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The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing
wave are studied by solving the acoustic scattering problem through incorporating the boundary element
method. The dependence of levitation force amplitude on the equivalent radiusR of disks deviates seriously
from theR3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk
aspect ratiog is larger than a critical valueg*s<1.9d and the disk radiusa is smaller than the critical value
a*sgd, the levitation force per unit volume of the sample will increase with the enlargement of the disk. The
acoustic levitation force on thin-disk samplessgøg*d can be formulated by the shape factorfsg ,ad whena
øa*sgd. It is found experimentally that a necessary condition of the acoustic field for stable levitation of a
large water drop is to adjust the reflector-emitter intervalH slightly above the resonant intervalHn. The
simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave
with the increase of sound pressure level, which agrees with the experimental observation. The main frequen-
cies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency
because of the large shape deformation. The simulated translational frequencies of the vertical vibration under
normal gravity condition agree with the theoretical analysis.
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I. INTRODUCTION

An intense acoustic field can exert a substantial force on
the object immersed in it. This is known as the acoustic
radiation force and can be applied to levitate substances for
containerless processing[1–3]. In the last few decades,
acoustic levitation has found a variety of application fields,
such as solidification[4–6], fluid dynamics[7,8], and even
biology [9,10]. Since King’s pioneering work[11], the
acoustic radiation force is generally evaluated on samples
with a spherical shape[12,13]. In an incident plane standing
wave,Fin=F0sinskzde−jvt, whereF0 is the amplitude of the
velocity potential, k=2p /l is the wave number, andv
=2pf is the angular frequency, the acoustic radiation force
on a small rigid sphere can be expressed as[11]

F = − 5
6pr0F0

2skRSd3sins2kzd, s1d

wherer0 is the density of the medium,RS is the radius of the
sphere, andz is the position where the sphere is located. The
minus sign appears in Eq.(1) because the originz=0 is cho-
sen at the pressure node rather than the antinode.

Theoretically, Eq.(1) is only valid when the sample is
spherical and its radiusRS!l. For spheres that have a finite
radius, Eq.(1) has to be modified as[14]

F = F0fsRSd, s2d

in which F0 is the value of the force at the limitkRS→0, and
f is the shape factor derived by Leunget al. [14],

fsRSd =
3

s2kRSd2Ssins2kRSd
2kRS

− coss2kRSdD . s3d

In the limit kRS→0, Eq.(2) is actually reduced into Eq.(1).
In fact, nonspherical samples are frequently levitated and

studied in experiments[2,4,15]. For example, liquid drops
levitated in a single axis-acoustic levitator often take a disk-
like shape and this shape is usually preserved after solidifi-
cation. In the experiment of containerless melting and solidi-
fication of metallic materials, the solid samples are also
preshaped into a disk to avoid violent instability aroused by
the large shape deformation during the melting process[4].
Therefore, it is necessary to evaluate the acoustic levitation
force on disklike samples in order to have a better control of
the acoustic levitation processing. On the other hand, the
levitation force seems to increase when a sphere is com-
pressed into a disk[15]. But a quantitative knowledge of this
phenomenon is still lacking. This paper presents a numerical
study of the acoustic levitation forces on disk samples in a
standing wave. The dependence of the levitation force on the
disk size and shape will be discussed.

The kinematics and dynamics of a levitated drop in acous-
tic field is of interest in the areas of fluid dynamics and
containerless solidification, and have attracted extensive re-
search both theoretically and experimentally[16–26]. This is
also the physical basis to measure the surface tension and
viscosity of liquids by the acoustic levitation method
[27–29]. A drop levitated in an acoustic field experiences
nonuniform acoustic radiation force on its surface, and de-
forms from its original spherical shape. The interaction on
the drop by acoustic radiation pressure, surface tension, and
gravity generally produces translational vibration, shape os-
cillation, and rotation.

Marston et al. [16] and Jackson[17] studied the small
deformation of acoustically levitated drops and formulated*Corresponding author. Email address: lmss@nwpu.edu.cn
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the equilibrium shape that is slightly off a sphere. The oscil-
lation frequency of a spherical drop in free space can be
described by the classical Rayleigh relationship[27]. The
numerical method developed by Shiet al. [18] and Suet al.
[19] was able to simulate a large deformation and also to
obtain the oscillational frequencies of nonspherical drops.
The oscillation frequency was found to vary with the drop
deformation, and corresponding investigations have been at-
tempted by Trinhet al. [20], Suryanarayanaet al. [21],
Zhenget al. [22], and Shiet al. [23], either experimentally or
numerically. But their conclusions are not in good agreement
with each other. The disintegration of levitated drop by at-
omization often results in the failure of experiments[24].
Danilov et al. [25] proposed the critical condition of atomi-
zation, which was further identified by Anilkumar[26].

