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We report the observation of the homogenous nucleation of crystals in a dense layer of steel spheres confined
between two horizontal plates vibrated vertically. Above a critical vibration amplitude, two-layer crystals with
square symmetry were found to coexist in steady state with a surrounding granular liquid. By analogy to
equilibrium hard-sphere systems, the phase behavior may be explained through entropy maximization. How-
ever, dramatic nonequilibrium effects are present, including a significant difference in the granular tempera-
tures of the two phases.
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Statistical mechanics provides a powerful formalism for
predicting the behavior of systems at or near equilibrium.
Many natural phenomena, however, occur far from equilib-
rium, and extensions of the machinery of statistical mechan-
ics to situations where significant energy flows are present
would have a wide range of potential applications. Some
success has been achieved in extending statistical mechanics
to far-from-equilibrium situations. For example, techniques
for calculating the relative probabilities of different configu-
rations have been successfully developed for nonequilibrium
steady states in a few restricted situations[1–3]. Also, effec-
tive temperatures based on the fluctuations in nonequilibrium
steady states have been developed recently and, in some
cases, have been found to equilibrate across different fluctu-
ating quantities[4–10]. To generalize these initial successes
to a broader spectrum of phenomena, and to develop insights
into other facets of a statistical theory of far-from-
equilibrium systems, new model systems for investigating
nonequilibrium steady states must be developed and studied.
Here we report our investigations of a simple, far-from-
equilibrium granular system that shows that some mecha-
nisms that operate in equilibrium appear to persist into situ-
ations far from equilibrium, whereas other basic tenets of
equilibrium statistical mechanics must be substantially modi-
fied.

Granular materials are ubiquitous in nature and show a
remarkable range of nonequilibrium behavior[11–13]. Dy-
namic steady states, achieved when energy input from an
external source balances energy lost through inelastic colli-
sions, provide an ideal testing ground for extensions of equi-
librium statistical mechanics[4–6,10]. Here we report ex-
perimental measurements and computer simulations of the
dynamics of spherical particles confined between two hori-
zontal vibrating parallel plates. We observe a freezing tran-
sition from a homogeneous, disordered liquid to an ordered
solid with square symmetry coexisting with a surrounding
liquid. An essentially identical transition is observed in con-

fined hard-sphere colloidal suspensions in equilibrium
[14–18], where it is driven by entropy maximization. The
presence in both the granular and the colloidal system of a
solid phase with the same unexpected symmetry which oc-
curs under the same geometric constraints and at similar den-
sities strongly suggests a common mechanism. Unlike the
equilibrium system, however, we find that the coexisting
phases have dramatically different granular temperatures,
demonstrating that the “zeroth law” of thermodynamics is
not followed by the granular temperature. Taken together,
these results show that the driving mechanism behind an
equilibrium phase transition may still operate far from equi-
librium, but that a thermodynamic theory must account for
the absence of equipartition in the kinetic energy of the par-
ticles.

The granular system is sketched in Fig. 1(a). Previous
studies which used a similar geometry at lower shaking am-
plitude and lower density than what is presented here found
a range of complex nonequilibrium phenomena including in-
elastic collapse[19,20], hexagonal ordering[19,21], non-
Gaussian velocity distributions[19,20,22], and velocity cor-
relations[23]. In our experiment, stainless-steel spheres of
diameters=1.59 mm were placed between a smooth anod-
ized aluminum plate and an 11-mm-thick Plexiglas lid with
an antistatic coating. A gap spacing of 1.75s between the
plate and the lid was maintained by circular rings of alumi-
num and Mylar spacers. Using an electromagnetic shaker,
the system was driven sinusoidally in the vertical direction
with frequencyn and amplitudeA. The motion of the balls
was imaged from above using a high-resolution camera
(Pulnix TM1040). The results presented here were obtained
for densitiesr=N/Nmax ranging from 0.8 to 0.9, whereN is
the number of balls in the system andNmax=11 377 is the
maximum number of balls that can fit in a single hexagonally
close-packed layer at rest on the bottom plate. For modest
vibration amplitude, the system appears liquidlike. As the
vibration is increased, small independent unstable crystalline
structures form. Increasing the vibration amplitude further
causes the crystallites to become stable and eventually coa-
lesce to form a single crystal which coexists with a surround-
ing granular liquid[see Fig. 1(b) and supplemental movie
[24]]. The crystal consists of two layers, each with a square
symmetry. The balls in the second layer are above the centers
of the squares formed by the balls in the bottom layer. The
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crystals are not densely packed and the balls constantly jitter
around in the cage formed by their neighbors and the con-
fining plates. Rearrangements continually occur at the inter-
face, but the average size of the crystal does not change as
long as the shaking amplitude and frequency are held con-
stant.

