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Criteria for the experimental observation of multidimensional optical solitons in saturable media
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Criteria for experimental observation of multidimensional optical solitons in media with saturable refractive
nonlinearities are developed. The criteria are applied to actual material paragebisacterizing the cubic
self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and optical-damage thréshold
various glasses. This way, we identify operation windows for soliton formation in these glasses. It is found that
two-photon absorption sets stringent limits on the windows. We conclude that, while a well-defined window of
parameters exists for two-dimensional solitaspatial or spatiotemporglfor their three-dimensional spa-
tiotemporal counterparts such a windawes notexist, due to the nonlinear loss in glasses.
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I. INTRODUCTION original papers[14,55,15 and in the review{16]. Several
nechanisms that can suppress the collapse have been inves-

Solitons are localized wave packets and/or beams that re: ted. Th nelud turati the K i i
sult from the balance of the linear and nonlinear responses gfg2t€d: Nhese inciude saturation ot the Kerr noninearity
71, higher-order dispersion or diffractiaf@also referred to

a physical system. Depending on the physical properties as “nonparaxialityy [18], multiphoton ionization[19], and

the underlying system, solitons take different forms. Theystimulated Raman scatterii§RS [20,21. In particular, the

can be hydrodynamic wave packets, such as solitary waveg, jortance of the multiphoton absorption and SRS for the
in the ocear{1] and atmospherf2]. They can also be spin- gyatigtemporal self-focusing of light in the Kerr medium was

wave packets, such as magnetic solitf®g]. Bose-Einstein  jnferred from experimental data in Rg22]. However, these
condensates provide a medium to produce matter-wave solinechanisms eventually reduce the intensity and cause the
t0n5[5]. Other examples of soliton dynamiCS can be found inpu|se to expand in time and space, prec|uding the achieve-
a wide variety of fields, including astrophysics, plasma physment of multidimensional solitoni23].
ics, nuclear physics, and even metabolic biolo@+9, Different versions of the saturable nonlineariyhich im-
among others. Very accurate experiments have been pefties saturation of the cubic nonlinear susceptibilit?), in
formed with topological solitonéfluxons in long Josephson  high-intensity fields have been studied theoretically in de-
junctions, including a recent direct observation of their mac+ajl. It was shown that both rationd24—29 and cubic-
roscopic quantum properti¢$0]. quintic (CQ) [29-3] variants of the saturation readily sup-
Solitons in optics, which are known in their temporal, port stable two-dimensiona{2D) and three-dimensional
spatial, and spatiotemporal varietiéthe latter ones being (3D) solitons. A difference between them is that the former
frequently called “light bullets], constitute, perhaps, the cannot stabilize “spinning” solitons with an intrinsic vortic-
most versatile and well-studieghoth theoretically and ex- ity, but the CQ nonlinearity makes it possible, in the 2D
perimentally class of solitons in physics. In particular, tem- [32-34 and even 3035] cases.
poral solitons in optical fiber§1l] have recently made a  The first observation of a self-trapped beam in a Kerr
commercial debut in high-speed telecommunications linksnedium was reported by Bjorkholm and Ashkin in 1974
[11,12. It has been pointed out that multidimensional [36]. The experiment was done in sodium vapor around the
(multi-D) spatiotemporal optical solitons can be used in thep, transition line, and self-focusing arose from strong satu-
design of high-speed all-optical logic gates and, eventuallysation of the transitiorii.e., saturation of the linear suscepti-
in all-optical computation and communications syst¢f®.  pijlity, y\V). Studies of 2D solitons have made rapid progress
The balance of linear and nonlinear dynamical features igince the mid-1990s in the study of two new nonlinearities
only the first step in the soliton formation. Securing the stafeaturing saturation. Segeat al. predicted that the photore-
bility of this balance is the second, equally important step. Afractive (PR) effect in electro-optic materials could be ex-
well-known difficulty is that the most common optical pjoited to create an effective saturable nonlinear index of
nonlinearity—the Kerr effect in dielectrics—gives rise to refraction that would support solitori87]. PR solitons were
soliton solutions which are unstable in more than one dimenobserved experimenta”y soon afterwdB8]. In para||e| to
sion against the wave collapse, as discugsegarticulay in  this, there was a resurgence of interest in the so-called cas-
cading nonlinearity, which is produced by the interaction of
two or three waves in media with quadrati¢?) nonlinear
*Corresponding author. Email address: yc245@cornell.edu susceptibility. Both 1D and multi-D solitons in the quadratic
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media had been studied theoretically in numerous ws&s Il. THEORETICAL ANALYSIS OF NECESSARY

