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We present an iterative method for calculating eigenvalues and eigenvectors of large non-Hermitian matri-
ces. The method uses an iterative procedure to solve the basic Bloch eduftm@QH() of wave operator
theory. It involves nonlinear transformations such as the translation of diagonal matrix elements in the complex
plane and the use of Padé approximants to treat the strongly coupled states which constitute an intermediate
space around the model space. In the particular case of Floguet eigenstates the further step of adding time-
dependent absorbing boundaries significantly improves the convergence properties of the iterative calculations.
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[. INTRODUCTION which uses an inexact spectral transform to get exact energy
levels has also been tested with sucd@sy.

Studies of the rovibrational spectra of polyatomic mol- The calculation of resonance states and the use of a time-
ecules[1,2] and of the quantum dynamics of systems exhib-dependent Floquet formalism to investigate photoreactive
iting resonances, as well as the Floquet analysis of photorgrocesses leads to non-Hermitian matrices because of the use
active processed3,4] are all faced with the task of of complex absorbing potentials in the calculation of the ma-
calculating some internal eigenvectors of a lafgessibly  trix elements. The particular eigenvectors being sought will
non-Hermitian matrix [5]. In such applications the dimen- depend on the physical process being described. Photoreac-
sion N of the matrix is generally too large to use implemen-tive processes involve long-lived Floquet eigenstates with
tations of standard algorithms which store the full matrix andeigenvalues which have very small imaginary parts inlthe
the cost of which in CPU time scales b [6]. discrete representation as well as eigenstates which have a

These difficulties have prompted the development of it-suitably large overlap with some specified initial stf24].
erative methods which do not store or modify the Hamil-In such cases the diagonalization algorithm should be able to
tonian matrix and which require only the computation ofinduce a state-to-state correspondence between the nonper-
matrix-vector products. These methods can be classified inturbed stategeigenvectors oH, or of Hy—i%d/dt for the
indirect and direct methods; the former include the relaxatiorFloquet dynamics in the extended Hilbert spg2#) and the
method[7], the spectral methofB], and the filter diagonal- perturbed states(eigenvectors ofHy+V or of Hy+V
ization method$9], while the latter include perturbative and —ifd/dt). The wave operator formalism has the capacity to
moment method approaches. The most popular methods afellow continuously the eigenvectors as the perturbation de-
variants of the algorithms of DavidsofilO] or Lanczos velops as well as the advantage of selecting self-consistently
[11-13 or of the filter diagonalization method. the active space in which the greater part of the strong inter-

A good method for calculating eigenvectors m(@stre-  action is concentrated. This formalism satisfies criteKion
quire the storing of only a small number of vectdsith since the number of stored vectors is equal to the dimension
dimension equal to that of the Hilbert spaead(ii) require  of the small active space and is constant during the iterations
the calculation of a reasonably small number of matrix-used in the recursive distorted-wave approximatiRBDWA)
vector products to assure the convergence of the iterativalgorithm[23] or in the single-cyclgSC) algorithm[24]. It
process. From this viewpoint the Cullum and Willoughby has more difficulties in satisfying criteriqii), particularly in
(CW) Lanczos approachl4] and the filter diagonalization the strong-coupling regime, but like the Lanczos method, has
method[15-17, which extract energy levels from the same the advantage that it supports hybrid techniques; an approach
Krylov subspace, are operationally very similar and in bothwhich blends a Green function filter approach with wave
cases the CPU time mainly depends on the density of stategperator techniques significantly improves the performances
The CW Lanczos methofll4] without regeneration of vec- of wave operator iterative methogig5].
tors easily satisfiesi) but in both methods many vectors  The present work presents an integration procedure for
must be stored or regenerated if eigenvectors are desired. the nonlinear wave operator equation. The strategy adopted

Hybrid techniques have been proposed in order to overis to embed the active space in an intermediate space, within
come some of the typical defects of the methods mentionedhich nonlinear transformations such as complex transla-
above; the Lanczos method has been coupled with a spectr@ns of the diagonal elements or Padé transformations can
filter [18] and a preconditioned Green function block algo-be carried out to improve the convergence. In the case of
rithm has also been proposgd9]. A Lanczos algorithm Floquet eigenstates, a further procedure is used; the introduc-
which computes Lanczos vectors fB(H)=(El-H)™* and tion of time-dependent complex boundary potentials gives a

