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The multivariate versus bivariate measures of Granger causality were considered. Granger causality in the
application to multivariate physiological time series has the meaning of the information flow between channels.
It was shown by means of simulations and by the example of experimental electroencephalogram signals that
bivariate estimates of directionality in case of mutually interdependent channels give erroneous results, there-
fore multivariate measures such as directed transfer function should be used for determination of the informa-
tion flow.
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In 2003, the Nobel prize in economics was awarded to C.
W. J. Granger. One of his main contributions concerned the
dependencies between time series: in 1969 he formulated the
causality principle called, since, the “Granger causality mea-
sure” or “Granger causality”[1].

The causality dependence between time series is a topic
of interest not only in econometrics, but also in biology and
other natural sciences. This is especially the case in brain
studies where information about the mutual influence be-
tween signals such as electroencephalogram(EEG), local-
field potentials(LFP), and spike trains is important for the-
oretical studies as well as for clinical practice. Attempts to
find measures of influence between two EEG signals, in the
sense of propagation, started in the early 1980’s[2,3] and
concerned the propagation between two channels. In more
recent papers concerning the estimation of directionality,
usually bivariate measures are used: e.g.,[4,5]. However,
brain activity measured on different sites is highly correlated
and there exists a multitude of relations between different
recorded channels. In such a situation it is difficult to judge if
two given channels interact with each other, or if they are
driven by a third channel or channels. In his later work[6]
Granger addressed the problem of missing information and
he stated that a test for causality is impossible unless the set
of interacting channels is complete.

An estimator of directionality of information flow for an
arbitrary number of channels—the directed transfer func-
tion (DTF)—was introduced by Kamiński and Blinowska in
1993[7]. It was based on a multivariate autoregressive(AR)
model formulated by Franaszczuket al. [8]. DTF in its non-
normalized version is an extension of Granger causality to an
arbitrary number of channels, as was shown in[9]. The DTF
method has been applied to localize epileptic foci[10], to
determine LFP propagation between brain structures of ani-
mals in different behavioral states[11], to investigate EEG
activity propagation in different sleep stages[12], and to
study the epileptogenesis[13].

The aim of this work will be a comparison between bi-
variate and multivariate estimators of directionality, by
means of simulations and evaluation of experimental EEG
signals. We shall point out some pitfalls in applying bivariate
measures in case of a mutually dependent set of channels.
The problem is important, since the commonly used bivariate
measures often lead to erroneous results.

The concept of Granger causality is based on the predict-
ability of time series. Namely, if a seriesX2std contains in-

formation in past terms that helps in the prediction ofX1std,
and this information is contained in no other series used in
the predictor, thenX2std is said to causeX1std. Formally, it
can be written as

X1std = o
j=1

p

A11s jdX1st − jd + o
j=1

p

A12s jdX2st − jd + E1std,

s1d

X2std = o
j=1

p

A21s jdX1st − jd + o
j=1

p

A22s jdX2st − jd + E2std.

The above equations are identical with the definition of
bivariate AR model. The generalized AR model defined for
an arbitrary number of channels(MVAR ) is represented as a
vector X of k signals recorded in time: Xstd
=fX1std ,X2std , . . . ,XkstdgT. Then the MVAR model can be ex-
pressed as

Xstd = o
i=1

p

ÂsidXst − id + Estd, s2d

whereXstd is the data vector at timet, Estd is the vector of

white-noise values,Âsid are the model coefficients, andp is
the model order. The model order can be found by means of
criteria derived from information theory; in this work the
Akaike information criterion(AIC) [14] was used.

Without loss of generality we can rewrite(2) as

Estd = o
i=0

p

AsidXst − id,

s3d
As0d = I , Asid = − Âsid for i = 1, . . . ,p.

Then, transforming the model equation to the frequency do-
main we get

Esfd = AsfdXsfd,
s4d

Xsfd = A−1sfdEsfd = HsfdEsfd.

The Hsfd matrix is called the transfer matrix of the sys-
tem, f denotes frequency,Esfd is the transformation ofEstd.
From the transfer matrix, we can calculate power spectra
Ssfd and coherences. If we denote byV the variance matrix
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of the noiseEsfd, the power spectrum is defined by(asterisk
means transposition and complex conjugate)

Ssfd = HsfdVH * sfd. s5d

The DTF was defined[7] in terms of the elements of the
transfer matrixHij ,

gi j
2sfd =

uHijsfdu2

o
m=1

k

uHimsfdu2
. s6d The normalization of DTF is performed in such a way that

gi j describes the ratio between the inflow from channelj to
channeli and all the inflows of activity to the destination
channeli. Such a ratio takes values in the range[0, 1]. A
value close to 1 indicates that most of the signal in channeli
consists of the signal from channelj ; values of DTF close to
0 indicate that there was almost no flow from channelj to
channeli at this frequency.