reviews[39] and[40]). Stationary 2D spatial soliton@ the CONDITIONS FOR THE EXISTENCE OF TWO- AND
form of self-supporting cylindrical beamsvere first gener- THREE-DIMENSIONAL SOLITONS: LOSSLESS SYSTEMS

ated in quadratic media by Torrl(nglmlal. [41]. Later, Di Evolution of the amplitud& of the electromagnetic wave
Trapaniet al. observed temporagy' solitons[42], and, fi- i, 5 |ossless Kerr-like medium with anomalous GVD obeys
nally, spatiotemporal solitons were produced by Eual.  {he well-known scaled equatiq24,26-28

[43,44. Under appropriate conditions, both the PR and cas-
cading nonlinearities may be modeled as saturable generali-
zations of the Kerr nonlinearitydespite the fact that the PR

media are, strictly speaking, noninstantaneous, nonlocal, and )
anisotropig. However, to date, multi-D solitons in true satu- Wherez and(x,y) are the propagation and transverse coor-
rable Kerr media have not been observed. dinates,t is the reduced temporal variable, af(d) is pro-

In this work, we examine the possibility of stabilizing portional to the nonlinear correction to the refractive index

solitons(arresting the collap3en saturable Kerr medifl7], An(l). In the Kerr medium_proper, the refrac_:tive index is
n(l)=ny+An(l)=ny+n,l, which, as was mentioned above,

from the perspective of experimental implementation. Exist-

ing theories provide for parameter regions where the formad'V€S rise to unstable muiti-D solitons, including the weakly
g P P g unstableTownes solitorin the 2D casg16]. Upon the propa-

tion of stable solitons is possible, but neglect linear and non=""> . - e
P 9 ation, the unstable solitons will either spread out or collapse

linear losses, as well as other limitations, such as optic : . . .
damage in high-intensity fieldgl5]. First, we propose a cri- owards a smgulanty,' depend!ng on small perturbations
' ' added to the exact soliton solution.

terion for acceptable losses, and determine the CONSequences- . tiions for the soliton formation are usually expressed

gf |tsh:s loss for the observation of solitonlike beams and/or, iarms of the normalized energy content, but from an ex-
ulses.

, . perimental point of view it is more relevant to express the

Then, as benchmark saturable Kerr media, we consid&fongitions in terms of intensity and sizeemporal duration
nonlinear glasses. Direct experimental measurements of thg,q/or transverse widffof the pulse/beam. They can also be
higher-order nonlinearities and nonline@wo-photon loss  converted into the dispersion and diffraction lengths, which
in a series of glasses allow us to link the theoretical predicare characteristics of the linear propagation. We transform
tions to experimentally relevant values of the parameters. Athe results of Ref[15] to estimate the parameters of the 2D
a result, we produce “maps” of the experimental-parameteand 3D solitons in physical units. The transformation is
space where 2D and 3D solitons can be produced. To ousased on the fact that the solutions are scalable with the
knowledge, this is the first systematic analysis of the effectbeam size. Without losing generality, the estimation also as-
of nonlinear absorption on soliton formation in saturablesumes a Gaussian profile for the solutions. The relations be-
Kerr media. We conclude that it should be possible, althougltween the critical peak intensity necessary for the formation
challenging, to experimentally produce 2D spatial and 2Dof the soliton and diffraction length, in Sl units, are
spatiotemporal solitons in homogeneous saturable media.

