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This work is dedicated to the theoretical analysis of wire media, i.e., lattices of perfectly conducting wires
consisting of two or three doubly periodic arrays of parallel wires which are orthogonal to one another. An
analytical method based on the local field approach is used. The explicit dispersion equations are presented and
studied. The possibility of introducing a dielectric permittivity is discussed. The theory is validated by com-
parison with the numerical data available in the literature.
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I. INTRODUCTION

In the recent years the periodic metallic lattices have
found many applications in both optical and microwave
ranges(see, for example, in Ref.[1,2]). However, some fun-
damental problems have not been resolved yet, even for typi-
cal metallic electromagnetic crystals. One of them is the
problem of low-frequency spatial dispersion in wire media
(WM). The low-frequency spatial dispersion of a simple wire
medium (a doubly periodic regular array of parallel wires)
has been studied only recently in Ref.[3]. In the present
paper this theory is generalized for double and triple wire
media. The study of spatial dispersion effects in the above-
mentioned variants of WM has been started in Ref.[4]. How-
ever, this study(based on the numerical approach) is far from
complete. Our theory significantly complements the results
of Ref. [4]. It is an analytical one, and in order to validate it,
a comparison to the results from Ref.[4] is carried out.

The unit cells of the lattices under study are shown in Fig.
1. They consist of two(2d, or double wire medium) or three
(3d, or triple wire medium) doubly periodic regular arrays of
parallel infinite wires which are orthogonal to one another.
The wires are assumed to be perfectly conducting. The host
medium is a uniform lossless dielectric with permittivity«0
and permeabilitym0. We denote the radii of wires directed
along x, y, and z axes asrx, ry, and rz, respectively. The
periods of the lattice alongx, y, andz axes are denoteda, b,
and c, respectively. The lattices are spatially shifted with
respect to each other by a half period(see Fig. 1). The wires
axis positions in the chosen coordinate system are deter-
mined by the following equations:

(i) the x-directed wires:y=bn+b/2 andz=cl+c/2,
(ii ) the y-directed wires:x=am+a/2 andz=cl,
(iii ) the z-directed wires:x=am andy=bn,

wherem, n, and l are integers.
In order to model an electromagnetic response of a wire,

we apply the local field approach. We assume that the wire
diameters are small compared to the wavelength. Thus, every
wire can be described in terms of effective linear current
referred to the wire axis. The wire with radiusr0 oriented

along a unit vectordsudu=1d can be characterized by a
“polarizability” a, relating the complex amplitudeI of the
induced current and the local electric fieldEloc,

I = asr0,k,q ·ddEloc ·d. s1d

Here k is the wave number of the host medium andq ·d
=qi is the longitudinal component of the wave vector of the
propagating mode. The following expression fora was ob-
tained in Ref.[5]:

asr0,k,qid = Fhsk2 − qi
2d

4k
S1 − j

2

p
Hlog

Îk2 − qi
2r0

2
+ gJDG−1

,

s2d

whereg<0.5772 is the Euler constant andh=Îm0/«0 is the
wave impedance of the host medium.
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FIG. 1. Unit cells of double wire medium(a) and triple wire

medium(b).
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Let the eigenmode under consideration have the wave
vectorq=sqx,qy,qzdT. Expressing the local field produced by
all wires except the reference one through the current in-
duced in the reference wire, we obtain the dispersion equa-
tion. It relates the components ofq to k (i.e., to frequencyv).
Then we can introduce effective material parameters of the
wire medium which fit this dispersion equation. In this paper
we widely use the results obtained in our preceding papers
[3,5] for a simple WM. Therefore, in the next section a very
short overview of those works is presented.

II. SIMPLE WIRE MEDIA

The geometry of a simple wire medium comprising the
z-directed wires is shown in Fig. 2.

