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Criteria for experimental observation of multidimensional optical solitons in media with saturable refractive
nonlinearities are developed. The criteria are applied to actual material parameters(characterizing the cubic
self-focusing and quintic self-defocusing nonlinearities, two-photon loss, and optical-damage threshold) for
various glasses. This way, we identify operation windows for soliton formation in these glasses. It is found that
two-photon absorption sets stringent limits on the windows. We conclude that, while a well-defined window of
parameters exists for two-dimensional solitons(spatial or spatiotemporal), for their three-dimensional spa-
tiotemporal counterparts such a windowdoes notexist, due to the nonlinear loss in glasses.
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I. INTRODUCTION

Solitons are localized wave packets and/or beams that re-
sult from the balance of the linear and nonlinear responses of
a physical system. Depending on the physical properties of
the underlying system, solitons take different forms. They
can be hydrodynamic wave packets, such as solitary waves
in the ocean[1] and atmosphere[2]. They can also be spin-
wave packets, such as magnetic solitons[3,4]. Bose-Einstein
condensates provide a medium to produce matter-wave soli-
tons[5]. Other examples of soliton dynamics can be found in
a wide variety of fields, including astrophysics, plasma phys-
ics, nuclear physics, and even metabolic biology[6–9],
among others. Very accurate experiments have been per-
formed with topological solitons(fluxons) in long Josephson
junctions, including a recent direct observation of their mac-
roscopic quantum properties[10].

Solitons in optics, which are known in their temporal,
spatial, and spatiotemporal varieties(the latter ones being
frequently called “light bullets”), constitute, perhaps, the
most versatile and well-studied(both theoretically and ex-
perimentally) class of solitons in physics. In particular, tem-
poral solitons in optical fibers[11] have recently made a
commercial debut in high-speed telecommunications links
[11,12]. It has been pointed out that multidimensional
(multi-D) spatiotemporal optical solitons can be used in the
design of high-speed all-optical logic gates and, eventually,
in all-optical computation and communications systems[13].

The balance of linear and nonlinear dynamical features is
only the first step in the soliton formation. Securing the sta-
bility of this balance is the second, equally important step. A
well-known difficulty is that the most common optical
nonlinearity—the Kerr effect in dielectrics—gives rise to
soliton solutions which are unstable in more than one dimen-
sion against the wave collapse, as discussed(in particular) in

original papers[14,55,15] and in the review[16]. Several
mechanisms that can suppress the collapse have been inves-
tigated. These include saturation of the Kerr nonlinearity
[17], higher-order dispersion or diffraction(also referred to
as “nonparaxiality”) [18], multiphoton ionization[19], and
stimulated Raman scattering(SRS) [20,21]. In particular, the
importance of the multiphoton absorption and SRS for the
spatiotemporal self-focusing of light in the Kerr medium was
inferred from experimental data in Ref.[22]. However, these
mechanisms eventually reduce the intensity and cause the
pulse to expand in time and space, precluding the achieve-
ment of multidimensional solitons[23].

Different versions of the saturable nonlinearity(which im-
plies saturation of the cubic nonlinear susceptibility,xs3d, in
high-intensity fields) have been studied theoretically in de-
tail. It was shown that both rational[24–28] and cubic-
quintic (CQ) [29–31] variants of the saturation readily sup-
port stable two-dimensional(2D) and three-dimensional
(3D) solitons. A difference between them is that the former
cannot stabilize “spinning” solitons with an intrinsic vortic-
ity, but the CQ nonlinearity makes it possible, in the 2D
[32–34] and even 3D[35] cases.