This paper also presents an experimental investigation
and numerical simulation of the deformation and oscillation
of acoustically levitated water drops. The condition of acous-
tic field for stable levitation of drops is analyzed. Based on
the dynamic evolution of water drops under different condi-
tions, the equilibrium shape, translational frequency, and os-
cillational frequency are determined and discussed with re-
spect to sound pressure.

II. ACOUSTIC LEVITATION FORCE ON RIGID DISK
SAMPLES

A. Model of acoustic levitation for disk samples

Figure 1 shows the schematic of a rigid disk sample with
radiusa and thickness 2b inside a time-harmonic standing
wave field. The shape of the disk is characterized by the ratio
of its diameter to thickness,g=a/b. The larger theg value,
the thinner the disk shape is. Wheng=1.0, the thickness of
the disk is identical to its diameter, which corresponds to a
very “thick” disk. In the following studies, only disks with
gù1 will be considered. The symmetric axis of the disk is
parallel to the traveling direction of an acoustic wave. This is
an acoustic scattering problem. The resultant velocity poten-

tial is the sum of the incident term and the scattering term,
F=Fin+Fsc, and the spatial part ofF satisfies the Helm-
holtz equation,

=2F + k2F = 0 s4d

with the boundary condition]F /]n=0 on the disk surface.
Equation(4) can be further transformed into the boundary
integral equation over the surface of the disk, and then
solved by the boundary element method,

Csr dFsr d = Finsr d +E E Fsr 8d
]

] n8
Gsr ,r 8ddS8. s5d

Here, Gsr ,r 8d=s4pur −r 8ud−1exps jkur −r 8ud is the free-space
Green function.Csr d is a constant related to the geometric
characteristics at the pointr and the value of 4pC is equal to
the solid angle enclosed by the sample surface atr .

The acoustic radiation pressure is the average effect of the
vibrating medium on the sample surface during a period of
time. King’s theory gives the relationship between the time-
averaged radiation pressureP and the velocity potentialF on
the sample surface[11],

P =K1

2
r0k

2F2 −
1

2
r0st · = Fd2L , s6d

wheret is the unit tangential vector along the sample surface,
and kl denotes the time average over a period of acoustic
wave.

The total acoustic radiation force exerted on the sample
can be calculated by integrating thez component of this ra-
diation pressure over the sample surface,

F = −E E P cossn ∧ zddS. s7d

For simplicity and generalization of the following calcu-
lation, all of the above equations are transformed into dimen-
sionless forms. The characteristic length, potential, and den-
sity are chosen asl ,F0, andr0, respectively. In this way, the
incident velocity potential will beFin=sins2pzd. King’s for-
mula of acoustic radiation force[Eq. (1)] and radiation pres-
sure [Eq. (6)] becomesF=−5

6ps2pRSd3sins4pzd and P
=k2p2F2−st ·=Fd2/2l, respectively.

For a spherical sample, Eq.(2) shows that the acoustic
radiation force has a sinusoidal distribution along the z di-
rection with a spatial period ofl /2, and the force amplitude
is dependent on the sphere radius by,RS

3fsRSd. Since the
disk sample is symmetric about its middle plane, it is ex-
pected that the corresponding force is also a sinusoidal func-
tion of z similar to Eq.(2). Therefore, it is only necessary to
study the variation of the levitation position between −l /4
and l /4, and to reveal the relationship between the maxi-
mum force(obtained atz=−l /8) and the disk parameters(g
anda). In order to make a comparison between the disks and
spheres, the equivalent radius of the disk,R, is defined as the
radius of a sphere that occupies the same volume of this disk,
and the concept of shape factorfsa,gd for disks is also ap-
plied. The acoustic radiation pressure has an oscillatory dis-
tribution over the sample surface because of the oscillatory

FIG. 1. Schematic of a disk levitated in a plane standing sound
wave.(a) Geometry of the scattering problem. The dot-dashed line
represents the incident velocity potential distribution and the solid
line represents the acoustic radiation force. The arrows represent the
positive direction of the forceF. (b) Definition of the disk param-
eters. The disk shape is characterized by its aspect ratiog=a/b.

W. J. XIE AND B. WEI PHYSICAL REVIEW E70, 046611(2004)

046611-2



characteristics of the incident acoustic field. If the geometry
of the sample reachesl /2 (the spatial period of acoustic
radiation force), the oscillatory pressure variation over the
sample surface will counteract each other and only a small
levitation force can be obtained. Therefore, the equivalent
radius of the disk will be confined toRøl /4 in the follow-
ing calculation to meet the needs of actual applications.