1
iEz+E(Exx+Eyy+Ett)+f(|)E=O, (1)

Spatiotemporal solitons require anomalous group-velocity 052(”_3)(&) for 2D
dispersion(GVD). Under conditions relevant to saturation of N,/ \ Lyt ’
the Kerr nonlinearity, material dispersion is likely to be nor- critical =~ n2\/ \ (2)
mal. In that case, anomalous GVD might be obtained by 0.79<n—°><—°> for 3D,

2 diffr

pulse-tilting, for example. On the other hand, the prospects

for stabilizing 3D solitons seem poor, even ignoring the ”eeQ/vhereLdiﬁr:ZWnowgl)\o is the diffraction length of the beam
for anomalous GVD. This conclusion suggests that qualitayith the waist widthw,. Equation(2) is easy to understand
tively different nonlinearities, such ag”, may be more rel-  for the 2D spatial case. For the 2D spatiotemporal and the
evant to making light bullets. 3D case, we have assumed that the light bullet experiences

We focus on Gaussian beam profiles, which are prototypiznomalous GVD, and has a dispersion length equal to the
cal localized solutions. Very recent work has shown that nongiffraction length, i.e., we have assumed spatiotemporal

linear loss can induce a transition from Gaussian to Conicaéymmetry for the system, as is evident in Edj). Further

waves, which can be stationary and localiZdé,47. The  eyamination of Eq(2) shows that the beam’s power is inde-

conical waves are very interesting, but represent a differergengent of its size for 2D solitons, which is a well-known

regime of wave propagation from that considered here.  property of the Townes solitons, and the light bullet's energy
The rest of the paper is organized as follows. The theogecreases as its size decreases in the 3D [d&e

retical analysis of the necessary conditions for the formation ag said above, two different forms of the saturation of the

of the 2D and 3D solitons is presented in Sec. Il. Results okerr nonlinearity were previously considered in detail theo-

experimental measurements of the nonlinear param@t®+s retically, with An(1) in rational form[24,26-28,

bic and quintic susceptibilities, and two-photon lp#s a

range of glasses are reported in Sec. lll. Final results, in the n,l

form of windows in the space of physical parameters where An(l) = (1+1/1gy’ 3)

the solitons may be generated in the experiment, are dis- sa

played in Sec. IV, and the paper is concluded in Sec. V. and CQ(cubic-quintig [29-34,
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An(l) = nyl = nyl?, (4) IIl. THEORETICAL ANALYSIS OF NECESSARY
CONDITIONS FOR THE EXISTENCE

with bothn, andn, positive. Although these two models are OF TWO- AND THREE-DIMENSIONAL SOLITONS:
usually treated separateljgnd, as mentioned above, they THE LIMITATIONS DUE TO LOSSES
produce qualitatively different results for vortex solitpns
they are two approximate forms of the nonlinear index for  Up to this point, the medium was assumed lossless. In real
real materials. When the light frequency is close to a resomaterials, saturable nonlinear refraction is accounted for by
nance, Eq(3) describes the system well; if the frequency is proximity to a certain resonance, which implies the inevi-
far away from resonance, E¢) is a better approximation. table presence of considerable loss. Strictly speaking, soli-
Whenl <lg,, Eq.(3) can be expanded, becoming equivalenttons cannot exist with the loss. Of course, dissipation is

to the CQ model, present in any experiment. The challenge is to build a real
physical medium which is reasonably close to the theoretical
An(l) = nyl = (Nyf1g)1% = Nyl — nyl?, (5) models predicting stable solitons. In particular, this implies,

as a goal, the identification of materials that exhibit the re-

with ny=n,/ls,; The two models produce essentially differ- quired saturable nonlinear refraction, with accompanying
ent results when the expansion is not valid. losses low enough to allow the observation of the essential