The first observation of a self-trapped beam in a Kerr
medium was reported by Bjorkholm and Ashkin in 1974
[36]. The experiment was done in sodium vapor around the
D2 transition line, and self-focusing arose from strong satu-
ration of the transition(i.e., saturation of the linear suscepti-
bility, xs1d). Studies of 2D solitons have made rapid progress
since the mid-1990s in the study of two new nonlinearities
featuring saturation. Segevet al. predicted that the photore-
fractive (PR) effect in electro-optic materials could be ex-
ploited to create an effective saturable nonlinear index of
refraction that would support solitons[37]. PR solitons were
observed experimentally soon afterward[38]. In parallel to
this, there was a resurgence of interest in the so-called cas-
cading nonlinearity, which is produced by the interaction of
two or three waves in media with quadraticsxs2dd nonlinear
susceptibility. Both 1D and multi-D solitons in the quadratic*Corresponding author. Email address: yc245@cornell.edu
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media had been studied theoretically in numerous works(see
reviews[39] and[40]). Stationary 2D spatial solitons(in the
form of self-supporting cylindrical beams) were first gener-
ated in quadratic media by Torruellaset al. [41]. Later, Di
Trapaniet al. observed temporalxs2d solitons [42], and, fi-
nally, spatiotemporal solitons were produced by Liuet al.
[43,44]. Under appropriate conditions, both the PR and cas-
cading nonlinearities may be modeled as saturable generali-
zations of the Kerr nonlinearity(despite the fact that the PR
media are, strictly speaking, noninstantaneous, nonlocal, and
anisotropic). However, to date, multi-D solitons in true satu-
rable Kerr media have not been observed.

In this work, we examine the possibility of stabilizing
solitons(arresting the collapse) in saturable Kerr media[17],
from the perspective of experimental implementation. Exist-
ing theories provide for parameter regions where the forma-
tion of stable solitons is possible, but neglect linear and non-
linear losses, as well as other limitations, such as optical
damage in high-intensity fields[45]. First, we propose a cri-
terion for acceptable losses, and determine the consequences
of the loss for the observation of solitonlike beams and/or
pulses.

Then, as benchmark saturable Kerr media, we consider
nonlinear glasses. Direct experimental measurements of the
higher-order nonlinearities and nonlinear(two-photon) loss
in a series of glasses allow us to link the theoretical predic-
tions to experimentally relevant values of the parameters. As
a result, we produce “maps” of the experimental-parameter
space where 2D and 3D solitons can be produced. To our
knowledge, this is the first systematic analysis of the effects
of nonlinear absorption on soliton formation in saturable
Kerr media. We conclude that it should be possible, although
challenging, to experimentally produce 2D spatial and 2D
spatiotemporal solitons in homogeneous saturable media.
Spatiotemporal solitons require anomalous group-velocity
dispersion(GVD). Under conditions relevant to saturation of
the Kerr nonlinearity, material dispersion is likely to be nor-
mal. In that case, anomalous GVD might be obtained by
pulse-tilting, for example. On the other hand, the prospects
for stabilizing 3D solitons seem poor, even ignoring the need
for anomalous GVD. This conclusion suggests that qualita-
tively different nonlinearities, such asxs2d, may be more rel-
evant to making light bullets.

We focus on Gaussian beam profiles, which are prototypi-
cal localized solutions. Very recent work has shown that non-
linear loss can induce a transition from Gaussian to conical
waves, which can be stationary and localized[46,47]. The
conical waves are very interesting, but represent a different
regime of wave propagation from that considered here.

The rest of the paper is organized as follows. The theo-
retical analysis of the necessary conditions for the formation
of the 2D and 3D solitons is presented in Sec. II. Results of
experimental measurements of the nonlinear parameters(cu-
bic and quintic susceptibilities, and two-photon loss) in a
range of glasses are reported in Sec. III. Final results, in the
form of windows in the space of physical parameters where
the solitons may be generated in the experiment, are dis-
played in Sec. IV, and the paper is concluded in Sec. V.