The Granger causality measure is equivalent to the non-
normalized version of DTF. In this case only the element
Hijsfd of the transfer matrix is used to describe the transmis-
sion. In the application to multivariate biological time series,
Granger causality has the interpretation of information flow
between channels.

In our calculations we have used the Yule-Walker algo-
rithm for MVAR model fitting and the Akaike[14] criterion
for estimation of the model order. In the simulations we have
constructed the signal in channel 1 from an experimental
EEG (2560 samples long, sampled at 128 Hz, highpass fil-
tered with cutoff frequency 3 Hz) plus a random noise. The
signals in destination channels were constructed by introduc-
ing delays and adding to each delayed channel an extra noise
(drawn from different random noise generators). The perfor-
mance of DTF is shown by a simple example illustrated in
Fig. 1, where the variance of noise in channels 2 and 3 is
nine times as big as in the input channel. Comparing values
of DTF functions in Fig. 1, we can easily observe that the
flows come only from channel 1; even in the presence of a
noise several orders of magnitude bigger than the signal,
DTF is able to detect the right direction of propagation.

The next simulations concern a situation common in EEG

FIG. 1. Top: Simulated signals. Bottom left: Simulation scheme.
Bottom right: In each box DTF as functions of frequency
s0–25 Hzd; the number above the columns indicates output chan-
nels, the numbers on the left of the rows indicate destination
channels.

FIG. 2. Top: Granger causality calculated pairwise; each graph
represents the function describing transmission from the channel
marked above the row to the channel marked on the left of the row.
Granger causality in arbitrary units on vertical axes; graphs on the
diagonal contain power spectra; frequency on horizontal axes
s0–25 Hz range). Bottom left: Simulation scheme. Bottom right:
Resulting flow scheme. The black arrows represent true(simulated)
flows; the dotted arrows represent false flows found by the applied
method.

FIG. 3. Pairwise coherences and resulting flows. Top: Coher-
ence amplitude(black graphs above diagonal) and coherence phase
(graphs below diagonal); each graph represents the function for the
pair of channels marked on the left of the row and above the col-
umn; on the horizontal axes frequencys0–25 Hzd; on vertical axes
coherence amplitudes(0–1 range) or phases(−p–p range); delay
values(in samples) estimated from phases, marked by the numbers
shown over the phase graphs. Bottom left: Simulation scheme. Bot-
tom right: Resulting flow scheme. The same convention in drawing
arrows as in Fig. 2.
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studies. The activity is propagating from a certain location in
the brain with different delays to the sites where it is re-
corded. The simulation scheme is shown in Fig. 2(construc-
tion of signals as in the previous simulation, only the vari-
ance of noise in destination channels was two times as big as
the variance of signal 1). In order to test bivariate measures
of propagation, the AR model was fitted to two channels at a
time and bivariate Granger causality was calculated. The re-
sults (Fig. 2) show that a number of false flows was found.
Namely, a flow was found always when a phase difference
existed between a pair of channels.

Another way of determining the direction of flow is
through estimation of phases of coherence functions. Ordi-
nary coherence between channelsi and j is defined using
elements of spectral matrixSsfd as

Kijsfd =
Sijsfd

ÎSiisfdSjjsfd
. s7d

The application of this method to the simulation scheme
from Fig. 2 gave the same erroneous result(Fig. 3) as the
one obtained by bivariate Granger causality.

The DTF functions, obtained by fitting the MVAR model
simultaneously to all channels of the simulated process, and
the resulting flow scheme are shown in Fig. 4. In this case
the pattern of propagations is reproduced correctly. DTF uti-
lizes the full multivariate power of MVAR, which allows for
identification of multiple causality relations between signals.
The accuracy of the method can be tested by means of sur-

rogate data. They were constructed by randomizing phases in
our simulation scheme, according to the procedure proposed
in [15]. The procedure of calculating surrogates was repeated
100 times. The maximal level of flows obtained from surro-
gate data was similar to the “leak” flows obtained by DTF.

In this paper, we have concentrated our attention on the
simulations illustrating at best the difference between multi-
variate and bivariate measures. Simulations illustrating DTF
performance for a more complicated configuration of sources
are described, e.g., in[16], where also different normaliza-
tions of the estimator are discussed.