The currents in the wire with numberssm,nd (counted
along thex andy axes, respectively) are related to currentI
induced in the reference(zeroth) wire through the wave vec-
tor q,

Im,n = Iejsqxam+qybnd. s3d

Since the field re-radiated by the wiresm,nd is proportional
to Im,n, the local electric field acting on the zeroth wire can
be expressed in terms of the so-calleddynamic interaction
constant C:

Ez
loc = Csk,qx,qy,qz,a,bdI , s4d

where(see in Refs.[3,5]):

Csk,qx,qy,qz,a,bd = −
hsk2 − qz

2d
4k

3 o
sm,ndÞs0,0d

fH0
s2dsÎk2 − qz

2Rm,nde−jsqxam+qybndg, s5d

Rm,n=Îsamd2+sbnd2 and all sm,nd except m=n=0 are
summed up. Expression(5) can be rewritten in the following
form [5]:

Csk,qx,qy,qz,a,bd =
hsk2 − qz

2d
2jkb F 1

kx
s0d

sin kx
s0da

coskx
s0da − cosqxa

+ o
nÞ0

S 1

kx
snd

sin kx
snda

coskx
snda − cosqxa

−
b

2punuD
+

b

p
Slog

Îk2 − qz
2b

4p
+ gD + j

b

2G , s6d

where

kx
snd = − jÎSqy +

2pn

b
D2

+ qz
2 − k2, s7d

and we choose RehÎsdj.0. Those formulas physically cor-
respond to the representation of the WM as a set of parallel
grids (of z-directed wires) located parallel to one another
with perioda along thex axis (see also Fig. 4 for the case of
2d WM). Every grid radiates the spectrum of Floquet har-
monics with wave vectorsskx

snd ,qy+2pn/b,qzd. The series
with summation overn on the right-hand side of(6) de-
scribes the contribution of the high-order Floquet modes to
the electromagnetic interaction of those grids. The dispersion
equation follows from(1) and (4):

fa−1sr0,k,qzd − Csk,qx,qy,qz,a,bdgI = 0. s8d

Taking into account expressions(2) and (6) one can rewrite
(8) in the following form:

sk2 − qz
2dF 1

p
log

b

2pr0
+

1

bkx
s0d

sin kx
s0da

coskx
s0da − cosqxa

+ o
nÞ0

S 1

bkx
snd

sin kx
snda

coskx
snda − cosqxa

−
1

2punuDGI = 0.

s9d

Note, that this is a real-valued dispersion equation. The real
part of polarizability(2) which is responsible for radiation
reaction is cancelled by real part of interaction constant(6).

Equation(9) has three types of solutions.
(1) Ordinary waves, in the case whereI =0 in (9). They

have no electric field component along wiressEz=0d and
propagate without interaction with the lattice. Their disper-
sion plot corresponds to the host medium and is shown in
Fig. 3 by thin lines.

(2) Extraordinary waves, in the case where the expression
in square parentheses in(9) equals zero. They correspond to
the nonzero currentsI Þ0 and have the nonzero longitudinal
component of electric fieldEzÞ0. Their dispersion proper-
ties are described in detail in Ref.[5]; their dispersion curves
are presented in Fig. 3 by thick lines.

(3) Transmission-line modes(TLM ), in the case where
sk2−qz

2d=0 in (9). Those waves propagate along the wires;
they are TEM wavessEz=0d, but I Þ0. Their dispersion
equationqz

2=k2 has no restriction for componentsqx,qy, and
the phase shift of the currents in the adjacent wires can be
arbitrary [3].

Under the quasistatic limitka!2p anduqua!2p, the dis-
persion equation for extraordinary waves transforms to

FIG. 2. Simple wire media: a doubly periodic lattice of parallel
ideally conducting thin wires.
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q2 = qx
2 + qy

2 + qz
2 = k2 − k0

2, s10d

where the following notations are used:

k0
2 =

2p/s2

log
s

2pr0
+ Fsrd

, s11d

s=Îab, r =a/b, andFsrd=Fs1/rd is given by

Fsrd = −
1

2
log r + o

n=1

+` Scothspnrd − 1

n
D +

pr

6
. s12d

Parameterk0 corresponds to the effective plasma frequency
of the latticev0=k0/Î«0m0. For square latticesa=b one has
Fs1d=0.5275. Comparing(10) with the well known disper-
sion equation of uniaxial dielectrics, we obtain an effective
relative permittivity«% of 1d WM in the following form:

«% = «z0z0 + x0x0 + y0y0, s13d

«sk,qzd = 1 −
k0

2

k2 − qz
2 . s14d

The dependence of dielectric permittivity onqz given by(14)
does not disappear until the frequency becomes zero. This
means that wire media have low-frequency spatial disper-
sions. There is no low-frequency spatial dispersion for the
extraordinary waves in the only case where the wave propa-
gates across the wiressqz=0d. At low frequencies the propa-
gation of those waves can be described in terms of plasma-
like permittivity «=1−k0

2/k2 (see also Ref.[6]). Relative to
those waves the wire medium behaves as a cold, nonmagne-
tized plasma(a continuous dielectric medium). In other
propagation directions the wire medium behaves differently.
In Ref. [3] we discuss the importance of the low-frequency
spatial dispersion in 1d wire media. Below, we show this
phenomenon theoretically in 2d and 3d WM.

III. DOUBLE WIRE MEDIA

Now, let us consider a double wire medium which is com-
prised ofy-directed andz-directed wires. It is shown in Fig.
4 as a set of parallel grids located along thex axis. Below,
the local field approach is going to be applied taking the
same approximation as was done in our earlier work[7]
(where we have studied a doubly negative metamaterial in a
similar way). Thus, the approximation is as follows: the elec-
tromagnetic field produced by a single grid of wires at a
distance from the grida/2 is considered as a field of a sheet
of the average currentJ. That approximation is accurate
enough under the condition where the wavelength in the ma-
trix is large compared to the grid periods(kb!2p and kc
!2p) and perioda is not smaller than periodsb, c. In this
case they-oriented grids interact with thez-oriented grids by
the fundamental Floquet harmonic. Other harmonics are eva-
nescent and their contribution to this cross-polarized interac-
tion is negligible.

We can express thesm,nd-numberedz-directed current
through the reference(zeroth) z-directed currentIz,

Iz
sm,ndszd = Ize

jsqxam+qybn+qzzd. s15d

The same rule holds fory-directed currents,

Iy
sm,ldszd = Iye

jsqxam+qzcl+qyyd. s16d

The currentsIz andIy are related to the local electric fields
acting on thez- andy-directed reference wiresEz

loc andEy
loc

through polarizabilitiesaz,y,

Iz = azEz
loc, Iy = ayEy

loc, ay,z ; asry,z,k,qy,zd, s17d

which fit (2). Both Ez
loc and Ey

loc contain contributions ofz
andy arrays,

Ez
loc = Ez

szd + Ez
syd,Ey

loc = Ey
syd + Ey

szd. s18d

Copolarized termsEz
szd and Ey

syd could be expressed
throughIz and Iy applying (4):

Ez
szd = CzzIz,Czz; Csk,qx,qy,qz,a,bd, s19d

FIG. 3. Dispersion curves of wire media with filling ratio
f =pr0

2/a2=0.001(square lattice). Thin lines, ordinary waves; thick
lines, extraordinary waves. TLM are not shown.

FIG. 4. The structure of a double wire medium is represented as
a set of planar wire grids.
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Ey
syd = CyyIy,Cyy ; Csk,qx,− qz,qy,a,cd. s20d

The cross componentsEz
syd and Ey

szd could be expressed
throughIy and Iz, respectively,

Ez
syd = CzyIy, Ey

syd = CyzIz. s21d

The cross-polarized interaction factorsCyz,zy are evaluated
below. Substituting equations(19)–(21) into (17) we obtain a
system of equations

sCyy − ay
−1dIy + CyzIz = 0,

CzyIy + sCzz− az
−1dIz = 0. s22d

First of all, it should be noticed that the solution of(22)
when Iy,z=0 corresponds to the ordinary waves with polar-
ization along thex axis, propagating in the planesy-zd. The
dispersion equation for such waves isqy

2+qz
2=k2, qx=0. Set-

ting the determinant of(22) equal to zero, we obtain a dis-
persion equation for the extraordinary wavessIy,zÞ0d,

sCyy − ay
−1dsCzz− az

−1d − CyzCzy= 0. s23d

It should be noted that the expressions in parentheses in(23)
are exactly the dispersion equations for the simple wire me-
dia (from y wires andz wires, respectively).