II. THEORETICAL ANALYSIS OF NECESSARY
CONDITIONS FOR THE EXISTENCE OF TWO- AND

THREE-DIMENSIONAL SOLITONS: LOSSLESS SYSTEMS

Evolution of the amplitudeE of the electromagnetic wave
in a lossless Kerr-like medium with anomalous GVD obeys
the well-known scaled equation[24,26–28]

iEz +
1

2
sExx + Eyy + Ettd + fsIdE = 0, s1d

wherez and sx,yd are the propagation and transverse coor-
dinates,t is the reduced temporal variable, andfsId is pro-
portional to the nonlinear correction to the refractive index
DnsId. In the Kerr medium proper, the refractive index is
nsId;n0+DnsId=n0+n2I, which, as was mentioned above,
gives rise to unstable multi-D solitons, including the weakly
unstableTownes solitonin the 2D case[16]. Upon the propa-
gation, the unstable solitons will either spread out or collapse
towards a singularity, depending on small perturbations
added to the exact soliton solution.

Conditions for the soliton formation are usually expressed
in terms of the normalized energy content, but from an ex-
perimental point of view it is more relevant to express the
conditions in terms of intensity and size(temporal duration
and/or transverse width) of the pulse/beam. They can also be
converted into the dispersion and diffraction lengths, which
are characteristics of the linear propagation. We transform
the results of Ref.[15] to estimate the parameters of the 2D
and 3D solitons in physical units. The transformation is
based on the fact that the solutions are scalable with the
beam size. Without losing generality, the estimation also as-
sumes a Gaussian profile for the solutions. The relations be-
tween the critical peak intensity necessary for the formation
of the soliton and diffraction length, in SI units, are

Icritical <50.52Sn0
2

n2
DS l0

Ldiffr
D for 2D,

0.79Sn0
2

n2
DS l0

Ldiffr
D for 3D,6 s2d

whereLdiffr =2pn0w0
2/l0 is the diffraction length of the beam

with the waist widthw0. Equation(2) is easy to understand
for the 2D spatial case. For the 2D spatiotemporal and the
3D case, we have assumed that the light bullet experiences
anomalous GVD, and has a dispersion length equal to the
diffraction length, i.e., we have assumed spatiotemporal
symmetry for the system, as is evident in Eq.(1). Further
examination of Eq.(2) shows that the beam’s power is inde-
pendent of its size for 2D solitons, which is a well-known
property of the Townes solitons, and the light bullet’s energy
decreases as its size decreases in the 3D case[15].

As said above, two different forms of the saturation of the
Kerr nonlinearity were previously considered in detail theo-
retically, with DnsId in rational form[24,26–28],

DnsId =
n2I

s1 + I/Isatd
, s3d

and CQ(cubic-quintic) [29–34],
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DnsId = n2I − n4I
2, s4d

with bothn2 andn4 positive. Although these two models are
usually treated separately(and, as mentioned above, they
produce qualitatively different results for vortex solitons),
they are two approximate forms of the nonlinear index for
real materials. When the light frequency is close to a reso-
nance, Eq.(3) describes the system well; if the frequency is
far away from resonance, Eq.(4) is a better approximation.
WhenI ! Isat, Eq. (3) can be expanded, becoming equivalent
to the CQ model,

DnsId < n2I − sn2/IsatdI2 ; n2I − n4I
2, s5d

with n4;n2/ Isat. The two models produce essentially differ-
ent results when the expansion is not valid.

Critical conditions for the formation of 2D solitons in
these systems were found numerically by Quiroga-Teixeiro
et al. [29] (2D), and by Edmundsonet al. [27] and McLeod
et al. [28] for the 3D solitons. From those results, we can
estimate the necessary experimental parameters for both the
2D and 3D case by the transformation to physical units. The
transformation is based on scaling properties of the govern-
ing equation(1). The estimate again assumes a Gaussian
profile, which yields

I ù Istable< H0.16sn2/n4d for 2D,

1.25sn2/n4d for 3D,
J s6d

for the minimum peak intensity needed to launch a stable
soliton, and

w0 ù wstable<H0.77l0
În0n4/n2 for 2D,

0.3l0
În0n4/n2 for 3D,

J s7d

for the minimum size of the beam. The latter translates into
the minimum diffraction length,

Ldiffr ù H3.68l0n4sn0/n2d2 for 2D,

0.56l0n4sn0/n2d2 for 3D.
J s8d

In the derivation of the above equation, we have used the
result from a CQ model for the 2D case[29]. The validity of
the result can be verified from the fact thatIstablesn4/n2d
<0.16, which gives an error offIstablesn4/n2dg2<0.025!1 in
the expansion of Eq.(5). This means it is appropriate to use
a CQ model to determine the boundary where the solitons
start to become stable. On the other hand, the result from a
model with the form of Eq.(3) is used instead for the 3D
case[27,28], which yields a result ofIstable<1.25Isat, andIsat
can always be expressed inn2 andn4, as described in Eq.(5).

