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Dynamics of acoustically levitated disk samples

W. J. Xi¢* and B. Wei
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
(Received 18 February 2004; revised manuscript received 2 June 2004; published 28 October 2004

The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing
wave are studied by solving the acoustic scattering problem through incorporating the boundary element
method. The dependence of levitation force amplitude on the equivalent Rdifislisks deviates seriously
from the R® law predicted by King'’s theory, and a larger force can be obtained for thin disks. When the disk
aspect ratioy is larger than a critical valug'(=1.9) and the disk radius is smaller than the critical value
a’(y), the levitation force per unit volume of the sample will increase with the enlargement of the disk. The
acoustic levitation force on thin-disk sampleg=< y") can be formulated by the shape factéy,a) whena
<a’(y). It is found experimentally that a necessary condition of the acoustic field for stable levitation of a
large water drop is to adjust the reflector-emitter inteidaklightly above the resonant intervael,. The
simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave
with the increase of sound pressure level, which agrees with the experimental observation. The main frequen-
cies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency
because of the large shape deformation. The simulated translational frequencies of the vertical vibration under
normal gravity condition agree with the theoretical analysis.
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I. INTRODUCTION 3 [sin(2k
f(Rg) = X 2( 2(k Ro - cog2kRy) |. (3)
An intense acoustic field can exert a substantial force on (2kR9) Rs

the object immersed in it. This is known as the acoustiqp, the |imit kRs— 0, Eq.(2) is actually reduced into Eql).
radiation force and can be applied to levitate substances for |, fact, nonspherical samples are frequently levitated and

containerless processingl—3. In the last few decades, gygied in experimentf2,4,15. For example, liquid drops
acoustic levitation has found a variety of application fields,jeyjitated in a single axis-acoustic levitator often take a disk-
such as solidificatiori4—€], fluid dynamics[7,8], and even ke shape and this shape is usually preserved after solidifi-
biology [9,10. Since King's pioneering work1l], the  cation. In the experiment of containerless melting and solidi-
acoustic radiation force is generally evaluated on samplefication of metallic materials, the solid samples are also
with a spherical shap_[_atz,la. In an incident plane standing preshaped into a disk to avoid violent instability aroused by
wave, &, =Dgsin(kz)e”’ ", wheredy is the amplitude of the  he |arge shape deformation during the melting progégs
velocity potential,k=27/\ is the wave number, and  Therefore, it is necessary to evaluate the acoustic levitation
=2mf is the angular frequency, the acoustic radiation forcerce on disklike samples in order to have a better control of
on a small rigid sphere can be expressedld$ the acoustic levitation processing. On the other hand, the
levitation force seems to increase when a sphere is com-

F = - Smpa®3(kRe)3sin(2k2), (1)  pressed into a diskl5]. But a quantitative knowledge of this
phenomenon is still lacking. This paper presents a numerical
) ) ] ] ) study of the acoustic levitation forces on disk samples in a
wherep, is the density of the mediunRs is the radius of the  standing wave. The dependence of the levitation force on the
sphere, and is the position where the sphere is located. Thegisk size and shape will be discussed.

minus sign appears in E@l) because the origiz=0 is cho- The kinematics and dynamics of a levitated drop in acous-
sen at the pressure node rather than the antinode. tic field is of interest in the areas of fluid dynamics and

Theoretically, Eq.(1) is only valid when the sample is containerless solidification, and have attracted extensive re-
sphencal and its radiuRg<<\. _F_or spheres that have a finite ga5rch both theoretically and experiment@lig—2§. This is
radius, Eq/(1) has to be modified agl4] also the physical basis to measure the surface tension and

viscosity of liquids by the acoustic levitation method
F=Fof(Ry), (2)  [27-29. A drop levitated in an acoustic field experiences
nonuniform acoustic radiation force on its surface, and de-
forms from its original spherical shape. The interaction on
the drop by acoustic radiation pressure, surface tension, and
gravity generally produces translational vibration, shape os-
cillation, and rotation.

Marstonet al. [16] and Jacksorj17] studied the small

*Corresponding author. Email address: Imss@nwpu.edu.cn deformation of acoustically levitated drops and formulated

in which F is the value of the force at the limiRs— 0, and
f is the shape factor derived by Leusgal. [14],
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tial is the sum of the incident term and the scattering term,

M2 o=, +d,, and the spatial part ob satisfies the Helm-
holtz equation,
V4 V2D + kD = 0 (4)
—J_H . . .
with the boundary conditio@®/dn=0 on the disk surface.
0 IZb Equation(4) can be further transformed into the boundary
integral equation over the surface of the disk, and then
4 solved by the boundary element method,
(b) F
C(NP(r) = djp(r) + O(r')—G(r,r")ds. (5
a2 an