B. Dependence of acoustic levitation force on disk
size and shape

Figure 2 shows the variation of the acoustic radiation
force on a sphere and a disk when the sphere or disk moves
from −l /4 to l /4 along thez axis. The disk has a shape
characteristic ofg=4 and its equivalent radiusR is equal to
the radius of the sphere:R=RS=0.125l. It is clear that the
calculated force on both the sphere and the disk takes a sinu-
soidal dependence on the sample position with a spatial pe-
riod of l /2, which confirms the above expectation. For the
sphere that has a finite size, the actual acoustic radiation
force is smaller than King’s theoretical prediction, whereas
for the disk withg=4, the actual force is larger than that on
the sphere with the same volume. Therefore, King’s formula
is not accurate for either spheres with finite size or disklike
samples.

The calculated shape factorf as a function of sphere ra-
dius is plotted in Fig. 3. At the limit ofRS→0, f approaches
unity, which is the case of King’s approximation. When the
sample size increases,f decreases gradually. This means that
the increase of the sample size will result in a decrease of the
acoustic radiation force per unit volume of the sample. Since
the gravity exerted on the sphere is proportional to its vol-
ume, the enlargement of the spherical sample size has disad-
vantages for efficient levitation. A comparison between the
calculated data and Leung’s formula[Eq. (3)] shows a good
agreement at small values ofRS. But a distinct difference
appears whenRS approachesl /4. The decreasing tendency
of the calculated data is steeper than Leung’s formula.

In order to discuss the disk samples, we define the shape
factor f of a disk as the ratio of the actual force to that
expressed by Eq.(1). The shape factors for disks withg=1
and g=2 are also plotted in Fig. 3 for comparison. It is
obvious thatf is a function ofR andg.

Figure 4 presents the calculated radiation force on differ-
ent shapes of disks. The data for spheres and King’s formula
are also plotted as a reference. In King’s theory, the size of
the spheres will not influence the levitation result, since the
acoustic radiation force and the gravity are both proportional
to R3. However, the actual levitation force deviates seriously
away from theR3 law whenR increases, no matter whether it
is for disks or spheres. Although a largeR in the limit of
R/l→0.25 makes the levitation inefficient, it can be found
that in some cases(for instance, the disks withg=4,8, and
16), the levitation force per volume is possible to be en-
hanced to a great extent, which is interesting for experimen-
tal work.

FIG. 2. Variation of the acoustic radiation forceF on a sphere
and a disk when the sample moves from −l /4 to l /4 along thez
direction. The radius of the sphere and the equivalent radius of the
disk are both equal to 0.125l.

FIG. 3. Dependence of the shape factorf on sphere radius. The
simulated data(open circles) show good agreement with Leung’s
theory whenR→0 but significantly deviate from that whenR
→l /4. The data for disks withg=1 (solid squares) andg=2 (open
squares) are also plotted as a reference.

FIG. 4. Dependence of the acoustic radiation force amplitude on
the equivalent radiusR of disks with differentg values. King’s
theory givesR3 dependence.
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The shape factorf of disks as a function of disk radiusa
under differentg values is summarized in Fig. 5. It can be
seen that whengù2, the shape factor of disks is always
larger than that of spheres with the same cross-section radius.
In addition, there exists a critical value ofa* , at which f
attains the maximum valuefM. The trace ofa*sgd can be
depicted ina-g space, as shown in Fig. 6. In order to gener-
ate an increasing segment in thef-a curve, it is required that
g should be no less than a critical value ofg* anda should
be no more thana* . The value ofg* is estimated to be about
1.9 anda* would not exceed 0.25l. Within the range ofa
øa* sgd shown in Fig. 6, thef value for disks increases
instead of decreases as for spheres with the increasing ofR.
The larger theg value, the larger thef and a* values are,
which indicates that “thin” disks are more efficient than
“thick” ones in acoustic levitation. Ifa.a* sgd, the f-a
curves will decrease rapidly, especially for disks with largeg
values. This suggests that in practical experiments, the disk

radius should be restricted in an appropriate range in order to
get the largest levitation force. Roughly speaking, the disk
radius should not exceed 0.25l.

The value off at the limit of a→0, defined asf0, is also
an important quantity, which along withfM can be used to
modify King’s formula of Eq.(1) so as to predict the acous-
tic radiation force on small thin disks. This modified formula
is written as

F = − 5
6 fsg,Rdpr0F0

2skRd3sins2kzd, s8d

or

F = −
5

4

fsg,ad
g

pr0F0
2skad3sins2kzd, s9d

in which f0sgdø fsg ,adø fMsgd, aøa*sgd, andg.g* .
The values off0 and fM as a function ofg are plotted in

Fig. 7. Both of them show a good linear relationship,

f0sgd = 0.758 + 0.177g, s10d

fMsgd = 0.617 + 0.252g. s11d

Under the condition ofg.g* and aøa*sgd, the values off
in Eqs (8) and (9) are confined to the rangef0sgdø f
ø fMsgd, as shown in the shadow area in Fig. 7.