1539-3755/2004/1@)/0467038)/$22.50 70 046703-1 ©2004 The American Physical Society



JOLICARD et al. PHYSICAL REVIEW E 70, 046703(2004

natural spectral transformation which produces a notable imhas a trivial invers¢ T-*=1-X) and which cancels the cou-
provement in the treatment of the Schrodinger equation iplings betweernS, and S, generatingHes; from PgHP, by
the Floquet picture. adding the ternPyHQy( Py,

The formalism is described in Sec. I, with an illustration ~ The algorithm proposed in this paper integrates &.
involving the Floquet eigenstates of the iop"Hnteracting  and solves the eigenvalue problem insieby finding the
with a strong pulsed laser field. Particular attention is giverreduced wave operatdX, leading toQ and thus toHg
to the Bloch wave operator formulation for the quasistation-=PyH(Q). The eigenvectors dfi.;; are the projections into the
ary treatment of the time-dependent Schrodinger equatiormodel space of the corresponding exact eigenvectors. The
Section 1l sets out a time-dependent optical potentialwave operator transforms these projected eigenvectors back
method which strongly modifies the Floquet spectrum andnto the exact eigenvectors in the full space. Modern devel-
improves the convergence by selectively isolating the treatedpments[21] show that the use of Eq$2) and (4) is not
Floquet eigenstate. Section IV analyzes the results and giveestricted to the treatment of stationary problems. The time-
some conclusions. dependent Schrodinger equation can be transformed into an
equation similar to Eq(2) by working in an extended space.
By introducing the time-dependent wave operafQft)
A. Wave operator model in eigenvalue problems =U(t;H)[PU(t;H)Py] ™, the quantum evolution issuing
from a model spac&, can be factorized as follows:

Il. THEORY

The Bloch effective Hamiltonian theory was developed
within nuclear physics and in quantum chemistry to improve U(t;H)Py = Q(H)U(t; Hefp) - (5)
on ab initio and semiempirical methods. The original wave . i i )
operator concept was defined by Mgl[@6] within the con-  Here the first evolution operator, associated w(t)
text of scattering theory, while the later works of Blo@v], ~ =PoH(t)€(1), induces an evolution insid&, and the second
Des Cloizeaux[28], and Durand[29] developed a theory term()(t) possesses an off-diagonal part which induces the
more suitable for bound-state problems in nuclear physicgansitions fromS, into the complementary spacg. The
and quantum chemistry. reduced wave operator is the solution of a nonlinear equation
The basic idea is to use the Hamiltoni&hin the full ~ of motion:
Hilbert space to define an effective Hamiltonidlgs;, acting aX(0)
in a reduced model spa&, such that a subset of the exact ifi—— = Qo1 = X(t) JH®[L +X(t)]. (6)
energy levels oH coincides with the energy levels &f.+. ot

Bloch sets the wave operatbr equal to If the perturbation is localized on a finite time intery@l, T],

Q=P(P,PPy) %, (1)  Ed.(6) can be rewritten as

whereP, is the projection operator of the model sp&eand He()Q(1) = QOHE (1) = QOHD Q). (7)

P is that of the corresponding active spdge . .
. . Equation(7) then resembles E@2), provided that the Flo-
Sis the subspace generated by the set of eigenvectors thaget HarTEiI'zoniamF(t):H(t)—iﬁ(g/)&t Fs taken in place off.