Critical conditions for the formation of 2D solitons in features of the solitons. Under these conditions, only soliton-
these systems were found numerically by Quiroga-Teixeirdike beamg“quasisolitons}, rather than true solitons, can be
et al. [29] (2D), and by Edmundsoet al. [27] and McLeod  produced. Nevertheless, in cases where losses are low
et al. [28] for the 3D solitons. From those results, we canenough for such quasisolitons to exite conditions will be
estimate the necessary experimental parameters for both thiescribed beloy we refer to the objects as “solitons.”
2D and 3D case by the transformation to physical units. The As candidate optical materials for the soliton generation,
transformation is based on scaling properties of the governae focus on glasses, as they offer a number of attractive
ing equation(1). The estimate again assumes a Gaussiaproperties[48-50. Their x'® susceptibility is, generally,

profile, which yields well known, varying from the value of fused silida,~ 3
X 10716 cn?/W) up to 1000 times that value. The linear and
= 0.16(ny/n,) for 2D, ®) nonlinear susceptibilities of glasses exhibit an almost univer-
~ sable™ | 1 25n,/n,) for 3D, sal behavior that depends largely on the reduced photon en-

ergy (hw/Ey, wherefio is the photon energy anf, is the
for the minimum peak intensity needed to launch a stabl@bsorption edge, as defined in R¢#8-50). This results in

soliton, and simple and clear trends that can be easily understood. The
wide variety of available glasses offers flexibility in the de-
{0_77)\0\;m/n2 for 2D, sign of experiments. Glasses are solid, with uniform isotro-
Wo = Weaple™ —_— (7) pic properties that make them easy to handle and use. There
0.3o\NgNy/n,  for 3D, are recent experimental reports of saturable nonlinearities in

- . _ . some chalcogenide glassgsl]. The saturable nonlinearity
for the minimum size of the beam. The latter translates intq, 5o actually measured with the photon energy above the

the minimum diffraction length, two-photon absorption edge, hence this case is not relevant
) to the pulse propagation, as the loss would be unacceptably
_ 3.68\on4(n/np)* for 2D, gy  high. However, these measurements encourage the search for

dift =1 0.56\gn,(Ny/Ny)? for 3D. situations where the nonlinearity saturation is appreciable

while the loss is reasonably low.

In the derivation of the above equation, we have used the It is possible to crudely estimate the conditions that will
result from a CQ model for the 2D caf29]. The validity of  be relevant to soliton formation based on the general features
the result can be verified from the fact thiat,,d{ns/n,)  of the nonlinearities of glasses. The nonlinearity of (Aa
~0.16, which gives an error ¢fg.pdns/ny)]?~0.025<1in  -1)th order will become significant and increase rapidly
the expansion of Eq5). This means it is appropriate to use when the photon energy crosses thphoton resonance. Just
a CQ model to determine the boundary where the solitonas the nonlinear index increases rapigiyd is accompanied
start to become stable. On the other hand, the result from lay two-photon absorptiot2PA)] whenzw/E,~ 0.5, we ex-
model with the form of Eq(3) is used instead for the 3D pectn, to become significarfand be accompanied by three-
case[27,28, which yields a result ofsape~1.2954 andlsy  photon absorptiori3PA)] when%w/Ey~0.33. The require-
can always be expressedripandn,, as described in E¢5). ment thatn, be appreciable without excessive 2PA or 3PA

In general, these results show that the required intensitimplies that, within the window 0.382w/E4< 0.5, the soli-
decreases with(n,/n,). This means that a larger self- tons may be possible.
defocusing coefficient, makes it easier to arrest collapse, as  To formulate these conditions in a more accurate form, it
expected. On the other hand, a larggalso makes the beam is necessary to identify a maximum loss level beyond which
size larger. This is also understandable, since stronger selfhe dynamics deviate significantly from that of a lossless
defocusing reduces the overall focusing effect and makes thgystem. This issue can be addressed by theoretical consider-
beam balanced at a larger size. ation of quasisolitons ifweakly) dissipative systems. First
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of all, we fix, as atolerance limit an apparently reasonable =~ The material-damage thresholty;mage also limits the
value of€;qerance= 10% peak-intensity loss per characteristic highest possible peak intensity that can be used experimen-
(diffraction) length, L. From what follows below, it will  tally. Although this threshold depends on both the material
be clear how altering this definition may impact the predictedand pulse duration, we will assunig,age=100 GW/cn,

parameter window for soliton formation. which is typical for nonlinear glasses and pulses with the
If the loss is produced by 2PA, the corresponding evolu-duration~100 fs. Thus, all the above results can be summa-
tion equation for the peak intensityz) is rized in the form
j_'zz _ ,32PA|21 (9) Imin < I0 < min{IZPA toleranceI damagé- (14)