The acoustic radiation force on an object is the sum of the
z component of the radiation pressure normal to the sample
surface. Therefore, the levitation force on a disk comes from
the contribution of the radiation pressure on the cross sec-
tions of this disk. Hasegawa defined a radiation force coeffi-
cient Yst for spherical samples[30],

Yst,sphere=
F

pRS
2EA sin 2kz

, s12d

which means the maximum force per unit incident energy
density and per unit cross section of the sphere. In Eq.(12),
EA=r0k

2F0
2/2 is the mean energy density of the incident

FIG. 5. Dependence of the shape factorf on disk radiusa and
aspect ratiog. When g is larger than a critical valueg* and a is
smaller than a critical valuea* , f increases monotonously rather
than decreases with the increase ofa.

FIG. 6. The critical valuea* as a function ofg. The shadow
region represents the conditionaøa* , under which the shape factor
f increases monotonously witha. The critical valueg* is estimated
to be about 1.9, anda* would not exceedl /4.

FIG. 7. f0 and fM as a function ofg. The shadow area denotes
the range off values sf0ø f ø fMd when g.g* and aøa* . The
open circles and solid squares are simulated data off0 and fM,
respectively. The lines are fitted results.
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planar standing wave. In order to discuss the situation of
disks, we modify Eq.(12) by replacing the sphere radiusRS
with the disk radiusa,

Yst,disk=
F

pa2EA sin 2kz
, s13d

which can be applied to analyze the radiation force coeffi-
cient of disk samples.

Figure 8 shows the dependence ofYst on the equivalent
radiusR of disks and spheres. According to King’s formula,
Yst is linearly dependent onR, i.e.,Yst=s10/3dpR/l, indicat-
ing that the mean acoustic radiation force on the unit cross
section of a sample is proportional to its equivalent radius.
This is approximately true for all the calculated data of
spheres and disks whenR,0.1l, as shown in Fig. 8. In other
words, under the condition ofR,0.1l, the acoustic radiation
force coefficientYst shows approximately the same linear
relationship to the equivalent radiusR of the sample no mat-
ter what shape the sample takes. According to Eq.(13), F is
proportional to the sample cross section. Since a “thin” disk
has a larger cross section than a “thick” disk or a sphere with
the same volume, the total force on the former is larger than
the latter.

III. DYNAMICS OF ACOUSTICALLY LEVITATED
WATER DROPS

A. Experimental investigation

The levitation experiment is performed with a single-axis
acoustic levitator, which consists of a magnetostrictive trans-
ducer and a reflector with a concave reflecting surface. The
frequency of the transducer is 16.7 kHz, which produces a
wavelength of 20.36 mm in air. Water drops are injected by a
syringe into the levitation position that is near the sound
pressure nodal. The acoustic field is kept resonant during the
levitation process by careful adjustment of the reflector-
emitter interval. With this adjustment, the intensity of the

acoustic field can also be changed intentionally to a small
extent by strengthening or weakening the resonance.

When a drop is acoustically levitated, the sound pressure
amplitude of the acoustic field,pA, must satisfy the condition
pmøpAøpM, wherepm is the minimum pressure to levitate
the drop andpM is the maximum pressure to ensure the drop
stability. Under the approximations of a plane standing wave
field and a small rigid sphere sample, these two threshold
pressures can be expressed as[31]

pm = s1.6rLr0gc2k−1d1/2, s14d

pM = s3.4sr0c
2R−1d1/2, s15d

whererL is the density of the drop,r0 is the density of the
medium,g is the gravitational acceleration,c is the sound
speed in the medium,k is the wave number,s is the surface
tension of the drop, andR is the drop radius. If the sound
pressure of the acoustic field is less thanpm, the drop will fall
down owing to insufficient levitation force. On the other
hand, if the sound pressure is larger thanpM, atomization
may occur to the drop[25]. In the present experimental case,
the actual acoustic field is not a plane standing wave, thus
two wavelength-dependent factorsasld andbsld should be
multiplied to Eqs(1) and (2), respectively[31]. In addition,
if the drop has a finite size and deforms into a disklike shape,
the shape factor defined in Sec. II should also be considered.

Acoustic levitation is generally conducted near the reso-
nant states of the acoustic field, in which the reflector-emitter
interval H should be close to the resonant intervalHn to a
certain extent[31]. Figure 9 describes two possible states
that can satisfy the above condition ofpmøpAøpM during
the adjustment of resonance. The first one is the state that the
reflector-emitter intervalH is slightly less than the resonant
intervalHn (referred to as state 1). And the second is that the
reflector-emitter intervalH is slightly larger than the resonant
interval Hn (referred to as state 2). Nevertheless, the experi-
ment shows that the first state results in the atomization of
large water drops, and only a small water drop(whose diam-

FIG. 8. Dependence ofYst on the equivalent radiusR of differ-
ent disks and spheres. WhenR,0.1l, an approximate linear rela-
tionship Yst=

10
3 pR/l can be obtained no matter what shape the

sample takes.