Here, G(r,r')=(4mx|r —r'|)texp(jk|r —r'|) is the free-space
FIG. 1. Schematic of a disk levitated in a plane standing sound>r€€n functionC(r) is a constant related to the geometric
wave.(a) Geometry of the scattering problem. The dot-dashed linecharacteristics at the pointand the value of 4C is equal to
represents the incident velocity potential distribution and the soliche solid angle enclosed by the sample surface at
line represents the acoustic radiation force. The arrows represent the The acoustic radiation pressure is the average effect of the
positive direction of the forc&. (b) Definition of the disk param- Vvibrating medium on the sample surface during a period of
eters. The disk shape is characterized by its aspect yati b. time. King’s theory gives the relationship between the time-
averaged radiation pressuPeand the velocity potentiab on

the equilibrium shape that is slightly off a sphere. The oscil-the sample surfacgll],

lation frequency of a spherical drop in free space can be 1 1

described by the classical Rayleigh relationsf@]. The P={ =pk?®? - =py(t - VD)2 ), (6)
numerical method developed by Sdtial. [18] and Suet al. 2 2

[19] was able to simulate a large deformation and also tquheret is the unit tangential vector along the sample surface,
obtain the oscillational frequencies of nonspherical dl’OpSand <> denotes the time average over a period of acoustic
The oscillation frequency was found to vary with the drop,yayve.

deformation, and corresponding investigations have been at- The total acoustic radiation force exerted on the sample

tempted by Trinhet al. [20], Suryanarayan&t al. [21],  can be calculated by integrating taeomponent of this ra-
Zhenget al.[22], and Shiet al.[23], either experimentally or  yiation pressure over the sample surface,
numerically. But their conclusions are not in good agreement

with each other. The disintegration of levitated drop by at- _

omization often results in the failure of experimefngs]. F=- P cosn Lz)dS, (7)
Danilov et al. [25] proposed the critical condition of atomi- o o .

zation, which was further identified by Anilkumé§26). For simplicity and generalization of the following calcu-

This paper also presents an experimental investigatioffﬁtion: all of the above equations are transformed into dimen-
and numerical simulation of the deformation and oscillationSionless forms. The characteristic length, potential, and den-
of acoustically levitated water drops. The condition of acousSity are chosen as, o, andp,, respectively. In this way, the
tic field for stable levitation of drops is analyzed. Based onincident velocity potential will beb;,=sin(27z). King’s for-
the dynamic evolution of water drops under different condi-mula of acoustic radiation fordéq. (1)] and radiation pres-
tions, the equilibrium shape, translational frequency, and ossure [Eq. (6)] becomesF=-2m(2mRg)%in(4mz) and P
cillational frequency are determined and discussed with re=(27?®2-(t-V®)?/2), respectively.

spect to sound pressure. For a spherical sample, E¢R) shows that the acoustic
radiation force has a sinusoidal distribution along the z di-
Il. ACOUSTIC LEVITATION FORCE ON RIGID DISK rection with a spatial period of/2, and the force amplitude
SAMPLES is dependent on the sphere radius bR3f(Ry). Since the

disk sample is symmetric about its middle plane, it is ex-
pected that the corresponding force is also a sinusoidal func-
Figure 1 shows the schematic of a rigid disk sample withtion of z similar to Eq.(2). Therefore, it is only necessary to
radiusa and thickness 2 inside a time-harmonic standing study the variation of the levitation position betweek/4
wave field. The shape of the disk is characterized by the ratiand A/4, and to reveal the relationship between the maxi-
of its diameter to thicknesgy=a/b. The larger they value, = mum force(obtained az=-\/8) and the disk paramete(y
the thinner the disk shape is. Wher 1.0, the thickness of anda). In order to make a comparison between the disks and
the disk is identical to its diameter, which corresponds to apheres, the equivalent radius of the diRkis defined as the
very “thick” disk. In the following studies, only disks with radius of a sphere that occupies the same volume of this disk,
v=1 will be considered. The symmetric axis of the disk isand the concept of shape factidg, y) for disks is also ap-
parallel to the traveling direction of an acoustic wave. This isplied. The acoustic radiation pressure has an oscillatory dis-
an acoustic scattering problem. The resultant velocity potentribution over the sample surface because of the oscillatory

A. Model of acoustic levitation for disk samples
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FIG. 3. Dependence of the shape fadtan sphere radius. The
simulated datgopen circley show good agreement with Leung’s
gweory whenR—0 but significantly deviate from that wheR
—\/4. The data for disks withy=1 (solid squaresand y=2 (open
squarepare also plotted as a reference.