play an important role in our problem. It can be constituted’, . .~ . ) o . )
: ) ) : . . his implies that this modified eigenvalue equation should
by eigenvectors which are situated in a given energy windo . .
e solved in an extended Hilbert space

or which possess a large overlap with a given unperturbe
state. The model spa& is the space generated by the zero- K=H ® L%S',do2m), (8)
order description of the states which constitute the active ) o )

spaceS. If H is separated intbi=Hoy+V, then the elements whereH is the initial Hilbert space and? denotes the space

of S, are usually eigenstates bi,. of square integrable functions on the circle of length 2
The wave operatof) is the solution of a nonlinear (with 6=27t/T). Within the formalism described above Eq.
equation (2) now appears as a generic equation in the treatment of

both stationary and dynamical problems. In the dynamical
HQ =QHQ (2)  case it should nevertheless be noted that the Floquet eigen-

and leads to the effective Hamiltoni&h,;=PoH(). By sepa- ﬁtatesthobtalnedt by mtetgrtgtlcgn hOf .Eq) do ﬂr:o;r generla:I:Iy i
rating the wave operator into a diagonal and an off-diagonal ave the correct asymplotic benaviour, So that many ~logue
part elgeqstates_need to be combined to fo_rm an appropriate wave
' function. This aspect of the problem will be analyzed in Sec.
Q=Py+ Qu2Py=Py+ X, (3) . In the next section the generic terk will be used to

Eq. (2) can be written in the form designate equallyi or He.

Qo(1 =X)H(1 +X)Py,=0, (4) B. lterative integration of HQ=QHQ

where 1 is the identity operator for the full Hilbert space and The task of integrating Eq2) or (7) has been handled

Qo the projector into the complementary space associatedsing various iterative treatmer[a3,24. Here we propose a

with the model space—i.eQy=1-P,. variant of these methods and analyze more closely their con-
Equation(4) manifestly displays the wave operator as avergence behavior; some aspects of the iterative techniques

nonunitary and nonsingular transformatiéf=1+X) which  will be improved by using nonlinear transformations.
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The important task is that of choosing the dimensign (T PH(Py + XM) T = ED. (11)
of the model spac&, and the mode of construction &, . ) . )

a suitable definition 0, have been proposed in the litera- formula

ture; these include the adiabatic reduced coupled equation £ = ¢ H=HOX™ + OHP
method[30], the low-frequency expansion meth{®il], and (f (AEQol ) QoHtPol
several artificial intelligence techniqugd2—34. In our ap- XT O[EG) — E{Po] (T ™)™, (12

proach We use an algorithm based on the wave opera_tor foﬁzhe behavior of the sequence of iterates and more precisely
malism. This procedure, called the wave operator sorting al;

. . . . the radius and speed of convergence of the iterative process
gorithm by Wyatt and lund2], is l_Jased on the iterative directly depend on the choice of the arbitrary diagonal matrix
RDWA treatment of the Bloch equatigiq. (2) or (7)]. After , . L . e, :

- . . H’. A simple choice is to identify4” with the diagonal part
a finite numbeN ., of iterations a large number of statje$ of H in §. If one further assumes moreover that the model
are connected by the RDWA iteratiggenerally less than 30 space is%c'me dimensional wifP,=|i)(i|, one can transform
iterations are sufficient to connect all the spadéhe states Ep 12 int - '
|a) are then reordered after stdtg such that those having g.(12) into
the largest magnitudes of the reduced wave operator at an [iM=Q"i)= (1 +X")|i). (13
arbitrary iteration ordeN=<N,,,, are at the top end of the _ . . )
list. Nonconvergence of the iterations does not have seriouBY setting Ali™)=(X"1-X"|i) and E]'=(i|Eg
consequence for this reordering. The model sp8gethe  finally write Eq.(12) as follows:
dimensionNy of which is imposed in our model, is con- (M _ =n 1 -
structed by taking thé\, first vectors. The ordering is also Afi™) = (B~ QoHaiagQo) ™ (H — EDi"). (14)
used to define an intermediate space of dimenbipadjoin-  This is exactly the iterative rule proposed in the Davidson
ing the model space, simply by taking thg next vectors. algorithm[10].

This intermediate space groups together the states which are A more sophisticated choice involves taking into account
strongly coupled to or are in near resonance with the states @he effects of the couplings betwe&g andS] on the diago-

the model space. It is this intermediate space which is subna| matrix elements in the complementary space by setting
jected to nonlinear transformations in our treatment.