In (23) coefficientsCyy,zz are defined from(6), (19), and
(20). Now, let us calculate coefficientsCzy andCyz using the
approximation of current sheets which has been mentioned
above. Thez component of the electric field produced by a
sheet with surface currentJysy,zd=y0sIy/cdejsqyy+qzzd at the
arbitrary distancex from the grid can be expressed by the
formula [8],

Ey,zsx,y,zd =
hqyqz

2kxk
Jz,ysy,zde−jkxux,

kx ; − jÎqy
2 + qz

2 − k2. s24d

Summing up(24) over all m-numbered layers, we can write

Czy=
hqyqz

2kxkc
o

m=−`

+`

e−jqxame−j um−1
2

ukxa. s25d

The summation result is the following:

Czy=
hqyqz

kxkc

je−jqxa/2cossqxa/2dsinskxa/2d
cosqxa − coskxa

. s26d

Taking into account the phase shift betweenz andy grids we
obtain

Cyz= ejqxaCzyc/b

=
hqyqz

kxkb

jejqxa/2cossqxa/2dsinskxa/2d
cosqxa − coskxa

. s27d

Substituting(2), (6), and(26) into (23), we derive an explicit
dispersion equation,

sk2 − qy
2dF 1

p
log

c

2pry
+

1

ckx

sin kxa

coskxa − cosqxa

+ o
nÞ0

S 1

cby
snd

sin by
snda

cosby
snda − cosqxa

−
1

2punuDG
3sk2 − qz

2dF 1

p
log

b

2prz
+

1

bkx

sin kxa

coskxa − cosqxa

+ o
nÞ0

S 1

bbz
snd

sin bz
snda

cosbz
snda − cosqxa

−
1

2punuDG
=

4qy
2qz

2

kx
2bc

Scossqxa/2dsinskxa/2d
cosqxa − coskxa

D2

, s28d

where

bz
snd = − jÎSqy +

2pn

b
D2

+ qz
2 − k2,

by
snd = − jÎSqz +

2pn

c
D2

+ qy
2 − k2.

The signs of all square roots are chosen so that RehÎsdj.0.
The dispersion equation(28) cannot be simplified(except the
quasistatic limit) even in a special case wherery=rz and a
=b=c. In fact, the perfect square can be obtained on the
left-hand side of(28) if one neglects the contribution of
high-order Floquet harmonics expressed byn series. How-
ever, this approximation leads to the wrong results for the
shape of isofrequencies. Therefore we do not use it.

The preliminary analysis of(28) reveals some special so-
lutions. There are two solutions which correspond to TLM:
the first isqy=k,qz=0, qx is arbitrary; the second one isqz
=k,qy=0, qx is arbitrary. Those waves propagate either along
the y wires (when the electric field averaged over the lattice
unit cell is polarized alongz) or along thez wires (when the
averaged electric field is polarized alongy). They are TEM
waves as well as TLM in simple WM[3]. The componentqx
is a free parameter for TLM and plays the role of a phase
shift between the currents in the adjacent grids of wires[3].
At first sight, it seems strange that the electric field with
non-zero z component can propagate alongy across the
z-directed wires below the “plasma” frequency(which is the
cutoff frequency for such waves in 1d WM). However, it is
possible. When the TLM propagates along they wires, all
grids of z wires are excited; however, the superposition of
their fields exactly vanishes in the planesx=am+a/2, where
the grids ofy wires are located. This result can easily be
obtained analytically for arbitrary nonzeroqx andqt=k. For
the same reason it is also possible for ay-polarized TLM to
propagate alongz.
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When qx=p /a or qyqz=0, the right-hand side of(28)
equals zero and the equation splits into two separate equa-
tions similar to(9) and describing the extraordinary waves in
two simple WM. Forqy=0 (or qz=0) the absence of the
interaction between two simple WM’s is trivial, since the
propagation holds in the planesx-zd [or sx-yd] and the elec-
tric field is polarized orthogonally toy-directed wires(or to z
wires). However, the interaction between two 1d WM’s is
also absent whenqx=p /a. At low frequencieska,1 the
equationqx=p /a corresponds to the excitation of TLMin
both y and z arrayswith polarization directions alternating
alongx. The existence of this kind of TLM(which does not
transport energy at all) is specific for 2d WM.

More detailed study of(28) requires numerical calcula-
tions and their results are presented below.