In a material with known nonlinearity and loss, experimental

whereB,p, is the 2PA coefficient. It follows that the loss per 0bservation of the solitons is feasible if the corresponding
Ly (provided that it is small enougltis Al ~—Bopal 2Ly, Window (14) exists. _ _
The substitution of the above definition of the tolerance A Somewhat simplified but convenient way to assess this
threshold,|Al|/1 < €ioerance INtO the latter result leads to an 1S 10 define a figure of meritFOM). In the case when

upper bound on the intensity, | damage™ I2PA tolerance
ft I _ I2PA tolerance
I < I2PA toleranceé— w- (10) FOM= IOg( |
ﬂZPALdiffr ) min )
Notice that the condition7) implies that thg Q|f|fract|on log ftoleranc<1-71 . 2 N)
length cannot be too short, hence the upper limit in @q) | NghoBara
cannot be extremely high. for 2D,
An analogous result for 3PA is ={ r N . (15)
log| ¢ 1.425—2—-N
€tolerance toleranc( nz)\ )
12< I%PA tolerance Lo’ - 0 0Bzpa
BapaLdiftr \ for 3D.

which follows from the evolution equatiofcf. Eq. (9]  If 13mageis smaller thar ypa tierance the definition becomes
dl/dz=—-B5pal°. However, as will be discussed later, in the

case relevant to the soliton formation, 2PA dominates over FOM = log('damage)

3PA. [
On the other hand, within the distance necessary for the m )
observation of the soliton, its peak intensity must remain Ny _ Aoy
e . l0g| lgamage— | 6:4 = 3.6 B2pa
above the threshold valyé) to prevent disintegration of the M, 5
_soliton_. Solving Eq«9), this sets another constraint on the for 2D,
intensity, =9 . "2
09| | gamaga—| 0-8 = 0.50Bopa—— | |,
IO ?12 117)
Toina = stable (11)
1 +NBzpal oL difir \ for 3D.
wherel, is the initial peak intensity antl is the number of (16)

diffraction lengths required for the experiment. In this work
we assuméN=5, which is sufficient for the reliable identifi-
cation of the solitorj43,44. Note that the conditioil1) can
never be met if the necessary valyg.is too high,

'The FOM is a measure of the range between the minimum
required and maximum allowed values of the peak intensity.
Of course, it must be positive, and the larger the FOM, the
better the chance to observe solitons.

letane™ lmax= (NBopaLait) % (12) It seems to be co.m.monly. accepted thalt a larger quintic
self-defocusing coefficienh, is always desirable, but the

In the case oly=1,,,, the overall peak-intensity loss with above results show that this is not always true. From the

the propagation will be=50%. We will refer to the situation FOM we can see that a largej is better in the sense that it

in which lgape> Imax @S a “loss-dominating” one, and the reduces the lower thresholg,,, helping to secure the posi-

opposite as “saturation-dominating,” since I, and tiveness of the FOM16). However, as soon ds,;, is low
1/1,ax CaN be viewed, respectively, as measures of saturatioenough that the damage threshold no longer poses a problem,
and loss in the system. When saturation dominates over theqg. (15) shows that largen, does not help, and the loss
2PA loss, and hence creation of the soliton is possible, Ecfactor B,p5 dominates. One can understand this, noticing

(11) can be cast into the form of a necessary condition for thehat, although largen, reduced,;,, at the same time it in-

initial peak power, creases the beam’s width and makes the needed experimental
propagation length longer, as is clearly shown by @g. In
lo> 1= I stable _ (13) turn, more loss accumulates QUe to a longer propagation
1 = ltapid! max length, which offsets the benefit of a lowigg;,.
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IV. MEASUREMENTS OF NONLINEAR PARAMETERS