FIG. 2. Variation of the acoustic radiation foréeon a sphere
and a disk when the sample moves from/4 to \/4 along thez
direction. The radius of the sphere and the equivalent radius of th
disk are both equal to 0.125

characteristics of the incident acoustic field. If the geometry In order to discuss the disk Samp|esy we define the Shape
of the sample reaches/2 (the spatial period of acoustic factor f of a disk as the ratio of the actual force to that
radiation force, the oscillatory pressure variation over the expressed by Eql). The shape factors for disks with=1
sample surface will counteract each other and only a smalind y=2 are also plotted in Fig. 3 for comparison. It is
levitation force can be obtained. Therefore, the equivalenppyious thatf is a function ofR and y.

radius of the disk will be confined tB<X\/4 in the follow- Figure 4 presents the calculated radiation force on differ-
ing calculation to meet the needs of actual applications.  ent shapes of disks. The data for spheres and King'’s formula
are also plotted as a reference. In King'’s theory, the size of
the spheres will not influence the levitation result, since the
acoustic radiation force and the gravity are both proportional
to R®. However, the actual levitation force deviates seriously
force on a sphere and a disk wh.en the sphere or disk moves for disks or spheres. Although a largein the limit of
from -\/4 to \/4 along thez axis. The disk has a shape R/)\ . 0.25 makes the levitation inefficient, it can be found
characteristic ofy=4 and its equivalent radiug is equal to  that in some casedor instance, the disks withy=4,8, and

the radius of the spher®=Rs=0.125.. It is clear that the 1) the levitation force per volume is possible to be en-
calculated force on both the sphere and the disk takes a Sinbznced to a great extent, which is interesting for experimen-
soidal dependence on the sample position with a spatial pgs| work.

riod of A\/2, which confirms the above expectation. For the

B. Dependence of acoustic levitation force on disk
size and shape

sphere that has a finite size, the actual acoustic radiation 10 -
force is smaller than King’s theoretical prediction, whereas <> 1=16 /
for the disk withy=4, the actual force is larger than that on gl = 1=8 1
the sphere with the same volume. Therefore, King’s formula = S v=4 é’,
is not accurate for either spheres with finite size or disklike g = %
samples. € 6} = /

The calculated shape factbras a function of sphere ra- 7 0 =
dius is plotted in Fig. 3. At the limit oRs— O, f approaches A O sphere
unity, which is the case of King’s approximation. When the < ar

o : w

sample size increasesdecreases gradually. This means that
the increase of the sample size will result in a decrease of the 2F
acoustic radiation force per unit volume of the sample. Since
the gravity exerted on the sphere is proportional to its vol- G- . 7
ume, the enlargement of the spherical sample size has disad- 8,00 005 010 015 020 025
vantages for efficient levitation. A comparison between the R
calculated data and Leung’s formyl&ag. (3)] shows a good
agreement at small values 8. But a distinct difference FIG. 4. Dependence of the acoustic radiation force amplitude on

appears wheiRg approachea./4. The decreasing tendency the equivalent radiuR of disks with differenty values. King’s
of the calculated data is steeper than Leung’s formula. theory givesR® dependence.
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FIG. 5. Dependence of the shape factarn disk radiusa and )
aspect ratioy. When y is larger than a critical valug’ anda is FIG. 7. fg andfy, as a function ofy. The shadow area denotes

smaller than a critical value’, f increases monotonously rather the range off values (fo<f<fy) when y>y anda<a’. The
than decreases with the increaseaof open circles and solid squares are simulated daté, aind fy,

respectively. The lines are fitted results.

The shape factorf of disks as a function of disk radiues
under differenty values is summarized in Fig. 5. It can be radius should be restricted in an appropriate range in order to
seen that wheny=2, the shape factor of disks is always get the largest levitation force. Roughly speaking, the disk
larger than that of spheres with the same cross-section radiugdius should not exceed 0325
In addition, there exists a critical value af, at which f The value off at the limit ofa— 0, defined ad, is also
attains the maximum valué,. The trace ofa’(y) can be  an important quantity, which along with, can be used to
depicted ina-y space, as shown in Fig. 6. In order to gener-modify King’s formula of Eq.(1) so as to predict the acous-
ate an increasing segment in th@ curve, it is required that tic radiation force on small thin disks. This modified formula
v should be no less than a critical value gpfanda should  is written as
be no more tha@a". The value ofy" is estimated to be about 5 S
1.9 anda” would not exceed 0.25 Within the range ofa F=-3f(%. R mpe®5(kR)"sin(2k2), (8
<a*(y) shown in Fig. 6, thef value for disks increases or
instead of decreases as for spheres with the increasiRy of
The larger they value, the larger thé anda” values are,
which indicates that “thin” disks are more efficient than
“thick” ones in acoustic levitation. lla>a*(y), the f-a ) ) .
curves will decrease rapidly, especially for disks with lasge 1N Which fo(y) <f(y,a)<fu(v), a<a(y), andy>y.

values. This suggests that in practical experiments, the disk The values off andfy as a function ofy are plotted in
Fig. 7. Both of them show a good linear relationship,

_5f(v.a)

F= wp0<1>§(ka)3sin(2kz), (9

0.25
| fo(y) =0.758 + 0.177%, (10
0.20¢ fu(y) = 0.617 + 0.253. (11)
0151 Under the condition ofy> y* and a<a’(y), the values of
’ in Egs (8) and (9) are confined to the rangé)(y)<f
< - . -
< a<ax*(y) =<fu(y), as sh_own in Fhe shadow area in Flg. 7.
0.10f The acoustic radiation force on an object is the sum of the
z component of the radiation pressure normal to the sample
0.05} v surface. Therefore, the levitation force on a disk comes from
’ the contribution of the radiation pressure on the cross sec-
\:\ tions of this disk. Hasegawa defined a radiation force coeffi-
0‘000 L . . cient Y, for spherical sampleg30],