Starting from Eq(2) or, equivalently, from Eq(7), if H Ef = (ED™ = (f|(1 = XM)H(L +X")|f). (15

EHF in an extended Hllt_)ert space, a few algebraic MaNIPUiphen introduced into Eq(12) this choice leads to the
lations lead to the equation

RDWA approach proposed some years §2j.

i), one can

XH = H'X = Qq(H — H")X + QoHPy, 9) . .
C. Nonlinear transformations
with Although the iteration rule for the RDWA appears to
" be more sophisticated than that used in the method of
He" = PoH(Pg + X). Davidson, the performance of the RDWA-wave operator ap-

_ o _ - proach is sometimes poor compared to those of the Davidson
This equation is true fEr’r any choice of the matkix inthe  anqg Lanczos methods. The reason is simple. Equatién
complementary spac&; in the following H' will be as- s only used perturbatively in the wave operator approach;
sumed to be diagonal for simplicity. . at step(n) the new wave operator is simply obtained by

By projecting Eq(9) to the left on an arbitrary staté) of  icrementation: X™D = XM + AX™. By contrast the treat-
the complementary space and by setfiijg:(f[H'[f) one can  ment is nonperturbative in both the Davidson and Lanczos
arrive at an iterative integration procedure described by th@pproaches. At steggn) the Davidson treatment extracts

equations energy levels from a Krylov subspace including
{liy, AliMy, Ali@), ... Ali™)} but requires the storing of a
1) — ’ -1
(FX™Y = (F|[Z+ Y XVI[PoHPg + PoHX™ — E{Po] ™, large number of vectors; this storage cost is too high to per-

(10 mit the treatment of Floquet eigenstates in large vector
spaces. Our approach in this work is to improve the perfor-

with mance of the perturbative wave operator treatment by intro-
ducing artificial nonlinear transformations in order to take
Z=QuHP, and Y =QyH-H")Qy. into account indirectly the strong-coupling effects introduced
by the Krylov subspace.
Applying Eg. (10) requires inversion of the matriRy(H Before explaining these transformations we should note

+HX(”>)PO—Ef’ Py at each step of the iteration. The model that the wave operator formalism does incorporate in a non-

spaceS, usually has a small dimensidtypically Ny<50), perturbative manner some strong couplings—namely, those
so this inversion is without problems whenever the mattix  between the states which compose the model space; from a
is diagonal. One can then introduce the maffi® which  certain viewpoint the corresponding active space can be re-
diagonalizes the effective Hamiltonian at thééth step, so garded as a Krylov space. However, the dimensiogok

that necessary kept small to ensure the storage of only a small
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number of vectors. Only the first few vectors which are of ]
strongly coupled and are in exact or near resonance are the AV AV AV AV AV AN AN VAV VAN
selected in the model space. As all the states of the full spact  -*
are ordered according to their importance in the eigenvecto
constructionsee the wave operator sorting algorithm in Sec.
[ B), we can apply nonlinear transformations to the states ofF
the intermediate spacestates numbered fromly+1 up to
Ng+N;+1), without explicitly constructing the correspond-
ing eigenvectors. Two modifications of the iterative proce-
dure are then proposed. sl
The first concerns the choice of the arbitrary diagonal
matrix H’. The two previously mentioned choices led to it- !l
eration formulas like those of the Davidson theory and the
RDWA treatment. However, the divergence of the wave op- o 20 200 500 200 7000
erator iterations is more commonly caused by small denomi- r {number of products 1)
nators which are due to accidental near resonances betweeng s 1 |iustration of the effect of the choice of the matkibt

the eigenvalues of the effective Hamiltoniatf™=Po(H 514 of the use of the Padé procedure in the integration iterations
+HX)P, and the diagonal elements QgH'Qo. One way to  ysing Eq.(12). The figure presents the defdetQ—Q(PoHQ)|2 on
suppress these effects is to identPyH’ Qq with the diago-  a logarithmic scale as a function of the number of produtes

nal part of QuHQ,, exceptfor a reduced group of states, formed during the computation. The three curves correspond to the
which are selected as the statesfwith eigenvalues near- three options: dashed lin@E=0, and no Padé procedure; dotted
est in the complex plane to the eigenvalues of the stateie, SE=103 and no Padé procedure; solid linéE=0, with the
included in the spac§,. These states belong to the interme- Padé procedure.