In order to verify that the coexistence was not due to
nonuniformities in the experimental apparatus, and to mea-
sure quantities not readily accessible in the experiment, we
performed molecular-dynamics simulations using a model
that has accurately reproduced many of the phenomena ob-
served in a similar system[23,25]. Ball-ball, ball-plate, and
ball-lid interactions are characterized by three forces: an
elastic restoring force, a dissipative normal force which pro-
duces a velocity-independent coefficient of restitution, and a
dissipative tangential friction. Periodic boundary conditions
in the horizontal plane were used. The simulations repro-
duced the phase coexistence[Figs. 1(c) and 1(d)] and all of
the general features of the observed phenomena, such as the
existence of a critical threshold to nucleation and evapora-
tion.

Perhaps the most surprising aspect of the transition we
observe, the presence of a square symmetry instead of the
hexagonal ordering naively expected for hard-sphere interac-
tions, appears to be closely related to the phase behavior of
suspensions of hard-sphere colloidal particles at similarly
high densities in similar confining geometries[14–16]. For
hard spheres the equilibrium configuration is determined by
entropy maximization. For a range of gap spacings, includ-
ing the spacing used in our system, two square layers pack
more efficiently than two hexagonal layers, thereby maxi-
mizing the free volume available for each particle and there-
fore the entropy of the system[17,18]. The observation of a
transition that closely matches an equilibrium, entropy
driven phase transition suggests that a generalized free-
energy functional might be found which describes the behav-
ior of some driven granular materials.

Equilibrium two-phase coexistence requires that the two
phases have equal temperatures, pressures(apart from
surface-tension corrections), and chemical potentials. Recent
work has focused on extending the concept of the chemical
potential to nonequilibrium coexistence in which the first
two conditions are satisfied[26,27]. To test whether these
two conditions are met in this system, we measured the
granular temperatureTg=kvi

2l, wherevi is a horizontal com-
ponent of the rapidly fluctuating velocity of a particle. In the
experiment, particle displacements were measured using the
particle imaging velocimetry technique described in Ref.
[23]. Using the method described in Ref.[22], we verified
that the temporal resolution was sufficient to accurately mea-
sure instantaneous velocities. In both the experiments and
simulations, we investigated whether the granular tempera-
ture equilibrated to the same value in the two phases. As
shown in Figs. 2(a) and 2(b), Tg is dramatically lower in the
crystal than in the surrounding liquid, both in the experi-
ments and in the simulations. The spontaneous separation
into phases of different temperatures in a homogeneous sys-
tem of identical particles is a striking effect that will have to
be incorporated into models of nonequilibrium phase coex-
istence. It is somewhat reminiscent of “inelastic collapse”
[19], but in that case the absence of any significant granular
temperature in the solid phase arises from the bistability of
the ball-plate dynamics at low vibration amplitudes[28,29].
The results described here are observed at high vibration
amplitudes where there is continuous energy input from the
plate into both coexisting phases. The pressures of the two

FIG. 1. Two-phase coexistence in steady state.(a) Side view of
experimental setup. The system is shaken vertically and imaged
from above.(b) Experiment: time-averaged image of ball positions.
Only the top layer of the crystal is visible and there are several
vacancies(A=0.085s ,r=0.9,n=80 Hz, averaged over 1 s). See
also supplemental movie[24]. (c, d) Simulation: 3D rendering of
instantaneous ball positions. In(c), balls in the crystal are colored
red, balls in the liquid are colored blue. In(d) a closeup of the
crystal is shown with the top layer transparent.(A=0.13s ,r
=0.89,n=60 Hz, and 5000 balls.)
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phases calculated in the simulations have nearly the same
value, but the pressure is slightly smaller in the solid phase
[Fig. 2(c)].