5 10 15 20
Y Y

FIG. 6. The critical valuea” as a function ofy. The shadow
region represents the conditiarsa’, under which the shape factor which means the maximum force per unit incident energy
f increases monotonously with The critical valuey” is estimated ~ density and per unit cross section of the sphere. In(E),
to be about 1.9, and” would not exceed /4. EA:pOKZCI)S/Z is the mean energy density of the incident

F

s, 12
SLSPNere” - R2F» sin 2z (12
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R/ FIG. 9. Schematic of the two possible states of the acoustic field
that can levitate a water dropy, is the minimum entrapping sound
FIG. 8. Dependence of; on the equivalent radiuR of differ- pressure angby is the critical atomization pressure. Large water

ent disks and spheres. Wh&i< 0.1\, an approximate linear rela- drops(diameter up to 3—4 mjrcan only be levitated in state 2.
tionship Y5t=1—3°7rR/)\ can be obtained no matter what shape the

sample takes. acoustic field can also be changed intentionally to a small
extent by strengthening or weakening the resonance.

planar standing wave. In order to discuss the situation of When a drop is acoustically levitated, the sound pressure
disks, we modify Eq(12) by replacing the sphere radit®y ~ amplitude of the acoustic fielgh, must satisfy the condition
with the disk radius, Pm=Pa= pwm, Wherep,, is the minimum pressure to levitate
the drop andpy, is the maximum pressure to ensure the drop
2;_’ (13) stability. Under the approximations of a plane standing wave
ma‘Ey sin Xz field and a small rigid sphere sample, these two threshold

which can be applied to analyze the radiation force coeffiPressures can be expresseq 3

cient of disk samples. B 112
Figure 8 shows the dependenceYqf on the equivalent Pm = (160 pogckH*?, (14)
radiusR of disks and spheres. According to King’s formula,
Y, is linearly dependent oR, i.e., Y4=(10/3)#R/\, indicat-
ing that the mean acoustic radiation force on the unit cross
section of a sample is proportional to its equivalent radius
This is approximately true for all the calculated data of
spheres and disks whéh< 0.1\, as shown in Fig. 8. In other
words, under the condition ¢t< 0.1\, the acoustic radiation
force coefficientYg shows approximately the same linear

trgla\}\llﬂgtszlr?atoetrt]r?eeg:rlr\]/allgr;‘tallr(?eilEi(c):{:g;giriaq]oplé nan?st— down owing to insufficient levitation force. On the other
P P : g to(&8), hand, if the sound pressure is larger thay atomization

proportional to the Sa”.‘p'e Cross seption..Since a “thin” dislﬁnay occur to the drof25]. In the present experimental case,
has a larger cross section than a "thick” disk or gsphere WIﬂfhe actual acoustic field is not a plane standing wave, thus
the same volume, the total force on the former is larger thai), - wavelength-dependent facta)) and B(\) should be

Yst,disk=

Py = (3.40poc®RHY2, (15)

Wwherep, is the density of the dropg is the density of the

medium, g is the gravitational acceleratiowg, is the sound

speed in the mediunk is the wave numbeir is the surface

tension of the drop, an® is the drop radius. If the sound
pressure of the acoustic field is less thgpthe drop will fall

the latter. multiplied to Eqs(1) and(2), respectively{31]. In addition,
if the drop has a finite size and deforms into a disklike shape,
I1l. DYNAMICS OF ACOUSTICALLY LEVITATED the shape factor defined in Sec. Il should also be considered.

WATER DROPS Acoustic levitation is generally conducted near the reso-
nant states of the acoustic field, in which the reflector-emitter
interval H should be close to the resonant intertl to a
The levitation experiment is performed with a single-axiscertain extenf31]. Figure 9 describes two possible states
acoustic levitator, which consists of a magnetostrictive transthat can satisfy the above condition pf< p,=< py during
ducer and a reflector with a concave reflecting surface. Théhe adjustment of resonance. The first one is the state that the
frequency of the transducer is 16.7 kHz, which produces aeflector-emitter intervaH is slightly less than the resonant
wavelength of 20.36 mm in air. Water drops are injected by antervalH,, (referred to as state)JAnd the second is that the
syringe into the levitation position that is near the soundreflector-emitter intervaH is slightly larger than the resonant
pressure nodal. The acoustic field is kept resonant during thiaterval H,, (referred to as state)2Nevertheless, the experi-
levitation process by careful adjustment of the reflector-ment shows that the first state results in the atomization of
emitter interval. With this adjustment, the intensity of the large water drops, and only a small water dtefnose diam-