diate space. For these states usually responsible for acciden-

tal resonances the corresponding diagonal eleméfitare  converged before applying the transformation. Consequently
chosen to beHj; +;, where the complex shifj; is chosen  the convergence test

to Joroduce a suitably large minimum distané€é between

He and the nearest eigenvalue of the complementary space

-10 |

[ETo-op, 1

20 |

. . . Niter—3
S- In the simplest case of a one-dimensional model space, ”i X0~ X < 17
this option involves moving all the nearest eigenvalues out- vl L =
—Niter

side a circle which is cenered on the effective eigenvalue and
has the radiu$E. This transformation is nonlinear, since it
affects the denominator on the right-hand side of @@). was applied to each seri¢,i) so as to exclude from the
The second modification is the introduction of nonlinearPadé procedure those which satisfied this critetgpically
transformations such as Padé approxim$d, Aitken's A2 €=107).
method[36], or the Borel transformation to improve the con-  The Padé calculation leads k< NgN; complex values
vergence. In our example, it is the diagofisi,N] Padé ap-  (X[7%9. In a second step, the iterations using Etg) are
proximant which was used. The convergence criteria focontinued, keeping thedd, components constant and equal
Stieltjes series cannot be applied in the present [@idebut  to their Padé-extrapolated values. A test of convergence is
non-Stieltjes series have often been found to be summabl@ade at the end of this second step. If the test is not satisfied,
using Padé methodg38]. The procedure which has been the two steps are repeated by starting with the nonconverged
tested involves a two-step calculation. It is presented here iX operator.
a simple form by assuming a one-dimensional model space The effects of these two nonlinear transformations are
but the generalization to degenerate model space is straighvesented in Fig. 1. This figure shows, on a logarithmic scale,
forward and is illustrated here by Fig. 2, below. During thethe quantity|HQ—Q(PoHQ)||? for a one-dimensional model
first step the iterations using E(L2) are carried out up to a space as a function of the number of produdis formed
finite orderN;g, (typically Nie,~ 20). Simultaneously th&l;  during the computation.
stateqj) of the intermediate space which generate accidental The studied eigenvector is one generalized Floquet state
resonances are selected and the correspomdjjNg series of ~ of the H," molecule subjected to a Gaussian laser pulse
Niier €lements are stored: which corresponds to an intensity of<410'2 W/cn?, with
switch-on and -off timeg of 5 fs, and a plateau duration of
To=25 fs, which is represented over a peribdf 75 fs. The
studied vectoh - ,=¢ corresponds to the unperturbed eigen-
state|v=0,n=0)—i.e., the ground vibrational state of the
The Padé procedure is applied to these series by consideriﬁglrface22; in the first Brillouin zone. The carrier wave fre-
successively the reals parts and imaginary parts using thguency of the lasefwy=0.295 868 a.(.is tuned in this case
scalar Wynn epsilon algorithfi85]. The transformation must to the transition fromv=0) to the dissociative surface, so
be applied with caution; empirically the Padé approximant ighat the studied vector plays a central role in the photodisso-
found to be inefficient if the series considered is already welkiation proces$39]:

XPTOXITE, L X Ner j=1-Np, i=1-No. (16)

LI P
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of ] served to show better convergence than the other column.
P N A S VAN VAN The difference is sometimes larger thart®L@ is the column

\ with the poorer convergence which imposes the precision of
the final result, since the two columns are mixed together by
the matrix which diagonalize$d.s; to form the Floquet
eigenstates. In this framework the better results are obtained
with the Padé approximants.