In general, these results show that the required intensity
decreases withsn2/n4d. This means that a larger self-
defocusing coefficientn4 makes it easier to arrest collapse, as
expected. On the other hand, a largern4 also makes the beam
size larger. This is also understandable, since stronger self-
defocusing reduces the overall focusing effect and makes the
beam balanced at a larger size.

III. THEORETICAL ANALYSIS OF NECESSARY
CONDITIONS FOR THE EXISTENCE

OF TWO- AND THREE-DIMENSIONAL SOLITONS:
THE LIMITATIONS DUE TO LOSSES

Up to this point, the medium was assumed lossless. In real
materials, saturable nonlinear refraction is accounted for by
proximity to a certain resonance, which implies the inevi-
table presence of considerable loss. Strictly speaking, soli-
tons cannot exist with the loss. Of course, dissipation is
present in any experiment. The challenge is to build a real
physical medium which is reasonably close to the theoretical
models predicting stable solitons. In particular, this implies,
as a goal, the identification of materials that exhibit the re-
quired saturable nonlinear refraction, with accompanying
losses low enough to allow the observation of the essential
features of the solitons. Under these conditions, only soliton-
like beams(“quasisolitons”), rather than true solitons, can be
produced. Nevertheless, in cases where losses are low
enough for such quasisolitons to exist(the conditions will be
described below), we refer to the objects as “solitons.”

As candidate optical materials for the soliton generation,
we focus on glasses, as they offer a number of attractive
properties [48–50]. Their xs3d susceptibility is, generally,
well known, varying from the value of fused silicasn2,3
310−16 cm2/Wd up to 1000 times that value. The linear and
nonlinear susceptibilities of glasses exhibit an almost univer-
sal behavior that depends largely on the reduced photon en-
ergy ("v /Eg, where"v is the photon energy andEg is the
absorption edge, as defined in Refs.[48–50]). This results in
simple and clear trends that can be easily understood. The
wide variety of available glasses offers flexibility in the de-
sign of experiments. Glasses are solid, with uniform isotro-
pic properties that make them easy to handle and use. There
are recent experimental reports of saturable nonlinearities in
some chalcogenide glasses[51]. The saturable nonlinearity
was actually measured with the photon energy above the
two-photon absorption edge, hence this case is not relevant
to the pulse propagation, as the loss would be unacceptably
high. However, these measurements encourage the search for
situations where the nonlinearity saturation is appreciable
while the loss is reasonably low.

It is possible to crudely estimate the conditions that will
be relevant to soliton formation based on the general features
of the nonlinearities of glasses. The nonlinearity of thes2n
−1dth order will become significant and increase rapidly
when the photon energy crosses then-photon resonance. Just
as the nonlinear index increases rapidly[and is accompanied
by two-photon absorption(2PA)] when"v /Eg,0.5, we ex-
pectn4 to become significant[and be accompanied by three-
photon absorption(3PA)] when "v /Eg,0.33. The require-
ment thatn4 be appreciable without excessive 2PA or 3PA
implies that, within the window 0.33,"v /Eg,0.5, the soli-
tons may be possible.

To formulate these conditions in a more accurate form, it
is necessary to identify a maximum loss level beyond which
the dynamics deviate significantly from that of a lossless
system. This issue can be addressed by theoretical consider-
ation of quasisolitons in(weakly) dissipative systems. First
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of all, we fix, as atolerance limit, an apparently reasonable
value of,tolerance;10% peak-intensity loss per characteristic
(diffraction) length,Ldiffr . From what follows below, it will
be clear how altering this definition may impact the predicted
parameter window for soliton formation.