IV. TRIPLE WIRE MEDIA

Analysis of triple wire media can be carried out in the
same way as described above. Similarly to(22), we obtain

sCxx − ax
−1dIx + CxyIy + CxzIz = 0,

CyxIx + sCyy − ay
−1dIy + CyzIz = 0,

CzxIx + CzyIy + sCzz− az
−1dIz = 0, s29d

whereCyy,zz,yz are determined by(19), (20), (26), (27), and
(6) and

Cxx = Csk,qy,qz,qx,b,cd. s30d

Here ai is denoted asai =asr i ,k,qid and the subscripti
means the Cartesian componentssx,y,zd. Other interaction
factors are as follows:

Cxy = j
hqxqy

kzka

cossqzc/2dsinskzc/2d
cosqzc − coskzc

ejqzc/2, s31d

Cxz= j
hqxqz

kyka

cossqyb/2dsinskyb/2d
cosqyb − coskyb

ejqyb/2, s32d

Cyx = j
hqxqy

kzkb

cossqzc/2dsinskzc/2d
cosqzc − coskzc

e−jqzc/2, s33d

Czx= j
hqxqz

kykc

cossqyb/2dsinskyb/2d
cosqyb − coskyb

e−jqyb/2, s34d

ky ; − jÎqx
2 + qz

2 − k2, kz ; − jÎqx
2 + qy

2 − k2.

There are no ordinary waves in that medium since there are
no vectors orthogonal to all wires simultaneously. The deter-
minant of (29) gives the dispersion equation:

sCxx − ax
−1dsCyy − ay

−1dsCzz− az
−1d

− sCxx − ax
−1dCyzCzy− sCyy − ay

−1dCxzCzx

− sCzz− az
−1dCxyCyx + CxyCyzCzx+ CxzCzyCyx = 0. s35d

The dispersion equation(35) with substitutions(19), (20),
(30), and(34) is the final result for the triple wire media. The
explicit equation is cumbersome and cannot be simplified in
the general propagation case. However, in the special case
when qx=0, all cross-polarized interaction terms(31)–(34)
vanish, and the system(29) splits into two separate sets: the
first one is the dispersion equation of the 1d WM Cxx=ax

−1,
the second one is the system(22). The first case corresponds
to the extraordinary waves propagating normally to thex
wires without interaction withy and z wires. There is no
spatial dispersion for those waves(see above). The second
case corresponds to the in-plane propagation in 2d WM,
which will be studied below. In the present paper we do not
consider the general case of the wave propagation in 3d WM.

V. DISPERSION DIAGRAMS AND ISOFREQUENCIES
OF A DOUBLE WIRE MEDIUM

The dispersion diagram of a double WM for the in-plane
propagationsqx=0d of the extraordinary waves obtained by
numerical solution of(28) is shown in Fig. 5. The chosen
parameters of the wire lattice area=b=c, ry=rz. The filling
ratio is f =2pry

2/a2=0.002.
We use notationsG=s0,0,0dT, Z=s0,0,p /cdT, and

L= s0,p /b,p /cd for the central point, thez-bound point, and
the corner point of the fundamental Brillouin zone, respec-
tively.

One can notice the significant difference between Fig. 5
and the dispersion diagram of a simple wire medium(see
Fig. 3). In Fig. 5 one can see within the interval L−G two
extraordinary modes which do not vanish at low frequencies
k,k0 and are not TLM. In simple WM the waves with non-
zero longitudinal(with respect to the wires) component of
the electric field cannot propagate at low frequencies since
the phase shifts between the adjacent wires are small and the
reradiation of parallel wires suppresses the wave. In 2d WM
it becomes possible due to the electromagnetic interaction of

FIG. 5. Dispersion diagram of a double wire media with filling
ratio f =2pr0

2/a2=0.002 (cubical cell and equal radii). Thin lines,
modes of the host medium[singular points of Eq.(28)], thick lines,
modes of the 2d WM.
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the two orthogonal wire arrays. This is the result of the cross-
polarized interaction of wire arrays. There are terms inCyz
that cancel out the terms inCyy andCzzwhich are responsible
for the suppression of the waves propagating obliquely in
simple WM at low frequencies.