A. Experimental investigation
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FIG. 10. Deformation of an acoustically levitated water drop with an increase of sound preéas&®eL ~161 dB,(b) SPL~163 dB,
and(c) SPL~165 dB. The equivalent radius of the drop is about 2 mm.

eter is generally less than 1 mman be stably levitated. On and experiences the acoustic radiation pressure. The distribu-
the contrary, in the second state, water drops with diametertson of the acoustic radiation pressure on the drop surface is
up to 3—4 mm can be stably levitated. generally nonuniform, which leads to the deformation of this
The acoustic radiation pressure is generally nonuniformlydrop under the constraint of the surface tension. The de-
distributed on the drop surface during acoustic levitationformed shape in turn modifies the scattered acoustic field and
which usually exhibits pressure on the polar area and suctiothus the acoustic radiation force on the drop surface. This
on the equator. This nonuniform radiation pressure leads tprocess repeats and forms shape oscillation and translational
the compression in the polar direction and ultimately an obvibration of the drop until all the transient energy is dissi-
late shape of the drop forms. The degree of deformatiopated and the final equilibrium shape is reached.
depends on the intensity of the acoustic field. Figure 10 Applying the analysis strategy of Refgl8,19, and as-
shows the shape development of a water drop levitated in theuming the liquid inside the drop is inviscid and incompress-
second state when the reflector-emitter interval is graduallyble, the flow is then irrotational and the fluid velocifycan
reduced, in which Figs. 18), 1Qb), and 1Qc) correspond be expressed as the gradient of the potentlgl as
roughly to the states marked By, B, andC in Fig. 9. In Fig. u=-V®&, which satisfies Laplace’s equation in the liquid,
10(a), where the shape of the water drop is close to a sphere, V2P, =0 (16)
the drop is likely to fall down because the levitation force in L=
such a state is quite weak. As the sound pressure increases, The kinematic boundary condition on the drop surface is
the water drop deforms into an oblate shape, as shown in Fig. dr/dt= 17
10(b). When the sound pressure increases further, the drop riat=u, a7
becomes flatter and the central part of the upper and bottofyherer is the position of a fluid particle on the drop surface,
surface becomes concave, forming a pancakelike shape, & time, andd/dt=9/dt+u-V denotes the material differen-
shown in Fig. 1Qc). In the state of Fig. 1@), the acoustic tiation following a given particle. The dynamic boundary
field is the most intense and atomization is likely to occur.condition on the drop surface can be determined from the
Therefore, the state shown in Fig.(bpis the most stable Bernoulli equation,
one among the above three states. According to the condition
Pm=<Pa<pw, the sound pressure levels corresponding to pdPIIt+(1/2pu-u+AP=0, (18)
Figs. 1Qa), 10(b), and 1Qc) are estimated to be 161, 163, whereAP is the pressure difference across the surface which

and 165 dB, respectively. drives the shape oscillatioAP is balanced on the surface by
In addition to its deformation, the acoustically levitated

drop vibrates translationally in both the vertical and horizon-
tal directions, and oscillates with respect to its centroid as
well. The translational vibration is characterized by the to- n
and-fro movement of the drop centroid with respect to the

sound pressure nodal, whereas the shape oscillation is char-

acterized by the alternating expansion and contraction of the b
drop equator and poles with respect to its centroid. These a t -
two kinds of movement are confined by the acoustic radia- Y S r

tion pressure and the surface tension, respectively, which will
be studied through numerical simulation in the following
sections.

B. Formulation of acoustically levitated water drop FIG. 11. Coordinate system and description of a water drop. The

When a liquid drop with an originally spherical shape is equatorial and polar radius of the drop are denotedatand b,
introduced into an acoustic field, it scatters the incident waveespectively.
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the surface tension stress, the acoustic radiation preBgure
and the gravitational pressure,

AP= 0V -n+p(1-8)g(z—2) + Py, (19

wheren is the unit normal vectog =py/p, is the ratio of air
density to liquid densityz is the vertical coordinate, argd is
the maximum ofz on the drop surface.

Since the period of drop oscillation is much longer thanDensity of water
that of the acoustic field, the acoustic radiation pressure &3
erted on the drop surface is actually the time-averaged value

as described by Ed6).
For simplicity of calculations, we consider the axisym-

metric drop deformation and employ cylindrical coordinates

as shown in Fig. 11, whegis the arclength of the generatrix
along the drop surface, armland b are the equatorial and

PHYSICAL REVIEW E70, 046611(2004

TABLE |. Physical parameters used for calculations.

