrate how the process described in th
preceding sections can be applied as a model for the driving

stochastic force in Eq.16). For that purpose we choose an
ACF possessing a tait 1/t which characterizes, e.g., noise-
induced Stark broadenin@4] and nuclear collisions in the
framework of a dynamical mod¢R5]. It can also be found

PHYSICAL REVIEW E 70, 051102(2004)

G 10
t

FIG. 2. The velocity variance calculated from E&5) (solid
line) and by numerical simulation from E(4) (dotg. We assumed
v(0)=0, T=1, andm=1. The units are determined by the condition
szl.

. )

C,(t) ~ (22
Therefore the tail ofC,(t) diminishes very slowly, like the
Bil of C(t), and it is negative.

The velocity autocorrelation function determines the
transport properties of the system: the diffusion coefficient
can be expressed in terms of the Laplace transforid, @j

in the form D:EU(S:O). Since forC(t) given by Eq.(14)

in problems connected with phenomena in disordered medi®=0, the transport is subdiffusive. We come to the same
[5]. This form of ACF is of special importance for molecular conclusion by the direct calculation of the position variance
dynamics because it corresponds to the problem of scatteriri§® (). IntegratingC,(t) twice over time, we get the follow-

inside a periodic lattic§26]. Let us then consider the ACF
given by Eq.(14). Moreover we assumé&-(t))=0. In this

caseR(s):In(1+8/s)/8 and Eq.(18) reads

R(s) (19

T s+In(1+8K)8°

In order to obtain the resolveriR(t) we need to invert the

above transform. Computing the usual contour integral pro

duces the following result:
R(t) = e3(c,Sinbt + c,cosbt)
~ 8f8 e—txdx
o [8x—In(8/x— 1)+ 7’
where the constanta=0.3511,b=0.2995,c,=0.2297, and
¢,=1.603 follow from the numerical evaluation of poles in

Eq. (19). The resolvenR has the interpretation of the veloc-
ity autocorrelation functior?,,

(20)

k
€,(0)= (O (D) = R, @)

R(t) falls from R(0)=1 to negative values and then rises,

ing estimation:
ra) ~lity=t/nt (23

Therefore the deviation from normal diffusion is very small.
The same form of the anomalous diffusion has been found in
a chaotic(deterministig system and it has been attributed to
intermittency[27,28.

_ Our aim is to study the motion of the particle by a direct
simulation of stochastic trajectories, assuming that the driv-
ing force in EQ.(16) is modeled by means of the stochastic
processx(t) and satisfies Eq(l). We restrict our analysis
to the caseV(r)=0. Inserting the solution of EqJl) into

Eq. (17) yields the two-dimensional trajectory of the particle
velocity:

(t— ).

v(t) = R(t)v(0)

t—tp
+m Y Xoiq J
0

where by sampling of the consecutive jumping tinigsve
apply Eg.(2) with «=0.5. Moreover, in the following we
take the kernel widtho=2.5. A simple quantity one can

n

R(n)d7+ E Xk
k=1

=t

R(T)d’i’) , (29

t-t,

approaching zero very slowly from below. The behavior ofevaluate from Eq(24) is the time dependence of the velocity

C,(t) att—oo is determined by the integral in EGO). In this
limit, it becomes simpler&fge‘txllnzx dx Integrating ovet
yields the integrand in the form™/(x In?x) and the integral
overx can be estimatefl9] as~1/Int. The final expression
reads

variance(v2(t)) where the average is taken over the station-
ary distribution of the random forc€). Figure 2 presents
this quantity, calculated with the initial conditiat0) =0, for
T=1 andm=1. On the other hand, the velocity variance can
be derived analytically from Eq(24); the expression for
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FIG. 3. Time evolution of the probability density distribution of . )
the first velocity component,. The stochastic ensemble consists of ~ FIG. 4. The same as Fig. 3 except for the second velocity com-

5% 10° trajectories for each time. ponentv,,.

(V2(t)) involves only the second moment of the noise: the transport dynamics in the framework of the continuous-
time random walk predicts a similar cusp for subdiffusive
motion [2].