The horizontal lineska/ s2pd=0.1 andka/ s2pd=0.3 in
Fig. 5 correspond to isofrequency contours presented in Figs.
6 and 7, respectively. The isofrequency contour located
around the L point is very unusual(close to the hyperbolic
one). In Fig. 6 one can see that the contours of isofrequencies
are rather close to four asymptotesqy,z= ±k. In spite of the
rather low frequency as compared tov0, the isofrequency
contour located around theG point sq=0d basically differs
from the isofrequency of an isotropic dielectric(a circle).

Only in a special case of the in-plane propagation, the iso-
frequency centered at theG point has nearly circular shape
and the phase velocity of this mode coincides with that of the
host medium. WhenqxÞ0, the shape of this isofrequency
becomes superquadric and modes with hyperbolic isofre-
quency tend to the same asymptotesqy,z= ±k. When qx
=p /a the isofrequencies coincide with the asymptotes ex-
actly. This case corresponds to TLM discussed above(which
do not transport energy). The plot in Fig. 6 indicates the
possibility of the two refracted waves(both extraordinary
waves) for the rather large sheer of incidence angles. This
effect keeps at the quasistatic limit.

The 2d WM with proper orientation of wires with respect
to the medium interface can possess the low-frequency nega-
tive refraction. It follows from the fact that the angles be-
tween the group and the phase velocities for the mode cor-
responding to the hyperbolic contours in Figs. 6 and 7 can be
close top /2 (the normal to the isofrequency contour shows
the direction of the group velocity vector).

At the frequencies close to the plasma frequencyv0 and
higher two other modes appear with isofrequencies centered
at G. They are shaped as two crossing ellipses. The modes
with isofrequency curves close toqy,z= ±k are still present.
The isofrequency contours for such a case[corresponding to
ka/2p=0.3, qx=0, and qx=p / s2ad] are shown in Fig. 7.
Whenqx increases at fixed frequency, the hyperbolic isofre-
quency contours in the planesqy–qzd approach the asymp-
totes in the same way as it happens for lower frequencies.
The elliptic contours located aroundG (see Fig. 7) shrink to
this point whereqx grows and disappear whenqx becomes
greater thank0.

VI. QUASISTATIC CASE

Let us consider a double wire medium in a quasistatic
case whereuqua!p and ka!p. Expanding trigonometric
functions in the dispersion equation for extraordinary waves
(28) into Taylor series and keeping the two first terms in
those expansions, we obtain the following equation:

sk2 − qy
2dsk2 − qz

2dfk2 − k0
2sry,a,cd − q2gfk2 − k0

2srz,a,bd − q2g

=qy
2qz

2k0
2sry,a,cdk0

2srz,a,bd. s36d

Let us consider a special case wherery=rz=r anda=b=c. In
that case(36) could be simplified to the form

Îk2 − qy
2Îk2 − qz

2sk2 − k0
2 − qx

2 − qy
2 − qz

2d ± qyqzk0
2 = 0,

s37d

wherek0=k0sr ,a,ad.
We can expressqx from (37) in the form

qx
2 = k2 − k0

2 ±
qyqzk0

2

Îk2 − qy
2Îk2 − qz

2
− qt

2. s38d

In Ref. [4] the following approximate dispersion equation
was introduced under the conditionsk<k0 and qt=Îqx

2+qy
2

!k0 (in our notations):

FIG. 6. Isofrequency contours for double wire media at
ka/ s2pd=0.1. Two casesqx=0 andqx=p / s2ad are presented.

FIG. 7. Isofrequency contours for double wire media at
ka/ s2pd=0.3. Two casesqx=0 andqx=p / s2ad are presented.
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qx
2 < k2 − k0

2 ± qyqz − qt
2. s39d

The birefringence of the dispersion branches near the plasma
frequency corresponds to the two signs on the right-hand
sides of(38) and(39). The difference between Eqs.(38) and
(39) is not significant ifk<k0 andqt=Îqx

2+qy
2!k0.

In Ref. [4] the propagation of waves at the frequencies
close tov0 in triple wire medium has been numerically stud-
ied for the case whereqx=0 (in-plane propagation). In that
case the presence ofx wires does not influence the propaga-
tion characteristics, and our dispersion equation(37) is ap-
plicable. We compare the solution of(37) with results from
Ref. [4] in order to validate our theory.