If the loss is produced by 2PA, the corresponding evolu-
tion equation for the peak intensityIszd is

dI

dz
= − b2PAI

2, s9d

whereb2PA is the 2PA coefficient. It follows that the loss per
Ldiffr (provided that it is small enough) is DI <−b2PAI

2Ldiffr .
The substitution of the above definition of the tolerance
threshold,uDI u / I ,,tolerance, into the latter result leads to an
upper bound on the intensity,

I , I2PA tolerance;
,tolerance

b2PALdiffr
. s10d

Notice that the condition(7) implies that the diffraction
length cannot be too short, hence the upper limit in Eq.(10)
cannot be extremely high.

An analogous result for 3PA is

I2 , I3PA tolerance
2 ;

,tolerance

b3PALdiffr
,

which follows from the evolution equation[cf. Eq. (9)]
dI /dz=−b3PAI

3. However, as will be discussed later, in the
case relevant to the soliton formation, 2PA dominates over
3PA.

On the other hand, within the distance necessary for the
observation of the soliton, its peak intensity must remain
above the threshold value(6) to prevent disintegration of the
soliton. Solving Eq.(9), this sets another constraint on the
intensity,

I0

1 + Nb2PAI0Ldiffr
. Istable, s11d

whereI0 is the initial peak intensity andN is the number of
diffraction lengths required for the experiment. In this work,
we assumeN=5, which is sufficient for the reliable identifi-
cation of the soliton[43,44]. Note that the condition(11) can
never be met if the necessary valueIstable is too high,

Istable. Imax; sNb2PALdiffrd−1. s12d

In the case ofI0ù Imax, the overall peak-intensity loss with
the propagation will beù50%. We will refer to the situation
in which Istable. Imax as a “loss-dominating” one, and the
opposite as “saturation-dominating,” since 1/Istable and
1/Imax can be viewed, respectively, as measures of saturation
and loss in the system. When saturation dominates over the
2PA loss, and hence creation of the soliton is possible, Eq.
(11) can be cast into the form of a necessary condition for the
initial peak power,

I0 . Imin ;
Istable

1 − Istable/Imax
. s13d

The material-damage threshold,Idamage, also limits the
highest possible peak intensity that can be used experimen-
tally. Although this threshold depends on both the material
and pulse duration, we will assumeIdamage.100 GW/cm2,
which is typical for nonlinear glasses and pulses with the
duration,100 fs. Thus, all the above results can be summa-
rized in the form

Imin , I0 , minhI2PA tolerance,Idamagej. s14d

In a material with known nonlinearity and loss, experimental
observation of the solitons is feasible if the corresponding
window (14) exists.

A somewhat simplified but convenient way to assess this
is to define a figure of merit(FOM). In the case when
Idamage. I2PA tolerance,

FOM ; logS I2PA tolerance

Imin
D

=5
logF,toleranceS1.74

n2

n0
2l0b2PA

− NDG
for 2D,

logF,toleranceS1.42
n2

n0
2l0b2PA

− NDG
for 3D.

6 s15d

If Idamageis smaller thanI2PA tolerance, the definition becomes

FOM ; logS Idamage

Imin
D

=5
logFIdamage

n4

n2
S6.4 − 3.68Nb2PA

l0n0
2

n2
DG

for 2D,

logFIdamage
n4

n2
S0.8 − 0.56Nb2PA

l0n0
2

n2
DG ,

for 3D.

6
s16d

The FOM is a measure of the range between the minimum
required and maximum allowed values of the peak intensity.
Of course, it must be positive, and the larger the FOM, the
better the chance to observe solitons.