t t
<V2>(t) = m_zf f R(DR(7)C(|7— 7' |)drd7. (25
070 V. SUMMARY AND DISCUSSION

The velocity variance appears to be independent of a specific The jumping process presented in this paper is character-
noise model and the analytical and numerical results shoultzed by the jump size probability distribution and the waiting
coincide. Indeed, Fig. 2 demonstrates very good agreemetitme distribution, which are mutually correlated. The jump-
of both results; they indicate relaxation to thermal equilib-ing rate depends on the process value, which is kept constant
rium (v =kgT/m which is apparently reached at abdet4  between consecutive jumps. The process is Markovian and
[29]. stationary; the corresponding master equation possesses a
In a similar way, utilizing Eq(24), we can determine the nontrivial time-independent solution which is completely de-
density distributionp(v,t) which means the probability that termined by the jumping rate and which does not depend on
the velocity of the Brownian particle is in the interval,v  the jump size distribution. We have studied the process in its
+dv). Figure 3 presents this distribution, corresponding tofWo-dimensional version for jumps that do not change the
the first velocity component,, for large times. The central Norm of the process value. An expression for the ACF with
part of the distribution is equilibrated alreadytats but tails ~ POWer-law tails has been derived. We have demonstrated that
are not yet developed; they terminate with high and narrowt i possible to construct in a simple way a process which is
peaks which originate from the initial conditiop(vy,0) @ 1/f-like noise. L
= 8(v,). At short timeg(not shown in the figurethe peaks are Dgsplte the fact that the waiting time distribution is expo-
still higher and expand gradually with time from the vicinity nential, the intervals of constant process valges can b-e very
of the pointv,=0. Full relaxation of the tails—which fall off long and actually algebraically distributed. This conclusion is

faster than the Gaussian—to the stationary distribution i§1.0t Surprising because the mean 'value of the equnenﬂal
achieved att=20. Nevertheless, the memory of the initial dlstnbuno_n is also a .SFOCh.aSt'C _var_labl_e. Then the existence
condition is preserved for a very long time. The distribution of long taqls of the waliting time distribution does not rule out
of the second velocity componen}, presented in Fig. 4, & relaxation to equilibrium.

looks different; the width is much smaller and the tails show
an exponential shape. A complete relaxation to the stationary
distribution is reached already &t10. The difference be- 1k
tween the distributions for the two velocity components fol- E
lows from anisotropy of the functiom(¢): there are no in-

01L

finite waiting times corresponding to the motion in the )
direction. & f
The energy spectrum of the Brownian particles deviates 001E
considerably from the Maxwellian distribution. Figure 5 pre- C
sents the time evolution of the probability density distribu- 0.001

tion of the energyE:O.S(v§+v§). At small values of the
energy the curves have a cusp, whereas the tail of the distri-
bution corresponding to the equilibrium state can be param-

etrized by the function 0.5 exp0.56%) (E>2). Itis interest- FIG. 5. Time evolution of the probability density distribution of
ing that the probability density function which characterizesthe energyE=0.5(v§+v§).
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The considered jumping process resembles the KP bgectory x(t) for the process presented in this paper is con-
cause its waiting time distribution also depends on the prostructed by sampling jump sizes, i.e., the increments of the
cess value. However, since the probability densRyin-  process variable, not the variable itself, and thus the above
volves the values both after and before the jump, memory i5aradox does not appear. Therefore in most cases this pro-

not lost due to a single jump. In the KP the COnS‘E’C“t'Veﬁess is much better suited than the KP as a model of strongly
jumps are completely independent of each other; the kerne

in the master equation factorizes, as well as the conditionaqorre"’ited noises for t-he gene.rahzed Langevin equation.
probability of passing between arbitrary process values dur- We have soIv.e.d.thls equation for an exer_nplary form of
ing a given time interval. This feature makes the KP veryth® ACF,~1/t, utilizing our process. Since waiting times are
simple and easily manageable but not very realistic. correlated with the direction of the noise vector, the resulting
The procedure described in this paper allows us to convelocity distribution exhibits a strong anisotropy. The distri-
struct stochastic trajectories corresponding to a wide class dfution of the first component, corresponding to long waiting
power-law ACF’s in a simple manner. Therefore it can serveimes, has rapidly falling tails and indicates an extremely
as a model of physical phenomena and can be used asleng memory about the initial condition, despite the fact that
stochastic force in the generalized Langevin equation. Irthe comprehensive shape of the distribution equilibrates rela-
principle, the KP—which is simpler—can also be used fortively fast. On the other hand, the tails of the distribution
that purpose. Unfortunately, the generalized Langevin equazorresponding to the second component coincide with the
tion solution, simulated in this way, does not relax to thermalstandard Gaussian.
equilibrium for power-law distribution§16,3Q although the The tail of the ACF is determined predominantly by the
fluctuation-dissipation theorem is satisfied. This apparentlyong waiting times and thus only one component of the pro-
paradoxical result follows from the fact that the waiting time cess value is crucial for its shape. Therefore, this component
distribution changes its shape wheft) is evaluated not step can constitute a one-dimensional counterpart of our two-
by step but at a timé given a priori. Such a procedure dimensional jumping process which still has a power-law
entails a bias in the process variable distribution which iSACF. This remark is important if one requires a model of
strengthened by the divergent moments. The stochastic traoise possessing an arbitrary dimensionality.
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