2.0}
OF GLASSES s (a)

The eventual objective is to answer the following ques- E 15l
tion: for a given category of materia{such as glassgswith -§
known nonlinear, loss, and damage characteristics, does a e
there exist a combination of material and wavelength such & 1¢t o P
that solitons can be observed. To this end, we have measured % & _
the nonlinearity in a series of glasses with 100-fs pulses from & % o experiment s
a Ti:sapphire regenerative amplifier with center wavelength o 05} .. P
at 790 nm. Sapphire is use@t has fw/Ey=0.25 in this E S W P _—
case as a reference material with minimum nonlinearity. Al- ] Time Delay
though fused silica can also be used for this purpose, sap-  99; 2 y) 8 a

phire’s higher damage threshold allows us to measure at Intensity (GW/cm?)
higher intensities.

We measured several glasses, including SK@8th 08l
holEy=0.5), La-Ga-S (with hw/Eq=0.56, and AsS, “T (b)
(with w/E4=0.75). To determine the effectivg® and '
susceptibilities, spectrally resolved two-beam coupling
(SRTBO was used52]. We extended the application of this
method to take into account both higher-order nonlinearities

06}

04t e

Nonlinear absorption signal size

and strong signal§53]. In general, 2PA is observable even o
for iw/Ey<0.5 owing to the absorption-edge broadening T
present in all glasses. 02l @@ o experiment
Typical experimental traces obtained from ,8¢ are | H;;'/ @
shown in the insets of Fig. 1, along with the theoretical fits. o x(a) |t(5) _ T2 o0 12
The intensity dependence of the SRTBC signal magnitude 0_00’ """ 2* "X f't‘.t : T'meDe'a’;

and the normalized nonlinear absorption signal magnitude
are shown in Fig. 1. The dotted curves in both panels are

predictiong for the pgre(@ nonlinearity. The devila'uon of FIG. 1. Intensity dependence ¢ SRTBC signal magnitude
the experimental points from these curves evidences thgomalized peak-valley transmission differenead (b) nonlinear
saturation of the nonlinearity. Postulating the presence of thgnsorption signal of AsS;. The saturation of the cubic nonlinearity
x® self-defocusing nonlinearity provides for good agree-is evident. Higher-order nonlinearities, such @8, can be esti-
ment with the experiments. Similar results were produced bynated from the deviation fromy®. Insets show examples of
all four samples used in the measurements; in particular, ISRTBC and nonlinear absorption tragaymboly along with the
all the cases the sign of the real part)¢? turns out to be  best-fit theoretical curvesolid lines. The time delayon the hori-
opposite to that of¢'®, i.e., the quintic nonlinearity is self- zontal axig is given in units of the pulse duratigfull width at half
defocusing indeed. The measungd coefficients are consis- maximum).
tent with previously reported valug¢48,51,54. ] . o
From these results, we also observe that higher-order nofRhoton energy. The shaded area is the window remaining
linearities become more important as the optical frequencyfter inclusion of the loss. It is greatly reduced compared to
approaches a resonance, as expected on physical groun#¥ lossless case, and the best FOM is obtained near
The x® part of the nonlinearity is most significant for 48, fiw/Ey=0.35. From this diagram, we conclude that, while

while for sapphire it is below the detection threshold. the saturation of the nonlinearity is definitely necessary to
stabilize the soliton, major restrictions on the window are