FIG. 4. Top: Non-normalized multichannel DTFs for the simu-
lation (Fig. 2). The picture organization is similar to Fig. 3(on the
diagonal power spectra). Bottom: DTFs obtained from surrogate
data. Thick line: The average obtained from 100 surrogates. Ninety
five percent of surrogate realizations are contained between the thin
lines. The plots in both panels are in the same scale in arbitrary
units. Frequency on horizontal axes, 0–25 Hz range. At left is the
resulting flow pattern.

FIG. 5. The directions of flows found for experimental EEG
signals recorded from 21 channels(10/20 system), for awake state,
obtained by the bivariate Granger causality measure(top) and non-
normalized DTF function calculated by means of fitting MVAR to
all 21 channels simultaneously(bottom). The shade of gray of the
arrow represents the strength of the connection(black=the stron-
gest). In order to make the pattern of flows clear, the cutoff of
relative intensity was applied on the level 0.53 with respect to the
strongest flow, which was assigned the value of 1.
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In order to illustrate the performance of bivariate versus
multivariate estimates we have tested them on physiological
time series, namely EEG signals recorded in awake state,
eyes closed(referenced to linked ears, sampling frequency
128 Hz, 2560 time points).1 Multivariate Granger causality
(non-normalized DTF functions) were calculated from the
MVAR model fitted to all 21 channels simultaneously and
bivariate measures of Granger causality were found from
two-channel AR models. The flows in the alpha activity
range were estimated by integrating the functions in the
8–14 Hz range. In case of DTF a consistent pattern of flows
is observed. The sources of propagation can be seen in the
posterior regions of the head(Fig. 5). It is known that in
awake state with eyes closed the most prominent alpha ac-
tivity comes from the visual cortex located in the posterior
regions of head, which agrees well with our results. In con-
trast to these findings the bivariate estimates gave a rather
inconsistent pattern of flows with multiple sources in differ-
ent regions of the head and “sinks” to which the activity
flows from all possible directions(e.g., Fz, T3 electrodes).
This last effect can be easily explained with our simulations.

Recently in the literature one can find many methods
aimed at finding the direction of propagation in time series.
Practically all of them are based on bivariate estimates. For
example, for detecting direction of coupling between multi-
channel EEG or magnetoencefalogram(MEG) data, a bivari-
ate measure based on the assumption of two coupled oscil-
lators and an estimation of their phases was proposed[16].
The method can be helpful in case of two signals indepen-
dent from other influences, e.g., a physical experiment under
control; however, for EEG and MEG studies it is hardly ap-
plicable, because:(1) as we have demonstrated above, bivari-
ate measures in case of a mutually dependent set of channels
are likely to give erroneous results, and(2) the method is
based on the assumption of two interacting oscillators. This

assumption limits the application for brain activity study,
since in this case we deal with oscillators acting with differ-
ent frequencies, corresponding to EEG rhythms. DTF is a
spectral estimate and it can detect the case when activities of
different frequencies propagate in different directions, as was
demonstrated in experimental studies[12].

A great deal of attention of the scientific society is de-
voted to measures of causality between nonlinear time series,
e.g., [17–19]. In [19] the concept of Granger causality was
extended for the nonlinear case. The authors admit that pair-
wise analysis is inappropriate for more than two channels
and introduce conditional extended Granger causality. How-
ever, in case of nonlinear measures a number of pitfalls are
encountered and the characterization of nonlinear depen-
dence can be quite problematic[18]. Fortunately, it was dem-
onstrated by numerous studies based on linear versus nonlin-
ear forecasting[20] or surrogate data techniques[21,22], that
EEG and LFP can be considered a colored noise time series
and that one can trace chaotic deterministic behavior only in
certain phases of epileptic seizure[23]. However, even in
this case linear techniques perform well: e.g., in[10] the
power of the multivariate DTF function in epileptic focus
localization was demonstrated.

The problem of the directedness of information flow is
not limited to EEG or LFP signals; the same problem is
encountered, e.g., in geophysics or other natural sciences
when numerous mutually interacting processes take place.

In this study we would like to emphasize the importance
of a multivariate approach, which merits more attention,
since the pitfalls in evaluating the direction of causal rela-
tions in EEG or LFP connected with the use of bivariate
instead of multivariate techniques are much more serious
than limitations connected with the assumption of the linear-
ity of time series.

This work was partly supported by the Polish Committee
for Scientific Research grant to the Institute of Experimental
Physics.
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