To further study the properties of the phase coexistence,
we investigated the nucleation of the crystalline phase. Start-
ing with the vibration amplitude at a low value, we slowly
increased the intensity of shaking and measured the ampli-
tude at which the crystalline phase first nucleates. This pro-
cedure was repeated for several densities betweenr=0.8 and
0.9, and for frequencies betweenn=45 and 100 Hz. A typical
curve of the frequency dependence is displayed in Fig. 3(a)
for r=0.85. In addition to this “nucleation line,” we also

determined an “evaporation line” by slowly decreasing the
amplitude until the crystal disappeared. Forn greater than 60
Hz, we found that the critical amplitudes were roughly inde-
pendent of frequency. This high-frequency behavior was
found at all densities, but the cutoff frequency increased as
the density increased. One possible explanation for a
frequency-independent critical amplitude is that the vibration
may effectively compress the layer. If the balls are moving
slowly compared to the plate and lid, then they will be
mostly confined between the maximum plate height and
minimum lid height. This increase in the density of the sys-
tem favors nucleation of the crystal. This frequency-
independent behavior cannot persist to low frequencies,
however, because the acceleration, which is proportional to
n2, must be significantly larger than that due to gravity for
the balls to have enough kinetic energy to reach the second
layer. We used the average value of the amplitude in the
high-frequency plateau(60–100 Hz) to define a critical am-

FIG. 2. Temperature and pressure fields.(a) Temperature field
near the liquid-solid interface, measured in the experiment, aver-
aged over about 40 s. The crystal is in the upper left.(r=0.85,n
=60 Hz,A=0.154s, displacements measured over 0.33 ms.) (b)
Temperature field and(c) pressure field from the simulation shown
in Fig. 1(c), averaged over 2.5 s. The crystal is in the center. The
pressure was calculated using the virial expression, as described in
Ref. [30].

FIG. 3. (a) Frequency dependence of the critical amplitudesAC

for nucleation (open circles) and evaporation(black disks) at r
=0.85. (b) High-frequency plateau value ofAC as a function ofr.
(c) Average number of balls of the crystal,NC, as a function of
r sn=60 Hz,A=0.145sd. Each point represents the average of 10
measurements well separated in time. The solid line is a linear fit to
the points.
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plitude, AC, and we constructed a “phase diagram” ofAC

versusr [Fig. 3(b)]. AC varies from roughly 0.06s at r
=0.9 to 0.1s at r=0.8.

We measured the dependence of the crystal size on the
number of particles in the system by analyzing the images to
extract NC, the number of spheres in the crystal[31]. As
shown in Fig. 3(c), NC varies linearly withr and extrapolates
to zero atr=0.78. In steady-state coexistence, the edge of
the crystal is “in equilibrium” with the surrounding liquid of
density rL. Assuming that the densities of the coexisting
crystal and liquid are independent of the size of the crystal,
the areaA occupied by the crystal of densityrC should sat-
isfy the relationA/AT=sr−rLd / srC−rLd, whereAT is the to-
tal surface area of the plate, so thatNC~ sr−rLd. The value
of rL found by extrapolating toNC=0 agrees with direct
measurements of the density of the granular liquid in the
coexistence region.

No formalism exists for incorporating the entropy into a

predictive theory on nonequilibrium phase transitions, but
our results indicate which parts of the equilibrium frame-
work need modification. The large difference in the granular
temperature of the coexisting phases demonstrates that the
“zeroth law” of thermodynamics is not satisfied by the
granular temperature. An effective temperature that does
meet this requirement is probably a necessary ingredient of a
quantitative theory of the phase coexistence. By comparing
the system described here with the analogous and well-
understood equilibrium system, new approaches for incorpo-
rating the effects of forcing and dissipation into a statistical
mechanics of nonequilibrium phase transitions can be devel-
oped and tested.
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