In Ref. [4] one chose the following parameters:r
=a/100 (it corresponds tok0a<1.4), qt=0.1p /a. One calcu-
lates the medium dispersion forqx=0 at the frequenciesk
<k0. In Fig. 6 of this work one shows the dependence of the
normalized eigenfrequencyka on the anglew. The anglew is
indicated in Fig. 4( qy=qt sin w andqz=qt cosw). The plot
ka vs w shown in Fig. 8 represents the comparison of(37)
with the numerical data from Ref.[4]. The upper dispersion
branch corresponds to the case where beforeqyqz in (37)
there is a plus sign, and the lower branch corresponds to the
case where there is a minus sign. This plot illustrates the
effect of the dispersion branch birefringence near the
“plasma frequency” of wire medium(see ellipses in Fig. 7).
Equation (37) shows that this effect holds also forqxÞ0.
Figure 8 verifies that the quasistatic equation(37) is correct
even at rather high frequencies(slightly higher thanv0) out-
side the initial approximationka!p.

Now, let us turn to the consideration of the effective per-
mittivity of 2d WM. In the dyadic form the tensor of effec-
tive relative permittivity of arbitrary anisotropic dielectric
media can be written as«% =«xxx0x0+«yyy0y0+«zzz0z0. The
dispersion equation of anisotropic dielectric(following from
Maxwell’s equation and from the definition of relative per-

mittivity in terms of D=«0«% ·E) corresponds to the zero-
value determinant of the following system:s«%k2+qq

−q2I%dE=0:

s«xxk
2 − qy

2 − qz
2dEx + qxqyEy + qxqzEz = 0,

qxqyEx + s«yyk
2 − qx

2 − qz
2dEy + qyqzEz = 0,

qxqzEx + qyqzEy + s«zzk
2 − qx

2 − qy
2dEz = 0. s40d

This system helps to find the polarization of eigenmodes

when«% is known. The study of eigenmode polarization will
be considered in our next paper.

The dispersion equation has the following form:

sqy
2 + qz

2 − k2«xxdsqx
2 + qz

2 − k2«yydsqx
2 + qy

2 − k2«zzd

− sqy
2 + qz

2 − k2«xxdqy
2qz

2 − sqx
2 + qz

2 − k2«yydqx
2qz

2

− sqx
2 + qy

2 − k2«zzdqx
2qy

2 − 2qx
2qy

2qz
2 = 0. s41d

In Ref. [4] the following expressions have been heuristically
introduced for components of the permittivity of 3d WM:

«xx = 1 −
k0

2srx,b,cd
k2 − qx

2 ,

«yy = 1 −
k0

2sry,a,cd
k2 − qy

2 , «zz= 1 −
k0

2srz,a,bd
k2 − qz

2 . s42d

The effects of the low-frequency spatial dispersion are
deemed to be described by termsqx,y,z in the denominators of
the components of«% (see also in Ref.[3]).

It has been noted in Ref.[4] that the expressions(42) and
the dispersion equation(37) fit perfectly with the results of
numerical simulations forv<v0. Following (42), the com-
ponents of«% for triple WM are the permittivities of the three
orthogonal simple wire media stretched along the Cartesian
axes. We have assumed that the same rule holds for 2d WM.
In the case of 2d wire medium there are nox-directed wires
and «xx=1. We have analytically verified that(36) exactly
coincides with(41) if the effective permittivity of a double
WM takes the following form:

«%double= x0x0 + «yyy0y0 + «zzz0z0, s43d

where«yy and«zz are given by the relations(42). It should be
noted that formula(43) has been obtained(very recently) for
2d WM by other authors[9] as a result of a very complicated
analytical-numerical approach. From(42) it follows, that at
every point of the central isofrequency contour in Fig. 6
(wherek,k0 andqy,z,k) both components of the permittiv-
ity tensor«yy and«zz are negative. The propagation of such a
wave (I Þ0 for it and the electric field can containy and z
components) is the spatial dispersion effect.