FIG. 9. Schematic of the two possible states of the acoustic field
that can levitate a water drop.pm is the minimum entrapping sound
pressure andpM is the critical atomization pressure. Large water
drops(diameter up to 3–4 mm) can only be levitated in state 2.
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eter is generally less than 1 mm) can be stably levitated. On
the contrary, in the second state, water drops with diameters
up to 3–4 mm can be stably levitated.

The acoustic radiation pressure is generally nonuniformly
distributed on the drop surface during acoustic levitation,
which usually exhibits pressure on the polar area and suction
on the equator. This nonuniform radiation pressure leads to
the compression in the polar direction and ultimately an ob-
late shape of the drop forms. The degree of deformation
depends on the intensity of the acoustic field. Figure 10
shows the shape development of a water drop levitated in the
second state when the reflector-emitter interval is gradually
reduced, in which Figs. 10(a), 10(b), and 10(c) correspond
roughly to the states marked byA, B, andC in Fig. 9. In Fig.
10(a), where the shape of the water drop is close to a sphere,
the drop is likely to fall down because the levitation force in
such a state is quite weak. As the sound pressure increases,
the water drop deforms into an oblate shape, as shown in Fig.
10(b). When the sound pressure increases further, the drop
becomes flatter and the central part of the upper and bottom
surface becomes concave, forming a pancakelike shape, as
shown in Fig. 10(c). In the state of Fig. 10(c), the acoustic
field is the most intense and atomization is likely to occur.
Therefore, the state shown in Fig. 10(b) is the most stable
one among the above three states. According to the condition
pmøpAøpM, the sound pressure levels corresponding to
Figs. 10(a), 10(b), and 10(c) are estimated to be 161, 163,
and 165 dB, respectively.

In addition to its deformation, the acoustically levitated
drop vibrates translationally in both the vertical and horizon-
tal directions, and oscillates with respect to its centroid as
well. The translational vibration is characterized by the to-
and-fro movement of the drop centroid with respect to the
sound pressure nodal, whereas the shape oscillation is char-
acterized by the alternating expansion and contraction of the
drop equator and poles with respect to its centroid. These
two kinds of movement are confined by the acoustic radia-
tion pressure and the surface tension, respectively, which will
be studied through numerical simulation in the following
sections.

B. Formulation of acoustically levitated water drop

When a liquid drop with an originally spherical shape is
introduced into an acoustic field, it scatters the incident wave

and experiences the acoustic radiation pressure. The distribu-
tion of the acoustic radiation pressure on the drop surface is
generally nonuniform, which leads to the deformation of this
drop under the constraint of the surface tension. The de-
formed shape in turn modifies the scattered acoustic field and
thus the acoustic radiation force on the drop surface. This
process repeats and forms shape oscillation and translational
vibration of the drop until all the transient energy is dissi-
pated and the final equilibrium shape is reached.

Applying the analysis strategy of Refs.[18,19], and as-
suming the liquid inside the drop is inviscid and incompress-
ible, the flow is then irrotational and the fluid velocityu can
be expressed as the gradient of the potentialFL as
u=−=FL, which satisfies Laplace’s equation in the liquid,

=2FL = 0. s16d

The kinematic boundary condition on the drop surface is

dr /dt = u, s17d

wherer is the position of a fluid particle on the drop surface,
t is time, andd/dt=] /]t+u ·= denotes the material differen-
tiation following a given particle. The dynamic boundary
condition on the drop surface can be determined from the
Bernoulli equation,

rL] FL/] t + s1/2drLu ·u + DP = 0, s18d

whereDP is the pressure difference across the surface which
drives the shape oscillation.DP is balanced on the surface by

FIG. 10. Deformation of an acoustically levitated water drop with an increase of sound pressure.(a) SPL,161 dB,(b) SPL,163 dB,
and (c) SPL,165 dB. The equivalent radius of the drop is about 2 mm.

FIG. 11. Coordinate system and description of a water drop. The
equatorial and polar radius of the drop are denoted bya and b,
respectively.
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the surface tension stress, the acoustic radiation pressurePa,
and the gravitational pressure,

DP = s = ·n + rLs1 − «dgsz− z0d + Pa, s19d

wheren is the unit normal vector,«=r0/rL is the ratio of air
density to liquid density,z is the vertical coordinate, andz0 is
the maximum ofz on the drop surface.

Since the period of drop oscillation is much longer than
that of the acoustic field, the acoustic radiation pressure ex-
erted on the drop surface is actually the time-averaged value
as described by Eq.(6).