Drop radius R 2 mm
Frequency f 16.7 kHz
Sound speed Co 340 m/s
Surface tension o 0.072 N/m
Gravitational acceleration g 9.8 m/g
oL 10° kg/m®
ensity of air Po 1.21 kg/n¥
Characteristic time to 7.454x10°°% s

C. Deformation and oscillation of acoustically levitated
water drop

polar radius of the deformed drop, respectively. The charac- Equations(20)«22) are first-order differential equations

teristic length is defined as the equivalent radRi®f the
drop in spherical shape, the characteristic pressbge

which describe the motion of the drop surface with respect to
time and can be numerically solved by using the fourth-order

=20/R as the surface tension pressure of a spherical droRunge-Kutta method. At each step of the iteration, the values
with radiusR, and the characteristic velocity potential as theof r,z,®,u,, andu, should be given in advance. The values

amplitude of the incident acoustic field,. The dimension-

of r andz can be obtained directly from the previous itera-

less equations describing the evolution of the drop surfacgon step, andy indirectly by making partial differentiation

can be written as follows:

2dd, /dt=uZ+ U2 - V -n-2By(z- 2)

- W(D? = (9 P/as)?K?), (20)
dr/dt = u,dr/ds— u,dz/ds, (21
dz/dt=udzds+ u,dr/ds, (22

whereBO:pLng(l—s)/(Za) is the gravitational Bond num-
ber, W,=p,RKD3/(20) is the acoustic Weber numbek,
=kRis the dimensionless wave number, an@ndu,, denote
the tangential and normal parts of respectively. In Egs.
(20«22), the characteristic time, velocity, and fluid velocity
potential arety=(p R®/20)Y?, uy=(20/p RY? and ®,
=(20R/ p.)*?, respectively. By integrating E¢20) with re-
spect to time, we can obtai, and thenu, (u;=—d®, /3s).
The acoustic velocity potentiab satisfies the Helmholtz

equation and can be solved by the boundary element methqﬁin

described by Eq(5). Since in this analysis the origin is cho-

sen at the drop centroid, the incident potential is written a

®,,=siK(z-h)]exp(—jwt), whereh is the distance from the

drop centroid to the pressure nodal of the acoustic field. Thgyss than 0.1%

value of normal liquid velocity,, can be obtained by solving
the Laplace equatioil6), which can also be transformed

to the previously obtained,, whereas the values @ and

u, at each step have to be achieved by solving &ysand
(23) by the boundary element method, respectively. In order
to accurately describe the drop surface and the derivative
quantities such adr/ds anddz/ds, the cubicb-spline inter-
polating function is applied. Here, we use eight elements
(nine nodepwith equal arclength along the generatrix of the
drop surface. And based on the valuesdofat these nine
nodes, the values @b and 9d/ds between every two adja-
cent nodes are interpolated by employing the cutgpline
function. This also enables us to numerically calculate the
surface tension pressuf-n/2 and the gravitational pres-
sureBy(z—zy).

The initial conditions are set to a spherical water drop
with a typical radiuR=2 mm and zero surface velocity. The
incident sound pressure varies from 160 to 166 dB. For a
given sound pressure, Eq20)—(22) are numerically solved
by using the fourth-order Runge-Kutta method, and the drop
shape and surface velocity are recorded with the passage of
e. To obtain the equilibrium shape of a levitated drop, the
shape oscillation is damped out numerically. When both the

Fatio of the maximum oscillation amplitude to drop radius

and the maximum pressure difference on the drop surface are
the equilibrium shape is considered to be
reached and the computation loops are stopped. In order to
speed up the computation process, we also take the equilib-

into the boundary integral equation over the drop surface thg,m shape under a certain sound pressure as the initial shape

is analogous to Eq5), and solved by the boundary element
method. This boundary integral equation is

O (r)= 2f f @ (r")aG.(r,r")/ondS

- ZJ J Uy(r")Gy(r,r")ds

and the corresponding free-space Green function
GL(r,r")=(4alr-r')™%

(23)

configuration under another sound pressure in practice. For
example, the equilibrium shape under 163 dB can be set as
the initial shape to be evolved under 162 or 164 dB.

Two gravity conditions are considered. In the zero-gravity
(0Og) case, which corresponds to the microgravity environ-
ment in outer space, the drop centroid is located at the sound
pressure node of an incident acoustic wave. In the normal
gravity (1g) case, which corresponds to the terrestrial condi-

ision, the equilibrium position of the drop centro{@vhose

vertical coordinate is denoted k) has to be found before
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FIG. 12. Temporal evolution of an acoustically levitated water df@apEquatorial radius and polar radius vs time; abg centroid
position vs time.