-5

2
Il 2-(P, HO)I

Ill. TIME-DEPENDENT ABSORBING BOUNDARIES

25 |

The filter diagonalization method significantly improves
, , : , the performance of iterative methods for the eigenvalue
0 200 400 600 800 1000 problem. This method, which requires the calculation of
n (number of products H Q) 11 . . .
products(EI-H)™Yi), is computationally costly, even if the
FIG. 2. The same as Fig. 1 but for the case of a two- dimen/S€ .Of inexgct spectral trans,forms appears as an intgresting
sional model space. The pair of solid, dashed, and dotted IineQybrld $O|Ut'on[201' The Pade a.pprOXImant procedure '_ntro'
correspond to the two Floguet eigenstateS.gn -on-o and ucgd in Sec. Il is an altern{:\tlve procedure which tries to
T obtain a good performance without needing a costly spectral
transformation.
In the integration of Eq(7), which represents the time-
H2+(22;§,v =0J=0) +fiwy— H2+(22:j) — H*+H(1s). dependent Schrédinger equatiohDSE), one can use an-
other spectral transformation method, called the “constrained
(18) adiabatic trajectory method{CATM) [40]. This modifies
both the spectrum and the Floquet eigenstdtedike the
The complete basis introduces 102 400 states, from whicBtandard filter diagonalization methdabit it does not require
N;=300 are selected to constitute the intermediate space aife solution of a large linear system at each step. It is de-
eventually to participate in the Padé procedure. This figurecribed below and is illustrated by treating again the Floquet
reveals that the Padé procedure is highly effective in a casgrates of the K molecule subjected to a Gaussian laser
for which the standard wave operator series divergegulse.
strongly. The approach exploits the equivalence which exists be-
Figure 2 corresponds to a second caculation whichween the Schrédinger equation in the Hilbert space and the
involves two Gaussian pulses and a two-dimensionakjoquet eigenequation in the extended Hilbert space and also

model space. The two intensities are equal to 2.23he linear correspondence existing between the solutions—
X 10" W/cn® and the two frequencies are tuned to the trannamely,

sitions: {%%,[v=0)} —{*S}, E=E,-o+hw} — {25, [v=1)}.
The model space includes the two dressed state®,n;
=0,n,=0) and |[v=1,n,=-1,n,=+1) which are in exact He()|W(t))=0 < (HE-E)|\) =0,
resonance. The wave operator treatment makes it possible to
collect into the model space all the states which are strongly
coupled to the initial state or are in near resonance with it, as
|W(t)) = exp{i—Et}D\(t)).

Ny=1n=-1p,=+2:

well as any other states which are of interest. This feature has
a double advantage. First, all the eigenvalue-eigenvectors
pairs are calculated at the same time. As a single wave op-
erator(} is stored during the calculation, the model space and
the corresponding active space can include many vector$nfortunately this correspondence cannot be exploited in
Second, the strong couplings inside the model space af@0st cases because the eigenvatu@nd also the initial
taken into account nonperturbatively by the effective Hamil-value of the Floquet eigenstaie(t=0)) are imposed by the
tonian and the effects of these couplings on the exact eigeﬁpteraction. This initial value does not generally correspond
vectors are obtained by diagonalizibfys. In many circum-  to the initial value of the wave functiofa usual choice iden-
stances this procedure reduces the number of iteratiori#fies W (t=0)) with a nonperturbed molecular eigenstajé
necessary to give a convergéxgiving a calculation which  The CATM solves this difficulty by artificially imposing the
is faster than the separate calculation of the different exaatorrect initial conditions. To do this the initial time interval
eigenvectors included in the active space. [0,T,] over which the field-matter interaction takes place is
Figure 2 shows the improvements due to the two nonlinprolonged by using an additional time intendly, T]. Ab-
ear transformations and particularly reveals the efficiency oforbing time-dependent potentials are then introduced along
the Padé procedure, which produces convergence of the twhis extra time interval and on each molecular channel dif-
eigenvectors simultaneously up to a precision of?L0For  ferent from the initial ondi). These potentials are of the
each pair of curves one column of the wave operator is obform

(19
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FIG. 4. The unperturbed Floquet spectrum of Hwround the
~ FIG. 3. The unperturbed Floquet spectrum of Hround the jnjtia| state when time-dependent absorbing boundaries are intro-
initial state without time-dependent absorbing boundaries. The stafyced asymptotically. The star) corresponds to the initial unper-