V. STABILITY WINDOWS FOR THE TWO- AND THREE- imposed by the loss. o
DIMENSIONAL SOLITONS From the above rough estimation that was based on the
band-edge arguments, one might expect that 3PA would fur-
The measurements provide the information needed tther curtail the window, when the 2PA effects are weak
construct the window for the soliton formation. The results(which is the case exactly inside the predicted winglow
for the 2D case are shown graphically in Fig. 2.The intensityfHowever,n, and 2PA have been observed in glasses for the
limitations are plotted on the diagram against the reducededuced photon energy as low a$.35[49], due to the fact
photon energy. The parameter space can be divided into twihat the band edge in glasses extends well below the nominal
regions which were defined above, viz., the saturationvalue. Since significant 2PA remains in this region, 3PA may
dominating and absorption-dominating ones, with the boundbe neglected indeed. Hence, 2PA presents the fundamental
ary between then determined by E#2). To demonstrate the limitation to observing solitons in these medias quantified
dramatic effect of the loss, we also plot the window for theby the FOM in Eqs(15) and(16)].
(unrealistig case when loss is completely neglectgte The results of the analysis for the 3D solitons are summa-
hatched area In the absence of loss, the window is very rized in Fig. 3. Note that another major issue in this case is
large and the FOM increases monotonically with the reducethe requirement of anomalous GVD. This requirement is ne-

Intensity (GW/cm?)
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FIG. 2. The operation window for the 2D solitons, as predicted . . . .
on the basis of the experimentally measured characteristics of th Frl]Gt' :Ii ;’he op(_erattllqon window fpr 3hD szolgtons. The m_earlwang th

glass. The hatched area is the window neglecting the loss. Th € halched area Is the same as In the case, 1.e., Its OW.St €
shaded area is the dramatically redudedt definitely existing window obtained neglecting the loss. When the loss is taken into

window found with the loss taken into account. account, the window vanishes completely.

glected hergthe addition of it will only further constrain the Nonglass materials may be tried to improve the possibilities
window, which does not really exist even without that; seefor the experiment.
below). From Fig. 3, we observe that, even in the lossless
case, the windowhatched arej@is significantly smaller than VI CONCLUSION
in the 2D case. This is expected, because collapse is stronger We have developed criteria for experimental observation
in 3D than 2D[16]. As in the 2D case, the loss again is a of multidimensional solitons—spatial and spatiotemporal 2D
major concern for performing experiments. The most impor-solitons and spatiotemporal 3D ones. Using these criteria and
tant inference is that the window closes up completely wherimeasured properties of nonlinear glasses within a range of
loss is taken into account. Thus, it appears that loss wilfeduced photon energies, we have shown that the loss that
preclude the creation of 3D solitons in glasses, while leavingiccompanies higher-order nonlinearitieshich are tanta-
room for the 2D solitons. mount to saturation of the cubic nonlineajityill set very
Our overall conclusion is that a challenge is to performstringent limits on the material parameters appropriate for
experimental studies of 2D solitons in saturable Kerr mediathe experiment. While loss was thus far neglected in theoret-
Both spatial and spatiotemporal solitons are possible to bigal treatments of multidimensional solitons, this work moti-
produced experimentally. Among these two, the 2D spavates more systematic studies of the solitonlike propagation
tiotemporal case is more complicated since it requiredn lossy media.
anomalous GVD. In general, this will naturally constrain the ~ The criteria developed in this paper can also be applied,
window further. On the other hand, in this case tilted-pulseas an assessment tool, to materials other than glasses. More
techniques could be used to obtain anomalous GVD. It igenerally, the same rationale used for obtaining the relevant
also possible to use a planar waveguide to perform 2D spddoundaries in this paper can also be used in systems other
tiotemporal soliton experiments. than optical ones. In these cases, the specific mathematical
Of course, the predicted window depends on the assumd@rms of the boundaries will be different. In any case, the
parametergsuch as the damage threshadehd criteria(such ~ analysis presented here suggests that there is a small but
as the 10% loss per diffraction length Variations in these apparently usable window of parameters in which 2D soli-
parameters will naturally impact the window, and our analy-tons can be generated, and work is underway to address this
sis provides the guidelines for searching for the most favorpossibility. On the other hand, the prospects for generating
able materials and wavelength. A next natural step is to pe3D solitons in glasses are quite poor.
form numerical simulations of the pulse propagation with the
parameters selected in the presen?workr.)lt |F')5 gonceivable that ACKNOWLEDGMENTS
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