For simplicity of calculations, we consider the axisym-
metric drop deformation and employ cylindrical coordinates
as shown in Fig. 11, wheres is the arclength of the generatrix
along the drop surface, anda and b are the equatorial and
polar radius of the deformed drop, respectively. The charac-
teristic length is defined as the equivalent radiusR of the
drop in spherical shape, the characteristic pressureP0
=2s /R as the surface tension pressure of a spherical drop
with radiusR, and the characteristic velocity potential as the
amplitude of the incident acoustic field,F0. The dimension-
less equations describing the evolution of the drop surface
can be written as follows:

2dFL/dt = ut
2 + un

2 − = ·n − 2B0sz− z0d

− WekF2 − s] F/] sd2/K2l, s20d

dr/dt = utdr/ds− undz/ds, s21d

dz/dt = utdz/ds+ undr/ds, s22d

whereB0=rLgR
2s1−«d / s2sd is the gravitational Bond num-

ber, We=r0Rk2F0
2/ s2sd is the acoustic Weber number,K

=kR is the dimensionless wave number, andut andun denote
the tangential and normal parts ofu, respectively. In Eqs.
(20)–(22), the characteristic time, velocity, and fluid velocity
potential are t0=srLR3/2sd1/2, u0=s2s /rLRd1/2, and FL0

=s2sR/rLd1/2, respectively. By integrating Eq.(20) with re-
spect to time, we can obtainFL and thenut sut=−]FL /]sd.
The acoustic velocity potentialF satisfies the Helmholtz
equation and can be solved by the boundary element method
described by Eq.(5). Since in this analysis the origin is cho-
sen at the drop centroid, the incident potential is written as
Fin=sinfKsz−hdgexps−jvtd, whereh is the distance from the
drop centroid to the pressure nodal of the acoustic field. The
value of normal liquid velocityun can be obtained by solving
the Laplace equation(16), which can also be transformed
into the boundary integral equation over the drop surface that
is analogous to Eq.(5), and solved by the boundary element
method. This boundary integral equation is

FLsr d = 2E E FLsr 8d] GLsr ,r 8d/] ndS8

− 2E E unsr 8dGLsr ,r 8ddS8 s23d

and the corresponding free-space Green function is
GLsr ,r 8d=s4pur −r 8ud−1.

C. Deformation and oscillation of acoustically levitated
water drop

Equations(20)–(22) are first-order differential equations
which describe the motion of the drop surface with respect to
time and can be numerically solved by using the fourth-order
Runge-Kutta method. At each step of the iteration, the values
of r ,z,F ,ut, andun should be given in advance. The values
of r andz can be obtained directly from the previous itera-
tion step, andut indirectly by making partial differentiation
to the previously obtainedFL, whereas the values ofF and
un at each step have to be achieved by solving Eqs(5) and
(23) by the boundary element method, respectively. In order
to accurately describe the drop surface and the derivative
quantities such asdr /ds anddz/ds, the cubicb-spline inter-
polating function is applied. Here, we use eight elements
(nine nodes) with equal arclength along the generatrix of the
drop surface. And based on the values ofF at these nine
nodes, the values ofF and]F /]s between every two adja-
cent nodes are interpolated by employing the cubicb-spline
function. This also enables us to numerically calculate the
surface tension pressure= ·n /2 and the gravitational pres-
sureB0sz−z0d.

The initial conditions are set to a spherical water drop
with a typical radiusR=2 mm and zero surface velocity. The
incident sound pressure varies from 160 to 166 dB. For a
given sound pressure, Eqs.(20)–(22) are numerically solved
by using the fourth-order Runge-Kutta method, and the drop
shape and surface velocity are recorded with the passage of
time. To obtain the equilibrium shape of a levitated drop, the
shape oscillation is damped out numerically. When both the
ratio of the maximum oscillation amplitude to drop radius
and the maximum pressure difference on the drop surface are
less than 0.1%, the equilibrium shape is considered to be
reached and the computation loops are stopped. In order to
speed up the computation process, we also take the equilib-
rium shape under a certain sound pressure as the initial shape
configuration under another sound pressure in practice. For
example, the equilibrium shape under 163 dB can be set as
the initial shape to be evolved under 162 or 164 dB.

Two gravity conditions are considered. In the zero-gravity
s0gd case, which corresponds to the microgravity environ-
ment in outer space, the drop centroid is located at the sound
pressure node of an incident acoustic wave. In the normal
gravity s1gd case, which corresponds to the terrestrial condi-
tion, the equilibrium position of the drop centroid(whose
vertical coordinate is denoted byzc) has to be found before

TABLE I. Physical parameters used for calculations.

Drop radius R 2 mm

Frequency f 16.7 kHz

Sound speed c0 340 m/s

Surface tension s 0.072 N/m

Gravitational acceleration g 9.8 m/s2

Density of water rL 103 kg/m3

Density of air r0 1.21 kg/m3

Characteristic time t0 7.454310−3 s
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the shape evolution begins. This is accomplished by adjust-
ing the parameter ofh (the distance from the drop centroid to
the sound pressure node) until the resulting force on the drop
(assumed to be rigid) is less than a scheduled small value.
The parameters and their values used in this simulation are
listed in Table I.