It seems to be commonly accepted that a larger quintic
self-defocusing coefficientn4 is always desirable, but the
above results show that this is not always true. From the
FOM we can see that a largern4 is better in the sense that it
reduces the lower thresholdImin, helping to secure the posi-
tiveness of the FOM(16). However, as soon asImin is low
enough that the damage threshold no longer poses a problem,
Eq. (15) shows that largern4 does not help, and the loss
factor b2PA dominates. One can understand this, noticing
that, although largern4 reducesImin, at the same time it in-
creases the beam’s width and makes the needed experimental
propagation length longer, as is clearly shown by Eq.(8). In
turn, more loss accumulates due to a longer propagation
length, which offsets the benefit of a lowerImin.
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IV. MEASUREMENTS OF NONLINEAR PARAMETERS
OF GLASSES

The eventual objective is to answer the following ques-
tion: for a given category of materials(such as glasses), with
known nonlinear, loss, and damage characteristics, does
there exist a combination of material and wavelength such
that solitons can be observed. To this end, we have measured
the nonlinearity in a series of glasses with 100-fs pulses from
a Ti:sapphire regenerative amplifier with center wavelength
at 790 nm. Sapphire is used(it has "v /Eg>0.25 in this
case) as a reference material with minimum nonlinearity. Al-
though fused silica can also be used for this purpose, sap-
phire’s higher damage threshold allows us to measure at
higher intensities.

We measured several glasses, including SF59(with
"v /Eg.0.5), La-Ga-S (with "v /Eg.0.56), and As2S3
(with "v /Eg.0.75). To determine the effectivexs3d andxs5d

susceptibilities, spectrally resolved two-beam coupling
(SRTBC) was used[52]. We extended the application of this
method to take into account both higher-order nonlinearities
and strong signals[53]. In general, 2PA is observable even
for "v /Eg,0.5 owing to the absorption-edge broadening
present in all glasses.

Typical experimental traces obtained from As2S3 are
shown in the insets of Fig. 1, along with the theoretical fits.
The intensity dependence of the SRTBC signal magnitude
and the normalized nonlinear absorption signal magnitude
are shown in Fig. 1. The dotted curves in both panels are
predictions for the purexs3d nonlinearity. The deviation of
the experimental points from these curves evidences the
saturation of the nonlinearity. Postulating the presence of the
xs5d self-defocusing nonlinearity provides for good agree-
ment with the experiments. Similar results were produced by
all four samples used in the measurements; in particular, in
all the cases the sign of the real part ofxs5d turns out to be
opposite to that ofxs3d, i.e., the quintic nonlinearity is self-
defocusing indeed. The measuredxs3d coefficients are consis-
tent with previously reported values[48,51,54].

From these results, we also observe that higher-order non-
linearities become more important as the optical frequency
approaches a resonance, as expected on physical grounds.
Thexs5d part of the nonlinearity is most significant for As2S3,
while for sapphire it is below the detection threshold.

V. STABILITY WINDOWS FOR THE TWO- AND THREE-
DIMENSIONAL SOLITONS

The measurements provide the information needed to
construct the window for the soliton formation. The results
for the 2D case are shown graphically in Fig. 2.The intensity
limitations are plotted on the diagram against the reduced
photon energy. The parameter space can be divided into two
regions which were defined above, viz., the saturation-
dominating and absorption-dominating ones, with the bound-
ary between then determined by Eq.(12). To demonstrate the
dramatic effect of the loss, we also plot the window for the
(unrealistic) case when loss is completely neglected(the
hatched area). In the absence of loss, the window is very
large and the FOM increases monotonically with the reduced

photon energy. The shaded area is the window remaining
after inclusion of the loss. It is greatly reduced compared to
the lossless case, and the best FOM is obtained near
"v /Eg.0.35. From this diagram, we conclude that, while
the saturation of the nonlinearity is definitely necessary to
stabilize the soliton, major restrictions on the window are
imposed by the loss.

From the above rough estimation that was based on the
band-edge arguments, one might expect that 3PA would fur-
ther curtail the window, when the 2PA effects are weak
(which is the case exactly inside the predicted window).
However,n2 and 2PA have been observed in glasses for the
reduced photon energy as low as,0.35 [49], due to the fact
that the band edge in glasses extends well below the nominal
value. Since significant 2PA remains in this region, 3PA may
be neglected indeed. Hence, 2PA presents the fundamental
limitation to observing solitons in these media[as quantified
by the FOM in Eqs.(15) and (16)].