We have also proved that the whole system(42) holds in
our model of a triple wire media. The quasistatic analog of
(35) has the form

FIG. 8. Dependence of the normalized wave numberka on w
angle near the “plasma” resonance of the wire medium withr
=a/100,qt=0.1p /a (dashed line). Comparison with the exact result
(solid line corresponds to the numerical data from Fig. 6[4]).
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sk2 − qx
2dsk2 − qy

2dsk2 − qz
2dfk2 − k0

2srx,b,cd − q2g

3fk2 − k0
2sry,a,cd − q2gfk2 − k0

2srz,a,bd − q2g

− sk2 − qx
2dfk2 − k0

2srx,b,cd − q2gqy
2qz

2k0
2sry,a,cdk0

2srz,a,bd

− sk2 − qy
2dfk2 − k0

2sry,a,cd − q2gqx
2qz

2k0
2srx,b,cdk0

2srz,a,bd

− sk2 − qz
2dfk2 − k0

2srz,a,bd − q2gqx
2qy

2k0
2srx,b,cdk0

2sry,a,cd

+ 2qx
2qy

2qz
2k0

2srx,b,cdk0
2sry,a,cdk0

2srz,a,bd = 0. s44d

It coincides with the dispersion equation(41) if the permit-
tivity takes the form[see relations(42)]:

«% triple = «xxx0x0 + «yyy0y0 + «zzz0z0. s45d

We have thus verified that dielectric permittivities for 2d and
3d wire media in the form(43) and (45) suggested in Ref.
[4,9] fit successfully in our theory. We have analytically veri-
fied, that the quasistatic analogs of dispersion equations(23)
and (35) in the form (37) and (44) coincide with the
dispersion equations of anisotropic dielectrics
(43) and (45).

VII. CONCLUSION

In the present paper we have generalized a recently devel-
oped analytical theory of a simple wire medium to the case
of double wire media and obtained some results for triple
WM. We have validated our theory by comparison with Ref.
[4] and proved that the effective permittivity of 2d and 3d
WM introduced in Refs.[4,9] fits our dispersion equations
fairly well.

We have theoretically revealed the effects of low-fre-
quency spatial dispersion for 2d WM, such as the following.

(i) Propagation ofz-polarized TLM alongy wires is not
suppressed by the presence ofz wires(the same is correct for
the y-polarized TLM propagating alongz).

(ii ) There are TLM which can exist in bothy andz arrays
simultaneously. These modes do not transport energy, since
the directions of the currents in wires are alternating along
the x axis.

(iii ) There are two propagating modes at low frequencies
v,v0 which are not TLM and not ordinary waves. One
mode has nonzero electric field component in the plane

sy-zd whereas bothy and z components of the permittivity
tensor are negative. For the other one the isofrequency con-
tour is nearly hyperbolic.

(iv) Near the plasma frequency the two other waves ap-
pear with crossing isofrequency contours.

The materials under consideration could find various ap-
plications due to the properties discussed in this paper. We
would like to note especially such applications as creation of
a low frequency superprism and design of materials with
negative refraction. Those properties of double WM will be
discussed in a future paper.

Finally, let us discuss the problem of the homogenization
of WM. Equation(41) relates three unknown components of
«% , three components of the wave vectorq and the frequency
(or wave numberk). The components ofq are related
through dispersion equation withk. It is clear that the prob-
lem of «% has no unique solution in this formulation. The
same concerns 2d WM. Though (42) fits our dispersion
equations, this result is heuristic and the permittivity has
been introduced and not derived. Is it reasonable to try to
find other possible expressions for«%?

It is well known that the effective material parameters of
spatially dispersive media have meaning other than those of
continuous media. The effective susceptibility of such media
in the presence of a point source depends on the source po-
sition and has nothing to do with the effective medium sus-
ceptibility for plane waves. The usual boundary conditions
are not valid on the medium interface. So, the material pa-
rameters are not very helpful in solving the boundary prob-
lem for media with spatial dispersion. The goal of the ho-
mogenization of WM is modest: to describe the low-
frequency propagating properties of an infinite medium in
terms of those parameters. Therefore, all we need is to intro-
duce the permittivity which would(1) describe all effects we
can reveal solving the correct(quasistatic) dispersion equa-
tion and(2) allow one to find the polarization of eigenmodes
correctly. For both 2d and 3d WM the permittivity (42) com-
prises all the dispersion properties at low frequencies
ska,1d. As to eigenwaves polarization, the result(42) re-
quires further study, which will be also presented in a future
paper.
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