Figure 12 shows the temporal evolution of the equatorial
radius a and polar radiusb of the levitated water drop in
acoustic field.zc is the vertical position of the drop centroid
with reference to the nodal plane of an incident standing
wave. In order to obtain the equilibrium shapes of the drop
under different sound pressure levels, a numerical damping
is introduced into the simulation procedures of drop evolu-
tion, which can also be seen from Fig. 12. The profiles of the
final equilibrium drop shapes under different sound pressure
levels are shown in Fig. 13, for both the 0g and 1g cases. A
drop in the zero-gravity condition takes a spherical shape if
there is no acoustic field. When the acoustic field is exerted,
the drop deforms slightly from the sphere into an oblate
shape at first. As the sound pressure increases, the drop be-
comes more flattened, showing a disklike shape. And at

higher sound pressures, the central parts of its top and bot-
tom surface even change from a convex shape to a concave
shape. Under the normal 1g gravity condition, the variation
of the drop shape is primarily the same as that under the
zero-gravity condition, except that the drop position is lifted
with the increase of sound pressure. This agrees well with
the experimental results shown in Fig. 10. In the 0g condi-
tion, the drop centroid is always located in the plane of the
sound pressure node. In contrast, it is always below the nodal
plane under the 1g condition, and with the increase of sound
pressure, the vertical position of the drop centroid is lifted
toward the sound pressure node. In the 1g condition, the
resultant acoustic radiation force has to be large enough to
counteract the gravitational force. According to Eq.(14), the
minimum pressure to entrap a rigid spherical sample ispm
=2665.8 PasSPL=159.5 dBd in the present case. However,
the numerical simulation has shown that the drop cannot be
levitated even at 160 dB because the small sample condition
kRs=0.617d!1 cannot be satisfied. The water drop at
160 dB has an aspect ratio ofg=1.37, and its shape factor is
estimated to bef =0.73 if it is regarded as a thick disk. Con-

FIG. 12. Temporal evolution of an acoustically levitated water drop.(a) Equatorial radius and polar radius vs time; and(b) centroid
position vs time.

FIG. 13. Equilibrium shapes of an acoustically levitated water drop under different sound pressures.(a)–(d) Zero gravity case: SPL
=161,163,165, and 166 dB, respectively;(e)–(h) normal gravity case: SPL=161,163,165, and 166 dB, respectively.
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sidering the shape factor, the minimum entrapping pressure
is recalculated to be 3120 PasSPL=160.8 dBd, which is
consistent with the simulation.

The deformation of a drop can be indicated by its equa-
torial radiusa or the aspect ratio of the equatorial radiusa to
polar radiusb, as shown in Fig. 14. It can be seen that the
equatorial radius and the aspect ratio increase quickly when
sound pressure increases. The simulated results are also com-
pared with the experimental data of Anilkumaret al. [26] for
a water drop with a size ofkR<0.58, which is close to the
condition in the present simulation. It can be seen that the
simulation agrees well with Anilkumaret al.’s experiment
when the deformation is small. The influence of the gravity
on shape deformation is not evident, especially when the
SPL is large, because at higher SPL, the drop position is very
close to the sound pressure node and the incident acoustic
field around the drop is similar to that in the 0g case.

On the basis of the temporal evolution of drop surface, we
can further obtain the frequencies for both the shape oscilla-
tion and the bulk vibration in the vertical direction. These are
accomplished by applying a fast Fourier transformation
(FFT) program to the temporal evolution of the surface pa-
rameters and the drop centroid. Figure 15 shows the FFT
spectra of the time evolution of the drop equatorial radius

under the 1g condition. The main frequency of the shape
oscillation under different sound pressures is determined and
plotted in Fig. 16. For a nearly spherical inviscid liquid drop,
the frequency of small oscillation is expressed by the Ray-
leigh relationship[27],

fn =
1

2p
Însn + 2dsn − 1ds

rLR3 , s24d

wheren is the resonant mode number. For the lowest mode
n=2, the Rayleigh frequency attains 42.7 Hz in the present
case, and is of the same order of the simulated results. Since
the acoustically levitated drop experiences a large deforma-
tion, it is understood that its oscillation frequency has a de-
viation from the Rayleigh frequency. Figure 15 shows that,
when the sound pressure is larger than 165 dB, there appears
an obvious second peak, which corresponds to a higher reso-
nant mode of the shape oscillation. This means that the
higher oscillation mode becomes outstanding when larger
shape deformation takes place. From Fig. 16, we can con-
clude that the gravitational field does not apparently affect

FIG. 14. Deformation of an acoustically levitated water drop.(a) Equatorial radius vs SPL. The crosses are experimental data for a water
drop with kR<0.58 in Fig. 7 of Ref.[26]. The water drop size in this simulation iskR=0.617.(b) Aspect ratio vs SPL.