(*) corresponds to the initial stafign=0). turbed statéi,n=0) and the crosgx) to the corresponding Floquet
state; -o.
) _ . t- 70 2
—iVopdt) = 2 I} = iA exp = - -4y, The spectrum is complex because of the presence of two

radial complex potentials placed asymptotically on the two
(200 potential energy surfaces for staf® and?S?. In Fig. 3 one
can distinguish the bound states on the real axis and also a
compact group of states which have an imaginary energy
wherer, is equal to(To+T)/2 andr is chosen such that,,y  part larger than X 1072 a.u. in absolute value and which are
is negigible at=T. related by a discretized representation of the continua of the
The initial state corresponds here to the ground vibratwo electronic stateg andu. Some other intermediate states
tional statdv =0) of the surfac&EQ and to the first Brillouin  with a smaller imaginary energy part are present. They cor-
zone: |i,n=0). The analyses developed in R¢40] reveal respond to the highest bound stategyafnd their imaginary
that two cases can be distinguished: part is a pure numerical artifact without consequence for the
Case 1.Some Floquet eigenvalues are not affected by thelynamics. The spectrum is periodic with a period which cor-
introduction of the absorbing boundaries conditions. Forresponds to the time interval used—i[&@,T]. An important
such states the analysis proves that the absorbing boundarigsaracteristic is that the initial state eigenvalue is embedded
impose negligible componens(T));.; on the channels dif- in a dense part of the spectrum on the real axis; this feature
ferent from the initial one. As the Floquet eigenstates arexplains the difficulties in obtaining convergence of the nu-
periodic states by construction, this absorption imposes thmerical results in an iterative procedure.
initial expected conditiongA(0))=&; and finally[Eq. (19)] Figure 4 represents the same spectrum after the introduc-
leads to an eigenstate proportional to the true wave functiotion of time-dependent absorbing boundaries. It shavesr
on the interval[0,Ty]. We note that because of the time the real axi$ the unperturbed eigenvalug ,-o(*) and the
arrow (from the past to the futuyentroduced by the TDSE corresponding Floquet eigenvallix;;-i n:0(><). Their positions
the extra-time perturbation introduced affgy cannot retro-  reveal the small shift induced by the field-matter interaction.
spectively influence the true system befdie On the other hand, one notes a large translation of the spec-
Case 2.0ther eigenvalues are greatly affected by the abtrum in the lower half complex plane if one compares with
sorbing conditions and move about in the complex plane. IiFig. 3 (the complex shift has an amplitude larger than 2
this case the eigenstates are disturbed in a chaotic way and10-3). Only the initial state and its duplications in the other
cannot be used to solve the TDSE. Brillouin zones are not affected by this translation. The direct
The basis is too largeN=102 400 for us to calculate and consequence is a beneficial dispersion of the eigenvalues
present the exact spectrum &fe. Nevertheless, partial around the initial one and a significant increasing of the dis-
analysis reveals that the distortion of the spectrum due to theance betweelk; ,-o and the other nearest eigenvalues. This
field-matter interaction is small compared to that producedffect has important consequences for the iterative process
by the time-dependent boundary potentials. One can thensing Eq.(12).
roughly appreciate the influence of this spectral transforma- These consequences are confirmed by Figs. 5 and 6,
tion by considering the unperturbed spectrumHff=H,  which present the effect of the absorbing boundary procedure
—ihdl ét. Figure 3 presents the part of this spectrum aroundn the use of the iterative formufd2). In these two appli-
the eigenvalue of the initial state,n=0), without the pres- cations the laser field is intengé=1.6x 10'® W/cn? and
ence of time-dependent absorbing boundaries. I=2.5X 10" W/cn¥) and produces a rapid divergence of the
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FIG. 5. lllustration of the effect of the time-dependent absorbing FIG. 6. The same as Fig. 5 but with an intensity equal to
conditions in the integration of Eq12) for an intensityl=1.6  1=2.5X 103 W/cn?.
X 10'3 W/cm?. The figure presents the deféet) - Q(PoHQ)|[? on
a logarithmic scale as a function of the number of prodiit€s
formed during the computation. The two curves correspond to théhe two vectors. Nevertheless, it should be recalled that the
two options: dashed line, without absorbing boundaries; solid linegffects of large basis sizes and density of states are particu-