The results of the analysis for the 3D solitons are summa-
rized in Fig. 3. Note that another major issue in this case is
the requirement of anomalous GVD. This requirement is ne-

FIG. 1. Intensity dependence of(a) SRTBC signal magnitude
(normalized peak-valley transmission difference) and (b) nonlinear
absorption signal of As2S3. The saturation of the cubic nonlinearity
is evident. Higher-order nonlinearities, such asxs5d, can be esti-
mated from the deviation fromxs3d. Insets show examples of
SRTBC and nonlinear absorption traces(symbols) along with the
best-fit theoretical curves(solid lines). The time delay(on the hori-
zontal axis) is given in units of the pulse duration(full width at half
maximum).
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glected here(the addition of it will only further constrain the
window, which does not really exist even without that; see
below). From Fig. 3, we observe that, even in the lossless
case, the window(hatched area) is significantly smaller than
in the 2D case. This is expected, because collapse is stronger
in 3D than 2D[16]. As in the 2D case, the loss again is a
major concern for performing experiments. The most impor-
tant inference is that the window closes up completely when
loss is taken into account. Thus, it appears that loss will
preclude the creation of 3D solitons in glasses, while leaving
room for the 2D solitons.

Our overall conclusion is that a challenge is to perform
experimental studies of 2D solitons in saturable Kerr media.
Both spatial and spatiotemporal solitons are possible to be
produced experimentally. Among these two, the 2D spa-
tiotemporal case is more complicated since it requires
anomalous GVD. In general, this will naturally constrain the
window further. On the other hand, in this case tilted-pulse
techniques could be used to obtain anomalous GVD. It is
also possible to use a planar waveguide to perform 2D spa-
tiotemporal soliton experiments.

Of course, the predicted window depends on the assumed
parameters(such as the damage threshold) and criteria(such
as the 10% loss per diffraction length). Variations in these
parameters will naturally impact the window, and our analy-
sis provides the guidelines for searching for the most favor-
able materials and wavelength. A next natural step is to per-
form numerical simulations of the pulse propagation with the
parameters selected in the present work. It is conceivable that
the window for 3D solitons would finally open through
variations of material parameters. In that case, one would
still have to find an overlap of the resulting window with the
condition that the GVD must be anomalous. More generally,

nonglass materials may be tried to improve the possibilities
for the experiment.

VI. CONCLUSION

We have developed criteria for experimental observation
of multidimensional solitons—spatial and spatiotemporal 2D
solitons and spatiotemporal 3D ones. Using these criteria and
measured properties of nonlinear glasses within a range of
reduced photon energies, we have shown that the loss that
accompanies higher-order nonlinearities(which are tanta-
mount to saturation of the cubic nonlinearity) will set very
stringent limits on the material parameters appropriate for
the experiment. While loss was thus far neglected in theoret-
ical treatments of multidimensional solitons, this work moti-
vates more systematic studies of the solitonlike propagation
in lossy media.

The criteria developed in this paper can also be applied,
as an assessment tool, to materials other than glasses. More
generally, the same rationale used for obtaining the relevant
boundaries in this paper can also be used in systems other
than optical ones. In these cases, the specific mathematical
forms of the boundaries will be different. In any case, the
analysis presented here suggests that there is a small but
apparently usable window of parameters in which 2D soli-
tons can be generated, and work is underway to address this
possibility. On the other hand, the prospects for generating
3D solitons in glasses are quite poor.
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FIG. 2. The operation window for the 2D solitons, as predicted
on the basis of the experimentally measured characteristics of the
glass. The hatched area is the window neglecting the loss. The
shaded area is the dramatically reduced(but definitely existing)
window found with the loss taken into account.

FIG. 3. The operation window for 3D solitons. The meaning of
the hatched area is the same as in the 2D case, i.e., it shows the
window obtained neglecting the loss. When the loss is taken into
account, the window vanishes completely.
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