the shape evolution begins. This is accomplished by adjustigher sound pressures, the central parts of its top and bot-
ing the parameter df (the distance from the drop centroid to tom surface even change from a convex shape to a concave
the sound pressure nodentil the resulting force on the drop shape. Under the normabgravity condition, the variation
(assumed to be rigjdis less than a scheduled small value. of the drop shape is primarily the same as that under the
The parameters and their values used in this simulation arzero-gravity condition, except that the drop position is lifted
listed in Table I. with the increase of sound pressure. This agrees well with
Figure 12 shows the temporal evolution of the equatoriathe experimental results shown in Fig. 10. In the ddndi-
radiusa and polar radius of the levitated water drop in tion, the drop centroid is always located in the plane of the
acoustic fieldz, is the vertical position of the drop centroid sound pressure node. In contrast, it is always below the nodal
with reference to the nodal plane of an incident standingdlane under thed condition, and with the increase of sound
wave. In order to obtain the equilibrium shapes of the droppressure, the vertical position of the drop centroid is lifted
under different sound pressure levels, a numerical dampintpward the sound pressure node. In thg condition, the
is introduced into the simulation procedures of drop evolusesultant acoustic radiation force has to be large enough to
tion, which can also be seen from Fig. 12. The profiles of thecounteract the gravitational force. According to Etgd), the
final equilibrium drop shapes under different sound pressurginimum pressure to entrap a rigid spherical samplg,js
levels are shown in Fig. 13, for both thg @nd g cases. A =2665.8 PASPL=159.5 dB in the present case. However,
drop in the zero-gravity condition takes a spherical shape ithe numerical simulation has shown that the drop cannot be
there is no acoustic field. When the acoustic field is exertedgvitated even at 160 dB because the small sample condition
the drop deforms slightly from the sphere into an oblatekR(=0.617 <1 cannot be satisfied. The water drop at
shape at first. As the sound pressure increases, the drop 60 dB has an aspect ratio f1.37, and its shape factor is
comes more flattened, showing a disklike shape. And aéstimated to bé=0.73 if it is regarded as a thick disk. Con-

” ” ”

N

< T < T T £ T
(a) ' (b) ' (© ' (d) !
g sPL=tstag! 09 | spL=tesce’ g ,| spr=tesee ! 0g ,| spL=teccs | 0g
. i ‘ .
[} L}
B P e == ¢ fa==
H .
A - - i J A ,
[} L}
[} L}
" " > )
2 10 1z 2o 2 YT o 2 2 0 1 2
R /IR IR R
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(e) ' ® 1 (9) : ) )
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: : : i :
] - : H
I S S @ of--emTTITT - - - x o} -t - P !
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FIG. 13. Equilibrium shapes of an acoustically levitated water drop under different sound pregapids.Zero gravity case: SPL
=161,163,165, and 166 dB, respectivelgi—(h) normal gravity case: SPL=161,163,165, and 166 dB, respectively.
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FIG. 14. Deformation of an acoustically levitated water dr@p Equatorial radius vs SPL. The crosses are experimental data for a water
drop withkR=0.58 in Fig. 7 of Ref[26]. The water drop size in this simulation k&=0.617.(b) Aspect ratio vs SPL.

sidering the shape factor, the minimum entrapping pressurender the & condition. The main frequency of the shape

is recalculated to be 3120 PS8PL=160.8 dB, which is oscillation under different sound pressures is determined and

consistent with the simulation. plotted in Fig. 16. For a nearly spherical inviscid liquid drop,
The deformation of a drop can be indicated by its equathe frequency of small oscillation is expressed by the Ray-

torial radiusa or the aspect ratio of the equatorial radaug  leigh relationshig27],

polar radiusb, as shown in Fig. 14. It can be seen that the

equatorial radius and the aspect ratio increase quickly when

sound pressure increases. The simulated results are also com- 1 /nh+2)(n-1o

pared with the experimental data of Anilkunetral. [26] for fn= >N R (24)

a water drop with a size dfR~=0.58, which is close to the 7 L

condition in the present simulation. It can be seen that the

\?\;hmeur!attrll%n di?éfgzty(\)/ﬁlIiswgrzQm'lll(#emian?ltu::iieegf tehnemerr:vit wheren is the resonant mode number. For the lowest mode
' 9 yn:2, the Rayleigh frequency attains 42.7 Hz in the present

on shape deformation is not evident, especially when th%ase, and is of the same order of the simulated results. Since

SPLis large, because at higher SPL, the drop position is Veihie acoustically levitated drop experiences a large deforma-

c_Iose to the sound pressure node an(_j the incident acousrt'i%n, it is understood that its oscillation frequency has a de-
field around the drop is similar to that in thg @ase.

On the basis of the temporal evolution of drop surface, w viation from the Rayleigh frequency. Figure 15 shows that,

can further obtain the frequencies for both the shape oscillsfvhen the sound pressure is I_arger than 165 dB, thgre appears
. oo . Lo an obvious second peak, which corresponds to a higher reso-
tion and the bulk vibration in the vertical direction. These are

accomplished by applving a fast Fourier transformationnam mode of the shape oscillation. This means that the
P y applying . higher oscillation mode becomes outstanding when larger
(FFT) program to the temporal evolution of the surface pa-

rameters and the drop centroid. Figure 15 shows the FF‘?‘hape deformation takes place. From Fig. 16, we can con-

spectra of the time evolution of the drop equatorial raoliusclude that the gravitational field does not apparently affect

60
—0— 0g¢g
— 56 b —A— 1g
2
c
3
g 52}
s ¥
2 =~ 48}
s
£
<
“r f=42.7Hz
0 100 200 300 400 PPN N
Frequency (Hz) 160 161 162 163 164 165 166
SPL (dB)