FIG. 15. FFT spectra of the drop equatorial radius oscillation
under normal gravity condition with different sound pressure levels.
The peak amplitudes define the frequencies of the shape oscillation
and bulk vibration in the vertical direction.

FIG. 16. Oscillational frequency vs SPL for the FFT spectrum
shown in Fig. 15. The dot-dashed line represents the oscillational
frequency for a spherical water drop predicted by Eq.(24).
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the oscillation frequency, since the shape oscillation is
mainly dominated by the surface tension.

The vertical translation frequency is achieved by making
a fast Fourier transformation to the time evolution of the
drop centroid, and is plotted in Fig. 17. The restoring force of
the vertical vibration is provided by the acoustic radiation
force. Therefore, the translational frequency is dependent on
the intensity of the incident acoustic field. For a rigid small
sphere, the resultant acoustic radiation force can be ex-
pressed asF=−s5/6dpR3sv /r0c

3dp0
2sins2kzd, which can be

further approximated asF=−s20p3R3p0
2f2/3r0c

4dz near the
sound pressure nodal. In the above expression, the term in
the brackets can be regarded as the restoring force coeffi-
cient. Therefore, the translational frequency near the pressure
nodal can be written as

fT =
p0f

2c2Î 5

r0rL
, s25d

where p0 is the pressure amplitude of an incident acoustic
field. The frequency predicted by Eq.(25) for different sound
pressure levels is shown in Fig. 17 as a solid line, which
agrees quantitatively with the simulated result. As a compari-
son, the translational frequences for a small rigid sphere and
a large rigid sphere are also plotted. Equation(25) is derived
on the basis of the small rigid sphere approximation, whereas
the water drop has a substantial radius and a large shape
deformation, and the acoustic radiation pressure also contrib-
utes to driving the shape oscillation. Therefore, the deviation
between the numerical simulation and Eq.(25) is not surpris-
ing.

Although the application conditions for Eqs.(24) and(25)
are incompletely satisfied in calculating the oscillational and
translational frequencies in practice, and there are indeed
certain differences between the analytical and simulated data,
the results predicted by Eqs(24) and(25) are still valuable as
a quantitative reference. Therefore, Eqs.(24) and (25) are

applicable to evaluate the oscillational and translational fre-
quencies to a first-order approximation.

IV. CONCLUSIONS

The acoustic levitation force on disklike samples and the
dynamics of the acoustically levitated large water drops are
investigated. The acoustic radiation force of a plane standing
wave on a disk varies sinusoidally with the sample position,
which is similar to the case of a sphere. The dependence of
the force amplitude on the equivalent radiusR of the disk
deviates seriously from theR3 law predicted by King’s for-
mula and a larger force can be obtained for “thin” disks. The
shape factorf of spheres and thick diskssg,g*d decreases
monotonously with the increase of the sample size, whereas
that of thin diskssgùg*d has an increasing range when the
disk radiusa is smaller than a critical valuea* . If aøa* , the
acoustic radiation force on a disk in a planar standing wave
can be expressed as Eq.(8) or Eq. (9), in which f is mainly
a function of g. The value of fsgd can be estimated by
f0sgdø fsgdø fMsgd wheref0sgd and fMsgd can be expressed
linearly by Eqs(10) and(11). The calculation of the acoustic
radiation force coefficientYst indicates that whenR,0.1l,
the mean acoustic radiation force per unit cross section of a
sample is approximately10

3 pR/l, no matter what shape the
sample takes. Because thin disks have larger cross sections
for the same volume, it is advantageous to obtain a larger
acoustic radiation force when levitating thin disks.

The acoustic levitation of a water drop is studied experi-
mentally and a necessary condition of the acoustic field for
stable levitation of large water drops is proposed, that is, to
adjust the reflector-emitter intervalH slightly above the reso-
nant intervalHn. A numerical simulation is conducted to
study the deformation and oscillation of a water drop levi-
tated in an acoustic field for both microgravity and normal
gravity conditions. It is found that the aspect ratio of the
equator radius to the polar radius of the drop increases
quickly when sound pressure increases. The original convex
shape of the central part of the top and bottom surface even
changes into a concave shape at higher sound pressure levels.
These results agree well with the experiments. The main fre-
quencies of the shape oscillation under different sound pres-
sures are larger than the Rayleigh frequency because of the
large shape deformation. The gravitational field does not ap-
parently affect the oscillational frequencies. The simulated
translational frequency is consistent with the analytical re-
sult. As a first-order approximation, Eqs.(24) and (25) can
be applied to evaluate the oscillational and translational fre-
quencies.
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FIG. 17. Translational frequency vs SPL. The solid dots,
crosses, and open triangles are simulated data for a water dropsR
=2 mmd, a large rigid spheresR=2 mmd, and a small rigid sphere
sR=0.2 mmd, respectively. The solid line is the translational fre-
quency for a small rigid sphere predicted by Eq.(25).
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