with absorbing boundaries. larly severe for resonance calculations and that the efficiency
of other approachesuch as for example the preconditioned
iterative process. The introduction of complex boundary coninexact spectral transforf#3]) depend critically on the ef-
ditions drastically modifies this behavior and produces a confectiveness of the preconditioner used. In our case no pre-
vergence of the process after fewer than 100 iterations. Theonditioner has been used.
Floquet eigenvectors obtained by this procedure are also The introduction of time-dependent absorbing potentials
modified by the introduction of the boundary conditions buthas strong positive effectd=igs. 5 and § and avoids the
the proportionality betweef¥(t)) and |\(t)) represents a introduction of a spectral transform such &$H)=(El
positive feature of this approach to the solution of the TDSE~H)™. However, this procedure is limited to the integration
An important question concerns the performance of thef the time-dependent Schrodinger equation and cannot be
present computational method as compared to those of othé@pplied to solve stationary spectral problems.
well-established methods: filter diagonalization and CW
L_an_czos methods. These threg approache§ are attr{;lctive for IV. CONCLUSION
similar reasons: the large Hamiltonian matrix enters into the
calculation only via the formation of matrix-vector products;  This paper treats the integration of the generic wave op-
moreover, only a few iterations are needed to convergerator equationHQ=QH(, which describes stationary
widely separated eigenvalues. The loss of orthogonality ireigenproblems or quantum time-dependent dynamics accord-
the Krylov spaces is a severe handicap for the single-vectdng to the nature of the operatét and to the nature of the
Lanczos algorithm and the block Lanczos algorithm and respace in which it is defined.
quires selective[41] and partial reorthogonalizatiofd2]. The iterative solution method proposed is based on a stan-
The Bloch treatment proposed here does not adopt a variglard RDWA procedure but is modified by using extra non-
tional approach in a Krylov space. It identifies the statedinear transformations. Artificial translations of the diagonal
which make the solution process difficult and proposes anatrix elements in the complex plane and Padé approximant
specific treatment of nonlinear transformations in the intertransformations are tested; the second option appears as the
mediate space which includes them. This reduces the nonobetter, especially when the active space on which the wave
thogonality effects, even if reorthogonalizations are necesoperator is defined is degenerate. The Padé approximant pro-
sary in the precise calculation of resonance states in largeedure forces the convergence of the iterative process by
spaces. For the same reasons the present treatment requiggerating in a small intermediate space formed by states
the storing of only a small number of vectors and finally which are strongly coupled to the active space. The size of
makes possible the calculation of many eigenvaluethis intermediate space is smé2i00 or 300 in our examplgs
eigenvector pairs by calculating only once a multidimen-compared to the size of the full spa¢e10°). The drastic
sional wave operator. The penalty is the less efficient behavmprovement due to the nonlinear transformations conse-
ior of our integration procedure in the strong-couplingquently has a very small associated price in terms of in-
regime. Figures 1 and 2 reveal that about 400 matrix prodereased CPU time requirements but the benefit in terms of
ucts HQ) are necessary to converge the solution. Moreoverimproved convergence is important.
the two columns of the wave operator converge with notably In the case of a nondegenerate Flogquet eigenequ@in
different speeds in the degenerate césig. 5), revealing if H—Hg) we propose a spectral transformation based on the
that the Padé procedure has some difficulties in correlatingntroduction of asymptotic absorbing boundary potentials
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which control the asymptotic values of the periodic Floquetlation in the complex plane of a great part of the spectrum.
eigenstate and offer the possibility of forming a FloquetThis spectral modification produces an increased distance be-
eigenstate proportional to the wave function which is a solutween the Floquet eigenvalue investigated and the other near-
tion of the time-dependent Schrédinger equation. A seconést eigenvalues and so improves significantly the perfor-
important effect of this transformation is to produce a transimance of the iterative process.
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