FIG. 15. FFT spectra of the drop equatorial radius oscillation
under normal gravity condition with different sound pressure levels. FIG. 16. Oscillational frequency vs SPL for the FFT spectrum
The peak amplitudes define the frequencies of the shape oscillatiocshown in Fig. 15. The dot-dashed line represents the oscillational
and bulk vibration in the vertical direction. frequency for a spherical water drop predicted by &4).
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30 applicable to evaluate the oscillational and translational fre-
25 quencies to a first-order approximation.
| IV. CONCLUSIONS
N
3:7_ 15F The acoustic levitation force on disklike samples and the
h . dynamics of the acoustically levitated large water drops are
10F 4 ~-®-= water drop R=2mm investigated. The acoustic radiation force of a plane standing
o rigid sphere R=2mm wave on a disk varies sinusoidally with the sample position,
5k - -A- -rigid sphere R=0.2mm . L.
——Eq.(25) which is similar to the case of a sphere. The dependence of
R R . R R ) the force amplitude on the equivalent radiRsof the disk
161 162 163 164 165 166 deviates seriously from thB® law predicted by King’s for-
SPL (dB) mula and a larger force can be obtained for “thin” disks. The

) ) shape factof of spheres and thick disksy<y") decreases
FIG. 17. Translational frequency vs SPL. The solid dots,monotonously with the increase of the sample size, whereas
crosses, and open .trlangles are simulated data for g\(vater(larop that of thin disks(y= 7*) has an increasing range when the
=2 mm), a large rigid spheréR=2 mm), and a small rigid sphere iy 1 iiysa is smaller than a critical valug . If a<a’, the
(R=0.2 mm, respectively. The solid line is the translational fre- acoustic radiation force on a disk in a planar standi’ng wave
quency for a small rigid sphere predicted by [E26). can be expressed as E®) or Eq.(9), in which f is mainly
a function of y. The value off(y) can be estimated by
o ) o foly) = f(y)<fy(y) wherefy(y) andfy(y) can be expressed
the oscillation frequency, since the shape oscillation iSjnearly by Eqs(10) and(11). The calculation of the acoustic
mainly dominated by the surface tension. radiation force coefficienY, indicates that whefR< 0.1\,

The vertical translation frequency is achieved by makingihe mean acoustic radiation force per unit cross section of a
a fast Fourier transformation to the time evolution of the

. . S . ample is approximatel%-)er/)\, no matter what shape the
drop centroid, and is plotted in Fig. 17. The restoring force Of:ample takes. Because thin disks have larger cross sections

the vertical vibration is provided by the acoustic radiationg
force. Therefore, the translational frequency is dependent o
the intensity of the incident acoustic field. For a rigid small
sphere, the resultant acoustic rzadiation force can be X
pressed ag=~(5/6)mR*(w/ p0c3)p03|n22;<z), W?'Ch can be  gaple fevitation of large water drops is proposed, that is, to
further approximated a6 =~(20mR°pgf?/3poc?)z near the adjust the reflector-emitter intervéll slightly above the reso-
sound pressure nodal. In the above expression, the term fnt intervalH,. A numerical simulation is conducted to
the brackets can be regarded as the restoring force coeffly,qy the deformation and oscillation of a water drop levi-
cient. Therefore,'the translational frequency near the pressufgieq in an acoustic field for both microgravity and normal
nodal can be written as gravity conditions. It is found that the aspect ratio of the
equator radius to the polar radius of the drop increases
Pof | 5 quickly when sound pressure increases. The original convex
POPL,

or the same volume, it is advantageous to obtain a larger
Hcoustic radiation force when levitating thin disks.

The acoustic levitation of a water drop is studied experi-

entally and a necessary condition of the acoustic field for

fr= 22 (25 shape of the central part of the top and bottom surface even
changes into a concave shape at higher sound pressure levels.

. . — . These results agree well with the experiments. The main fre-
where p, is the pressure amplitude of an incident acoustic

: . . qguencies of the shape oscillation under different sound pres-
f'fg's-r?: lf;egtljsen;ysﬁgedr'ft.ﬁdgy E(1t275)af§r;|£f§|r§nlt_ns:unilc sures are larger than the Rayleigh frequency because of the
p " Vels | wn In F1g. I fine, whi lf\arge shape deformation. The gravitational field does not ap-
agrees quantltat!vely with the simulated result: A.S acompart, arently affect the oscillational frequencies. The simulated
soln, the_tr%nsla;:lonal freqluencletst fgr Esmall r|g|ddspher§ aNffanslational frequency is consistent with the analytical re-
a large rigid sphere are also plotted. Equaligs) is derive sult. As a first-order approximation, Eq®4) and (25) can

on the basis of the small rigid sphere approximation, whereag,, jie j o evaluate the oscillational and translational fre-
the water drop has a substantial radius and a large Sha%%encies

deformation, and the acoustic radiation pressure also contrib*
utes to driving the shape oscillation. Therefore, the deviation

_k;}etween the numerical simulation and E2pH) is not surpris- ACKNOWLEDGMENTS
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